UiO ¢ Department of Informatics
University of Oslo

Investigations in complexity
theory related to the space
hierarchy theorem

Andreas R. Askeland
Master’s Thesis Autumn 2015

Investigations in complexity theory related to
the space hierarchy theorem

Andreas R. Askeland

2nd November 2015

ii

Abstract

This master thesis investigate space complexity theory, with the motivation
of developing a degree theory. A direct application of our investigation is a
strengthening of the space hierarchy theorem as stated by Sipser in [3]. At
the end, we define a degree theory and show some elementary properties
of the degree structure. We also present detailed proofs of known results,
including a detailed description of a universal Turing machine.

iii

iv

Acknowledgements

I would not have been able to write this thesis without the help from my
supervisor Lars Kristiansen. His directions into the field of complexity
theory has made me really curious about this fascinating field, which has
kept me intensely motivated. I would also like to thank Roger Antonsen,
Herman Ruge Jervell, Arild Waaler, and Andreas Nakkerud for giving
inspiring lectures in logic and computations. I have also received helpful
feedback from Lars Kristian Maron Telle, Lars Tveito, Evgenij Thorstensen,
and Sigurd Kittilsen, for which I am grateful. The love and support from
Hilde Bakken Reistad, together with the rest of my family and my friends,
made me thrive through all of this.

Vi

Contents

vii

11

17

23

27

31

41

49

51

55

59

viii

Chapter 0

Introduction

Many of the great open questions in complexity theory, like P # PSPACE
and P # NP, are statements about how time classes relates to space classes,
or how deterministic classes relates to non-deterministic classes. We do not
have many strong results about any of these relationships at the current
moment. What we do have, is a strong result about how we can separate
space classes from each other, thanks to the space hierarchy theorem. The
time hierarchy theorem (see [3]) is a similar result about time complexity,
but in this thesis we will focus on space complexity only. Intuitively, the
space hierarchy theorem states that with more space, a machine may solve
more problems. The standard version of this theorem were first given in
1965 by Hartmanis et al. in [4]. Sipser [3] restates it in the following way:
for any space constructible functions g thatis at least O(log(n)), there exists
a language decidable in space O(g(n)), but not in space f(n) € o(g(n)).
One of our main goals is to strengthen this result for certain functions by
weakening the criteria from f(n) € o(g(n)) to g(n) ¢ O(f(n)). There are
similar results in the literature [1] which we believe our result follow from.
Nevertheless, we have proven our results independently and in much more
detail than what is usually done. Our main motivation is to present a
theory of degree, analogous with Turing degrees in computability theory.

Our stronger version of the space hierarchy theorem states that for any
two monotone functions ¢ and f that are space constructible, and such that
f(n) > loga(n+2) < g(n),if g(n) & O(f(n)), then there exist a language
decidable in space O(g(n)) on a deterministic Turing machine, but not in
space O(f(n)). The requirement f(n) € o(g(n)) from the well known
space hierarchy theorem is weaker than g(n) ¢ O(f(n)) because there are
functions ¢ € O(f(n)) and f(n) & o(g(n)). An example is the monotone
functions f, g: IN — IN defined by

2 ifn=0
f(n)=4q f(n—1)>2 ifnisevenand n > 0
f(n—=1)+1 ifnisoddandn >0

2 ifn=20
gn)=¢g(n—1)+1 ifnisevenandn >0
g(n—1)? ifnisodd and n > 0

These functions will never dominate each other. We can see their
behavior in figure[Il

60| f(n)
107 — g(n)|

Figure 1: g ¢ O(f(n)) and £(n) & o(g(n))

In his proof, Sipser claims that there exists a Turing machine D, such
that when w = (M)10* is given as input, D can

1. Decide if the input is of the form (M)10*, where (M) is a description
of a Turing machine M.

2. Simulate M on w.
3. Halt if M uses more than 28(®) number of steps on w.
4. Haltif D uses more than g(n) space.

According to Sipser’s criteria, g(n) may be log(n). In this case, D is not
allowed to use more than log(n) space if M use o(log(n)) space. While
it is true that such a Turing machine D exists, constructing one is not
trivial. One challenge is that M and w have to be encoded into symbols
of the fixed input alphabet of D, even though M may have a much larger
input alphabet than D has. One symbol on the tape of M must therefore
be represented by many symbols on the tape of D. In chapter 2] we
will see how any Turing machine along with any input string can be
encoded. We will measure space by how many cells on the work tape is
read. Since D must have the ability to work in sublinear space, we let our
Turing machines have a read-only input tape, and a separate work tape.
Otherwise, D does not have enough space to read the entire input with

2

log(n) as space requirement. Another challenge is how D can decide if (M)
really encodes a Turing machine. According to Sipser’s definition of Turing
machines (modified by an extra tape), D must verify that the function

