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Introduction. 

The Klein-Gordon equation Uxx - Utt + V' (U) = 0 has 

solutions in the form of progressing.waves. Here I describe a 

technique to deal with the case of two such waves superimposed, 
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in which each wave is fully nonlinear, and a .perturbation expansion 

is made which assumes that the interaction between them is less 

strong. The technique is based upon that used in Grant (1972,73), 

and the particular problem was inspired by Ablowitz (1972). 

1. Linearized Solutions. 

Taking V'(U) - U for U small, the linearized equation is 

with the solution U = E cos (kx-wt) 

the dispersion relation 

or U = E COS lP <.P = kx-wt. 

2. Two waves. 

To study the interaction of two waves, with wave numbers and 

frequencies (w 1 ,k 1 ) and (w 2 ,k 2 ) respectively, it is best to 

transform to the phase coordinates. 

Let <.P = k 1 x w1 t 

e = k 2 x w2t 

The equation is now 

g u + g2uee + 2f-U 8tP + V' (U) = 0 
1 lPW 

gl = kl 2 wl 2 

g2 = k2 
2 

wz 
2 

/.. = klk2 - wlw2 

( 1) 

( 2 ), 
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Once again, there is the linearized solution 

u = ex cos (j) + a cos a 

with the dispersion relation: 

This solution can be iterated upon generating an expansion in 

powers of a and a: 

u = ex cos (j) + a cos e 

+exS(cosq>cose ,sinq>sine) (3) 

+ex 2(cos2q>,1) + f3 2(cos28,1) + ex 2S( ) +exf3 2 

gl = 1 + clex2 + clla2 + ••• 

g2 = 1 + cllex2 + cla2 + ••• 

+ex3( ) + 83( ) 

(aS(cosq>cose,sinq>sine) means aa x some linear combination of 

cosq>cose & sinq>sin8). 

All coefficients also depend on A. 

~ First, consider the problem of only one wave, say a = o. Then 

The terms at each order in ex can just as well be written as a 

polynomial in cos(j) as in harmonics of ~. 

Since U is a function of <P only, the equation can in fact be 

integrated: 

g 1 U<P<P + V'(U) = 0 

lg U 2 + V(U) = E(ex) 
1 tp 

(5) 
etc. 
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This implies that the expansion (4) is known 

(6) 

The expansion (4) has, at order n 
a , a polynomial of degree 

n in cos~. It can be enlightening to restrict attention to 

those terms that are most rapidly varying at each order - the 

highest power of cos~: 

(in fact, f<acos~) = F(acos~;O)) 

(7) 

These terms depend only upon each other, and are independent of the 

omitted terms in the expansion. They consequently form the basis 

for an expansion of the solution F, whose first approximation qt 
is nonlinear. This follows the reasoning used on water waves. 

/ depends on a & cos~ only in the single combination 

~ = aco~· The equation for U0 can be found by making this change 

of variables 

but 

(8) 

which, to highest order (i.e. a + 0 with ~ fixed) 



,.... - 1-l2 (g) 

also g 1 = 1 

- 1-l2f"- 1-ll.' + V(f'.) = 0 
(J / 

(10) 

This is the equation for the solution (4). 

Here it is easy to recover the full solution, simply by retaining 

a 2 - ]..l 2 instead of - lJ 2 in the coefficient of U" : 

g 1 [(a2 -]..l 2 )U" -1-lU'] +V(U) = 0 ( 11 ) 
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g (a2) is determined by the condition that the solution be analytic 
1 

in 1-l as 1-l -+ 0 (i.e. periodic in q>) 

( 10) is the equation for I< ll) = F(J..l;O) 

( 11) is the equation for F(J..l;a 2 ) 

An iteration based upon J.. would proceed: 
d 

u = t + a.2fl+ a4/2ooo 
'I 

with all the li being functions of 1-l alone. Substitution and 

collection of powers of a 2 gives equations for the ~i· 

It is worthy to note that ~(1-l) provides a nonlinear approxi­

mation to F(l-l; a 2 ), since it contains some terms from all orders in 

the perturbation expansion. However, it is not a wholly satisfactory 

approximation, and will fail when U becomes singular. For the 

coefficient of U" in (11) is a 2 - ]..l 2 , which vanishes at a = 1-l• 

(I assume a singularity first accurs at maximum J..l); and in (10) 

it is -l1 2 , which does not vanish. (Apart from the awkward fact of 

estimating the positive definite a 2 - ]..l 2 by the negative definite 

-]..l 2 ). So (10) will get the order of the singularity wrong. So much 

for one wave. 
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4. Two interacting waves. 

