Regional hippocampal volumes and development predict learning and memory

Running title: Hippocampal subfields development and memory

Christian K. Tamnes¹, Kristine B. Walhovd¹, Andreas Engvig¹, Håkon Grydeland¹, Stine K. Krogsgrud¹, Ylva Østby¹, Dominic Holland², Anders M. Dale² and Anders M. Fjell¹

¹ Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
² Multimodal Imaging Laboratory, Departments of Radiology and Neurosciences, University of California San Diego, USA

Corresponding author: Christian K. Tamnes, Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway. Phone: +47 22845092. Fax: +47 22845001.
Email: c.k.tamnes@psykologi.uio.no
Abstract

Hippocampus is an anatomically and functionally heterogeneous structure, but longitudinal studies of its regional development are scarce and it is not known whether protracted maturation of the hippocampus in adolescence is related to memory development. First, we investigated hippocampal subfield development using 170 longitudinally acquired brain magnetic resonance imaging (MRI) scans from 85 participants aged 8-21 years. Hippocampal subfield volumes were estimated by use of automated segmentation of seven subfields, including the cornu ammonis (CA) sectors and the dentate gyrus (DG), while longitudinal subfield volumetric change was quantified using a nonlinear registration procedure. Second, associations between subfield volumes and change and verbal learning/memory across multiple retention intervals - 5 minutes, 30 minutes and 1 week - were tested. It was hypothesized that short and intermediate memory would be more closely related to CA2-3/CA4-DG and extended, remote memory to CA1. Change rates were significantly different across hippocampal subfields, but nearly all subfields showed significant volume decreases over time through adolescence. Several subfield volumes were larger in the right hemisphere and in males, while for change rates there were no hemisphere or sex differences. Partly in support of the hypotheses, greater volume of CA1 and CA2-3 was related to recall and retention after an extended delay, while longitudinal reduction of CA2-3 and CA4-DG was related to learning. This suggests continued regional development of the hippocampus across adolescence and that volume and volume change in specific subfields differentially predict verbal learning and memory over different retention intervals, but future high resolution studies are called for.

Keywords: adolescence; brain maturation; hippocampal subfields; longitudinal; MRI; recall; retention
Introduction

Hippocampus is a brain structure of particular interest due to its essential role in learning and memory [1,2], and in certain developmental [3,4] and neurodegenerative disorders [5,6]. Longitudinal studies of the regional structural development of the hippocampus from childhood to adulthood are however scarce, and it is not known how this development relates to increasing capacity and efficiency in cognitive functioning. To explore both hippocampal development and its role in memory, we performed a longitudinal study of hippocampal subfields and how these relate to learning and memory performance across multiple time intervals.

Brain development generally involves early increases followed by decreases in cortical and subcortical volumes and monotonically increasing white matter volumes [7-11]. Several MRI studies have investigated age-related differences or longitudinal changes in hippocampal volumes specifically (Table 1). It is clear that the hippocampus undergoes growth in childhood [12-14], but studies have given varying results concerning the second decade of life: the majority have not found significant effects [13-17], while others have found volume decreases [18] or increases [19]. Importantly, hippocampus is anatomically and functionally heterogeneous [20], and insufficient spatial resolution may mask regional developmental patterns. Anatomically, hippocampus is a unique structure consisting of distinct regions including the cornu ammonis (CA) sectors and the dentate gyrus (DG) [21]. Gogtay et al. [22] found no changes in total hippocampal volumes, but heterogeneous changes in different subareas. Regional differences are also indicated by two recent cross-sectional studies [23; Krogsrud et al., unpublished data].

[Insert Table 1 about here]
Functional magnetic resonance imaging (MRI) studies disagree whether maturation of the medial temporal lobe (MTL) in adolescence is relevant for episodic memory development [24], or whether prefrontal areas are more important [25]. Further, functional imaging studies of healthy adults and patients with amnestic mild cognitive impairment and rodent studies have suggested that hippocampal subfields may partly have different involvement in memory over different time scales. One suggestion is that CA3 and DG are especially important in memory encoding and early retrieval [26,27], while CA1 plays a more central role in consolidation and late retrieval [28].

Here, we combined an automated hippocampal subfield segmentation procedure [29] and a sensitive method for quantification of change [30]. First, we aimed to provide the first longitudinal characterization of development of specific hippocampal subfields (8-21 years, n=85, 170 scans). Second, to investigate how hippocampal subfields in development relate to memory, we tested whether subfield volumes and/or volumetric changes correlate with verbal learning and recall across multiple retention intervals. Based on previous functional MRI and rodent studies [26-28], we tentatively hypothesized that CA2-3 and CA4-DG would be more related to learning and recall over shorter time intervals, and CA1 more to extended memory.

Materials and Methods

Participants

The included subjects were from the longitudinal research project *Neurocognitive Development* [18,31] run by Research Group for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo. Children and adolescents aged 8-19 years were recruited though newspaper ads and local schools. Written informed consent was
obtained from all participants older than 12 years of age and from a parent of participants under 16 years of age, while participants under 12 years of age gave oral informed consent. At both time-points, parents and participants aged 16 years or older completed screening for each participant with separate standardized health interviews to ascertain eligibility. Participants were required to be right-handed, fluent Norwegian speakers, have normal or corrected to normal vision and hearing, not have history of injury or disease known to affect central nervous system (CNS) function, including neurological or psychiatric illness or serious head trauma, not be under psychiatric treatment, not use psychoactive drugs known to affect CNS functioning, not have had complicated or premature birth, and not have MRI contraindications. A senior neuroradiologist evaluated all scans, and participants were required to be deemed free of significant injuries or conditions. The Regional Committee for Medical and Health Research Ethics approved the study.