5:QxExTI—QxTx{L R} x{L,R}

is totally defined in (M). This means that, for each state g € Q, each symbol
c1 € X, and for each tape symbol ¢, € T, the tuple ((g,¢1,¢2),(¢',¢’,D,D"))
must be represented in (M). Then, we have to construct the simulation
part of D, which means that D must have built in the property of being
a universal Turing machine. The encoding of M and w must therefore be
of a form such that D is able to carry out each step of M on w from this
description. Similar with what Alan Turing did in 1936 [5], we present
a universal Turing machine !/ in chapter 8] which will use our encoding
from chapter2l D also has to halt if it tries to read more than g(n) number
of cells on the work tape. Since g is space constructible, D can mark off
g(n) number of cells on the work tape, and reject if it needs more space.
Nevertheless, it complicates the simulation a bit, since M may reach one of
the markers before having read g(n) number of cells. In this case, D must
shift every symbol on the work tape as a part of the simulation. Finally, D
has to count each step of M during the simulation and halt if the counter
ever becomes 28U, If ¢(|w|) = log(Jw|), D must be able to keep all this
information on the work tape, including the configuration of M, and still
run in space log(|w|). In chapter @ we define a similar universal Turing
machine Uy, which is based on U, but rejects if the simulation requires more
than a certain amount of space, or if the Turing machine being simulated
requires more than a certain amount of steps. In chapter[5] and in appendix
[C, we present the Turing machine D¢, which is based on U;. D¢ will be
constructed for the purpose of diagonalization, which plays the same role
in our proof of the stronger space hierarchy theorem as the Turing machine
D in Sipser’s proof. D, will be constructed so that on some specific input, it
will reject if and only if /y accepts a specific input. In comparison with the
proof of the space hierarchy theorem given by Sipser, and in the original
proof by Hartmanis et al., we give a lot more details. We have chosen
to do so because these proofs relies on many statements which we find
interesting to investigate. In chapter 6] we present our main result, which
is a stronger version of the space hierarchy theorem. We will see that our
proof relies on most of the definitions and results given in the preceding
chapters. As a consequence of our main result, we construct a theory of
degree of space complexity. This theory will be the topic of chapter [/l We
have chosen to describe many of the Turing machines in detail, but we
have also moved some of the details into appendices to enhance the readers
experience. In the preliminaries, which is the following chapter, we will
present some results together with the most basic definitions which we will
need throughout the rest of this thesis. Any reader familiar with complexity
theory will find most of this chapter very familiar.

Chapter 1

Preliminaries

In this chapter, we introduce the basic notation we will need, such as
languages, big-O, and the Turing machine as our computational model. We
will be precise about what we mean by space. The problems we classify
will be formulated as decision problems. A Turing machine M solves a
problem within some space bound if for any string, M decides if the string
is in a certain language without breaching the bound. This will be more
precise after the following definitions.

Definition 1 (Alphabet) An alphabet % is a non-empty finite set of symbols.

Definition 2 (String) A string is a finite sequence of symbols from an alphabet.
We use |s| to denote the length of s, and s" to denote the string s . ..s. The empty

n
string € has length zero.

We will often use &, B, and o when representing strings.
Definition 3 (X*) X* is the set of all strings over X.

This means that if ¥ = {0,1}, then ¥* = {¢,0,1,00,01, 10, ...}.
Definition 4 (Language) Let X be an alphabet. A language is a subset of X.*.

We will work with Turing machines having one work tape and one
read-only input tape. A Turing machine consists of a finite state control,
a read-only input tape, and an infinite read/write work tape. The input
tape is finite, with the > symbol at the left end, and the _, symbol at the
right end. At the start of the computation, the input head is at the symbol
to the right of >, which is _, if the input is €. The work tape is filled with
infinitely many _, symbols. Depending on which state the Turing machine
is in, which symbol it reads from the input tape, and which symbol it reads
from the work tape, the finite state control defines how it changes state,
which symbol it writes on the work tape, and how each head move one
step to the left, right, or stay. The Turing machine continues until it reaches
an accept or reject state, or it might not halt at all. We use the following
definition inspired by [3] and [2].

Definition 5 (Turing machine) A Turing machine is a 7-tuple
(Qr %, T,9, q0, Gaccept C]re]'ect) where

* Q is a non-empty finite set of states

o T is the non-empty finite work tape alphabet containing the blank
symbol _

* > C I'is the input alphabet, and does not contain > and _
* g0 € Q is the start state

® Jaccept € Q18 the accept state

® Greject € Q is the reject state and qaccept 7 Greject-

* The transition function

J: Q\{quccept/%eject} X (ZU {DI,_,}) xI' = Q g {L,R,S} X {L,R,S}

such that for any q,s,q’,s', D
6(q,>,s) # (q',5',L, D)
6(q,.,8) # (4,8, R,D)

The following definition clarifies what it means for a Turing machine to
decide a language. We call such Turing machines deciders.

Definition 6 (Decidable language) A turing machine M decides a language
Aif and only if M on any input a halts in qaccepr if & € A and Gpeject if & & A.

The notions of space and space bound is defined in the following way.

Definition 7 (Space) Let M be a Turing machine. We define the function
Spy:X2* — NN

Sm(a) = the number of distinct cells on the work tape scanned by M on input «

Definition 8 (Space bound) Let f: IN — IN be a function. A Turing machine
M has space bound f, if for any input «, M halts and

Sm() < f(laf)

We now introduce the relation <p, which is equivalent to the more
common big-O notation. The degree theory which we present in chapter
will be based on this relation. Our motivation for introducing <p is to
make our degree theory neat.

Definition 9 (<o) Let f,g: IN — R™ be functions, where R™ is the set of non-
negative real numbers. The relation f <o g holds if there exist c,ng € IN such
that for all n > ny we have that

f(n) < cg(n)

By f £o § we mean that it is not the case that f <o g, which means
that for any ¢, ng € IN, there exist n > ng such that

£(n) > cg(n)
Let us verify that < is reflexive and transitive.
Lemma 10 < is reflexive.
Proof. Let ¢ = 1. Then f(n) < c¢f(n) for all n. Thus f <o f. O
Lemma 11 < is transitive.

