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Abstract

This master thesis investigate space complexity theory, with the motivation
of developing a degree theory. A direct application of our investigation is a
strengthening of the space hierarchy theorem as stated by Sipser in [3]. At
the end, we define a degree theory and show some elementary properties
of the degree structure. We also present detailed proofs of known results,
including a detailed description of a universal Turing machine.
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Chapter 0

Introduction

Many of the great open questions in complexity theory, like P 6= PSPACE
and P 6= NP, are statements about how time classes relates to space classes,
or how deterministic classes relates to non-deterministic classes. We do not
have many strong results about any of these relationships at the current
moment. What we do have, is a strong result about how we can separate
space classes from each other, thanks to the space hierarchy theorem. The
time hierarchy theorem (see [3]) is a similar result about time complexity,
but in this thesis we will focus on space complexity only. Intuitively, the
space hierarchy theorem states that with more space, a machine may solve
more problems. The standard version of this theorem were first given in
1965 by Hartmanis et al. in [4]. Sipser [3] restates it in the following way:
for any space constructible functions g that is at least O(log(n)), there exists
a language decidable in space O(g(n)), but not in space f (n) ∈ o(g(n)).
One of our main goals is to strengthen this result for certain functions by
weakening the criteria from f (n) ∈ o(g(n)) to g(n) 6∈ O( f (n)). There are
similar results in the literature [1] which we believe our result follow from.
Nevertheless, we have proven our results independently and in much more
detail than what is usually done. Our main motivation is to present a
theory of degree, analogous with Turing degrees in computability theory.

Our stronger version of the space hierarchy theorem states that for any
two monotone functions g and f that are space constructible, and such that
f (n) ≥ log2(n + 2) ≤ g(n), if g(n) 6∈ O( f (n)), then there exist a language
decidable in space O(g(n)) on a deterministic Turing machine, but not in
space O( f (n)). The requirement f (n) ∈ o(g(n)) from the well known
space hierarchy theorem is weaker than g(n) 6∈ O( f (n)) because there are
functions g 6∈ O( f (n)) and f (n) 6∈ o(g(n)). An example is the monotone
functions f , g : N → N defined by

f (n) =







2 if n = 0

f (n − 1)2 if n is even and n > 0

f (n − 1) + 1 if n is odd and n > 0
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g(n) =







2 if n = 0

g(n − 1) + 1 if n is even and n > 0

g(n − 1)2 if n is odd and n > 0

These functions will never dominate each other. We can see their
behavior in figure 1.
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Figure 1: g 6∈ O( f (n)) and f (n) 6∈ o(g(n))

In his proof, Sipser claims that there exists a Turing machine D, such
that when w = 〈M〉10∗ is given as input, D can

1. Decide if the input is of the form 〈M〉10∗, where 〈M〉 is a description
of a Turing machine M.

2. Simulate M on w.

3. Halt if M uses more than 2g(|w|) number of steps on w.

4. Halt if D uses more than g(n) space.

According to Sipser’s criteria, g(n) may be log(n). In this case, D is not
allowed to use more than log(n) space if M use o(log(n)) space. While
it is true that such a Turing machine D exists, constructing one is not
trivial. One challenge is that M and w have to be encoded into symbols
of the fixed input alphabet of D, even though M may have a much larger
input alphabet than D has. One symbol on the tape of M must therefore
be represented by many symbols on the tape of D. In chapter 2, we
will see how any Turing machine along with any input string can be
encoded. We will measure space by how many cells on the work tape is
read. Since D must have the ability to work in sublinear space, we let our
Turing machines have a read-only input tape, and a separate work tape.
Otherwise, D does not have enough space to read the entire input with
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log(n) as space requirement. Another challenge is how D can decide if 〈M〉
really encodes a Turing machine. According to Sipser’s definition of Turing
machines (modified by an extra tape), D must verify that the function

δ : Q × Σ × Γ → Q × Γ × {L, R} × {L, R}

is totally defined in 〈M〉. This means that, for each state q ∈ Q, each symbol
c1 ∈ Σ, and for each tape symbol c2 ∈ Γ, the tuple ((q, c1, c2), (q′, c′, D, D′))
must be represented in 〈M〉. Then, we have to construct the simulation
part of D, which means that D must have built in the property of being
a universal Turing machine. The encoding of M and w must therefore be
of a form such that D is able to carry out each step of M on w from this
description. Similar with what Alan Turing did in 1936 [5], we present
a universal Turing machine U in chapter 3, which will use our encoding
from chapter 2. D also has to halt if it tries to read more than g(n) number
of cells on the work tape. Since g is space constructible, D can mark off
g(n) number of cells on the work tape, and reject if it needs more space.
Nevertheless, it complicates the simulation a bit, since M may reach one of
the markers before having read g(n) number of cells. In this case, D must
shift every symbol on the work tape as a part of the simulation. Finally, D
has to count each step of M during the simulation and halt if the counter
ever becomes 2g(|w|). If g(|w|) = log(|w|), D must be able to keep all this
information on the work tape, including the configuration of M, and still
run in space log(|w|). In chapter 4, we define a similar universal Turing
machine U f , which is based on U, but rejects if the simulation requires more
than a certain amount of space, or if the Turing machine being simulated
requires more than a certain amount of steps. In chapter 5, and in appendix
C, we present the Turing machine Dg, which is based on U f . Dg will be
constructed for the purpose of diagonalization, which plays the same role
in our proof of the stronger space hierarchy theorem as the Turing machine
D in Sipser’s proof. Dg will be constructed so that on some specific input, it
will reject if and only if U f accepts a specific input. In comparison with the
proof of the space hierarchy theorem given by Sipser, and in the original
proof by Hartmanis et al., we give a lot more details. We have chosen
to do so because these proofs relies on many statements which we find
interesting to investigate. In chapter 6, we present our main result, which
is a stronger version of the space hierarchy theorem. We will see that our
proof relies on most of the definitions and results given in the preceding
chapters. As a consequence of our main result, we construct a theory of
degree of space complexity. This theory will be the topic of chapter 7. We
have chosen to describe many of the Turing machines in detail, but we
have also moved some of the details into appendices to enhance the readers
experience. In the preliminaries, which is the following chapter, we will
present some results together with the most basic definitions which we will
need throughout the rest of this thesis. Any reader familiar with complexity
theory will find most of this chapter very familiar.
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Chapter 1

Preliminaries

In this chapter, we introduce the basic notation we will need, such as
languages, big-O, and the Turing machine as our computational model. We
will be precise about what we mean by space. The problems we classify
will be formulated as decision problems. A Turing machine M solves a
problem within some space bound if for any string, M decides if the string
is in a certain language without breaching the bound. This will be more
precise after the following definitions.

Definition 1 (Alphabet) An alphabet Σ is a non-empty finite set of symbols.

Definition 2 (String) A string is a finite sequence of symbols from an alphabet.
We use |s| to denote the length of s, and sn to denote the string s . . . s

︸ ︷︷ ︸

n

. The empty

string ǫ has length zero.

We will often use α, β, and σ when representing strings.

Definition 3 (Σ∗) Σ
∗ is the set of all strings over Σ.

This means that if Σ = {0, 1}, then Σ
∗ = {ǫ, 0, 1, 00, 01, 10, ...}.

