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Abstract 

The time dependent Ekman transport is discussed and shown 

to approach Ekman's steady state transport in the limit of 

large time. It is found that the transport in the Ekman layer 

evolves rather slowly and actually requires 12.5 pendulum days 

to reach 80% of its stationary value. 
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Introduction 

The problem of wind induced velocity in the ocean making 

allowance for the earth's rotation was first discussed by Ekman 

(1905). Following Ekman's classical work a number of authors 

hav9 investigated the same problem subject to various boundary 

conditions. A summary of results is given in the textbook by 

Greenspan (1968). 

The ·present investigat~on on time dependent Ekman theory is 

mainly concerned with the time evolution of the mass transport. 

An investigation by Crepon (1967 a,b) discusses the initial value 

problem with special emphasis on the governing equation for the 

mass transport. To this end it is necessary to impose a condition 

on the stress at the bottom. This is accomplished in either of 

two ways. (i) The stress is put equal to zero or (ii) set pro­

portional to the transport. In the first case the transport 

never reaches any stationary value. Rather it has the form of 

indefinite oscillations about the steady state transport obtained 

by Ekman (1905). In the second case a stationary value exists 

which is in agreement with Ekman's solution if the stress is put 

equal to zero subsequent to making the passage to the large time 

limit. This is discussed in part 1. 

Gonella (1971 a) has given the solution to the Ekman problem 

with an impulsive wind and an arbitrary initial velocity. In order 

to gain a solution he invokes distribution theory. The solution 

presented for the transport in the case of zero initial velocity 

yields the same behaviour as Crepon's solution with zero bottom 

stress. 
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This is in contrast to the conclusions reached in section 2 

of the present investigations where it is found that the transport 

does indeed tend to Ekman's steady state transport. The analysis 

is based on the time dependent solution attributed to Fredholm 

and reported by Ekman (1905). It necessitates a careful formulation 

of the initial value problem.In part 3 it is found that the transport i~ 

the Ekman layer requires 12.5 pendulum days to reach 80% of its 

steady state value. Based on time scale conclusions inferred from 

a related problem, which has the same steady state solution, the 

slow evolution of the Ekman layer. transport toward its steady 

state value may come as a surprise. This motivates the formulation 

of "the related problem" in part 4 where the transients are shown 

to subside an order of magnitude more rapidly than in the Ekman 

problem. 

1. Formulation of the Ekman problem 

In the following the assumptions are the same as those of 

Ekman (1905). The model is a homogeneous ocean being infinitely 

deep where there are no lateral boundaries. On the surface the 

wind provides a stress with no spatial dependence but which may 

depend on time. The Cartesian coordinate system chosen has z 

pointing downwards and x and y tangent to the globe at latitude 
A 

~. The y-axis coincides with the stress vector. Since the wind 

stress is the energy source, the induced motion is independent of 

the horizontal coordinates. Hence no vertical motion is generated, 

implying that 

( 1 .1) w = 0 ' ~X : ~y : 0 ' 

where w is the vertical component of the velocity. The continuity 
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equation is, therefore, trivially satisfied and the exact equation 

of motion is 

( 1 • 2) 

Here 

a:t <+- + a-;; 
- + f kx v = v :--2" • at az 

+ + + 
v = ui + v j is the horizontal velocity, f is the Coriolis 

parameter, f = 2r2 sina,, (assumed constant), v the constant tur-
+ 

bulent kinematic viscosity and k the unit vector along the z-axis. 

The solution to Eq. (1.2) is subject to the following boundary and 

initial conditions 

(1. 3) 

+ 

+ + 
\) av = T(t) . a-z p , 

+ v + 0 ; 

~ = 0 
' 

z = 0 ; t > 0 

t < 00 

t = 0 

where T(t) is the wind generated stress and p the density of 

the fluid. 