Proof.
e Assume that f <p gand g <p h.

e Then there exist ¢,y € N such that f(n) < cg(n) for n > ng, and
¢/, njy € N such that g(n) < c’h(n) for n > ny,.

e Then f(n) < cc’h(n) for n > max(no, nj)

e Thus f <o h.
O
When we later present the space hierarchy theorem as stated by Sipser,
we need the definition of big O.

Definition 12 (Big-O) [3] Let f and g be functions f,g: N — R™. Say that
f(n) = O(g(n)) if positive integers ¢ and ng exist such that for every integer
n > ny

f(n) < cg(n)
Lemma 13 f(n) = O(g(n)) ifand only if f <o g

Proof. f(n) = O(g(n)) is defined exactly as f <o g. O

Often we will need a Turing machine computing some function. The
notion of space constructible function is therefore usefull. The following
is an equivalent definition compared with how Sipser defines space
constructible.

Definition 14 (Space constructible function) A function f: N — IN such
that log <o f, is space constructible if there exits a Turing machine M with
space bound § <o f such that on any input « of length n, M halts with f(n) on
the tape written in binary.

As mentioned in the introduction, our stronger version of the space
hierarchy theorem will hold for certain functions. These are the functions
which we will call honest.

Definition 15 (Honest function) A function f : N — IN is honest if
(1) f(n) < f(n+1) (monotone)

(2) log,(n+2) < f(n)

(3) f is space constructible.

The following lemma gives an alternative defintion of <y for honest
functions.

Lemma 16 Let g and f be honest functions. Then, f <o g if and only if there
exists a,b € IN such that for all n

f(n) < ag(n) +0b
Proof.

* To prove the right direction, assume f <p g.

Then there exist ¢, 1y € IN such that for all n > ny we have that

f(n) < cg(n)

Leta = c and b = maxf(x). Then it follows that for all n

C f(n) <ag(n) +b

To prove the left direction, assume that there exist a, b such that for all
n

f(n) <ag(n) +b

Since g is honest, log,(n +2) < g(n) which implies g(n) > 1. Thus
bg(n) > b for all n.

Let ¢ = a + b. Then there exist ny € IN, for instance ng = 0, such that
for all n > ng we have that

f(n) < cg(n)
O
The following lemma will be useful later when we need some space
bound to be honest. We will see the term [logz (1) | + 1 in the proof of this
lemma, and in many other of our proofs later, to give us the length of the
binary representation of some number 7.

Lemma 17 Let M be a Turing machine with space bound ¢ <o f and let f
be honest. Then there exist an honest function §' such that M has space bound

§ <o f
Proof.

* Let M be a Turing machine with space bound ¢ <o f and let f be
honest.

¢ By the definition of <p, there exist ¢, 9 € IN such that for all n > ny
we have that g(n) < cf(n).

e Letg'(n) = cf(n) for some ¢ > 1 such that g(n) < cf(n).

* The following shows that g’ is honest:
(1) ¢'(n) < g'(n+1) holds since cf (n) < cf(n+1).
(2) loga(n +2) < ¢'(n) holds since logy(n +2) < cf(n).
(3) Since f is space constructible, there exist a Turing machine N
with space bound i < f such that on any input « of length 1, N halts
with f(n) on the tape written in binary. Let N' use N to compute f (1),

and then compute ¢'(n) by adding f(n) to a copy of itself ¢ times.
During this computation the work tape will be of the form

_cf (m)$f (m)$f(n).

where f(n) and cf(n) is written in binary. Notice that since f is
honest we have that f(n) > 1, f(n) > logy(n), and since h <o f
there exist [, mg such that h(m) < If(mg) for m > mp. Thus N’ has
space bound

W' (m) = h(m) + |loga(cf(m))] +1+42|loga(f(m))] +1+4

< If(m) + loga2(c) + 3loga(f(m)) + 6
< (I+1loga(c)+3+6)f(m)
for all m > mg

This shows that N’ has space bound /' < f such that on any input
a of length n, N halts with ¢’(n) on the tape written in binary. It
follows that g’ is space constructible.

e Thus M has space bound g’ <¢ f and g’ is honest.
O
Classifying problems of similar complexity is fundamental for complex-
ity theory, and the common way to do this with focus on space complexity
is given by the following definition.

Definition 18 (Space complexity class) Let f,g: N — R*. A space
complexity class SPACE(g) is the set of all languages decidable by a Turing
machine with space bound f such that f <p g.

10

Chapter 2

Encoding Turing machine and
input

We will soon define a universal Turing machine U/, but first we need
to specify the input format for which we will construct ¢/ for, which is
exactly the topic of this chapter. The following will specify how any Turing
machine M, along with any string « over the work tape alphabet of M can
be encoded. Notice that this also defines an encoding for any input string
given to M, since the work tape alphabet contains the input alphabet for
any Turing machine (see definition[5). One challenge is that an input string
« can be a string over any finite language, while the input language of ¢/ has
to be fixed. Another challenge is how to represent an arbitrary M so that
U can perform the instructions of M from this description. The following
defines an encoding for M and «, which we denote by

(M) (@)

Definition 19 (Encoding) We let (c) denote the encoding of the symbol c. For
any string s = cy ...cy, we let (s) = (c1) ... {(cy). The exception is when we use
the letters o, B, or . If &« = &1, ..., &, B = B1, ..., Pn, and o = o1, ..., 0, we let

(a) = (>ag...op,,)
(B) = (>P1.-.Bn.)

(o) = (>o1...ou.)

We also define the following encoded symbols

(£) = [07]
(() =107
() =10%
() =0
(=) =[0°]

If M is a Turing machine with Q, X, and T, as the set of states, the input alphabet,
and the work tape alphabet respectively, we define the encoding of M to be the
encoded start state, followed by the transition function J.