Definition 4 (Language) Let Σ be an alphabet. A language is a subset of Σ
∗.

We will work with Turing machines having one work tape and one
read-only input tape. A Turing machine consists of a finite state control,
a read-only input tape, and an infinite read/write work tape. The input
tape is finite, with the ⊲ symbol at the left end, and the symbol at the
right end. At the start of the computation, the input head is at the symbol
to the right of ⊲, which is if the input is ǫ. The work tape is filled with
infinitely many symbols. Depending on which state the Turing machine
is in, which symbol it reads from the input tape, and which symbol it reads
from the work tape, the finite state control defines how it changes state,
which symbol it writes on the work tape, and how each head move one
step to the left, right, or stay. The Turing machine continues until it reaches
an accept or reject state, or it might not halt at all. We use the following
definition inspired by [3] and [2].
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Definition 5 (Turing machine) A Turing machine is a 7-tuple
(Q, Σ, Γ, δ, q0, qaccept, qreject) where

• Q is a non-empty finite set of states

• Γ is the non-empty finite work tape alphabet containing the blank
symbol

• Σ ⊆ Γ is the input alphabet, and does not contain ⊲ and

• q0 ∈ Q is the start state

• qaccept ∈ Q is the accept state

• qreject ∈ Q is the reject state and qaccept 6= qreject.

• The transition function

δ : Q \ {qaccept, qreject}× (Σ∪{⊲, })×Γ → Q×Γ×{L, R, S}×{L, R, S}

such that for any q, s, q′, s′, D

δ(q,⊲, s) 6= (q′, s′, L, D)

δ(q, , s) 6= (q′, s′, R, D)

The following definition clarifies what it means for a Turing machine to
decide a language. We call such Turing machines deciders.

Definition 6 (Decidable language) A turing machine M decides a language
A if and only if M on any input α halts in qaccept if α ∈ A and qreject if α /∈ A.

The notions of space and space bound is defined in the following way.

Definition 7 (Space) Let M be a Turing machine. We define the function
SM : Σ

∗ → N

SM(α) = the number of distinct cells on the work tape scanned by M on input α

Definition 8 (Space bound) Let f : N → N be a function. A Turing machine
M has space bound f , if for any input α, M halts and

SM(α) ≤ f (|α|)

We now introduce the relation ≤O, which is equivalent to the more
common big-O notation. The degree theory which we present in chapter
7 will be based on this relation. Our motivation for introducing ≤O is to
make our degree theory neat.

Definition 9 (≤O) Let f , g : N → R
+ be functions, where R

+ is the set of non-
negative real numbers. The relation f ≤O g holds if there exist c, n0 ∈ N such
that for all n ≥ n0 we have that

f (n) ≤ cg(n)
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By f 6≤O g we mean that it is not the case that f ≤O g, which means
that for any c, n0 ∈ N, there exist n ≥ n0 such that

f (n) > cg(n)

Let us verify that ≤O is reflexive and transitive.

Lemma 10 ≤O is reflexive.

Proof. Let c = 1. Then f (n) ≤ c f (n) for all n. Thus f ≤O f . ⊓⊔

Lemma 11 ≤O is transitive.

Proof.

• Assume that f ≤O g and g ≤O h.

• Then there exist c, n0 ∈ N such that f (n) ≤ cg(n) for n ≥ n0, and
c′, n′

0 ∈ N such that g(n) ≤ c′h(n) for n ≥ n′
0.

• Then f (n) ≤ cc′h(n) for n ≥ max(n0, n′
0)

• Thus f ≤O h.
⊓⊔

When we later present the space hierarchy theorem as stated by Sipser,
we need the definition of big O.

Definition 12 (Big-O) [3] Let f and g be functions f , g : N → R
+. Say that

f (n) = O(g(n)) if positive integers c and n0 exist such that for every integer
n ≥ n0

f (n) ≤ cg(n)

Lemma 13 f (n) = O(g(n)) if and only if f ≤O g

Proof. f (n) = O(g(n)) is defined exactly as f ≤O g. ⊓⊔
Often we will need a Turing machine computing some function. The

notion of space constructible function is therefore usefull. The following
is an equivalent definition compared with how Sipser defines space
constructible.

Definition 14 (Space constructible function) A function f : N → N such
that log ≤O f , is space constructible if there exits a Turing machine M with
space bound g ≤O f such that on any input α of length n, M halts with f (n) on
the tape written in binary.

As mentioned in the introduction, our stronger version of the space
hierarchy theorem will hold for certain functions. These are the functions
which we will call honest.

Definition 15 (Honest function) A function f : N → N is honest if

(1) f (n) ≤ f (n + 1) (monotone)
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(2) log2(n + 2) ≤ f (n)

(3) f is space constructible.

The following lemma gives an alternative defintion of ≤O for honest
functions.

Lemma 16 Let g and f be honest functions. Then, f ≤O g if and only if there
exists a, b ∈ N such that for all n

f (n) ≤ ag(n) + b

Proof.

• To prove the right direction, assume f ≤O g.

• Then there exist c, n0 ∈ N such that for all n ≥ n0 we have that

f (n) ≤ cg(n)

• Let a = c and b = max
x≤n0

f (x). Then it follows that for all n

f (n) ≤ ag(n) + b

• To prove the left direction, assume that there exist a, b such that for all
n

f (n) ≤ ag(n) + b

• Since g is honest, log2(n + 2) ≤ g(n) which implies g(n) ≥ 1. Thus
bg(n) ≥ b for all n.

• Let c = a + b. Then there exist n0 ∈ N, for instance n0 = 0, such that
for all n ≥ n0 we have that

f (n) ≤ cg(n)
⊓⊔

The following lemma will be useful later when we need some space
bound to be honest. We will see the term ⌊log2(n)⌋+ 1 in the proof of this
lemma, and in many other of our proofs later, to give us the length of the
binary representation of some number n.

Lemma 17 Let M be a Turing machine with space bound g ≤O f and let f
be honest. Then there exist an honest function g′ such that M has space bound
g′ ≤O f .

Proof.

• Let M be a Turing machine with space bound g ≤O f and let f be
honest.

• By the definition of ≤O, there exist c, n0 ∈ N such that for all n ≥ n0

we have that g(n) ≤ c f (n).
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• Let g′(n) = c f (n) for some c ≥ 1 such that g(n) ≤ c f (n).

• The following shows that g′ is honest:

(1) g′(n) ≤ g′(n + 1) holds since c f (n) ≤ c f (n + 1) .

(2) log2(n + 2) ≤ g′(n) holds since log2(n + 2) ≤ c f (n).

(3) Since f is space constructible, there exist a Turing machine N
with space bound h ≤O f such that on any input α of length n, N halts
with f (n) on the tape written in binary. Let N′ use N to compute f (n),
and then compute g′(n) by adding f (n) to a copy of itself c times.
During this computation the work tape will be of the form

c f (n)$ f (n)$ f (n)

where f (n) and c f (n) is written in binary. Notice that since f is
honest we have that f (n) ≥ 1, f (n) > log2(n), and since h ≤O f
there exist l, m0 such that h(m) ≤ l f (m0) for m ≥ m0. Thus N′ has
space bound

h′(m) = h(m) + ⌊log2(c f (m))⌋+ 1 + 2⌊log2( f (m))⌋+ 1 + 4

≤ l f (m) + log2(c) + 3log2( f (m)) + 6

< (l + log2(c) + 3 + 6) f (m)

for all m ≥ m0

This shows that N′ has space bound h′ ≤O f such that on any input
α of length n, N′ halts with g′(n) on the tape written in binary. It
follows that g′ is space constructible.