a. I. o, s I. o. 

u = a.cosq> + Seese + a.S(co~cose,si~sin6)+ 

+ a 2 (cos 2q>,1) + S2 (cos 2 8,1) 

when s + 0 

u t"J CX.COS(j) + a. 2 (COS 2 tP,1) = F(a.cosq:t;ao. 2 ) (12) 

when 0'. + 0 

I define an expansion, whose first term is valid in both limits 

U = F(ao.cosq> + Scos6;E 2 ) + O(ao.S) 
( 13) 

This choice is not uniquely determined. Another would be the 

obvious 

( 14) 

The advantage of (13) is the convenient form. It involves a.cos~ 

and scose, at lowest order, only in the combination 

~ = aces~ + Beese (15) 

This functional form also enables comparison with the expansion 

technique based upon the most rapidly varying terms. In the case of 

one wave, it was unnecessary. But now the problem cannot be 

immediately integrated, and some approximation is needed. 

It is also more convenient because forcing terms at higher 

orders are always of the form: Sum of terms like : 
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and hence generate terms of a similar form. Whereas (14) will 

generate forcing terms like: 

and it will not be so easy to solve for the functions so forced. 

The expansion based on this will, at all orders, discard terms 

that are "more mixed" than the dominant ones. "More mixed" means 

more cross products of terms from the two waves - i.e. a 2 acos 2 ~cos8 

is more mixed than a'cos 3 ~ or a 3 cos 3 ~. Thus, at lowest order, I 

have correct only those terms in the expansion (3) that involve only 

a or only a. The next iteration includes terms of the form ana 

and ~an - one order of interaction between the two waves. And so on. 

The expansion is essentially an expansion in powers of the interaction 

between the two waves, each wave being itself fully nonlinear. 

Another way of looking at it is to array the terms of (3) in a 

chart of (power of a) vs. (power of S): 

0 1 2 3 4 
0 

1 

X )( )( -)( > power of a 
(16) 

1 X X X X 

j 
I 
I 

2 

1 

X X 

3 X X 

power of a 

The complete solution is the sum of all these terms. If I assume 

{3 is small, I can iterate upon a nonlinear a-wave 

u = F(acos~;a 2 )+a{cos8F 1 (acos~;a 2 ) + sin8asin~F 2 (acos~;a 2 )}+ 0(13 2 ) 

(17) 
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This is an iteration, whose first term collects all the terms in 

the first row of (16), and then iterates,collecting row after row. 

Likewise, the corresponding a-approximation 

( 18) 

iterates column by column. 

The form (14), at its first approximation, has correct both 

the first row and the first column, and moves inwards with higher 

order. 'Higher order' means higher order of interaction, of the t·wo 

waves with each other. It is not true, for example, that at nth 

order all terms from the first n rows and columns have been 

collected. For example a term of (a 2 S) occurs both at second and 

third order 

U = F(~) + aS{cos8cos~F 1 + sin8sin~F 2 } 

+ (aS) 2 [cos 2 6cos 2 ~F 3 + cos6cos6sin6sin~F~] 

+ (a 2 S cose + S 2 acos~)F 5 + ••• 

F(~) is first order 

F1 & F2 are second order 

F 3 ,F~,F 5 are third order 

A term of order (a 2 S) can occur in F 1 , F 2 and F 5 • 

But only at F 5 is any correction made to g( 1 ). Correction to the 

dispersion relation occur only at every second order, as they do in 

the expansions (17) and (18), because they require a wave to 

interact with something else, and then back again to itself. So terms 

of order (a 2 S) in F 1 and F 2 represent, say an (a 2 ) term from 
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F interaction with a (8) term from F. An (a. 28) term in F5 

is generated (a.) ~ (a.8) ~ (a. 2(3). This is the last time such a 

term can arise in the expansion. At order p, terms of order a.n8m 

are included with n + m ~ p. 