At time-point 1 (tp1), 111 participants satisfied the inclusion criteria and had adequate processed and quality checked MRI data. At time-point 2 (tp2), 18 participants did not want to or were unable to participate, two were not located, three had dental braces and three had acquired a neurological or psychiatric condition. The sample for the current study thus included 85 children and adolescents (38 females) that at tp1 were 8.2-19.4 years old (mean = 13.7, SD = 3.4) and had a mean IQ of 109.0 (SD = 11.4, range = 82-141), as estimated by the Wechsler Abbreviated Scale of Intelligence [32]. At tp2, the participants were 10.8-21.9 years (mean = 16.3 years, SD = 3.4) and their mean IQ score was 112.5 (SD = 10.5, range = 87-136). The mean interval between the two time-points was 2.6 years (SD = 0.2, range = 2.4-3.2). The interval was not correlated with age (r = -.03, p = .772), and not different for females and males (t = 0.42, p = .675).
MRI acquisition

MRI data were collected at two time-points using a 12-channel head coil on the same 1.5 T Siemens Avanto scanner (Siemens Medical Solutions). The pulse sequence used for morphometric analyses was a 3D T1-weighted MPRAGE with the following parameters: TR/TE/TI/FA = 2400 ms/3.61 ms/1000 ms/8°, matrix 192×192, field of view = 240, 160 sagittal slices, voxel size 1.25×1.25×1.20 mm. The sequence was repeated at minimum twice in each session. Each scan took 7 min 42 s. The protocol also included a 176 slices sagittal 3D T2-weighted turbo spin-echo sequence (TR/TE = 3390/388 ms) and a 25 slices coronal FLAIR sequence (TR/TE = 7000-9000/109 ms) to aid the radiological examination.

MRI processing and analysis

All scans were reviewed for quality, and automatically corrected for spatial distortion due to gradient nonlinearity [33] and B1 field inhomogeneity [34]. The volumes were co-registered, averaged to increase the signal-to-noise ratio and resampled to isotropic 1 mm voxels. Three scans were used from 21 of the 170 sessions, while four scans were included from three sessions and two for the rest. Volumetric segmentation [35,36] and cortical reconstruction [37-39] were performed with FreeSurfer 5.1 (https://surfer.nmr.mgh.harvard.edu). The procedures are run automatically, but require supervision of the accuracy of spatial registration and tissue segmentation. All volumes were inspected for accuracy and minor manual edits were performed on most subjects.

Next, we performed hippocampal subfield segmentation using a new automated technique within the FreeSurfer suite [29,40]. The procedure uses Bayesian inference and a probabilistic atlas of the hippocampal formation based on manual delineations of subfields in ultra-high resolution MRI scans [29]. Seven subfield volumes are estimated for each hemisphere: CA1,
CA2-3, CA4-DG, presubiculum, subiculum, fimbria and hippocampal fissure. The automated volume measurements of the larger subfields CA2-3, CA4-DG and, to a lesser degree, subiculum, have been shown to correlate well with manual volume estimates and unlike manual segmentations, the technique is fully reproducible and fast enough for use in large studies [29]. Please see Fig. 1 for an example of the subfields segmentation results in one of the participants.

[Insert Fig. 1 about here]

Longitudinal change was quantified using QUARC (Quantitative Anatomical Regional Change) [30,41], as described in detail elsewhere [18]. In brief, the percentage volume outcome measure of change was calculated by registering the tp1 scan to the tp2 scan. The processing scheme uses an explicitly inverse-consistent registration approach [30]; QUARC essentially eliminates longitudinal image processing bias by combining forward and reverse image registrations, and provides a powerful volumetric change biomarker compared with other state-of-the-art processing schemes [41]. Finally, the hippocampal subfield segmentation [29] was used to obtain percentage volume change estimates in each of the specific subfields. Labels from the tp2 images were used to extract average change for each region and annual percentage volume change from tp1 was calculated for each participant prior to statistical analyses.

Hippocampal subfield segmentation across 1.5 T and 3 T

In the present study we used scans obtained at 1.5 T (1.25×1.25×1.20 mm resolution) as compared with the 3 T scans (380 μm in-plane resolution; slice thickness 0.8 mm) used for the development of the hippocampal subfield segmentation procedure [29]. Although we have
previous good experience with using the procedure on 1.5 T scans [42], it is unknown which
effects differences in field strength and image resolution have on the segmentation results. For
reliability purposes, seven children (5 male) aged 6-10 years (mean = 8.4) were therefore
scanned on both the 1.5 T Siemens Avanto scanner used in the main study and a 3 T Siemens
Skyra scanner [Krogsrud et al., unpublished data]. On the 3 T scanner, a 16-channel head coil
was used and the pulse sequence was a 3D T1-weighted MPRAGE with the following
parameters: TR/TE/TI/FA = 2300 ms/2.98 ms/850 ms/8°, 176 sagittal slices, voxel size 1×1×1
mm, scan duration 5 min 30 s. Since this validation study included children, we used a
parallel imaging technique (iPAT) on both scanners, acquiring multiple T1-scans within a
short scan time, enabling us to discard scans with residual movement and average the scans
with sufficient quality.