• Thus M has space bound g′ ≤O f and g′ is honest.
⊓⊔

Classifying problems of similar complexity is fundamental for complex-
ity theory, and the common way to do this with focus on space complexity
is given by the following definition.

Definition 18 (Space complexity class) Let f , g : N → R
+. A space

complexity class SPACE(g) is the set of all languages decidable by a Turing
machine with space bound f such that f ≤O g.
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Chapter 2

Encoding Turing machine and
input

We will soon define a universal Turing machine U, but first we need
to specify the input format for which we will construct U for, which is
exactly the topic of this chapter. The following will specify how any Turing
machine M, along with any string α over the work tape alphabet of M can
be encoded. Notice that this also defines an encoding for any input string
given to M, since the work tape alphabet contains the input alphabet for
any Turing machine (see definition 5). One challenge is that an input string
α can be a string over any finite language, while the input language of U has
to be fixed. Another challenge is how to represent an arbitrary M so that
U can perform the instructions of M from this description. The following
defines an encoding for M and α, which we denote by

〈M〉〈α〉

Definition 19 (Encoding) We let 〈c〉 denote the encoding of the symbol c. For
any string s = c1 . . . cn, we let 〈s〉 = 〈c1〉 . . . 〈cn〉. The exception is when we use
the letters α, β, or σ. If α = α1, ..., αn, β = β1, ..., βn, and σ = σ1, ..., σn we let

〈α〉 ≡ 〈⊲α1 . . . αn 〉

〈β〉 ≡ 〈⊲β1 . . . βn 〉

〈σ〉 ≡ 〈⊲σ1 . . . σn 〉

We also define the following encoded symbols

〈ǫ〉 ≡ ǫ

〈♯〉 ≡ [01]

〈(〉 ≡ [02]

〈)〉 ≡ [03]

〈, 〉 ≡ [04]

〈→〉 ≡ [05]
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〈L〉 ≡ [06]

〈R〉 ≡ [07]

〈S〉 ≡ [08]

If M is a Turing machine with Q, Σ, and Γ, as the set of states, the input alphabet,
and the work tape alphabet respectively, we define the encoding of M to be the
encoded start state, followed by the transition function δ.

〈M〉 ≡ 〈q0δ〉 = 〈q0(q, c, d) → (q′, d′, D, D′) . . .〉

where q, q′ ∈ Q, c ∈ Σ, d, d′ ∈ Γ, and D, D′ ∈ {L, R, S}.

〈⊲〉 ≡ [1]

〈 〉 ≡ [10]

〈qaccept〉 ≡ [11]

〈qreject〉 ≡ [100]

We assign a binary number to each of the remaining states and symbols of the
tape alphabet. Let Γ \ { } = {c1, . . . , cm}. We assign a unique number
i ∈ {5, . . . , m + 4} to each symbol in Γ \ { }, and let b equal i written in binary.

〈ci〉 ≡ [b]

Let Q \ {qaccept, qreject} = {q1, . . . , qn}. We assign a unique number i ∈
{m+ 5, . . . , m+ 4+ n} to each of the states in Q \ {qaccept, qreject}. The encoding
for the i’th state is defined by

〈qi〉 ≡ [b]

where b is i written in binary. If 〈c〉 = [b] is any encoding of a state or tape
symbol, the marked version ċ is encoded as

〈ċ〉 ≡ [0b]

We will use π to denote a pointer and let

〈π〉 ≡ [π]

For any input β = β1 . . . βn, such that β ∈ Σ
∗, π is the binary number

corresponding to the position in 〈β〉 which is obtained by counting each of the
symbols

⊲β1 . . . βn

from right to left π times. We will often refer to π as the counter.

As we can see from this definition, some symbols have the same
encoding for any Turing machine, while others are dependent on which
Turing machine we are encoding. When assigning a unique number to
each state and each symbol from an alphabet it will not matter which
enumeration we choose. Lets look at an example.
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Example 20 Let M be a Turing machine with Q = {q0, qaccept, qreject}, Σ =
{0, 1, a}, Γ = Σ ∪ { }, and transition function δ defined by the table below.

q0,⊲, → q0, , R, S

q0,⊲, 0 → q0, , R, S

q0,⊲, 1 → q0, , R, S

q0,⊲, a → q0, , R, S

q0, 0, → q0, , R, S

q0, 0, 0 → q0, , R, S

q0, 0, 1 → q0, , R, S

q0, 0, a → q0, , R, S

q0, 1, → q0, , R, S

q0, 1, 0 → q0, , R, S

q0, 1, 1 → q0, , R, S

q0, 1, a → q0, , R, S

q0, a, → qreject, 0, R, S

q0, a, 0 → qreject, 0, R, S

q0, a, 1 → qreject, 0, R, S

q0, a, a → qreject, 0, R, S

q0, , → qaccept, 1, S, S

q0, , 0 → qaccept, 1, S, S

q0, , 1 → qaccept, 1, S, S

q0, , a → qaccept, 1, S, S

Following the definition above, we encode M and the input α = 01a as

〈M〉〈α〉 = 〈q0δ〉〈⊲01a 〉

Writing out some of δ, we have

〈q0(q0,⊲, ) → (q0, , R, S)

...

(q0, , a) → (qaccept, 1, S, S)〉

〈⊲01a 〉

Encoding the states and the tape symbols, we get

[1000]([1000], [1], [10]) → ([1000], [10], R, S)

...
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([1000], [10], [111]) → ([11], [110], S, S)

[1][101][110][111][10]

Encoding all the special symbols, we get the final encoding
[1000][00][1000][0000][1][0000][10][000][00][1000][0000][10][0000][0000000]
[0000][00000000][000] . . . [00][1000][0000][10][0000][111][000][00000][00]
[11][0000][110][0000][00000000][0000][00000000][000][1][101][110][111][10]
This is the expected form of the input given to U.

Later on, it will be useful to have a space bound for encoded strings,
encoded states, and the pointer π, which the following three lemmas
provide.

Lemma 21 For any Turing machine M, with work tape alphabet Γ, there exist
k ∈ N such that for all s ∈ Γ

∗

|〈s〉| ≤ k|s|

Proof.

• Let M be any Turing machine, and let Q be the set of states of M.

• Let c be an arbitrary symbol in Γ. By definition 19, c will be encoded
as 〈c〉 = [b] where b is a binary number and b ≤ |Γ|+ 4. It follows
that

|〈c〉| ≤ ⌊log2(|Γ|+ 4)⌋+ 1 + 2 = k

for some k given by M.

• Since no symbol in s takes more than k symbols to encode,

|〈s〉| ≤ k|s|
⊓⊔

Lemma 22 For any Turing machine M, with Q as set of states, there exist k ∈ N

such that for all q ∈ Q
|〈q〉| ≤ k

Proof.

• Let M be any Turing machine with work tape alphabet Γ, and let Q
be the set of states of M.

