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ABSTRACT 

The forces upon a foil moving below and close to a free 

surface are examined. The foil moves with a forward speed U and 

is subjected to heaving and pitching motions in calm water, head 

waves or following waves. The model is two-dimensional and all 

equations are linearized. The fluid is assumed to be inviscid and 

the motion irrotational, except for the vortex wake. The fluid 

layer is infinitely deep. 

The problem is solved by applying a vortex distribution along 

the center line of the foil and the wake. The local vortex strength 

is found by solving a singular Fredholm equation of first kind, 

which appropriately is transformed to a non-singular Fredholm equa­

tion of second kind. The vortex wake, the forward thrust upon the 

foil and the power supplied to maintain the motion of the foil are 

investigated. The scattered free surface waves are computed. For 

moderate value of Ua/g (U = forward speed of the -foil, a = fre­

quency of oscillation, g = acceleration due to g~avity) it is found 

that the free surface strongly influences the vortex wake and the 

forces upon the foil. When the foil is moving in incoming waves it 

is found that a relatively large amount of the wave energy may be 

extracted for propulsion. As application of the theory the propul­

sion of ships by a foil propeller is examined. 



1. INTRODUCTION 

The purpose of ·.this paper is to study the forces, in partic­

ular the horizontal force, acting upon an oscillating foil moving 

close to a free surface. Our interest in the problem was raised by 

a series of experiments performed by Jakobsen (1981). He studied a 

model ship moving in a wave field, with a foil fixed to it. The 

waves caused a heaving motion of the ship which resulted in a heav­

ing of the foil. By an arrangement of springs the foil also was 

able to perform a pitching motion. The result was that the foil 

obtained a thrust of considerable magnitude which gave the ship a 

relatively high forward speed. The system was working in head waves 

as well as in following waves. 

Jakobsen also applied a set of horizontal foils fixed to a 

vertical axis in a fan-like manner. Placed in a wave field, the 

fan would start rotating about its axis. According to Jakobsen, 

this can be an effective way of extracting energy out of the waves 

for other purposes than propulsing a ship. 

The idea that an oscillating foil may create a forward thrust, 

is not new. The theory for an oscillating foil in an unbounded 

fluid was discussed thoroughly already in 1934 (von Karman and 

Burgers, 1934). It also turns out that experiments somewhat related 

to those performed by Jakobsen - but far more primitive - was car­

ried out as early as the end of the last century by H.F.L. Linden. 

He applied, instead of a foil, a flexible, horizontal plate which 

was placed in the rear of the ship close to the free surface. 

More recently Wu (1961, 1971a, 1971b) in a series of papers on 

the hydrornechanics of swimming propulsion, has studied the optimum 

oscillating motion of a two-dimensional flat, flexible plate. Since 



- 3 -

around a thin flat plate. The fluid layer is supposed to be of 

infinite depth. 

As appropriate mathematical tool we shall apply the theory of 

integral equations. It will be shown that the governing integral 

equation is a singular Fredholm equation of first kind. By a simple 

transformation this is brought into a form of an ordinary Fredholm 

equation of second kind, which is solved numerically by a colloca­

tion method. 

It is found that the free surface may have a pronounced effect 

on the- magnitude of thrust, efficiency and supplied power. The 

effect is in particular large for small values of ~=Ua/g (U = 

speed of the foil, a = frequency of encounter and g = acceleration 

due to gravity). Thus, oscillating the foil close to the free 

surface with U and a small, we find when there is no incoming 

waves, that the forward thrust may be doubled without increasing 

the wasted energy. In this case the free surface acts as a rigid 

wall, enlarging the lift and the forward thrust. For larger values 

of U and a the surface waves become important. The momentum 

flux in the waves may be responsible for a considerable part of the 

horizontal force acting upon the foil. For ~<1/4 the effect of 

the momentum flux is to reduce the thrust whereas for ~>1/4 the 

effect is usually to increase the thrust. Also the energy waste due 

to the waves may be of great importance, being in some cases the 

main part of the total energy waste. 