First, for comparison, I do the expansion (17) 

u = F 0 (a.cos~) +(3[cos8F 1 (a.cos~) + sin8a.sin~F 2 (a.cos~)]+ • • • 

= F (~) + 8cosOF (~) + a.Ssin8sin~F(~) • ~ = a.cos~ 
0 l 

u~ = -a.sin~(F' + (3cos8F') 
0 1 

= -a.cosq,(F' + (3cos8F') + a 2 sin 2 ~(F" + 8cos8F") 
0 1 0 l 

- 2Sa. 2 sin~cos~sineF;•aasin8a1n~2 

+8a 3 sin 3 ~sinaF; -8a 2 sinecos~sin~F~ 

- - ~(F' + 8cos8i') + (a. 2 -~ 2 )(F" + 8cos8F") 
0 1 0 1 

- 3Sasin8sin~~F' - f3asin8simpF 2 + 8asin8simp(a. 2 -~ 2 )F" 
2 2 

also 

g1 = g~o)(a2) + 0(8 2) 

g2 = g~o)(a.2) + 0(8 2 ) 

g 1 U~~ + g2U88 + 2AUeq, + V'(U) = 0 becomes 

g(o){-~F' + (a. 2 -~ 2 )F" + 8[-~cosei' + (a 2 -~ 2 )cosei"] 
0 0 1 1 

+ Ba.sin8sin~[(a 2 -~ 2 )F~ - 3~F~ - F2 )} 

+ g(o){-ScoseF- (3asin8sinp F2 } 
2 1 

+ 2A{-B(a. 2 -~ 2 )cos8F~ + f3cos8~F 2 + a.(3sin8sin~F~} 

+ V'(F 0 ) + V"(F0 ){Scos8F 1 + a.8sin8sin~F2 } = 0 
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- as usual. 

at O(f3cos8): 

g(o)[-11F' + (a 2 -l1 2 )F"J-g(o)F + 2A[-(a 2 -ll 2 )F2'+11F 2 l 
1 1 1 2 1 

+ F V"(F ) = 0 
1 0 

(19) 

at O(f3sin8oasin~) 

g(o)'[(a 2 -l1 2 )F"- 3l1F'- F l-g(o)F +2AF' + F V"(F ) = 0 (20) 
1 2 2 2 2. 2 1 2 0 

--"--

And now for the next: with two waves. The method mimics the 

preceeding cases, and the rules for collecting terms, or discarding 

them to higher orders are thus : 

Any term that is more mixed belongs at a higher order . 

. f'.ny term that is more slowly varying belongs at a higher order -

except that I attempt to retain some terms, that can easily be 

incorporated, as is the one wave case - retaining a 2 in a 2 -J,.l 2 • 

This is a purely ad hoc improvement. 

U = F (acos~ + 13cos8;E 2 ) 
0 

+ aS[cosecos~F 1 (11;E 2 ) + sin8sin~F 2 (J..l;E 2 )] + •o• (21) 

11 = acos~ + f3cos8 

E2 to be suitably chosen 

To lowest order 
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u ~ -asimpF' 
q) 0 

u """ -acos<.pF' + a 2sin 2<PF" 
<PtP 0 0 

utPe ..... aSsin~,psin8F" 
0 

uee ....... -Scos8F' + 13 2sin 28F" 
0 0 

gl = g(o) (e:2) + l32g(1) (e:2) 

g(o) (e:2) + a2g(1) (e:2) 
(22) 

g2 = 

(23) 

+ 2AaBsin~sin8F" + V'(F ) = 0 
0 0 

A) 2).ctf3simpsin8F" 
0 

is mixed - an O(aS) term - out it goes 

B) 

0 ) [ ( e: 2 -11 2 ) F" - ].lF' ] + V' ( F ) = 0 
0 0 0 ------------------· -------------------

familar equation with a familar solution. 