(M) = (q06) = (qo(q,¢,d) = (¢,d',D,D")...)

whereq,q' € Q,c€%,d,d €T,and D,D" € {L,R,S}.
(>) =[1]

(L) = [10]
<‘1accept> = [11]
(Greject) = [100]

We assign a binary number to each of the remaining states and symbols of the
tape alphabet. Let T\ {_} = {c1,...,cm}. We assign a unique number
i€{5,...,m+4} toeach symbol inT \ {_}, and let b equal i written in binary.

(ci) = [b]

Let Q \ {Gaccepts qreject} = q1,---,qu}. We assign a unique number i €
{m+5,...,m+4+n} toeach of the states in Q \ {Gaccept, q,eject}. The encoding
for the i'th state is defined by

(qi) = [b]

where b is i written in binary. If (c) = [b] is any encoding of a state or tape
symbol, the marked version ¢ is encoded as

(¢) = [ob]

We will use 7t to denote a pointer and let

For any input B = PBi1...Pn, such that B € X*, 7 is the binary number
corresponding to the position in (B) which is obtained by counting each of the
symbols

l>,31...ﬁn|_,

from right to left 7t times. We will often refer to 7t as the counter.

As we can see from this definition, some symbols have the same
encoding for any Turing machine, while others are dependent on which
Turing machine we are encoding. When assigning a unique number to
each state and each symbol from an alphabet it will not matter which
enumeration we choose. Lets look at an example.

12

Example 20 Let M be a Turing machine with Q = {qo, Gaccept, Greject }» = =
{0,1,a}, T =X U{_}, and transition function 6 defined by the table below.

qo,>,. — 4o, u,R,S
go,>,0 — 4go0,,R,S
go,>,1 — g0, RS
go,>,a — qo,, RS
QO/O/._. — 4o, I_,,R,S
q0,0,0 — qg,u,R,S
QQ,O,l — QQ,H,R,S
q0,0,a — q0,.,R,S
qo, 1,|_, — C]o,u,R,S
qo, 1,0 — {o, u,R,S
qo, 1,1 — qo,u,R,S
go,1,a — g0, RS
q0,4, — qreject/ 0/ R/ S
90,4,0 = Greject, O, R, S
q0,4,1 = Greject,O, R, S
90,4,4 = greject,0, R, S
q0, s~ YGaccepts 1,S,S
qos s 0 — accept, 1,5,S
qos s 1 — accept, 1,5,S
q0, ., 4 — faccept, 1,S5,5

Following the definition above, we encode M and the input « = 0la as
(M) (&) = (q09)(>01a,_)

Writing out some of 6, we have

(q0(90,>,.) — (90, ,R,S)

(QO/ s a) — ((]accept/]-/ S/ S)>
(>01a_)
Encoding the states and the tape symbols, we get

[1000]([1000], [1], [10]) — ([1000], [10], R, S)

13

([1000], [10], [111]) — ([11],[110],S,S)
[1][101][110][111][10]

Encoding all the special symbols, we get the final encoding
[1000][00][1000][0000][1][0000]{10][000] [00][1000] [0000][10] [0000][0000000]
[0000][00000000][000] .. . [00][1000][0000][10][0000][111][000] [00000] [00]
[11][0000][110][0000][00000000] [0000][00000000][000][1][101][110][111][10]
This is the expected form of the input given to U.

Later on, it will be useful to have a space bound for encoded strings,
encoded states, and the pointer 77, which the following three lemmas
provide.

Lemma 21 For any Turing machine M, with work tape alphabet T, there exist
k € N such that forall s € T'*

[(s)] < kls|
Proof.

¢ Let M be any Turing machine, and let Q be the set of states of M.

* Let ¢ be an arbitrary symbol in I'. By definition[I9, ¢ will be encoded
as (c) = [b] where b is a binary number and b < |T'| 4 4. It follows
that

(o) < Llog2(|T] +4)] +1+2 =k

for some k given by M.

* Since no symbol in s takes more than k symbols to encode,

[(5)] < Kls]
(|

Lemma 22 For any Turing machine M, with Q as set of states, there exist k € IN
such that for all g € Q

| <k
Proof.

* Let M be any Turing machine with work tape alphabet I, and let Q
be the set of states of M.

e Let g be an arbitrary state in Q. By definition[19] g will be encoded as
(q) = [b] where b is a binary number and b < |T'| +4 + |Q|. Then

(g)| < [loga(|T| +4+ Q)] +1+2=k

for some k given by M.

14

Lemma 23 Let f be any honest function, M be any Turing machine with input
alphabet ¥, and B be any string such that B € X*. For any pointer 7t representing
a position in B

(| < £1B1) +5
Proof.

* Let f be any honest function, M be any Turing machine with input
alphabet X, and 8 be any string such that g € X*.

* By definition[I9) 7 is a binary number corresponding to a position in
(B) which is obtained by counting each of the symbols

D,Bl---,sn._,

from right to left 7t times. Therefore 7 is no larger than || 4 2 and

[(m)| = [[7]] < [loga(IBl +2)] +1+2 < log>([B]) +5 < f([B]) +5

The last inequality holds since f is honest and therefore

log, (11 +2) < f(n)

15

16

Chapter 3

Universial Turing machine

The goal of this chapter is to show that there exist a universal Turing
machine / that can simulate any other Turing machine. We will define
U so that our proof of the stronger space hierarchy theorem in chapter [6]
will have a solid foundation. Although the existence of such a machine
has been known since Alan Turing presented it in 1936 [5], we will define
it for the encoding we saw in the last chapter, and for Turing machines
having separate input and output tapes. The input format we have in mind
when we constructf, is (M) («), where (M) is the encoding of some Turing
machine M, and (x) encodes some input «. U may be defined in many
ways, and we will not attempt to define it in any optimal sense. We are
ready to define our universal Turing machine /.