To test for effects of field strength and image resolution differences, hippocampal subfield
segmentation results from the 1.5 T and the 3T scans were correlated (Pearson correlation
coefficients). The results showed strong significant (p < .05) positive correlations for six of
the seven subfields: \textit{CA1} (r = .83), \textit{CA2-3} (r = .97), \textit{CA4-DG} (r = .96), \textit{presubiculum} (r = .85),
\textit{subiculum} (r = .81), and \textit{hippocampal fissure} (r = .80). The correlation for \textit{fimbria} was weak
and not significant (r = .34, p = .458), and this subfield was therefore excluded from all
further analyses. The results of the reliability analysis are further discussed in the limitations
section.

Memory assessment

Verbal learning and memory was assessed for 84 of the 85 participants at tp2 using the
California Verbal Learning Test (CVLT-II) [43]. We followed the division of episodic
memory, suggested by Kesner and Hunsaker [28], in three critical time intervals: short-term
episodic memory with a duration of seconds, medium or intermediate episodic memory with a
duration from minutes to hours, and long or remote episodic memory with a duration of days
or more. A list of 16 words from four semantic categories was read five times consecutively,
and each time, the participant was immediately instructed to repeat all items she or he could
recall. After these five trials, a list of 16 new words was read once, with instructions to recall
as many of the items as possible. Next, the participant was asked to again freely recall the
items from the first list, followed by a cued recall test. After a ~30-minute delay during which
other tasks were performed, the participant was asked, without having been forewarned, to
recall the first list again, followed by cued recall, recognition and forced recognition tests. The
final procedure was repeated by telephone after a mean of 7.3 days (SD = 0.7, range = 6-10).
To avoid rehearsal effects, the participants were not forewarned about this; therefore,
appointments could not be made and 20 of the 84 participants could not be reached within the
decided time interval of 6-10 days. For the 64 remaining participants (10.8-21.8 years old,
mean = 16.2, SD = 3.5, 31 females), the extended retention interval was not different for
females and males (t = 0.12, p = .906), and not correlated with age (r = -.09, p = .467) or
number of correctly recalled items (r = .12, p = .344). For the current study, we used the total
number of words recalled across the five learning trials (“learning”), the number of words
freely recalled at the 5-minutes delay trial (“short-delay recall”), the number of words recalled
after 30-minutes (“medium-delay recall”), and the number of words recalled after 1-week
(“long-delay recall”) as the measures of interest.

Statistical analyses

For each of the hippocampal subfields, we estimated volume at both time-points and annual
percentage volume change. One-sample t-tests were performed to test whether mean annual
changes were different from zero. General Linear Models (GLMs) on annual change in all
subfields per hemisphere with subfield (6) as within-subject factor were used to test for regional differences in change. Correlation analyses between annual change and age were used to test whether change rates varied across the age-range. To illustrate longitudinal changes without any assumption about the form of the curve, we plotted annual change in each hippocampal subfield against age at tp1 and fitted a nonparametric local smoothing model, the smoothing spline, implemented in Matlab. We used an algorithm that optimizes smoothing level based on a version of Bayesian Information Criterion, which provides a way of obviating the need for arbitrarily chosen smoothing levels [44]. To further evaluate changes within individuals across the age-span, annual change within each hippocampal subfield was binarized, so that change greater than or equal to zero was counted as increase and negative change was counted as decrease, and displayed as a moving average across age. Participants were divided into six age groups: 8-12 years (16 participants initially aged 8-9 years), 10-14 years (n = 14, initially 10-11 years), 12-16 years (n = 15, initially 12-13 years), 14-18 years (n = 14, initially 14-15 years), 16-20 years (n = 16, initially 16-17 years), and 18-21 years (n = 10, initially 18-19 years) and percentage of participants showing increase or decrease in each subfield in each group was illustrated with stacked bar charts. Next, paired samples t-tests were performed to compare both volume at tp1 and annual change in left and right hemisphere subfields, and independent samples t-test were performed to compare volumes and annual changes in males and females.

Behavioral performance on the test of verbal learning and memory (CVLT-II) completed at tp2 was characterized with descriptive statistics, sex differences were tested with independent samples t-tests and age-related differences were investigated with partial correlations, controlled for sex. Before exploring the relationships between hippocampal subfield volumes and annual change and test performance, we performed a series of GLMs on each of the
subfield measures, with hemisphere (left, right) as within-subject factor, each of the test measures as between-subject factor and age and sex as covariates. As none of the hemisphere × test performance interactions were significant (p>.05), we averaged measures across hemispheres prior to the following analyses. First, we performed partial correlations between both hippocampal subfield volumes at tp2 and annual changes and learning scores, controlled for age and sex. Second, we performed a series of GLMs on the three recall scores, with time (short-delay, medium-delay, long-delay) as within-subject factor and age, sex and each of the subfield volumes and annual change rates as covariates. If there was no significant time × subfield measure interaction (p>.05), the available recall scores for each participant were averaged before we performed partial correlations between both hippocampal subfield volumes at tp2 and annual change and recall, controlled for age and sex. To additionally control for differences in general cognitive abilities, analyses showing significant relationships between learning/recall performance and subfield volumes or change were repeated with concurrently measured IQ as an additional covariate. Finally, in those cases where there was a significant effect of time and significant relationships were found between subfield measures and recall at selected delays, we computed retention scores (in all cases: long-delay recall/medium-delay recall) and repeated the partial correlations with these. This was done to get an approximate measure of memory consolidation and maintenance, with effects of encoding and earlier retrieval controlled for.