• Let q be an arbitrary state in Q. By definition 19, q will be encoded as
〈q〉 = [b] where b is a binary number and b ≤ |Γ|+ 4 + |Q|. Then

|〈q〉| ≤ ⌊log2(|Γ|+ 4 + |Q|)⌋+ 1 + 2 = k

for some k given by M.
⊓⊔
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Lemma 23 Let f be any honest function, M be any Turing machine with input
alphabet Σ, and β be any string such that β ∈ Σ

∗. For any pointer π representing
a position in β

|〈π〉| < f (|β|) + 5

Proof.

• Let f be any honest function, M be any Turing machine with input
alphabet Σ, and β be any string such that β ∈ Σ

∗.

• By definition 19, π is a binary number corresponding to a position in
〈β〉 which is obtained by counting each of the symbols

⊲β1 . . . βn

from right to left π times. Therefore π is no larger than |β|+ 2 and

|〈π〉| = |[π]| ≤ ⌊log2(|β|+ 2)⌋+ 1 + 2 ≤ log2(|β|) + 5 < f (|β|) + 5

The last inequality holds since f is honest and therefore

log2(n + 2) ≤ f (n)
⊓⊔
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Chapter 3

Universial Turing machine

The goal of this chapter is to show that there exist a universal Turing
machine U that can simulate any other Turing machine. We will define
U so that our proof of the stronger space hierarchy theorem in chapter 6
will have a solid foundation. Although the existence of such a machine
has been known since Alan Turing presented it in 1936 [5], we will define
it for the encoding we saw in the last chapter, and for Turing machines
having separate input and output tapes. The input format we have in mind
when we construct U, is 〈M〉〈α〉, where 〈M〉 is the encoding of some Turing
machine M, and 〈α〉 encodes some input α. U may be defined in many
ways, and we will not attempt to define it in any optimal sense. We are
ready to define our universal Turing machine U.

Definition 24 (Universal Turing machine) Let U be a Turing machine with
input alphabet Σ = {0, 1, [, ]}, and work tape alphabet Γ = Σ ∪ {∗, }. The
detailed description of how U works is given by the following pages.

For input of the form 〈M〉〈α〉, where M is any Turing machine and α is
any string over the input alphabet of M, U will simulate M on α. First, U
initializes the work tape. Then it checks if M is in a halting state. If not,
it simulates one step of M and do the halting check again. It repeats these
two stages and halts if M halts. We have left out some of the details, but
they are covered in appenix A. A challenge is what U should do on input
which is not an encoded Turing machine. In this case, we have chosen that
it will not be necessary for U to validate the input, although it rejects if the
input is too wrong to be simulated. By too wrong we mean that if ⊲ or is
read from the input tape or the work tape at any time, except when U is
described to search for ⊲ or , we let U reject. As a consequence, U may
accept on input which is not a correctly encoded Turing machine. E.g., an
encoded Turing machine with a transition rule left out that is not applied
during the simulation. The following is a detailed description of how U
works. The tape on top represents the input tape, and the tape underneath
represents the work tape. Colored symbols indicate the head positions of
U.

17



Initialize work tape

We let the work tape head moves one step to the right for each symbol
written. Initially, we expect the tapes to be of the following form.

⊲〈q0δ〉〈⊲α1 . . . αn 〉

1. Copy 〈q0〉 to the work tape. This is done by copying each symbol,
from the current position until, and including, ].

⊲〈q0δ〉〈⊲α1 . . . αn 〉

〈q0〉

2. Compute a pointer to the symbol 〈⊲〉, which initially is the symbol
under the input head of M. This is done by writing [0], and then
moving the input head rightwards until , and then left until 〈⊲〉,
counting each [ on the work tape as [π].

⊲〈. . . ⊲ α1 . . .〉

〈q0π〉

3. Copy α1 to the work tape. This is done by moving the input head
rightwards until [, and then copying each symbol from the input tape
to the work tape, including the first ].

⊲〈· · ·⊲ α1 . . .〉

〈q0πα1〉

4. Write 〈♯ ˙ 〉. Move the work tape head left until , and then one step
to the right. Move the input head left until ⊲, and then right past 〈(〉.
Move to the halting check described below.

⊲〈q0(q, c, d) → (q′, d′, D, D′)(. . .〉

〈q0πα1♯ ˙ 〉

Following example 20, the tapes of U will at this stage be

⊲〈q0(q0,⊲, ) → (q0, , R, S) . . . (q0, , a) → (qaccept, 1, S, S)〉〈⊲01a 〉

〈q0π0♯ ˙ 〉

where 〈π〉 = [100], which is equal to the decimal number 4. This means
that the input head of M is currently at the fourth symbol of ⊲01a ,
counting from the right. I.e the symbol 0.
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Halting check

1. Read the current state at the work tape. If it is [11], the current state
is qaccept, and U accepts. If it is [100], the current state is qreject, and U
rejects. Otherwise, go to the simulation stage below.

Simulation

One step of M will be simulated by U in the following way:

1. Compare the current state at the work tape with the state at the
input tape. If they are not equal, move the input head to the next
transition rule. This is accomplished by moving rightwards until the
first symbol after 〈)(〉. Repeat this search until a state that matches
the current state is found.

⊲〈. . . (q, c, d) → (q′, d′, D, D′)(. . .〉

〈qπc′♯ . . . ė . . .〉

2. Move the input head past the first 〈, 〉, and the work head past two ]
symbols.

⊲〈. . . (q, c, d) → (q′, d′, D, D′)(. . .〉

〈qπc′♯ . . . ė . . .〉

Compare c and c′. If they are not equal, move the input head
rightwards to the first symbol after 〈)(〉. Move the work head to the
leftmost non-blank symbol, and go to 1.

3. Move the input head past the first 〈, 〉. Move rightwards on the work
tape until 〈ė〉, which will be the only string of the form [0v1w], such
that v, w ∈ {0, 1}∗.

⊲〈. . . (q, c, d) → (q′, d′, D, D′)(. . .〉

〈qπc♯ . . . ė . . .〉

If d does not equal e, move the input head rightwards to the first
symbol after 〈)(〉. Move the work head to the leftmost non-blank
symbol, and go to 1.

4. Now that e = d the tapes looks like this:

⊲〈. . . (q, c, d) → (q′, d′, D, D′)(. . .〉

〈qπc♯ . . . ḋ . . .〉

Move the input head past the next 〈, 〉 and replace 〈ḋ〉 by 〈ḋ′〉. After
this replacement, we have lost track of the tape head. We will see why
this happens in appendix A. Therefore, go left until , and then right
until [0v1w], for v, w ∈ {0, 1}∗.

⊲〈. . . (q, c, d) → (q′, d′, D, D′)(. . .〉

〈qπc♯ . . . ḋ′ . . .〉
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5. Move the input head past two 〈, 〉. If D′ is 〈S〉, go to 6. If D′ is 〈L〉,
move the work head leftwards to the first [.

If ♯ is read, we need more tape space.

⊲〈. . . (q, c, d) → (q′, d′, D, L)(. . .〉

〈qπc♯ḋ′ . . .〉

Move the work head left until . Move one step to the right,
then move each symbol three squares (the length of 〈♯〉) to the left
including the first ♯.