Definition 24 (Universal Turing machine) Let U be a Turing machine with
input alphabet ¥ = {0,1,],]}, and work tape alphabet T = X U {x,_}. The
detailed description of how U works is given by the following pages.

For input of the form (M) («), where M is any Turing machine and « is
any string over the input alphabet of M, U/ will simulate M on «. First,
initializes the work tape. Then it checks if M is in a halting state. If not,
it simulates one step of M and do the halting check again. It repeats these
two stages and halts if M halts. We have left out some of the details, but
they are covered in appenix[Al A challenge is what ¢/ should do on input
which is not an encoded Turing machine. In this case, we have chosen that
it will not be necessary for U/ to validate the input, although it rejects if the
input is too wrong to be simulated. By too wrong we mean that if > or _, is
read from the input tape or the work tape at any time, except when ¥/ is
described to search for > or _, , we let U reject. As a consequence, U may
accept on input which is not a correctly encoded Turing machine. E.g., an
encoded Turing machine with a transition rule left out that is not applied
during the simulation. The following is a detailed description of how U/
works. The tape on top represents the input tape, and the tape underneath
represents the work tape. Colored symbols indicate the head positions of

U.

17

Initialize work tape

We let the work tape head moves one step to the right for each symbol
written. Initially, we expect the tapes to be of the following form.

I><t]05> <‘>a1 ce lxnl_l>|_l

1. Copy (o) to the work tape. This is done by copying each symbol,
from the current position until, and including,].

>(god) (>aq ... &,).,

(q0) .

2. Compute a pointer to the symbol (>>), which initially is the symbol
under the input head of M. This is done by writing [0], and then
moving the input head rightwards until _, and then left until (&),
counting each [on the work tape as [71].

l><...>0€1...>|_,

(q077) .

3. Copy «; to the work tape. This is done by moving the input head
rightwards until [, and then copying each symbol from the input tape
to the work tape, including the first |.

(- D>y

S{qortar)

4. Write (). Move the work tape head left until _, and then one step
to the right. Move the input head left until t>, and then right past (().
Move to the halting check described below.

>(qo(q,¢,d) = (¢',d',D,D")(...)_
(qormar)
Following example 20] the tapes of ¢/ will at this stage be
>(qo(q0,>,.) = (90,,R,S) ... (90, ., a) = (Gaccept,1,5,5))(>01a_)
(q07t08.)

where (1) = [100], which is equal to the decimal number 4. This means
that the input head of M is currently at the fourth symbol of >01a_,
counting from the right. IL.e the symbol 0.

18

Halting check

1. Read the current state at the work tape. If it is [11], the current state
is Gaccept, and U accepts. If it is [100], the current state is gyejecr, and U
rejects. Otherwise, go to the simulation stage below.

Simulation
One step of M will be simulated by I/ in the following way:

1. Compare the current state at the work tape with the state at the
input tape. If they are not equal, move the input head to the next
transition rule. This is accomplished by moving rightwards until the
first symbol after ()(). Repeat this search until a state that matches
the current state is found.

>(...(5,¢,d) = (¢,d,D,D')(...)

—

2. Move the input head past the first (,), and the work head past two]
symbols.
>(...(q,c,d) = (¢',d',D,D")(...)_,
(qrec’g...e...)
Compare ¢ and ¢’. If they are not equal, move the input head

rightwards to the first symbol after ()(). Move the work head to the
leftmost non-blank symbol, and go to 1.

3. Move the input head past the first (,). Move rightwards on the work
tape until (¢), which will be the only string of the form [0v1w], such
thato,w € {0,1}".

>(...(q,c,d) = (¢',d',D,D")(...)_

(qreet .. .e...)

If d does not equal e, move the input head rightwards to the first
symbol after ()(). Move the work head to the leftmost non-blank
symbol, and go to 1.

4. Now that e = d the tapes looks like this:
>(...(q,¢c,d) = (¢',d',D,D")(...)_,

(greet...d...)

Move the input head past the next (,) and replace (d) by (d’). After
this replacement, we have lost track of the tape head. We will see why
this happens in appendix[Al Therefore, go left until _ , and then right
until [0vlw], for v,w € {0,1}*.

>(...(q,¢c,d) — (¢',d',D,D')(...)
(greet...d’...)

—

19

5. Move the input head past two (,). If D’ is (S), go to 6. If D’ is (L),
move the work head leftwards to the first [.

If 4 is read, we need more tape space.
>(...(q,¢c,d) = (q',d',D,L)(...).

(qreetd’ . ..)

Move the work head left until , . Move one step to the right,
then move each symbol three squares (the length of (£)) to the left
including the first f.

(qrecid’ . ..)
Move the work head to the () to the right, and replace it with (_)

(greet d’ ...

We can now continue as we have enough tape space.

(greet ... fd'...)

Replace (f) with (f). Move rightwards until the first [and replace
(d") by (d'). After erasing a 0 from (d’) we don’t know where the
tape head might be, but that does not matter here.

>(...(gq,c,d) = (¢',d',D,L)(...).,

(qreet ... fd'...)

The case where D' is (R) is similar.
>(...(q,¢c,d) = (q',d',D,R)(...)_

(qree...d'...)