Results

Hippocampal subfield volumes and development

CA2-3 had the largest volume, followed by subiculum, CA4-DG, presubiculum and CA1, while the hippocampal fissure was the smallest subfield (Table 2), consistent with previous studies employing the same subfield segmentation procedure [e.g. 45,46]. Mean annual
percentage change was negative in all regions and significant (p < .05) volume decreases over time were found bilaterally for CA2-3, CA4-DG, presubiculum, subiculum and the hippocampal fissure, as well as in the left CA1 (Table 2). Mean annual change in the right CA1 was not significant. Change rates were significantly different across subfields in both the left (F = 3.33, p = .028) and right (F = 4.91, p = .003) hemisphere. Of the subfields, the hippocampal fissure showed the largest annual percentage decreases in both the left and right hemisphere (-0.32% and -0.33%, respectively), followed by the CA4-DG (-0.23% and -0.25%) and presubiculum (-0.23% and -0.20%).

[Insert Table 2 about here]

Annual percentage change in the left subiculum was negatively correlated with age, indicating an accelerating volume reduction with higher age. In contrast, annual change in the right hippocampal fissure was positively correlated with age, indicating a decelerating volume reduction. To illustrate volumetric change within individuals in each hippocampal subfield we created plots of annual percentage volume change by age and bar charts of percentage of subjects showing volume increase or decrease within different age categories (Fig. 2). Variability in change rates was high for all subfields. Further, for many subfields, e.g. presubiculum and the left CA4-DG and CA2-3, volume reductions were greatest in the middle of the age-span, before leveling off in late adolescence. The highest percentages of subject showing volume reductions were also typically seen in the middle age categories. Finally, slight volume increases among the youngest participants were indicated in some subfields, particularly the left subiculum.

[Insert Fig. 2 about here]
Hemisphere and sex differences

To test for hemisphere and sex differences in both hippocampal subfield volumes and annual percentage changes, we performed paired- and independent-samples t-tests, respectively (Table 3). Significantly larger right hemisphere volumes were seen for CA2-3, CA4-DG and the hippocampal fissure, while no hemisphere differences were seen in mean annual percentage volume change in any of the subfields (p > .05). A majority of the subfield volumes were significantly larger in males than in females, specifically bilateral CA1, CA2-3, CA4-DG and subiculum, and also the left presubiculum. There were, however, no significant sex differences in mean annual percentage volume change in any of the subfields (p > .10).

Verbal learning and memory performance

On average, females performed better on short- and medium-delay recall, and there were also trend effects in the same direction for learning and long-delay recall (Table 4). Age-related improvements were seen on learning and short- and long-delay recall, and there was also a trend effect for medium-delay recall (Table 4). Long-delay recall showed the strongest age-related improvement (r = .35).

Relationships between verbal learning and memory and hippocampal subfields

Associations between verbal learning and both hippocampal subfield volumes at tp2 and annual percentage volume change were investigated with partial correlations, controlling for
age and sex. Negative associations between learning and change in CA2-3 (r = -.23, p = .039) and CA4-DG (r = -.28, p = .011) were found (Fig. 3), while there were no significant associations between learning and hippocampal subfield volumes. To test whether the observed relationships between learning and change in CA2-3 and CA4-DG were influenced by differences in general cognitive abilities, these analyses were repeated with IQ as an addition covariate. In both cases the relationships remained virtually identical (r = -.24, p = .031 and r = -.29, p = .008, respectively).

Before testing the associations between verbal recall and hippocampal subfields, we performed GLMs to test the effect of retention interval time. The results showed significant effects of test interval (short-delay, medium-delay, long-delay) on the relationship between memory score and subfield measure only for volume of CA1 (F = 3.99, p = .039) and CA2-3 (F = 3.96, p = .040). For these measures we performed follow-up analyses on the three recall measures separately, while for the other measures we combined the available recall scores across all test intervals for each participant (see Statistical analyses). Associations between verbal recall and both hippocampal subfield volumes and annual percentage volume change were then investigated with partial correlations, controlling for age and sex. Positive associations between long-delay recall and volume of CA1 (r = .27, p = .034) and CA2-3 (r = .28, p = .030) were found (Fig. 3), while there were no significant associations between short- or medium-delay recall and these volumes. Further, there were no significant associations between the averaged recall score and volume of the other hippocampal subfields or change in any of the subfields. To test whether the observed relationships were influenced by general cognitive abilities, the partial correlation analyses between long-delay recall and volumes of CA1 and CA2-3 were repeated with IQ as an addition covariate. In both cases, the relationships were only slightly weaker, but not significant (r = .24, p = .061 and r = .23, p =
Last, we performed partial correlations between long-delay retention (long-delay recall/medium-delay recall) and volume of CA1 and CA2-3, controlling for age and sex, and both of the associations remained significant ($r = .29, p = .025$ and $r = .28, p = .030$, respectively).

Discussion

The present research provides the first longitudinal delineation of the development of hippocampal subfield volumes in adolescence, and examines associations with verbal learning and memory across multiple retention intervals. Most subfields showed significant volume decreases over time, indicating continued development across adolescence. Moreover, volume and volumetric change in specific subfields differentially predict verbal learning and memory performance. Below, we first discuss the developmental subfield changes, before turning to the relationship to memory.