When the foil is moving in waves it may extract energy from 

the waves for propulsion. For example, when the amplitudes of the 

incoming waves and the vertical motion of the foil are of the same 
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2. THE BOUNDARY VALUE PROBLEM 

We shall assum~ that the hydrofoil has a small camber and 

angle of attack. The foil is also assumed to be thin, though 

sufficiently rounded at the leading edge to keep the flow from 

being separated there. For the oscillatory part of the flow the 

effects of camber and thickness are then only secondary, and the 

foil may mathematically be replaced by a flat plate. Furthermore 

the amplitudes of the oscillations of the foil and the amplitudes 

of the incoming waves are small. Hence, the boundary conditions at 

the free surface and at the foil may be linearized, even if the 

foil is placed relatively close to the free surface. 

Let coordinates be taken with the origin in the mean free 

surface of the fluid. The x-axis is horizontal and the y-axis 

positive upwards, see figure 1. The fluid is assumed incompressible 

and the motion irrotational. Considering the problem from the frame 

of reference fixed to the mean position of the foil, the water 

flows with a horizontal speed U along the negative x-axis. The 

fluid velocity may then be written 

where 

+ + 
v = llq, - Ue 

X 

is a velocity potential and 
+ 
e 

X 

( 2. 1 ) 

is the unit vector along 

the x-axis. q, satisfies the two-dimensional Laplacian 

( 2 • 2 ) 

We shall consider a fluid of infinite depth. The boundary condition 

at y=-~ is then 

Y + -co ( 2 • 3 ) 
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~O = RejReif 0 (z)exp(jcrt) 

~1 = Re.Re.f1 (z)exp(jcrt) 
J -~ 

(2.10) 

(2.11) 

Finally, at the trailing edge the Kutta condition is applied, 

ensuring that the velocity is finite at this point. Also, at x=±"" 

the radiation conditions must be satisfied. 

3. THE INTEGRAL EQUATION 

To derive an integral equation for the motion we express 

f 1 (z) as a continuous distribution of vortices. Since the fluid is 

oscillating in time, due to the motion of the foil or an incoming 

wave, a vortex wake will be formed behind the foil, extending from 

the trailing edge to x=-""· With sufficient accuracy the wake may 

be considered to be located along the line y=-d. f 1 (z) is 

therefore expressed as an integral from x=-"" to x=l. Let 

G(z,z 0 ) denote the complex potential for a vortex of strength 

unity located at z=z 0 . G(z,z 0 ) fulfils the boundary condition at 

the free surface, the radiation conditions at x=±"" and (2.3) at 

y=-""· f 1 (z) may then be written 

1 
f 1 (z) = Jy(~)G(z,~-id)d~ _.,. 

( 3 • 1 ) 

Here y is real with respect to i. This is to secure that the 

boundary condition at y=O and the radiation conditions are 

satisfied. y is, however, complex in j being of the form 

and are real. G(z,z 0 ) is derived in 

appendix 1, and is shown to be given by 
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Let now z~x-id (x<l) from below and above. (3.9) then gives 

u-iv z=x-id (3.10) 

Here the + sign and - sign correspond to z~x-id from below ·and 

above, respectively, and the bar through the integral sign 

indicates the principal value. To identify y we subtract the 

two equations in (3.10) from each other. Thereby 

Y = ~u (3.11) 

where ~ denotes the difference between the lower and upper \Value 

along the cut -~<x<l, y=-d. To obtain the governing integral 

equation we take the imaginary part with respect to i of (3.10). 

For lxl<l this yields 

z=x-id (3.12) 

where v is given by the kinematic boundary condition at the body 

(2.5), 

(3.13) 

To find y for -l<x<-~ we apply the fact that the vorticity in 

the wake is conserved. Hence 

(3.14) 

The solution of this equation is 

~~!(x,t) = ~~!(x+Ut) (3.15) 

From ( 3. 8) and ( 3. 11 ) 

y = y 0 exp ( jkx) -~<x<-1 (3.16) 
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problem in an unbounded fluid. Considering for the moment the 

r.h.s. of (3.20) as :known, the solution of the equation is (see 

Newman 1977, p. 182) 

1 ~ 1 (12-x2)~ 
y(x) = :-r<12-x2 ) [ f x-Tt (H(Tt)+F(Tt))d'!l + 1tr] (3.24) 

1t -1 

From residue calculation we obtain 

1t - ~<-1, -1<x<1 (3.25) 

By using (3.25) and (3.18) we may after some algebra write (3.24) 

in the form 

1 -
K(x) + fK(~) K(x,~) d~ = H(x) + roP(x) 

-1 (12-~2)~ 
(3.26) 

Here the tilde defines the transform 

(3.27) 

Furthermore, 

K(x) = (12-x 2 )~y(x) (3.28) 

and 

P(x) (3.29) 

For numerical purpose P(x) may be considerably simplified, see 

appendix 2. 