The solution to Eq. (1.2) subject to (1.3) is attributed 

to Fredholm and reported by Ekman (1905) and may formally be written: 

(1 • 4) 21Ti 
<P = pDf 

TJ -21Ti; 
T(t-;) e vr; e 

0 

as shown by Fjeldstad (1930). Here ~ = u + iv 

velocity, T = ~; is a dimensionless time and 

+ 
T = + 

T(t)j 

is the complex 

D = 1T ;gj.. is the f 

Ekman depth. The steady state solution presented by Ekman (1905) 

which is obtained by putting a 0 in Eq. ( 1 • 2) is a-r-
( 1 • 5) 1rTo -1T(1+i)~ 

~st = pDf 
(1+i)e 
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Defining 

( 1 0 6) MT = J ;j dz 
0 

with the complex representation M - M(T) + iM(T) 
T - X y for the total 

transport, the governing equation for MT~ obtained by integrating 

Eq. (1.2) with respect to z, may be written 

( 1 0 7) a~ 1 f M - iTo + ~~ ar- + T - p v az z~~ • 

Here use has been made of the first condition in Eq. (1.3). Putting 

v atPI = o az z-+-~ as did Crepon (1967a) and noting that MT is initi-

ally zero, the solution to Eq. (1.7) becomes 

( 1. 8) 

The constant factor in the above expression is the solution to the 

concomitant steady state equation (~t = 0) (Ekman (1905)), viz. 

( 1 • 9) 

Thus MT given by Eq. (1.8) does not tend to Mst in the limit of 

large time. Rather MT has an oscillatory behaviour about its 

steady state value. As pointed out by Crepon this inconsistency may 

be resolved by allowing for a dissipative mechanism. The commonplace 

devise is to let the stress at the bottom be assumed proportional 

to the integrated velocity, viz. 
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(1.10) 

the factor of proportionality being R. Here R is put equal to 

zero subsequent to making the passage to the limit ~ + m. Upon 

introducing Eq. (1.10) in Eq. (1.7) the solution becomes 

M = iTo 
T pf 

1 _e-2'1T(R+i)~ 
R+i ' 

which has the large time value 

!a. _i_ 
MT = pf R+i 

Thus MT tends to Mst as R + 0. 

Hence in order to reproduce Ekman's steady state solution it 

is essential that the time is allowed to approach infinity before R 

is put equal to zero. Interpreting MT as the limit of the transport 

in the layer O,z when z tends to infinity, this is tentamount to 

letting the time approach infinity before z. For an initial value 

problem in an unbounded medium this - is the usual devise 

by which the large time behaviour of the solutions for large values 

of the spatial coordinates are obtained. The introduction of an 

artificial bottom stress resembles the artificial Rayleigh friction 

introduced in the problem of fluid flow over a corrugated bed. Being 

an artifice, however, it does not give any information about the 

pertinent time scales for the solution to become practically statio-

nary. 
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2. The transport as a function of depth and time. 

In order to display the time dependency it is convenient to 

define the complex representation of the transport, M, in a layer of 

thickness z, viz. 

( 2.1) 
z 

M(z,~) = J ~(~,~)~~. 
0 

Inserting the expression for ~' Eq. (1.4) in the above equation 

and interchanging the order of integration one obtains 

(2.2) ( ) 21TiT 0 M z,~ = pf 

0 

Here erf is the error function defined by 
X 

erf(x) = ~ J e-t 2 dt • 
0 

The remaining integral can be expressed in closed form (Abramowitz 

and Stegun (1964) p. 304),viz. 

(2.3) 
T [ _,.(1+i)Dz J:rr ] 

M(z,~) =~ 1- e - erf(~ vif'~)e_ 2,.i~- H2 (z,'r) 

where 

(2.4) [ 
1T(1+i)~ 

H2 ( z, ~) = ~ e D erf c ( ~ + ~ 4- ) 
-1T(1+i)~ - l 

- e D erfc (V21Ti~- ~v'f:r> J 

is expressed in terms of the complementary error function 

erfc (x) = 1 - erf(x). 

Expression (2.3) for the transport enables one, through the 

defining equation (2.1), to express the velocity in closed form 
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as well, viz. 

(2.5) 
' 

where H1 is the sum of the two terms constituting H2 , Eq. ( 2 •1l). 

Now following the procedure outlined in the last part of the pre­

ceding section the time is at this stage allowed to approach infinity. 