Move the work head right until [. If is read at this position, replace
it with (_)
(qreet...d’)

Regard the symbol to the right of d’ as g. Replace ¢ with ¢, and replace
d’ with d’.
>(...(gq,c,d) — (¢',d',D,R)(...),
(qreet...d'g...)

6. Move the input head leftwards until (, then one step to the right.
Move the work head to the leftmost non-blank symbol, which is the
first symbol of (g). Replace (q) with (4').

>(...(q,¢,d) — (¢,d',D,D")(...)
(q'med...é...)

20

7. Move the work head rightwards and past the symbol]. Move the
input head rightwards and past two (,)

>(...(q,c,d) = (¢',d',D,D")(...)_

(q'mcf...e...)

If Dis (S), go to 8. If D is (L), move the input head rightwards until
_- Then, move leftwards while decrementing 7 for each [symbol,
until 77 = 0. Move left to the next [symbol.

(oo XCY.),

(q'0ct...é...)
Move the work head past | and replace ¢ by x.

(.o XCy.),

(q'0xt...¢...)

After the replacement, we have lost track of the work tape head.
Therefore, move to the leftmost non-blank symbol, and then right-
wards past one | symbol, so that it is over the counter (i.e., the sym-
bol 0 next to q’). Replace this counter with 1. Move the input head
rightwards until _, while incrementing the counter for each | symbol.

>(...h)

(g''xt...e...)

The case where D is (R) is similar, replacing ¢ by y instead, and
counting from y instead of x.

8. Move the input head left until > and then rightwards and past the
first ((). Move the work head to the leftmost non-blank symbol and
go to the halting check.

This is how U is meant to work, but some details were left out. In
appenix [Al we can see how c is replaced with ¢’ by ¢/ in the middle of the
tape when |(c’)| # |(c)|, and how U increments a binary number.

U is a universal Turing machine

We will now state the main result of this chapter.

Theorem 25 For any Turing machine M with input alphabet ., and p € X%,

M accepts B < U accepts (M) ()

21

Proof. This theorem is a direct consequence of definition [19] together
with the detailed description on how U/ works, as given above. 0

The following lemma give a space bound for I/ relative to the Turing
machine it is simulating.

Lemma 26 Let f be an honest functions. For any Turing machine M with space
bound f, input alphabet ¥, and B € X%, there exist a,b € IN such that

Sul{M)(B)) < af(|B]) +b

Proof.

Let f be an honest function, M be a Turing machine with space bound
f, Q be the set of states of M, and I be the work tape alphabet of M.

From the definition of ¢/, the work tape of U will at any time be of the
form (grxts). Sy ((M)(B)) will therefore be no more than |{(grrxfs)|
for the longest (g), (), (x), (#), and (s).

By lemma 22| there exist k' € IN such that |{g)| < k' forany g € Q.
By lemmal[23] |(7r)| < f(|B|) + 5 for any honest function f.

Since x is some symbol in X, lemma[2]|gives us that there exist k¥’ € IN
such that |{x)| < k”.

[(8)] =[0"]] =3.

Let s € I'* be a longest string of the scanned cells when M executes
on input B. By lemma 21l there exist k € IN such that |(s)| < k|s]|.

Since M has space bound f, Sp(B) < f(|B])-

Since
[(s)| < k|s| and [s| = Sm(B) < f([B])

we have that

[(s)| < kf(IBD)
By summarising and using lemma
Su({M)(B)) = [(grexts)|

<K+ (f(IB]) +5) + k" +3+kf(|B])
= 2+k)f(IB]) + (K + k" +6)

Leta = (2+k) and b = (k' + k" + 6) and the lemma holds.

22

Chapter 4

Universial f-space Turing
machine

In this chapter we will see a space bounded universal Turing machine ¢/ iz
which will halt on any input. For each honest function f the following
definition yields a universal Turing machine with space bound relative to

f.

Definition 27 (f-space Turing machine) Let f be an honest function. Let Uy
be a Turing machine with input alphabet ¥ = {0,1, [,], $} and work tape alphabet
I' = ZU{* _}. Let M be any Turing machine and « be any input to M. For
input of the form

0°10°$ (M) (a)

Uy runs as follows:
1. Verify that the input is of the form
0°10%$... (>)z(_)

for any a,b > 0 and z = s1...s,, where s; is of the form [x] such that
x € {0,1}* for 0 < i < n. Reject if a is not of this form.

2. Compute af (|a|) + b and mark this many tape cells for U to simulate M on
input .

3. Simulate M on a while counting down from 4/ (1*D+Y for each step of M. If
the counter ever get to 0, then reject.

4. If the simulation requires more space than marked, then reject.

5. If M accepts, then accept. If M rejects, then reject.

We can examine the details on how U; works in appendix [Bl The
following lemma states that U/ is a decider.

Lemma 28 Uy halts on any input o € {0,1,[,],%}"

Proof.

23

* Instage 1., Uy just scans the input and either halts or goes to stage 2.
after it reads a _, symbol.

e It is easily verifiable from the details in appendix [Bl that the
computation of af(|a|) + b will be completed so that /s continues
with stage 3.