To close the problem we apply the Kutta condition requiring 

y(-1) to be finite. Hence, from (3.26) and (3.28) 

( 3. 30) 

Combining (3.30) and (3.26) we finally obtain 
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presented N=25 is applied, giving an accuracy of 1% or better. 

As a check of the computations the wasted energy is calculated by 

(5.6) and by far-field analysis (5.12). 

5. EFFECT OF THE FREE SURFACE. NO INCOMING WAVES. 

To solve the governing equation (3.31) the incoming wave and 

the motion of the foil must be given. In this section there is no 

incoming waves. We shall assume that the foil is a rigid body 

performing oscillations in heave and pitch. Its forward speed U 

is given by the Froude number 

Fr = U/(gl)~ ( 5 • 1 ) 

Following Lighthill (1970) we write the vertical coordinate of the 

plate in the form 

~(x,t) = Re.[h+ja(x-b)]exp(jat) 
J 

( 5. 2) 

where · h, a and b are real. (5.2) spesifies a heaving of ampli-

tude h and a pitching of amplitude a at a fixed phase lag of 

90° before the heaving, with the axis of pitch at x=b. 

The foil will set up surface waves which at x=±= are 

harmonic waves with wave numbers k 1 ,k2 ,k3 and k 4 (see (3.6)). 

In the frame of reference where the current is zero, later called 

the relative frame of reference, both the k 1 wave and the k 2 

wave have positive phase velocities larger than u. The k 1 wave 

has group velocity less than U whereas the k 2 wave has group 

velocity larger than U. The k 3 wave has positive phase velocity 

being smaller than U, and the k 4 wave has negative phase velo-
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scattering of surface waves. The thrust is composed of two terms: a 

suction force, Ts' acting at the leading edge, and a sideforce due 

to the pressure difference along the foil, T . Hence, the mean p 

thrust is given by 

where 

T = T + T p s 

1 
T = J~~x 

p -l uX 

Introducing the lift L acting upon the plate 

1 
L = J ~pdx 

-1 

(5.8) may be written 

(5.7) 

(5.8) 

(5.9) 

T = L 0 ~ (5.10) 
p 'SX. 

Applying Blasius formula, T is found to be s 

where p is the density. 

The mean waste of energy may be shown to be 

E = E2 (cg2-u) - E (c -u) 1 g1 - E (c -U) 3 g3 
1 

+ akPUir 0 12 [1-exp(-2kd)] 

. Here E (n=l,2,3,4) is the wave energy density n 

E = lpgla 12 n 2 n n=1,2,3,4 

given by 

- E (c -U) 4 g4 

and c (n=1,2,3,4) denotes the group velocities gn 

1 ~(g/kn)~ n=1,2,3 cgn = -c = 2 n 

1 
- ~(g/k4)~ c g4 = r4 = 

(5.11) 

(5.12) 

(5.13) 

(5.14) 
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For values of the reduced frequency al/U less than about 

unity, figure 2a sh~ws that the thrust becomes considerable larger 

for the foil moving close to the free surface than being deeply 

submerged. The figure further reveals that the efficiency is 

slightly larger for small values of d/1. Hence, for small Froude 

numbers and values of the reduced frequency less than about unity, 

it is favourable moving the foil close to the free surface. The 

interpretation of these results is simple. For these values of the 

Froude number and the reduced frequency, the free surface condition 

can be approximated by the rigid wall condition. In this approxima-

tion no waves occur. From figure 2b we see that E increases for 

decreasing values of d/1. Then, using (5.12), it follows that y 0 

and thereby the circulation around the foil, r, increases for de­

creasing d/1. The results obtained above are thus a result of the 

ground effect modified to apply for an oscillating foil. 