〈qπc♯♯ḋ′ . . .〉

Move the work head to the 〈♯〉 to the right, and replace it with 〈 〉

〈qπc♯ ḋ′ . . .〉

We can now continue as we have enough tape space.

〈qπc♯ . . . f ḋ′ . . .〉

Replace 〈 f 〉 with 〈 ḟ 〉. Move rightwards until the first [ and replace
〈ḋ′〉 by 〈d′〉. After erasing a 0 from 〈ḋ′〉 we don’t know where the
tape head might be, but that does not matter here.

⊲〈. . . (q, c, d) → (q′, d′, D, L)(. . .〉

〈qπc♯ . . . ḟ d′ . . .〉

The case where D′ is 〈R〉 is similar.

⊲〈. . . (q, c, d) → (q′, d′, D, R)(. . .〉

〈qπc♯ . . . ḋ′ . . .〉

Move the work head right until [. If is read at this position, replace
it with 〈 〉

〈qπc♯ . . . ḋ′ 〉

Regard the symbol to the right of ḋ′ as g. Replace g with ġ, and replace
ḋ′ with d′.

⊲〈. . . (q, c, d) → (q′, d′, D, R)(. . .〉

〈qπc♯ . . . d′ ġ . . .〉

6. Move the input head leftwards until (, then one step to the right.
Move the work head to the leftmost non-blank symbol, which is the
first symbol of 〈q〉. Replace 〈q〉 with 〈q′〉.

⊲〈. . . (q, c, d) → (q′, d′, D, D′)(. . .〉

〈q′πc♯ . . . ė . . .〉
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7. Move the work head rightwards and past the symbol ]. Move the
input head rightwards and past two 〈, 〉

⊲〈. . . (q, c, d) → (q′, d′, D, D′)(. . .〉

〈q′πc♯ . . . ė . . .〉

If D is 〈S〉, go to 8. If D is 〈L〉, move the input head rightwards until
. Then, move leftwards while decrementing π for each [ symbol,

until π = 0. Move left to the next [ symbol.

⊲〈. . . . . . xcy . . .〉

〈q′0c♯ . . . ė . . .〉

Move the work head past ] and replace c by x.

⊲〈. . . . . . xcy . . .〉

〈q′0x♯ . . . ė . . .〉

After the replacement, we have lost track of the work tape head.
Therefore, move to the leftmost non-blank symbol, and then right-
wards past one ] symbol, so that it is over the counter (i.e., the sym-
bol 0 next to q′). Replace this counter with 1. Move the input head
rightwards until while incrementing the counter for each [ symbol.

⊲〈. . . h〉

〈q′π′x♯ . . . ė . . .〉

The case where D is 〈R〉 is similar, replacing c by y instead, and
counting from y instead of x.

8. Move the input head left until ⊲ and then rightwards and past the
first 〈(〉. Move the work head to the leftmost non-blank symbol and
go to the halting check.

This is how U is meant to work, but some details were left out. In
appenix A we can see how c is replaced with c′ by U in the middle of the
tape when |〈c′〉| 6= |〈c〉|, and how U increments a binary number.

U is a universal Turing machine

We will now state the main result of this chapter.

Theorem 25 For any Turing machine M with input alphabet Σ, and β ∈ Σ
∗,

M accepts β ⇔ U accepts 〈M〉〈β〉
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Proof. This theorem is a direct consequence of definition 19, together
with the detailed description on how U works, as given above. ⊓⊔

The following lemma give a space bound for U relative to the Turing
machine it is simulating.

Lemma 26 Let f be an honest functions. For any Turing machine M with space
bound f , input alphabet Σ, and β ∈ Σ

∗, there exist a, b ∈ N such that

SU(〈M〉〈β〉) ≤ a f (|β|) + b

Proof.

• Let f be an honest function, M be a Turing machine with space bound
f , Q be the set of states of M, and Γ be the work tape alphabet of M.

• From the definition of U, the work tape of U will at any time be of the
form 〈qπx♯s〉. SU(〈M〉〈β〉) will therefore be no more than |〈qπx♯s〉|
for the longest 〈q〉, 〈π〉, 〈x〉, 〈♯〉, and 〈s〉.

• By lemma 22 there exist k′ ∈ N such that |〈q〉| ≤ k′ for any q ∈ Q.

• By lemma 23, |〈π〉| < f (|β|) + 5 for any honest function f .

• Since x is some symbol in Σ, lemma 21 gives us that there exist k′′ ∈ N

such that |〈x〉| ≤ k′′.

• |〈♯〉| = |[01]| = 3.

• Let s ∈ Γ
∗ be a longest string of the scanned cells when M executes

on input β. By lemma 21 there exist k ∈ N such that |〈s〉| ≤ k|s|.

• Since M has space bound f , SM(β) ≤ f (|β|).

• Since
|〈s〉| ≤ k|s| and |s| = SM(β) ≤ f (|β|)

we have that
|〈s〉| ≤ k f (|β|)

• By summarising and using lemma 16

SU(〈M〉〈β〉) = |〈qπx♯s〉|

≤ k′ + ( f (|β|) + 5) + k′′ + 3 + k f (|β|)

= (2 + k) f (|β|) + (k′ + k′′ + 6)

• Let a = (2 + k) and b = (k′ + k′′ + 6) and the lemma holds.
⊓⊔
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Chapter 4

Universial f-space Turing
machine

In this chapter we will see a space bounded universal Turing machine U f ,
which will halt on any input. For each honest function f the following
definition yields a universal Turing machine with space bound relative to
f .

Definition 27 (f-space Turing machine) Let f be an honest function. Let U f

be a Turing machine with input alphabet Σ = {0, 1, [, ], $} and work tape alphabet
Γ = Σ ∪ {∗, }. Let M be any Turing machine and α be any input to M. For
input of the form

0a10b$〈M〉〈α〉

U f runs as follows:

1. Verify that the input α is of the form

0a10b$ . . . 〈⊲〉z〈 〉

for any a, b ≥ 0 and z = s1 . . . sn, where si is of the form [x] such that
x ∈ {0, 1}∗ for 0 ≤ i ≤ n. Reject if α is not of this form.

2. Compute a f (|α|) + b and mark this many tape cells for U to simulate M on
input α.

3. Simulate M on α while counting down from 4a f (|α|)+b for each step of M. If
the counter ever get to 0, then reject.

4. If the simulation requires more space than marked, then reject.

5. If M accepts, then accept. If M rejects, then reject.

We can examine the details on how U f works in appendix B. The
following lemma states that U f is a decider.

Lemma 28 U f halts on any input σ ∈ {0, 1, [, ], $}∗.

Proof.
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• In stage 1., U f just scans the input and either halts or goes to stage 2.
after it reads a symbol.

• It is easily verifiable from the details in appendix B that the
computation of a f (|α|) + b will be completed so that U f continues
with stage 3.