Since H2 and H1 both tend to zero for large time and since 

(2.6) 

one obtains 

(2.7) 

Hence 

(2.8) 

erf(~ rtr> = 0 . , 

lim M 

z ll -n(1+i) 0 
= pf (1-e ) • 

lim(lim M) = M t • 
z+oo '[+CXI S 

, 

Since H1 and H2 also tend to zero if z is allowed to approach 

infinity, the inadmissibility of interchanging the two limit pro­

cesses may be brought to the fore upon taking the asymptotics of 

the term 

erf(~ .rt;)e-2niT 

in Eq. (2.3). If the space variable is allowed to approach infi-

nity before time T, this term tends to -2niT 
e • On the other hand, 

if the two limits are interchanged, the term vanishes. This is the 

crucial point since for an initial value problem the time must 

approach infinity before the space variable z .-

From Eq. (2.5) the expression obtained for the stress is 

(2.9) 
iT ( -v(1+i)~ ]. 

- v ~· = 7 e + H 2 ( z , T) • 



- 9 -

Thus, althaug the assumption made by drepon (1967 a) and Gonella 

(1971 a), i.e. that there be no bottom stress, leads to a false 

steady state, the assumption is supported by the fact that· the 

stress does indeed tend to zero for all times in'the limit of large 

values of z, even if T is allowed to approach infinity before z. 

The fact that the time dependent transport does indeed tend 

to Ek~an's steady state transport, Eq. (1.9), may also be established 

by making use of the following argument. The ocean is so far 

thought of as being infinitely deep. However, the phrase "infinitely 

deep" means that the depth, h, of the ocean is very large compared 

with some other characteristic length parameter, here the Ekman 

depth, D. Hence the solution for an infinitely .deep ocean should 

follow from the problem with a finite depth scaled on D in the 

limit h/D + ~. Indeed changing the second condition in Eq. (1.3) 

to v = 0 at z = h, the solution to Eq. (1.2) in the domain 

0 < z < h may be expressed as [c.f. Fjeldstad (1930)] 

T 

(2.10) ~ = 2~iT 0 (D) J e-2ni~ 6 [!_ji(D)2Jct~ 
pDf h 2 2h ~ h • 

0 

Here e2 , the second theta function, is defined by [Roberts and 

Kaufmann 1966] 

(2.11) 
n=-~ 

(v+n)2 
x 

• 

Upon introducing Eq. (2.11) into Eq. (2.10) the latter may be 

recast in the form 
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(2.12) 

where 

f(z,~) = 

If Eq. (2.12) were integrated with respect to z from zero 

to h, the result would be an expression for the total transport. 

However, all the integrands in such an integration is seen to be of 

the same form as the right hand side of Eq. (1.4). Following the 

procedure of the first part of this section all terms are, therefore, 

easily integrated. The first term of Eq. (2.12) when integrated 

from 0 to h gives the right hand side of Eq. (2.3) with z/D 

substituted by h/D. Hence this term alone will produce Ekman's 

steady state transport in the limit of T + C10 neglecting terms of 

order -hiD 
e • The second term in Eq. (2.12) is upon integration 

seen to be of order e-h/D and may consequently be neglected. Hence, 

however large the ratio h/D, the transport will in the limit of 

large time tend to Ekman's steady state transport. 

3. The Ekman layer transport. 

Upon integrating Eq. (1.5) with respect to z it is readily 

seen that the bulk of the transport takes place in the upper layer 

of the ocean. The transport in the Ekman layer, 0 < z ~ D, is 

(3.1) 

A relevant time scale characterizing the transients is therefore 

the time it takes for the time dependent transport in this layer 
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to reach the value given by Eq. (3.1), 

The transport in the Ekman layer at an arbitrary time is 

obtained from Eq. (2.3) by putting z = D, viz. 

(3.2) 

Making use of the asymptotic formula 

(3.3) 
-x2 

erfc (x) = ~ 
x.fi 

there results 

(3.4) 

. 
' 

Thus the steady state is approached rather slowly, oscillating 

about the steady state with an amplitude which decreases as -~ -r • 

Based on Eq. (2.2) the exact time evolution of the transport 

in layers of different thickness has been plotted in fig. 1. 2 and 

3 for z = 0.2 D, z = 0.5 D and z = D, where the y-c2mponent is 

drawn as a function of the x-component. (Hodograph-plane). The 

figures exhibit the oscillatory behaviour as inferred from the 

asymptotic expression Eq. (3.4), and, moreover, they display how the 

oscillations will be more important the greater the depth. For 

example, the Ekman layer transport (fig. 3) requires 12.5 pendulum 

days to reach approximately 80% of its steady state value. 