Hippocampal subfield development

Several MRI studies have investigated age-related differences in hippocampal volumes (Table 1), but cross-sectional designs may not be sufficiently sensitive since MTL structures show relatively small changes during adolescence [18]. Longitudinal studies investigating global hippocampal development across adolescence have however also yielded inconsistent results. We have previously found volume decreases [18], and Mattai et al. [15] observed trend decreases in patients with childhood-onset schizophrenia, healthy siblings and healthy controls. In contrast, Dennison et al. [19] found hippocampal volume increases, although
different scanners were used across time-points. There are several probable sources of this
disparity, including differences in age-span, image processing and statistical models used
[44]. Moreover, results from Gogtay et al. [22] indicated that selected posterior hippocampal
subregions increase over time, while selected anterior subregions decrease; suggesting that the
above inconsistency may partly be due to assessing the hippocampus as a whole. Regionally
specific developmental patterns are also indicated by a cross-sectional study by DeMaster et
al. [23], where young adults compared to older children, had larger hippocampal body
bilaterally and smaller right hippocampal head and tail.

The hippocampus formation comprises cytoarchitectonically distinct subfields along largely
unidirectional transverse pathways [21] and procedures for reproducible automated subfield
segmentation are now available [29,47]. Our recent cross-sectional results based on 244
participants 4-22 years old, indicate that most hippocampal subfields show substantial volume
increases until early adolescence [Krogsrud et al., unpublished data]. The current longitudinal
results extend these findings by showing that volumes of \textit{CA2-3}, \textit{CA4-DG}, \textit{presubiculum},
\textit{subiculum}, the \textit{hippocampal fissure} and the left \textit{CA1} decrease over time through adolescence.
The variability in change rates was high, but for several subfields the volume reductions
appeared to be greatest in mid-adolescence. Early increases in hippocampal subfields volumes
thus appear to be followed by small volume reductions in adolescence, detectable with
sensitive longitudinal methods.

The present results showed larger right hemisphere \textit{CA1}, \textit{CA2-3} and \textit{CA4-DG} subfields,
consistent with studies on total hippocampal volume in children and adolescents [14,48], and
with findings in adults [49]. Recently, it has been indicated that the hippocampus hemisphere
asymmetry emerges during adolescence [19]. In the current subfield results, however, none of
the subfields showed hemisphere differences in change rates. Further, while earlier cross-sectional studies have found conflicting sex-specific hippocampal age-related differences [48,50], the present results showed that although the majority of the hippocampal subfields were larger in males, there were no sex differences in change rates.

Relationship to memory

Developmental changes within brain systems partly parallel behavioral changes [51], and it has even been suggested that the shape of brain developmental trajectories may be more strongly related to functional characteristics than absolute measures at any given point. We tested this “journey as well as the destination” tenet [52, p.733], by investigating whether concurrent volumes and/or preceding developmental changes in hippocampal subfields predicted verbal learning and memory. Moreover, functional MRI, patient and rodent studies have indicated that hippocampal subfields have partly different involvement in memory over different time scales [26-28,53], and we therefore tested memory performance after three different intervals. Greater volume of **CA1** and **CA2-3** predicted better recall and retention after an extended interval of one week, although these relationships were partly explained by differences in general cognitive abilities. Additionally, longitudinal decrease in **CA2-3** and **CA4-DG** predicted learning. The results indicate that volume and volumetric change in specific subfields differentially predicted verbal learning and memory, and that the relation to memory depends on the time interval prior to retrieval.

Developmental improvements in learning and memory emerge from the concerted effort of a network of relevant brain structures [54], but several active lines of research investigate the particular role of hippocampus. Developmental changes in the functional organization of the MTL have been indicated by studies showing e.g. that adolescents and young adults, in
contrast to children, engage regions of the hippocampus and parahippocampal gyrus selectively for subsequent recollection [24]. Further, consistent with the present findings, positive relationships between memory performance over extended time periods and hippocampal volume have been shown for visuospatial material in children and adolescents [55] and both visuospatial and verbal information in adults [56,57].

These studies, however, did not distinguish between hippocampal regions or subfields. There is a rich tradition of investigating functional differentiation along the longitudinal axis of the hippocampus [23,58-66]. Less is known about how specific sectors in the transverse plane of the hippocampus are associated with development of learning and memory [67]. Although disruption of learning following selective damage to each of the major subfields appears similar to a total lesion, this does not imply functional homogeneity [62]. In fact, a recent functional MRI study found that it is possible to detect representations of autobiographical memories in individual subfields [68].

A few studies have investigated relationships between hippocampal subfield volumes and memory performance in adult or elderly participants. A positive association between verbal associative recognition and the combined volume of CA3 and CA4-DG has been found in healthy older adults [69], and verbal recall has been shown to relate to volumes of the CA2-3, CA4-DG and subiculum in patients with amnestic mild cognitive impairment [46]. Moreover, preliminary findings in a mixed group of cognitively intact and impaired subjects indicate that verbal short-term memory is associated with CA3 and DG, while intermediate memory is associated with CA1 [70]. Volumes of CA2-3 and CA4-DG were also positively related to memory improvements after training in a study of older adults [42]. A recent study also indicates that the associations between hippocampal subfield volumes and memory
performance vary along the longitudinal axis and differ for verbal and visuospatial tasks [71].
To our knowledge, however, the present study is the first to document relationships between
hippocampal subfields and learning and memory in development.