• From appendix B, we see that U f essentially executes U on 〈M〉〈α〉.
From the detailed description of U in chapter 3, we find that the only
places U may go back to a previous step in the algorithm, is in the
simulation stage, step 2., 3., and 8. In step 2. and 3., U compare the
current symbol at the position of the input head with the current
symbol at the position of the work tape head. The input head move
only in the right direction. If a sequence of symbols are equal, U goes
to the next stage in the algorithm which is towards the 8’th step of the
Simulation stage. Otherwise, if U read a symbol from the input tape,
U will halt, causing U f to halt as well. Otherwise, U goes back to stage
1., which only continues to move the input head in the rightward
direction. We therefore see that in step 2. and 3. of U, it will not be
an infinite loop. Each time U reach stage 8., U f decrease the counter

(which started out as 4a f (|α|)+b), which eventually will get 0, causing
U f to halt. At any other step of U, either U finds a symbol it is looking
for, causing the algorithm to proceed towards the 8’th step of the
Simulation stage, or the symbol is not found, causing U to halt, and
U f halts. Each time the 8’th step of the Simulation stage is reached, U f

decreases the counter, and continues U from the halting stage. Either
U f halts at the Halting stage or it start the simulation stage again.

• Thus, U f will eventually halt.

⊓⊔
The following theorem states that U f is indeed the space bounded

universal Turing machine we intended it to be.

Theorem 29 Let f be an honest function. For any Turing machine M and
a, b ∈ N,

U f accepts 0a10b$〈M〉〈α〉

⇔

U accepts 〈M〉〈α〉 and SU(〈M〉〈α〉) ≤ a f (|α|) + b

Proof.

• Let f be an honest function.

• For the right direction, assume that U f accepts 0a10b$〈M〉〈α〉 for
some a, b ∈ N.

• By the definition of U f , U accepts 〈M〉〈α〉 and U can simulate M on α

in space a f (|α|) + b, thus SU(〈M〉〈α〉) ≤ a f (|α|) + b.
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• For the left direction, assume that U accepts 〈M〉〈α〉 and SU(〈M〉〈α〉) ≤
a f (|α|) + b for some a, b.

• Since U f halts on any input by lemma 28, it is sufficient to prove that
U f will not reject.

• Since the input 0a10b$〈M〉〈α〉 is of the right form, U f will not reject in
stage 1.

• Observe that each configuration of M is represented on the work
tape of U during the simulation. U can not have more than 4a f (|α|)+b

different work tapes of length a f (|α|) + b since U has four symbols in
the tape alphabet. Any M that can be simulated by U and halt with
space bound a f (|α|) + b must therefore halt within 4a f (|α|)+b steps
of M, otherwise U has entered a configuration of M twice and will
loop forever. Since U accepts 〈M〉〈α〉, M accepts (and halts) on α by
theorem 25. Since SU(〈M〉〈α〉) ≤ a f (|α|) + b, M can be simulated
by U with space bound a f (|α|) + b. The counter will therefore not
become 0.

• Since SU(〈M〉〈α〉) ≤ a f (|α|) + b, U can simulate M on α in space
a f (|α|) + b. Thus U f will not reject because the simulation requires
more space than marked.

• Since M accepts α, it follows from the definition of U f that U f will not

reject on 0a10b$〈M〉〈α〉.

• Thus U f accepts 0a10b$〈M〉〈α〉.
⊓⊔

Notice that the following similar assertion, where we have replaced
accepts with rejects, is not true.

U f rejects 0a10b$〈M〉〈α〉

⇔

U rejects 〈M〉〈α〉 and SU(〈M〉〈α〉) ≤ a f (|α|) + b

If we let M use no space, but loop forever, U f will reject, while U will
not halt. The following lemma will be useful in the proof of the stronger
space hierarchy theorem, given as theorem 37 in chapter 6. It states that
for suitable inputs, U f decides the same language as the Turing machine M
which it simulates.

Lemma 30 Let f be an honest function and L ∈ SPACE( f ). Then, there exist
k ∈ N and a Turing machine M deciding L such that for any a, b ≥ k

L = { α | U f accepts 0a10b$〈M〉〈α〉 }

Proof.

• Let f be an honest function and L ∈ SPACE( f ).
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• Since L ∈ SPACE( f ), there exists a Turing machine M with space
bound g ≤O f deciding L. By lemma 17 there exist a honest function
g′ such that M has space bound g′ ≤O f .

• Since M has space bound g′, it follows from lemma 26 that there exist
a′, b′ such that for any α,

SU(〈M〉〈α〉) ≤ a′g′(|α|) + b′

• Since g′ and f is honest, and g′ ≤O f , it follows from lemma 16 that
there exist c, d ∈ N such that

g′(|α|) ≤ c f (|α|) + d

and equivalently

a′g′(|α|) + b′ ≤ a′c f (|α|) + da′ + b′

• Let k = max(a′c, da′ + b′). Then for any a, b ≥ k, we have that

SU(〈M〉〈α〉) ≤ a f (|α|) + b (*)

• Now we have

α ∈ L and (*)

⇔ M accepts α and (*) (M decides L)

⇔ U accepts 〈M〉〈α〉 and (*) (theorem 25)

⇔ U f accepts 0a10b$〈M〉〈α〉 (theorem 29)

⊓⊔
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Chapter 5

Diagonalising g-space Turing
machine

We will here define the Turing machine Dg and prove some properties that
will be usefull in the next chapter. A detailed description of how Dg works
is given in appendix C. Her is a short definition. As with U f , the following
definition yields a universal Turing machine with space bound relative to
g for each honest function g.

Definition 31 (Diagonalizing g-space Turing machine) Let g be an honest
function. Dg is a Turing machine with input alphabet Σ = {0, 1, [, ], $} and work
tape alphabet Γ = Σ ∪ {∗, }. Let M be any Turing machine. For input σ of the
form

0a10b$〈M〉

Dg runs as follows:

1. Compute g(|σ|) and mark this many tape cells for the simulation of M on
input σ.

2. Simulate M on input σ while counting each step of M. If the counter ever
exceeds 4g(|σ|), then accept.

3. If the simulation requires more space than marked, then accept.

4. If M accepts, reject. If M rejects, then accept.

The following lemma states that Dg is a decider.

Lemma 32 Dg halts on any input σ ∈ {0, 1, [, ], $}∗.

Proof.

• Observe that Dg is just a slightly different version of Ug.

• It can easily be verified from the detailed description of Dg in
appendix C that the behavior specific for Dg can not make it loop
forever.
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• This lemma therefore follow from lemma 28.
⊓⊔

Since Dg is a decider, the next definition is justified. The language
defined will be used for diagonalization in the proof of our stronger space
hierarchy theorem 37 in the next chapter.

Definition 33 (The language LDg ) Let g be an honest function. The language
LDg is the language decided by Dg.

Lemma 34

LDg ∈ SPACE(g)

Proof.

• By definition, LDg is the language decided by Dg. By lemma 32, Dg

halts for all input. It is therefore sufficient to prove that Dg has space
bound f such that f ≤O g. We also have that g is honest from the
definition of Dg.