A typical feature revealed in figures 2 and 3 is that for ~ 

smaller than 1/4, the generated waves play an important role. Thus, 

for Fr=0.4 the energy waste due to the waves, E , is up to 60% of w 

E, and for Fr=1.0 Ew is close to 100% of E. We also notice that 

the momentum flux in the waves is large. Since the k 1 and k 2 

waves are the dominating ones, the flux is negative. For ~ very 

close to 1/4, both the thrust and the energy waste become very 

small. The energy flux for k 1 and k 2 waves are exactly zero 

when ~·1/4 and it turns out that the energy flux for k 3 and 

k 4waves are negligible in this ~-region. More surprising is, how­

ever, that for ~ close to 1/4, y 0 becomes very small, implying 

that the wake is almost vanishing due to the free surface. For 

values of ~ slightly larger than 1/4, y 0 increases drastically. 



- 19 -

6. EFFECT OF THE FREE SURFACE. INCOMING WAVES 

Let the wave e~evation ~O of the incoming wave be given by 

( 6. 1 } 

and the corresponding complex velocity potential by 

( 6. 2) 

Here is the wave amplitude, k 0 the wave number of the incoming 

wave, 6=1 for incoming head waves, i.e. k 0=k 4 , 6=-1 for incoming 

following waves, i.e. k 0=k 1 ,k 2 ,k 3 . The + sign is applied for 

incoming k 3 and k 4 waves, the - sign for incoming k 1 and k 2 

waves. 

Denoting the mean wave energy power of the incoming wave by 

P0 , the energy equation (5.6} then takes the form 

P+P =TU+E 
0 

P0 is given by 

(6.3) 

( 6. 4) 

where E0~ga~ is the energy density of the incoming wave and cg 

1 --is the group velocity. cg~ lg/k0 for incoming following waves and 

1 --
cg=~ lg/k0 for incoming head waves. 

The existence of an incoming wave obviously complicates the 

study of the problem considerably. It introduces into the problem 

three new parameters, viz. the -wave amplitude, the phase between 

the wave and foil motion and the frequency of the wave. We shall 

only consider the case when the foil and the wave motion are 

oscillating with the same frequency. Hence only two new parameters 

are introduced by the incoming wave. 
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The basis for this definition is long incoming waves. We shall, 

however, also apply.it for moderate wave lengths. This only means 

that instead of specifying the pitching angle ~, we specify a 

and find ~ from (6.9). 

Obviously, when the heaving motion of the foil and the wave 

motion (the wave length assumed large) are 180 degrees out of 

phase, the generated fluid motion is equivalent to the motion 

generated by the foil oscillating with the same pitching motion, 

no incoming waves, but a larger amplitude in the heaving motion. 

Correspondingly, when the heave motion and wave motion are in 

phase, the equivalent heave motion with no incoming waves has a 

smaller amplitude. For incoming head waves, for instance, the first 

of these cases corresponds to ~=~/2, giving ~=h+~0 , ~=b and 

a=~U/a(h+~0 ), whereas the latter case is obtained for ~=-~/2, 

giving ~=h-~0 , ~=b and a=~U/a(h-~0 ). On the other hand, when the 

foil and wave motion are 90 degrees out of phase, the generated 

motion is equivalent to the motion generated by the foil for no 

incoming waves, the same heaving motion but the pitch axis moved 

from b to ~- This case, with the foil and wave motion 90° out of 

phase, corresponds to ~=0,~ and the foil is at its highest or 

lowest position when the vertical velocity is maximum upwards. For 

incoming head waves and ~=~, for instance, we have that ~=h, 

~=b+g0 ;~ and a=~U/ah. Thus the only effect of the incoming wave 

is to move the pitch axis to the point 
A 

x=b+a0 ;~. 

We shall in this section study the thrust acting upon and the 

power supplied to the foil for two different kinds of motions. In 

the first case, denoted as motion 1, the heaving motion has 

opposite phase of the incoming wave. This corresponds to ~=~/2 
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this case, the largest effect is obtained when the foil is moving 

in the short k 1 w~ves. For motion 2, in particular, the power 

supply becomes very small, while the thrust retains a significant 

value. The value of the thrust also remains finite for al/U+O in 

this case. 