Limitations
The present findings should be considered in light of the following limitations. First, the
longitudinal hippocampal results stem from only two time points, which constrain any
inferences about non-linear developmental trajectories. Moreover, verbal learning and
memory was assessed using CVLT only at the second time point, preventing analysis of
change in behavioral performance. Second, some considerations relate to the hippocampal
subfield segmentation procedure employed. In the original validation study of the technique,
the larger subfields scored better than the smaller ones on a number of segmentation
evaluation metrics, and automated segmentation of the smallest subfields, finmbria and the
hippocampal fissure, showed somewhat less reliability [29]. Thus, different subfield
segmentation reliability may have contributed to the current results. Further, direct
comparison with manually delineated subfields has only been performed in adult subjects
[29]. Also, our scans were obtained at 1.5 T (1.25×1.25×1.20 mm), while high resolution 3 T
scans (380 µm in-plane resolution; slice thickness 0.8 mm) were used for the development of
the procedure. Our reliability analysis on seven subjects scanned at both 1.5 and 3 T (1×1×1
mm), however, showed strong correlations across these field strengths and image resolutions
for all hippocampal subfield volumes except finmbria which we therefore excluded from all
further analyses. Nevertheless, future reliability and validation studies on children and
adolescents and across standard and submillimeter image resolution are surely awaited.
Additionally, results obtained with the segmentation procedure used in the current study [29]
should be compared with other available protocols [e.g. 72,73,74], as a great deal of
variability exists in both nomenclature and boundary rules. Third, as previous studies disagree with respect to whether adolescent memory development is associated with hippocampal or prefrontal cortical maturation [24,25], future studies should also analyze prefrontal cortical regions. Finally, biological interpretation of hippocampal subfield volumetric changes is complicated due to the myriad of possible contributing factors [75]. Postmortem data has demonstrated myelination in the DG and the subicular and presubicular regions throughout adolescence [76-78] and long-lasting neurogenesis in the DG [79-81], but it is not known how these and other processes affect MRI volumetry.

Conclusions

The present results showed that most hippocampal subfield volumes, including *CA2-3, CA4-DG, presubiculum, subiculum, the hippocampal fissure* and the left *CA1*, decreased over time in adolescents, but also that there were regional differences in subfield development. Interestingly, volume and change in specific subfields differentially predicted verbal learning and memory. Specifically, volumes of *CA1* and *CA2-3* were related to memory after an extended interval, while developmental decrease in *CA2-3* and *CA4-DG* predicted learning. This underscores the heterogeneity of structural hippocampal subfield development, as well as the differential role of subfields in cognitive performance in late childhood and adolescence. Future longitudinal studies with multiple time points and high resolution imaging are however needed to further inform us on the nonlinear and regional hippocampal developmental trajectories underlying the development of memory functions.

Acknowledgments

This work was financed by the Norwegian Research Council (K.B.W., A.M.F.), the European Research Council (K.B.W., A.M.F.), the University of Oslo (C.K.T., K.B.W. and A.M.F.),
and the U.S.-Norway Fulbright Foundation (C.K.T.). A.M.D. is a founder and holds equity in CorTechs Labs, Inc., and also serves on the Scientific Advisory Board. The terms of this arrangement have been reviewed and approved by the University of California San Diego, in accordance with its conflict of interest policies. We thank all participants and their families.

References

20 Yassa MA, Stark CE: Pattern separation in the hippocampus. Trends Neurosci 2011;34:515-525.

Giedd JN, Rapoport JL: Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 2010;67:728-734.

Fanselow MS, Dong HW: Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010;65:7-19.

Figure legends

Fig. 1. Hippocampal subfield segmentation. The results of the automated subfield segmentation for one subject, a 13 year old female, superimposed on the subject’s T1-weighted scan in coronal, sagittal and axial views. The bright yellow posterior section seen in the sagittal slice is the tail of the hippocampus where the delineation no longer discerns between the different subfields. CA = cornu ammonis, DG = dentate gyrus, Fissure = hippocampal fissure.

Fig. 2. Hippocampal subfields development. The scatterplots show annual percentage volume change in each hippocampal subfield against age, with local smoothing models. The stacked bar charts illustrate percentage of subjects showing volume increase (green) or decrease (red) in each subfield within six age categories.

Fig. 3. Relationships between learning/memory and hippocampal subfields. The plots show residuals of each variable after controlling for age and sex and the associations between learning performance and annual percentage volume change in a) CA2-3 and b) CA4-DG and long-delay recall performance and volume of c) CA1 and d) CA2-3. The fit lines correspond to the partial correlations.
Tables

Table 1 Summary of studies of hippocampal volume development in children and adolescents