• From the details of Dg given in appendix C, g(|σ|) is computed in
less space than h ≤O g. By lemma 17, there exist an honest function
f ′ such that the computation of g(|σ|) is space bound by f ′ ≤O g. By
lemma 16 there exist a, b such that

f ′(|σ|) ≤ ag(|σ|) + b

Thus our space bound so far is

ag(|σ|) + b

• Then
1 0 . . . 0
︸ ︷︷ ︸

2g(|σ|)

$ . . .
︸ ︷︷ ︸

g(|σ|)

$

is computed with no more space than what is shown above. We now
have that

| 1 0 . . . 0
︸ ︷︷ ︸

2g(|σ|)

$ . . .
︸ ︷︷ ︸

g(|σ|)

$ |

= 1 + 1 + 2g(|σ|) + 1 + g(|σ|) + 1 + 1

≤ 3g(|α|) + 5

• By definition of Dg, the simulation is done within the space shown
above. Therefore,

SDg(α) ≤ ag(|σ|) + b + 3g(|σ|) + 5

≤ (a + 3)g(|σ|) + (5 + b)

• Let f (|σ|) = (a + 3)g(|σ|) + (5+ b). Then Dg has space bound f , and
by lemma 16, f ≤O g.
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⊓⊔
We finish this chapter by showing that on certain carefully constructed

strings, Dg does the opposite of what Ug does for a similar input.

Lemma 35 Let g be an honest function, M be a Turing machine, and

σ = 0a10b$〈M〉

for some a ≥ 1 and b ≥ 0.

Ug accepts 01100$〈M〉〈σ〉

⇔

Dg rejects σ

Proof.

• Let g be an honest function, M be a Turing machine, and

σ = 0a10b$〈M〉

for some a ≥ 1 and b ≥ 0.

• For the right direction, assume that Ug accepts 01100$〈M〉〈σ〉.

• By definition 27, Ug simulates M on σ in space g(|σ|), such that M
accepts σ.

• By definition 31, Dg rejects σ.

• For the left direction, assume that Dg rejects σ.

• By definition 31, Dg have simulated M on σ in space g(|σ|), such that
M accepts σ.

• By definition 27, Ug accepts 01100$〈M〉〈σ〉.
⊓⊔

The details of how Dg does the opposite on input σ than what Ug does
on input 01100$〈M〉〈σ〉 can be found in appendix C.
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Chapter 6

A stronger space hierarchy
theorem

In this chapter we will see a stronger version of the space hierarchy
theorem. We will also look at a known theorem called the space
compression theorem. Then, we will see that for honest functions, the space
hierarchy theorem as stated by Sipser [3] follows from our version of the
theorem. Finally, we show that the stronger version of the space hierarchy
theorem is indeed stronger. But first we need the following lemma.

Lemma 36 Let f , g be honest functions such that g 6≤O f . Then, for any
a, b ∈ N, there exist infinitely many n such that

g(n) > a f (n) + b

Proof.

• Let g and f be honest functions and assume that g 6≤O f .

• Assume for contradiction that there exists a, b and n0 such that for all
n ≥ n0

g(n) ≤ a f (n) + b

• Let c = g(n0). Now g(n) ≤ a f (n) + (b + c) for all n, since f and g are
monotone. By lemma 16, g ≤O f , which contradicts g 6≤O f.

⊓⊔
We are now ready to show our main result.

Theorem 37 (Stronger space hierarchy theorem) Let g be honest. There
exists a language L such that

L ∈ SPACE(g)

and
L 6∈ SPACE( f )

for any honest f such that g 6≤O f .

Proof.
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• By definition 33 of LDg , Dg decides LDg . By lemma 34, LDg ∈
SPACE(g).

• Now, assume g 6≤O f . We prove that LDg 6∈ SPACE( f ).

• Assume for the sake of a contradiction that LDg ∈ SPACE( f ).

• By Lemma 30 there exists a Turing machine M and a k such that M
decides LD and

LDg = { α | U f accepts 0a10b$〈M〉〈α〉 } (*)

for any a, b ≥ k.

• By Lemma 36, there exist infinity many n such that g(n) > a f (n) + b.

• Now, let σ be the string 0a10b$〈M〉 for some a, b such that a, b ≥ k and
g(|σ|) > a f (|σ|) + b. We keep a and b fixed for the rest of this proof.

• (Claim)

U f accepts 0a10b$〈M〉〈σ〉 iff Ug accepts 01100$〈M〉〈σ〉.

We prove the claim.

First we observe that the inputs is of the form 0c10d$ . . . 〈⊲〉z〈 〉, so
that U f and Ug will not reject in the first stage of the definition of U.

– Assume that U f accepts 0a10b$〈M〉〈σ〉.

– The only differences between Ug on input 01100$〈M〉〈σ〉 and

U f on input 0a10b$〈M〉〈σ〉, is that Ug marks off g|σ|) cells for
the simulation of M instead of a f (|σ|) + b, and simulates for
maximum 4g(|σ|) steps instead of 4a f (|σ|)+b.

– Since g(|σ|) > a f (|σ|) + b, Ug has more tape cells and number
of steps to simulate M than U f .

– Thus Ug accepts 01100$〈M〉〈σ〉, and the proof of the implication
from the left to the right is completed.

– Assume that Ug accepts 01100$〈M〉〈σ〉.

– By definition of Ug, M accepts σ.

– Then σ ∈ LD since M decides LD.

– By (*), U f accepts 0a10b$〈M〉〈σ〉, which proves the claim.

• Now we have

σ ∈ LDg ⇔ U f accepts 0a10b$〈M〉〈σ〉 (*)

⇔ Ug accepts 01100$〈M〉〈σ〉 (Claim)

⇔ Dg rejects σ (by lemma 35)

⇔ σ 6∈ LDg .

This is a contradiction.
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• Thus, we conclude that LDg 6∈ SPACE( f ).
⊓⊔

The following definition is an attempt to make tighter space complexity
classes. It only differs from how we defined our space complexity classes
in the way that having a space bound g ≤O f is replaced by having a space
bound f .

Definition 38 (Strict space complexity class) Let f : N → R
+. A strict

space complexity class STRICTSPACE( f ) is the set of all languages decidable
by a Turing machine with space bound f .

The following theorem is the honest version of the well known tape
compression theorem. We will give a detailed proof. As with the space
hierarchy theorem, Hartmanis et al. formulated it in 1965 in [4], and gave a
short proof. This theorem, and the following corollary, makes it clear why
the Turing machine model is not suitable for separating space complexity
classes that only differ by a constant factor.

Theorem 39 (Tape compression theorem) Let f , g be honest functions such
that g ≤O f . Then,

STRICTSPACE(g) ⊆ STRICTSPACE( f )

Proof.

• Let f , g be honest functions such that g ≤O f , and assume that
L ∈ STRICTSPACE(g).

• Then there exist a Turing machine Mg deciding L with space bound
g. Since g ≤O f there exists c, n0 ∈ N such that g(n) ≤ c f (n) for all
n ≥ n0. The above statement obviously holds for any larger n0. Since
g is monotone and space constructible, and therefore log ≤O g, we let
n0 be such that g(n) ≥ 2c for all n ≥ n0.

• Let Mg have input tape alphabet Σ and work tape alphabet Γ, and let
Λ = Γ ∪ Γ

′, where Γ
′ = { γ | γ ∈ Γ}. We draw a square around a

symbol to denote the position of the work tape head of Mg.

• Let M f be a Turing machine with work tape alphabet ∆ = Λ ∪ Λ ×

Λ ∪ · · · ∪ Λ
2c. Notice that any chunk of symbols γ1 . . . γi ∈ Γ

∗,
for i ≤ 2c, is represented by one symbol in ∆. This means that
g(|α|) number of symbols on the work tape of Mg is compressed into
g(|α|)

2c + 1 number of symbols on the work tape of M f .