We see from figures 8 and 9 that for ~>1/4 the largest thrust 

is obtained in head waves. The opposite was true for ~<1/4. 

For motion 1 and 9=0.6 we have found that T is consider­s 

ably smaller than T in all cases. For motion 2 T is close to s 

The examples studied above clearly show that a part of the 

energy of the incoming waves is utilized to produce a forward 

T. 

thrust on the foil. In the special cases where the power supplied 

to the foil is zero or very small, the ratio TU/P0 gives the part. 

of P0 which is utilized for propulsion. Figures 6-9 show cases 

with P being very small. As an illustrious example we refer to 

the case with d/1=1, b/1=-0.5, a 0 /h=1 and motion 2 which gives 

the following table 

al/U Fr ~ k 01 a T/pgh2 TU/PO 

k4 waves o.s o.s 0.125 o.os 0.6 0.066 0.024 

k2 waves 0.5 o.s 0. 125 0.09 0.6 0.113 0.091 
k1 waves 0.125 1 0. 125 0.73 0 0. 141 0.676 
k3 waves 0.125 1 0.125 1. 24 0 0.093 0.338 
k3 waves 0.3 1 0.3 1 . 54 0.6 0.093 0.130 

Table 1 

The table shows that for waves of moderate wave length, with 

moderate amount of wave energy, a considerable part can be utilized 

for propulsion. However, for long incoming waves, with larger wave 

energy, only a small fraction can be extracted. 
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is very close to the free surface. For ~<1/4, however, when wave 

scattering effects ~re important, the approximate theory strongly 

overpredicts the forward thrust when the submergence of the foil is 

small. When the ground effect dominates, i.e. for small values of 

U and a, the approximate theory underpredicts the forward thrust. 

7. PROPULSION OF SHIP BY FOIL PROPELLER 

In this section we shall apply our two-dimensional theory to 

study the propulsion of ship by foil propeller. The force is then 

found by applying the strip-theory approximation. We assume that 

the ship, with a foil propeller placed in the front, is advancing 

with a speed U in regular waves. Due to the incoming waves the 

ship will undergo heaving and pitching motions. Hence, the foil is 

forced by the ship motion to be moving up and down with a frequency 

equal to the frequency of encounter. The oscillatory vertical 

motion of the foil, as well as the oscillatory motion of the wave 

field, will produce a forward thrust on the foil and thereby a 

forward thrust on the ship. 

The vertical motions of a ship advancing in waves have been 

studied in many papers. A thorough discussion of ship motions is 

given by Newman (1978). A main result concerning the motion of a 

ship in head waves is that its vertical displacements become larger 

than the amplitude of the incoming waves when the wave length A 

satisfies 1.2<A/L<S, L being the ship length. For values of A/L 

smaller than 1.2 the vertical ship motions rapidly become very 

small. The vertical motions of a ship in following waves are 

generally somewhat smaller than in head waves. Wachnik and Zarnik 
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show that it is favourable to operate the foil close to the free 

surface. 

In figure 10d T is displayed for h/a0 =1, d/1=1 and 

Fr=0.5,1,2. For. ~>1/4 and fixed value of k 01, T increases for 

increasing value of U, as expected. The figure also shows that for 

fixed values of U and k 0 , and varying 1, the largest thrust is 

obtained for smallest U/lgl, i.e. largest value of the chord 

length 21. 

In figures 11a-c T is displayed for a foil moving in follow-

ing waves. The figures show that the thrust is generally much 

smaller for following waves than for head waves. Comparing figures 

10a and 11a we also see that the heaving motion in the waves leads 

to a considerably larger thrust in head waves than in following 

waves. Fig. 11b shows that in following waves, in opposition to in 

head waves, the thrust has not its maximum value when the foil is 

operated very close to the free surface. From figure 11c we see 

that for long incoming waves, the thrust is largest for small 

Froude numbers. 