<table>
<thead>
<tr>
<th>Study</th>
<th>Method</th>
<th>n</th>
<th>Age-range (yrs.)</th>
<th>Developmental finding on raw hippocampal volumes</th>
<th>Other findings related to hippocampus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown et al. [12]</td>
<td>Cross-sectional, multisite 3T, FreeSurfer</td>
<td>885</td>
<td>3-20</td>
<td>Age-related increase until 14.2 years, followed by slight age-related decrease (spline-fit curve)</td>
<td></td>
</tr>
<tr>
<td>Demaster et al. [23]</td>
<td>Cross-sectional, 3T, FreeSurfer and manual tracing</td>
<td>62</td>
<td>8-11 / 18-26</td>
<td>Not reported</td>
<td>Age-related increases in ICV-adjusted left hippocampus and hippocampal body and decreases in right hippocampal head and tail</td>
</tr>
<tr>
<td>Dennison et al. [19]</td>
<td>Longitudinal, multisite 3T, FreeSurfer</td>
<td>60 (120 scans)</td>
<td>11-17</td>
<td>Significant increases</td>
<td>Greater increase in the right hemisphere. Similar results for TBV corrected estimates</td>
</tr>
<tr>
<td>Giedd et al. [48]</td>
<td>Cross-sectional, 1.5T, manual tracing</td>
<td>99</td>
<td>4-17</td>
<td>Age-related increase only in right hippocampus in females</td>
<td>Rightward volume asymmetry</td>
</tr>
<tr>
<td>Gogtay et al. [22]</td>
<td>Longitudinal, 1.5T, manual tracing</td>
<td>31 (100 scans)</td>
<td>4-25</td>
<td>No significant changes in total hippocampal volumes</td>
<td>Heterogeneous changes in hippocampal subregions</td>
</tr>
<tr>
<td>Hu et al. [13]</td>
<td>Cross-sectional, multisite 1.5T, automatic segmentation</td>
<td>306</td>
<td>4-18</td>
<td>Age-related increases before puberty, but no relationships during puberty</td>
<td>During puberty: Sex- and hemisphere-specific relationships between normalized hippocampus volumes and puberty score</td>
</tr>
<tr>
<td>Koolschijn and Crone</td>
<td>Cross-sectional, 3T, FreeSurfer</td>
<td>442</td>
<td>8-29</td>
<td>Not reported</td>
<td>No association with age after correcting for ICV</td>
</tr>
<tr>
<td>Krogsrud et al. [unpublished]</td>
<td>Cross-sectional, 1.5T, manual tracing</td>
<td>244</td>
<td>4-22</td>
<td>Age-related volume increase in childhood, followed by little age-related change in</td>
<td>Age-related increases in most hippocampal subfields in group of children, but no</td>
</tr>
<tr>
<td>Author et al.</td>
<td>Type</td>
<td>Task</td>
<td>Age</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Mattai et al. [15]</td>
<td>Longitudinal, 1.5T, FreeSurfer</td>
<td>79 (198 scans)</td>
<td>10-29</td>
<td>Non-significant linear decreases over time</td>
<td>Fixed reduction in hippocampal volumes in childhood-onset schizophrenia patients (n=89) relative to healthy siblings (n=78) and healthy controls (n=79)</td>
</tr>
<tr>
<td>Muftuler et al. [83]</td>
<td>Cross-sectional, 3T, FreeSurfer</td>
<td>126</td>
<td>6-10</td>
<td>Not reported</td>
<td>No association with age or sex when controlling for ICV</td>
</tr>
<tr>
<td>Sullivan et al. [16]</td>
<td>Longitudinal, 3T, FSL</td>
<td>28 (56 scans)</td>
<td>10-13</td>
<td>Non-significant increase in combined hippocampus and amygdala volume</td>
<td></td>
</tr>
<tr>
<td>Suzuki et al. [50]</td>
<td>Cross-sectional, 1.5T, manual tracing</td>
<td>23/30</td>
<td>13-14/19-21</td>
<td>Not reported</td>
<td>Larger volumes in older than in younger male adolescents when controlling for ICV. No difference in females</td>
</tr>
<tr>
<td>Tamnes et al. [18]</td>
<td>Longitudinal, 1.5T, FreeSurfer and QUARC</td>
<td>85 (170 scans)</td>
<td>8-21</td>
<td>Significant decreases</td>
<td>No hemisphere or sex differences in change rates</td>
</tr>
<tr>
<td>Uematsu et al. [14]</td>
<td>Cross-sectional, 1.5T, manual tracing</td>
<td>109</td>
<td>0-25</td>
<td>Age-related increases until 9-11 years</td>
<td>Rightward volume asymmetry. Larger volumes in males than females after peak age, but not before. Similar age-related differences after adjustment for ICV.</td>
</tr>
<tr>
<td>Yurgelund-Todd et al. [84]</td>
<td>Cross-sectional, 1.5T, manual tracing</td>
<td>37</td>
<td>12-17</td>
<td>Not reported</td>
<td>No associations with age after correcting for TBV</td>
</tr>
<tr>
<td>Østby et al. [17]</td>
<td>Cross-sectional, 1.5T, FreeSurfer</td>
<td>171</td>
<td>8-30</td>
<td>Non-significant age-related increase</td>
<td>Significant age-related increase after correcting for TBV</td>
</tr>
</tbody>
</table>

ICV: Intracranial volume, TBV: Total brain volume
<table>
<thead>
<tr>
<th></th>
<th>Left hemisphere</th>
<th></th>
<th></th>
<th>Right hemisphere</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volume at tp1</td>
<td>Mean annual change</td>
<td>Correlation change and age</td>
<td>Volume at tp1</td>
<td>Mean annual change</td>
</tr>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>%</td>
<td>t</td>
<td>p</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>CA1</td>
<td>333.3 (36.2)</td>
<td>-0.14</td>
<td>-2.07</td>
<td>.041</td>
<td>341.1 (40.4)</td>
</tr>
<tr>
<td>CA2-3</td>
<td>1051.6 (139.1)</td>
<td>-0.17</td>
<td>-4.42</td>
<td><10^-4</td>
<td>1108.3 (129.4)</td>
</tr>
<tr>
<td>CA4-DG</td>
<td>570.4 (72.5)</td>
<td>-0.23</td>
<td>-5.80</td>
<td><10^-6</td>
<td>595.8 (69.6)</td>
</tr>
<tr>
<td>Presubiculum</td>
<td>521.9 (51.6)</td>
<td>-0.23</td>
<td>-5.47</td>
<td><10^-6</td>
<td>511.5 (63.2)</td>
</tr>
<tr>
<td>Subiculum</td>
<td>678.4 (63.9)</td>
<td>-0.09</td>
<td>-2.22</td>
<td>.029</td>
<td>677.7 (69.8)</td>
</tr>
<tr>
<td>Hippocampal</td>
<td>38.5 (14.3)</td>
<td>-0.32</td>
<td>-3.78</td>
<td><10^-3</td>
<td>43.3 (14.0)</td>
</tr>
<tr>
<td>fissure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean volumes (mm³) and annual percentage change in each hippocampal subfield in the left and right hemisphere, respectively. The significance of annual change in each subfield was tested with one-sample t-tests. Pearson correlations were performed to test the associations between annual change and age. Significant (p < .05) changes and correlations with age are shown in bold. N=85, 8-21 years.
Table 3 Hemisphere and sex differences in hippocampal subfield volumes and change