The choice of e: 2 is correct only to order (aS) - i.e. correct 

to all orders of a & S alone. Another choice could be 

(if a > o, a > 0 is prescribed) 

This can be more reasonable. For example, for a standing wave, where 

a= B, it turns out to be required. This is because llmax = lal +lSI, 

and it is convenient to have e: - 1' - ~"'max' so that vanishes 



at J..lmax as does the original expression 

Carried to O(aS) from (24) is 

2AaSsin~sin6F" + 2g(o)aBcos~cos6F" 
0 0 

At order aS: 

u6 ~ aB[-sinecos~F 1 + cos8sin~F2 - Bsin6cosecos~F~ 

- Bsin 2 6sin<PF~] 

(25) 

The last two terms, -aB[-28cos~F;l belong at a higher order, since 

they are more slowly varying (in e) than the retained terms. The 

terms B2 Fj_, which are also higher order, are retained because the 

corresponding terms are retained at lowest order. 



u9~ ~ aS{+sin6sin~F 1 +cos8cos~F 2 +Ssin6cos9sin~F:-asin 2 6cosQF~ 

+asin~sin8cos~Fi-asin 2 8cos6F~+aSsinecos6sin~cos~F~ 

+af3sin 2 6sin 2~F"} 
2 

+sin8sinq:l•aScosecosQF~+al3cos 2 8cos 2 '*i 
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and the third & fourth lines contain terms belonging at higher order. 

Collecting all the O(aS) terms gives: 

+2A[F2 +(acos~+acose)F']+V'(F )F} 
2 0 l 

+g(o)[-F -3acos~F'+a 2 F"-a 2 cos 2~F"] 
2 2 2 2 

+2A[F 1 +~F~]+V'(F0 )F2 } 

+2g ( 0 ) cose cosq)F 11 + 2A s in8 sin<+>F" 
0 

the equation for F1 & F2 are : 

(26) 



and if I define 

i.e. F+ & F are independent of each other. 

-2(g(o)±>..)F" 
0 

13 

(27) 

(28) 

F is fully specified, given the addition condition that it 

is analytic in both l.l and E when these are small. 

The mechanism of this expansion can be regarded as su~~ing the 

terms of the expansion (16) "in the ll-direction" - each step adds 

another layer. Comparing with the expansion for the one wave case, 

it can be seen 

A) In finding each Fi(ll), I am able to retain the Ei term as well~ 

i.e. it is better than just a simple "most rapidly varying" 

approximation. 

B) But in terms of the expansion in the orthogonal direction 

E(aS)n ~;~ e,~ Fi(ll), it is not possible to retain the analogous terms, 

and hence it is just a simple most rapidly varying approximation. 

Summary. 

The exact solution is a function generated by an "improved most 

rapidly varying approximation" crossed with another such. I 

approximate by an ~'improved approximation"crossed with a"simple 

approximation". 

N.B. The expansion is not an expansion in powers of aS. The next 

terms are: 
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all of these are of comparable order, and it is the equation for F5 

that gives the next term g( 1 ) in the expansion of the gi. 

Most unfortunately, Eqn(28), although only an O.D.E., can't 

be solved in closed form. And since it contains two parameters, A 

& £, it isn't even suitable for numerical computation - .doesn't 
, a la Ablowitz • _ _; 

represent an improvement over doing the original eqn. by Fourier series ,'1 

This is a great shame, since it would be reasonable to truncate 

at this point (or the next, in order to get another approximation 

for the g.). The basic solution F contains two waves, each 
1 0 

described exactly as far as interactions with itself go. The order 

aS term contains the first order interactions. That is, if S is 

small, we haveanonlinear a-wave with S linearized about it. This 

gives now the amplitude and phase of the a-wave changes, bee .se of 

the effect of the "background" - the a-wave. So the results, to 

order aS, represent a solution with two nonlinear waves, each with 

amplitude and phase changing in accordance with the other wave, but 

with the other wave in its free form for the purposes of computing 

this interaction. Second-order effects come at next order - e.g. 

effects on the a-wave caused by what the a-waves changes in the 

a-waves. 

The main advantage here then is the very convenient functional 

form for expressing the solution. 

The disadvantage is the insolubility of (28). (28) is very 

similar to (19) and (20) - the equations of motion linearized about 
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a nonlj_near wave. If one is explicitly soluble, so is the other. 

So the fact that (28) can't be neatly solved, reflects that the 

problem of a linearized wave riding on a non-linear one, also cannot 

be solved. 
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