* From appendix [B] we see that /s essentially executes U on (M) ().
From the detailed description of U in chapter[3] we find that the only
places U may go back to a previous step in the algorithm, is in the
simulation stage, step 2., 3., and 8. In step 2. and 3., i compare the
current symbol at the position of the input head with the current
symbol at the position of the work tape head. The input head move
only in the right direction. If a sequence of symbols are equal, ¢/ goes
to the next stage in the algorithm which is towards the 8'th step of the
Simulation stage. Otherwise, if U read a _ symbol from the input tape,
U will halt, causing Uy to halt as well. Otherwise, U goes back to stage
1., which only continues to move the input head in the rightward
direction. We therefore see that in step 2. and 3. of ¥/, it will not be
an infinite loop. Each time U/ reach stage 8., Uf decrease the counter
(which started out as 4°/(14)+0) which eventually will get 0, causing
Uy to halt. At any other step of U, either U/ finds a symbol it is looking
for, causing the algorithm to proceed towards the 8th step of the
Simulation stage, or the symbol is not found, causing ¢/ to halt, and
Uy halts. Each time the 8'th step of the Simulation stage is reached, Uy
decreases the counter, and continues ¢/ from the halting stage. Either
Uy halts at the Halting stage or it start the simulation stage again.

* Thus, U will eventually halt.
O
The following theorem states that /s is indeed the space bounded
universal Turing machine we intended it to be.

Theorem 29 Let f be an honest function. For any Turing machine M and
a,beN,
Uy accepts 0710°$ (M) (a)

=
U accepts (M) (a) and Sy ((M){a)) < af(|a|) +b
Proof.
* Let f be an honest function.

e For the right direction, assume that U accepts 0°10°$(M)(x) for
some a,b € IN.

* By the definition of U/, U accepts (M) (a) and U can simulate M on «
in space af (|a|) + b, thus Sy ((M){(a)) < af(|a|) + .

24

For the left direction, assume that U/ accepts (M) («) and Sy ((M)(a)) <
af(|e|) + b for some a, b.

Since Uy halts on any input by lemma 28] it is sufficient to prove that
Uy will not reject.

Since the input 0710"$(M) («) is of the right form, U; will not reject in
stage 1.

Observe that each configuration of M is represented on the work
tape of U during the simulation. &/ can not have more than 4%/ (l«)+t
different work tapes of length af (|a|) + b since U has four symbols in
the tape alphabet. Any M that can be simulated by ¢/ and halt with
space bound af(|a|) + b must therefore halt within 4%/(1*)+? steps
of M, otherwise U has entered a configuration of M twice and will
loop forever. Since U accepts (M) («), M accepts (and halts) on « by
theorem 25 Since Sy ((M)(a)) < af(|a]) +b, M can be simulated
by U with space bound af(|a|) +b. The counter will therefore not
become 0.

Since Sy ((M)(«)) < af(|a|) + b, U can simulate M on « in space
af(|af) +b. Thus Uy will not reject because the simulation requires
more space than marked.

Since M accepts a, it follows from the definition of I/ r that Uy will not
reject on 0°10°$ (M) («).

Thus Uy accepts 0710°$ (M) («).
O

Notice that the following similar assertion, where we have replaced

accepts with rejects, is not true.

Uy rejects 0°10"$ (M) (a)

=
U rejects (M) (a) and Sy ((M)(a)) < af(|a])+b

If we let M use no space, but loop forever, L{f will reject, while U will
not halt. The following lemma will be useful in the proof of the stronger
space hierarchy theorem, given as theorem [37]in chapter [6l It states that
for suitable inputs, U ¢ decides the same language as the Turing machine M
which it simulates.

Lemma 30 Let f be an honest function and L € SPACE(f). Then, there exist
k € N and a Turing machine M deciding L such that for any a,b > k

L = {a | Uyaccepts 0%10°$ (M) (w) }

Proof.

Let f be an honest function and L € SPACE(f).

25

Since L € SPACE(f), there exists a Turing machine M with space
bound g <o f deciding L. By lemma [I7] there exist a honest function
¢’ such that M has space bound ¢’ <o f.

Since M has space bound ¢/, it follows from lemma 26| that there exist
a’,b’ such that for any «,

Su({M)(a)) < a’g'(|af) + 1’

Since ¢’ and f is honest, and g’ <p f, it follows from lemma [16] that
there exist ¢,d € IN such that

§'(laf) < cf(|al) +4d

and equivalently
a'g'(|a]) + 0" < d'cf(laf) +da’ +V

Let k = max(a’c,da’ +b"). Then for any a,b > k, we have that

Su({M){w)) < af(laf)+Db (*)
Now we have
« € L and (*)
& Maccepts o and (¥) (M decides L)

< U accepts (M) (a) and (*) (theorem 25)
& Uy accepts 0710°$ (M) («) (theorem 29)

26

Chapter 5

Diagonalising g-space Turing
machine

We will here define the Turing machine D, and prove some properties that
will be usefull in the next chapter. A detailed description of how D, works
is given in appendix[C| Her is a short definition. As with U/ iz the following
definition yields a universal Turing machine with space bound relative to
g for each honest function g.

Definition 31 (Diagonalizing g-space Turing machine) Let ¢ be an honest
function. Dy is a Turing machine with input alphabet ©. = {0,1,], $} and work
tape alphabet T = Y. U {x, _}. Let M be any Turing machine. For input o of the
form

0°10°$ (M)

Dq runs as follows:

1. Compute g(|o|) and mark this many tape cells for the simulation of M on
input o.

2. Simulate M on input o while counting each step of M. If the counter ever
exceeds 48U then accept.

3. If the simulation requires more space than marked, then accept.
4. If M accepts, reject. If M rejects, then accept.
The following lemma states that D, is a decider.
Lemma 32 D, halts on any input o € {0,1,[,],$}*.
Proof.
* Observe that D, is just a slightly different version of Uf;.

* It can easily be verified from the detailed description of D, in
appendix [(] that the behavior specific for D, can not make it loop
forever.