<table>
<thead>
<tr>
<th>Hemisphere difference</th>
<th>Volume at tp1 (LH-RH)</th>
<th>Mean annual change (LH-RH)</th>
<th>Volume at tp1 (M-F)</th>
<th>Mean annual change (M-F)</th>
<th>Volume at tp1 (M-F)</th>
<th>Mean annual change (M-F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
<td>p</td>
<td>t</td>
<td>p</td>
<td>t</td>
<td>p</td>
</tr>
<tr>
<td>CA1</td>
<td>-1.98</td>
<td>.051</td>
<td>-0.81</td>
<td>.419</td>
<td>4.15</td>
<td><10^-4</td>
</tr>
<tr>
<td></td>
<td>4.15</td>
<td><10^-4</td>
<td>1.02</td>
<td>.311</td>
<td>3.23</td>
<td>.002</td>
</tr>
<tr>
<td>CA2-3</td>
<td>-5.36</td>
<td><10^-6</td>
<td>-1.86</td>
<td>.066</td>
<td>4.41</td>
<td><10^-4</td>
</tr>
<tr>
<td></td>
<td>4.41</td>
<td><10^-4</td>
<td>-0.96</td>
<td>.341</td>
<td>4.47</td>
<td><10^-4</td>
</tr>
<tr>
<td>CA4-DG</td>
<td>-4.72</td>
<td><10^-3</td>
<td>0.47</td>
<td>.638</td>
<td>4.43</td>
<td><10^-4</td>
</tr>
<tr>
<td></td>
<td>4.43</td>
<td><10^-4</td>
<td>-0.92</td>
<td>.363</td>
<td>3.93</td>
<td><10^-3</td>
</tr>
<tr>
<td>Presubiculum</td>
<td>1.71</td>
<td>.091</td>
<td>-1.11</td>
<td>.271</td>
<td>2.39</td>
<td>.019</td>
</tr>
<tr>
<td></td>
<td>2.39</td>
<td>.019</td>
<td>0.00</td>
<td>.999</td>
<td>1.81</td>
<td>.074</td>
</tr>
<tr>
<td>Subiculum</td>
<td>0.11</td>
<td>.909</td>
<td>0.58</td>
<td>.564</td>
<td>3.70</td>
<td><10^-3</td>
</tr>
<tr>
<td></td>
<td>3.70</td>
<td><10^-3</td>
<td>-1.44</td>
<td>.154</td>
<td>3.92</td>
<td><10^-3</td>
</tr>
<tr>
<td>Hippocampal fissure</td>
<td>-3.05</td>
<td>.003</td>
<td>0.04</td>
<td>.966</td>
<td>-0.45</td>
<td>.657</td>
</tr>
<tr>
<td></td>
<td>-0.45</td>
<td>.657</td>
<td>0.99</td>
<td>.328</td>
<td>-0.71</td>
<td>.482</td>
</tr>
</tbody>
</table>

The significance of hemisphere differences in subfield volumes and annual percentage change were tested with paired samples t-tests. Sex differences were tested with independent samples t-tests. Significant (p < .05) differences are shown in bold. N=85, 8-21 years.
Table 4 Verbal learning and memory performance

<table>
<thead>
<tr>
<th></th>
<th>Total sample</th>
<th>Females</th>
<th>Males</th>
<th>Sex difference</th>
<th>Correlation performance and age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Range</td>
<td>Mean (SD)</td>
<td>Range</td>
<td>t</td>
</tr>
<tr>
<td>Learning</td>
<td>61.3 (7.5)</td>
<td>37–79</td>
<td>63.0 (6.3)</td>
<td>48–74</td>
<td>60.0 (8.2)</td>
</tr>
<tr>
<td>Short-delay recall</td>
<td>13.5 (2.3)</td>
<td>7–16</td>
<td>14.1 (1.9)</td>
<td>8–16</td>
<td>13.1 (2.6)</td>
</tr>
<tr>
<td>Medium-delay recall</td>
<td>14.0 (2.2)</td>
<td>7–16</td>
<td>14.6 (1.8)</td>
<td>8–16</td>
<td>13.5 (2.4)</td>
</tr>
<tr>
<td>Long-delay recall</td>
<td>10.3 (3.6)</td>
<td>2–16</td>
<td>11.0 (3.0)</td>
<td>3–16</td>
<td>9.7 (4.0)</td>
</tr>
</tbody>
</table>

Verbal learning and memory was assessed at tp2 using the CVLT-II and the following variables: total number of words recalled across the five learning trials (learning), free recall after 5-minutes (short delay), free recall after 30-minutes (medium-delay recall) and free recall after approximately 1-week (long-delay). The significance of sex differences in performance were tested with independent-samples t-tests and associations with age were examined with partial correlations, controlled for sex. Significant (p < .05) effects are shown in bold. N=84 (64 at long-delay).