This runs contra to expectations, since it may be inferred 

from a problem which has exactly the same steady state solution that 

the transport will reach its steady state value on a time scale 
... 

equal to the time scale which characterizes the decay of the transient 
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terms in the velocity, i.e. on a scale of a couple of pendulum 
days only. This problem is dubbed "the related problem" for 
reasons which the next section will justify. 

4. The related problem. 

The related problem bears a strong resemblance to the Ekman 

problem. Instead of generating the motion by a wind sweaping over 

the surface and providing for a wind stress, the motion is gene­

rated by a moving plate at the surface. The governing equation 

is again (1.2) subject to the conditions (1.3) except for the 
... 

first condition which has to be replaced by v = U at the surface, 

z = 0. The solution to this problem may be writte.n [ c .f .Howard ( 1969)] 

[ 
-n(1+i)~ 1 (4.1) ~r =We D + H2 (z,T) 

where ~r is the complex representation of the horizontal velocity. 

H2 is given by Eq. (2.4), and W are the complex representation 
+ 

of the surface velocity u. Correspondingly the integrated velocity 

becomes 

(4.2) M WD [ -•{1+1)~ 
erf c (V2'i!T) + H1 (z,T)] = n ( 1 +i) 1- e r 

where H1 is as before, the sum of the two terms constituting H2 • 

Choosing, W = U0 (1+i), i.e. the velocity at the surface 

to be 45° to the right of the y-axis, the stress in the steady state 

exerted by the fluid on the plane, z = 0, is - i UoDf • Conse­
n 

quently the stress on the fluid is along the positive y-axis and 45° 
· ·nTo 

to the left of the surface velocity. Hence with U0 = pDf the 
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steady state solution becomes identical with the corresponding 

solution obtained by Ekman (1905). This justifies the phrase 

"related problem". 

Since the steady state solutions are identical one might 

be tempted to infer from the related problem the time evolution of 

the Ekman layer transport. The different ways the motions are 

generated will, however, lead to different evolutions in time. For 

instance, the work done on the fluid by the surface, z = 0, in the 

related problem is proportional to -(a~/az) which is greater than 

(or as T + ~ equal to) the constant work provided by the wind 

stress in the Ekman problem. The transfer of motion to the interior 

will, therefore, take place at a greater speed, and hence a shorter 

time is needed to reach the steady state solution. One may reach 

the same conclusion by the following argument. In the Ekman problem 

the surface water has to be accelerated by a constant stress and the 

gradient necessary to transfer motion to the interior will develop 

slowly. In the related problem the surface water is already given 

its velocity and hence the necessary gradient is established initi-

ally. 

In fact, the transient terms of the transport in the related 

problem may be shown to subside an order of magnitude more rapidly 

than in the Ekman problem, Eq. ( 3. 4). 

Making use of the formula (3.3) there results 

3 5 

MrD = Mst[ 1+e-1T -.! T-~(1+i)e-21TiT + O(T-2) ]. 

This difference in the asymptotic behaviour of the solutions of the 

Ekman and the related problem demonstrates that although the two 



- 14 -

problems have the same steady state solutions, care need to be 

exercised in drawing any inferences from the related problem with 

respect to the time evolution of the Ekman layer transport. 

5. Summary and final remarks. 

The time dependent solutions to both the Ekman problem and 

the related problem have been studied for the following purposes. 

(1) To show that the initial value problem indeed tends to 

Ekman's steady state solution. 

(2) To point out that the transport evolves rather slowly towards 

it steady state value compared to the transport in the 

related problem. 

(3) To estimate how long time it actually takes before the 

stationary Ekman layer transport is established. 

It may be worth while to make some remarks regarding part (3). 

As has been shown Ekman's steady state solution does not constitute 

a "first approximation" to a problem with a non-steady windfield 

which varies on a time scale of order 1-10 pendulum days. The 

time dependent solutions will still have rapid variations at least 

as far as the transport is concerned, and allowance has to be made 

of this fact. On the other hand, the solution expressed by Eq.(1.8) 

may be a good approximation within one half pendulum day. 
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Figure captions 

The hodograph diagrams fig. 1-3 display the time evolution 

of the transport in layers of three different thicknesses. 

The unit for the transport is Hst' Eq. (1.9). The points 

on the curve markes the time in units of i pendulum days. 

Figure 1 z = 0.2 D. 

Figure 2 z = 0.5 D. 

Figure 3 z = D. 
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