27

This lemma therefore follow from lemma
O

Since D, is a decider, the next definition is justified. The language
defined will be used for diagonalization in the proof of our stronger space
hierarchy theorem [37]in the next chapter.

Definition 33 (The language Lp,) Let ¢ be an honest function. The language
Lp, is the language decided by Dy.

Lemma 34

Lp, € SPACE(g)

Proof.

By definition, Lp, is the language decided by D,;. By lemma[32 D,
halts for all input. It is therefore sufficient to prove that D, has space
bound f such that f <o g. We also have that g is honest from the
definition of D,.

From the details of D given in appendix [T g(|c|) is computed in
less space than h <p g. By lemma([I7 there exist an honest function
f" such that the computation of g(|c|) is space bound by f' < g. By
lemma [16 there exist a, b such that

fi(lol) < ag(lo]) +b

Thus our space bound so far is

ag(|ol) +b

Then
L10...0% ... %

28(le) g(jo])

is computed with no more space than what is shown above. We now
have that

|.10...0%_..._ %]
28(lel) g(lo])

=1+1+2g(lo]) +1+g(|o]) +1+1
< 3g([af) +5

By definition of Dy, the simulation is done within the space shown
above. Therefore,

Sp,(a) < ag(lef) +b+3g(|o]) +5
< (a+3)g(lo]) + (5+0b)

Let f(|o|) = (a+3)g(|o|) + (5+b). Then Dg has space bound f, and
by lemmal[l6] f <o g.

28

O
We finish this chapter by showing that on certain carefully constructed
strings, D, does the opposite of what U, does for a similar input.

Lemma 35 Let g be an honest function, M be a Turing machine, and
o = 0°10°$ (M)
forsomea > 1and b > 0.
Uy accepts 0110°$ (M) (v)
=
Dy rejects o
Proof.
* Let g be an honest function, M be a Turing machine, and
o = 0"10°$ (M)
forsomea >1and b > 0.
e For the right direction, assume that U, accepts 0'10°$ (M) ().

* By definition 27, U/, simulates M on ¢ in space g(|c|), such that M
accepts 0.

* By definition[31] D, rejects o.
* For the left direction, assume that D, rejects 0.

* By definition 3T} D, have simulated M on ¢ in space g(|c|), such that
M accepts ¢.

* By definition27] U, accepts 0'10°$(M) (0).
O
The details of how D, does the opposite on input ¢ than what U/, does
on input 0'10°$(M) (¢) can be found in appendix[Cl

29

30

Chapter 6

A stronger space hierarchy
theorem

In this chapter we will see a stronger version of the space hierarchy
theorem. We will also look at a known theorem called the space
compression theorem. Then, we will see that for honest functions, the space
hierarchy theorem as stated by Sipser [3] follows from our version of the
theorem. Finally, we show that the stronger version of the space hierarchy
theorem is indeed stronger. But first we need the following lemma.

Lemma 36 Let f,g be honest functions such that § £o f. Then, for any
a,b € IN, there exist infinitely many n such that

g(n) >af(n)+0b
Proof.
* Let g and f be honest functions and assume that g £o f.

e Assume for contradiction that there exists a, b and ng such that for all
n > ng

g(n) <af(n)+b

e Letc = g(ng). Now g(n) <af(n)+ (b+c) for all n, since f and g are
monotone. By lemmal(l6l ¢ <o f, which contradicts ¢ £o f.
O
We are now ready to show our main result.

Theorem 37 (Stronger space hierarchy theorem) Let g be honest. There
exists a language L such that

L € SPACE(g)

and
L ¢ SPACE(f)

for any honest f such that g Lo f.

Proof.

31

* By definition of LDg, Dg decides LDg. By lemma B4, LDg €
SPACE(g).

* Now, assume g £o f. We prove that Lp, ¢ SPACE(f).
* Assume for the sake of a contradiction that Lp, € SPACE(f).

* By Lemma 30 there exists a Turing machine M and a k such that M
decides Lp and

Lp, = {a | Usaccepts 0710°$ (M) (w) } *)
foranya,b > k.
e By Lemma[36] there exist infinity many n such that g(n) > af(n) +b.

* Now, let 0 be the string 0710°$(M) for some a, b such thata, b > k and
g(lo]) > af(|o|) + b. We keep a and b fixed for the rest of this proof.

. (Claim)
Uy accepts 0°10°$(M) (o) iff Uy accepts 0'10°$(M) (7).
We prove the claim.

First we observe that the inputs is of the form 0°104$... (>>)z(_), so
that Uy and U, will not reject in the first stage of the definition of U.

— Assume that U accepts 0°10°$(M) (0).

— The only differences between U, on input 0'10°$(M)(¢) and
Uy on input 0°10°$(M) (), is that Uy marks off g|o|) cells for
the simulation of M instead of af(|o|) + b, and simulates for
maximum 4371 steps instead of 47/(I7)+0,

— Since g(|o|) > af(|o|) + b, Uy has more tape cells and number
of steps to simulate M than Uy.

— Thus U, accepts 0'10°$(M) (), and the proof of the implication
from the left to the right is completed.

— Assume that U, accepts 0'10°$(M)(c).

— By definition of U, M accepts ¢.

— Then o € Lp since M decides Lp.

— By (*), Uy accepts 0°10°$ (M) ("), which proves the claim.

e Now we have

oc€lLlp, <+ Uyaccepts 0710°$(M) (7) *)
& Uy accepts 0'10°$ (M) () (Claim)
< Dg rejects o (by lemma[35)
< o¢&Lp,.

This is a contradiction.

32

* Thus, we conclude that Lp, ¢ SPACE(f)