A general result of the various computations is that maximum 

thrust is obtained for 9=0. However, according to Lighthill 

(1970), stall may occur when the leading edge suction is large 

compared to the total thrust. We have therefore in figures 12a-12b 

compared the leading edge suction and the total thrust for various 

values of 9, assuming that Fr=1, d/1=1 and h/a0=1. We see that 

by increasing e from 0 to 0.3, T is reduced essentially whereas 
s 

T is only decreased slightly. For 9=0.6 the side force gives the 

main contribution to the total thrust. 
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-U<0.31gL, a reasonable value for the drag coefficient is 
-3 c =3 •1 0 D 

{see e.g. Newman 19~7, pp. 30-31). 

The added resistance D for a ship moving in head waves is w 
discussed by Faltinsen et al. (1980) and may be written 

( 7. 4) 

where C is a dimensionless function of U/lgL and "11./L. Compu­
w 

tations displayed in the paper by Faltinsen et al. show that the 

values of Cw depend strongly on the wave length of the incoming 

waves and the response of the ship. It turns out that the maximum 

value of C approximately occurs when the vertical motions of the w 

ship are largest. The maximum value of C , occurring for 
w 

"A/L=l, 

is about 6 for U/lgL=0.2, and about 8 for U/lgL=0.3. For longer 

or shorter waves, i.e. smaller vertical motions of the ship, the 

value of C becomes rapidly smaller than 2. 
w 

For a ship moving in following waves, little is published 

about the actual values of C . We know that for U very small, C w w 

is negative. It is expected that for moderate values of U/lgL, C 

is small. 

gives 

Balance between T and D+D for following and head waves 
w 

w 

(7.5) 

or approximately 

(7.6) 

Let us assume that the beam to the length of the ship is B/L=l/8 

and that the Froude number is 1. For incoming head and following 

waves we obtain the following table 
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When no incoming waves occur, we find that for ~ very small 

(or more precisely that both U and a are small) the free sur­

face acts as a rigid wall, leading to a pronounced ground effect. 

For higher values of ~, but ~ still less than 1/4, the generated 

waves have rather large amplitudes. This results in a relatively 

large energy waste, and a momentum flux in the wave which reduces 

the thrust. Close to ~=1/4, the thrust and necessary power are 

usually very small. For ~>1/4 the thrust increases rapidly with 

~. For these ~-values usually a k 4 wave of considerable intensity 

is generated when the foil is close to the free surface. This wave 

conveys a momentum flux which contributes to a positive thrust. 

When a foil is moving in incoming waves, it is found that 

often a relatively large part of the wave energy may be utilized 

for propulsion. The foil may move such that the total energy supply 

for propulsion is due to the incoming waves. 

It is found that a passive foil propeller may give a ship 

a forward speed of considerable magnitude in both head waves and 

following waves. The foil propeller gives largest forward speed 

when the ship is moving in head waves, with wave lengths close to 

the length of the ship. 
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the solution of the boundary value problem (A1.3)-(A1.8) is 

obtained as 

F(z) = 1 . . z exp ( -ik1 ( z-u) ) du 
-l. J ( f 
~ c u-z 1 0 

+ 1 l+ij (zj 
21t i r.-:-:-.,. 1 +4-t CD 

exp(-ik3 (z-u))du z exp(-ik4 (z-u))du 

- I - > -u-z 0 
CD u-z 0 

(A 1 • 9) 

For -t<1/2, c1==, c 2 =-~. For -t>1/2, c 1=iCD/k 1 , c 2=iCD/k 2 , to ensure 

that F(z) is bounded in the entire fluid. 

It should be noted that the values obtained for c1 and c2 

when -t>1/2 are not identical to those obtained by Haskind in his 

derivation of the Green function for an oscillatory source. The 

values of c1 and c 2 must be the same in the two cases. We 

therefore believe that Haskind's results for c1 and c2 for 

-t>1/2 are incorrect and should be those given in this paper. 
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Introducing (A2.5-A2.8) in (A2.2), applying a partial integration 

and manipulating with Hankel functions we finally obtain 

2 . 2 2 ~ 1t 1 +x ~ 1 ( 2 ) 
P0 (x) = iexp(Jkx)(l -x ) [2- arctan( 1_x) ] + 2H1 (kl) 

k . 

- ~( 2 )(kl) - 21 (12-x2)exp(jkx)fexp(-jux)H0( 2 )(ul)du (A2.9) 
2 0 . 0 

The last term in (A2.1), P 1 , may by changing the order of 

integration be written 

where 

where 

= -

t 1 1 
K(n,~) = - 2[n-~-2jd + n-~+2jd] 

+ j ;[k 1 F 1 (n-jd,~-jd)-k 2F 2 (n-jd,~-jd)] 
( 1-4-t) 

- j ;[k3F3 (n-jd,~-jd)-k4F4 (n-jd,~-jd)] 
(1-4-t) 

n-jd exp ( jkn u) 
F (n-jd,~-jd) = exp(-jk n-k d) f ~ 'd du n n n C u- -J 

n 

(A2.10) 

(A2. 1 1 ) 

(A2.12) 

C , k and -t are defined in section 3 and a bar denotes complex n n 

conjugate. Changing the order of integration and applying partial 

integration, we obtain 

-1 
J exp(jk~)K(n,~)d~ = 
-ao 

exp(-jkl){[~xp(v)E 1 (v)] + ~[exp{-v)E 1 (-v)J 

+ 
k 

1 ~[k :k F 1 Cn-jd,-1-jd) -
( 1 -4 't) 1 

k 
1 ~[k :k F 3 (n-jd,-l-jd) 

(1+4-t) 3 
+ 
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APPENDIX 3. 

THE WAVE AMPLITUDES .IN THE FAR FIELD 

The wave amplitudes in the far field are derived from the 

complex velocity field (3.9) 

u - iv 
df0 

=-+ dz 

1 
J y(~)~;(z,~-id)d~ (A3. 1 ) -

for x+±~. Here f 0 (z) is the complex potential for the incoming 

wave and G(z,z0 ) is the vortex potential defined in section 3. 

On the interval (-1,1) eG/ez reduces to terms o~ the form (3.4) 

which for x+±~ become 

z 
= exp(-iknz) f 

en 

exp ( ik u) 
------~n~~du, z+±~, n=1,2,3,4 (A3.2) 

Here c and k are defined in section 3. (A3.2) is easily n n 

evaluated by contour integration. 

The contribution from the wake is 

lim 
x+±~ 

-1 
Yo J exp(jk~)~;{z,~-id)d~ 

-~ 

(A3.3) 

The terms of the form (A3.2) are evaluated by changing the order of 

integration, applying partial integration and contour integration. 

The remaining part of (A3.3), due to terms of the form 1/(z-z0 ) 

and 1/(z-z0 ), are found by contour integration. These terms tend 

towards zero for x+~. For x+-~ they are non-zero. They give, 

however, no contribution to the vertical displacement of the free 
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Figure 2b. Figure 3b. 

Figures 2 and 3. Thrust T, efficiency TU/P, waste of energy E, and the 
part of the thrust and waste of energy due to the waves, Tw and Ew, re­
spectively. Foil oscillating in heave without pitching. d/1=0.5,1 .0,00 , 

Fr=0.4 (figures 2a,b), Fr=1.0 (figures 3a,b). 
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Figure 6. Thrust T and power P vs. reduced frequency crl/U. 
Foil moving in incoming head waves or following waves. d/1=1, 
b/1 =-0.5, a 0/h=1, Fr=O.S, 6=0,0.6. 
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Figur~ 10. Maximum thrust T vs. wav~ numb~r k01 of incoming wav~s. 
Foil moving in h~ad wav~s. 6=0. 

a) Fr=1, d/1=1, h/ao=1, 1/3,0, a0 /h=1 /3,0. 

b) Fr=1, h/a0=1, d/1=0.5, 1 ,2,4,oo 

c) Fr=1, h/a0=3, d/1=0.5,1 ,2,4,oo 

d) h/a0=1, d/1=1, Fr=0.5,1,2. 

Th~ small arrows d~not~ th~ occurr~nc~ of T=1/4 
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Figure 12. Maximum thrust T and corresponding suction force Tc vs. 
wave number kel of the incoming waves. d/1=1, b/1=-0, Fr=1, h/a~=1, 
6=0,0.3,0.6,0.9. 

a) Foil moving in head waves. 

b) Foil moving in following waves. 