• We are constructing M f so that it behaves as Mg. On input α, M f runs
as follows:

(1) Scan across the input tape from left to right entering a new state
for each symbol read. If M f reaches end of the input before
entering the n0 + 1 first states, it moves the input head to the left
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end of the input tape, and proceeds with stage (2). Otherwise,
|α| > n0. The head is moved to the leftmost symbol on the input
tape and we proceed from stage (3).

(2) Compare α with every possible s ∈ Σ
∗ such that |s| ≤ n0.

Because there is a finite number of strings to check, M f can
remembering the current read symbols using the states only.
This is done one by one (i.e. α = 0?, α = 1?, α = 01 ?, . . . ).
M f accepts if Mg accepts α, and rejects if Mg rejects α.

(3) For each state of Mg, each symbol on the input tape, and each
symbol in ∆, we let M f have a state that replace the symbol
in the way that corresponds to what Mg writes, and how the
work tape head of Mg moves. For instance, if the state q of Mg

write 1 and move the work tape head rightwards when it reads
0 on both of the tapes, then, the corresponding state of M f will

replace the single symbol 00 0 0 with 001 0 when 0 is read on
the input tape. For each state of M f that moves the square to
the next chunk, we let M f have an extra state which alters the
chunk next to it in the expected way. M f accepts if Mg accepts,
and rejects if Mg rejects.

• For |α| ≤ n0, M f runs without moving the work tape head at all.

• If |α| > n0, then M f decides L by scanning no more than
g(|α|)

2c + 1
cells. Since for all n ≥ n0 we have that g(n) ≥ 2c and g(n) ≤ c f (n), it
follows that

g(|α|)

2c
+ 1 ≤

g(|α|)

2c
+

g(|α|)

2c
=

g(|α|)

c
≤ f (|α|)

• Thus, M f has space bound f , and L ∈ STRICTSPACE( f ) follows.
⊓⊔

The following corollary states the relationship between the seemingly
stricter space classes and the usual space classes.

Corollary 40 Let f , g be honest functions.

L ∈ STRICTSPACE( f ) ⇔ L ∈ SPACE( f )

Proof.

• Let f , g be honest functions.

• For the right direction, assume that L ∈ STRICTSPACE( f ).

• Then there is a Turing machine M deciding L with space bound f .

• Since ≤O is reflexive (lemma 10), M has space bound f ≤O f .

• Thus L ∈ SPACE( f ).

• For the left direction, assume that L ∈ SPACE( f ).
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• Then there is a Turing machine M′ deciding L with space bound
g ≤O f .

• Since f , g is honest, it follows from the previous theorem that
STRICTSPACE(g) ⊆ STRICTSPACE( f ).

• Then L ∈ STRICTSPACE( f ).
⊓⊔

The following lemma is a weaker version of theorem 39, which we will
use in the next theorem.

Lemma 41

g ≤O f ⇒ SPACE(g) ⊆ SPACE( f )

Proof.

• Let g ≤O f , and assume that L ∈ SPACE(g).

• Then there exists a Turing machine M deciding L with space bound
h ≤O g.

• Since ≤O is transitive (lemma 11), M decides L with space bound
h ≤O f .

• Thus, L ∈ SPACE( f )
⊓⊔

In the next chapter, where we introduce a degree theory, it would be
nice if we can abstract away the notion of space classes, and just work with
the relation ≤O. That is exactly what the following theorem enables us
to do, which makes it one of our main goals in this thesis. It is also the
reason for why we presented the stronger version of the space hierarchy
theorem, since the weaker space hierarchy theorem will not be sufficient
for the following to hold.

Theorem 42 Let f and g be honest functions. Then

g ≤O f

⇔

SPACE(g) ⊆ SPACE( f )

⇔

STRICTSPACE(g) ⊆ STRICTSPACE( f )

Proof.

• Let f , g be honest functions.

• By lemma 41,

g ≤O f ⇒ SPACE(g) ⊆ SPACE( f )
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• Assume that g 6≤O f . Since f , g are honest, it follows from theorem
37 that we have a language L such that L ∈ SPACE(g) and L 6∈
SPACE( f ), which means that SPACE(g) 6⊆ SPACE( f ). Thus,

g ≤O f ⇐ SPACE(g) ⊆ SPACE( f )

• Using that f , g are honest, we get from corollary 40 that,

SPACE(g) ⊆ SPACE( f ) ⇔ STRICTSPACE(g) ⊆ STRICTSPACE( f )
⊓⊔

Before we are ready to formulate the Space Hierarchy Theorem, as
found in Sipser [3], we need the notion of little-o. Here is the definition
as given by Sipser.

Definition 43 (Little-o) Let f , g : N → R
+ be functions. g(n) = o( f (n)) if

lim
n→∞

g(n)

f (n)
= 0 .

The following lemma relates little-o with our ≤O, and will be useful
during our proof of the space hierarchy theorem.

Lemma 44 If f (n) = o(g(n)), then g 6≤O f .

Proof.

(1) Let f (n) = o(g(n)).

(2) By definition 43

lim
n→∞

f (n)

g(n)
= 0 .

(3) Thus, for any ǫ > 0 there exist n0 such that for all n > n0

f (n)

g(n)
< ǫ

⇔

g(n) >
1

ǫ
f (n)

(4) Since we may let ǫ be arbitrary close to 0, c = 1
ǫ may be arbitrary

large. Thus, for any c > 0 there exist n0 such that for all n > n0

g(n) > c f (n)

(5) Then, there does not exist c, n0 ∈ N such that g(n) ≤ c f (n) for all
n ≥ n0. Thus, g 6≤O f . ⊓⊔

We will now state the space hierarchy theorem as found in [3], but for
honest functions, and then show that it follows from our stronger space
hierarchy theorem.
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Theorem 45 (Space hierarchy theorem [3]) For any honest function g there
exists a language that is decidable in O(g) space but not in o(g) space.

Proof.

• Let f be any honest function such that f = o(g). It is sufficient to
prove that there exists a language L that is decidable in O(g) space
but not in O( f ) space.

• By Lemma 44, we have g 6≤O f .

• By Theorem 37, we have a language L such that L ∈ SPACE(g) and
L 6∈ SPACE( f ).

• Hence, L is a language decidable in O(g) space but not in O( f ) space.
⊓⊔

In the proof of the following lemma we will see that there are functions
separating space complexity classes with the stronger space hierarchy
theorem (theorem 37), which can not be used for separating space classes
with the space hierarchy theorem given above. The functions presented
here are those we saw in the introduction, where we also saw a picture of
their behaviour.

Theorem 46 There exists honest functions f , g : N → N such that

g 6≤O f and f (n) 6∈ o(g(n))

Proof.

• Let f , g : N → N be defined as:

f (n) =







2 if n = 0

f (n − 1)2 if n is even and n > 0

f (n − 1) + 1 if n is odd and n > 0

g(n) =







2 if n = 0

g(n − 1) + 1 if n is even and n > 0

g(n − 1)2 if n is odd and n > 0

• The following shows that f and g is honest:

(1) f (n) ≤ f (n + 1) follows from the definition of f . Likewise for
g.

(2) log2(n + 2) ≤ f (n) holds by the following inductive proof.

– For n = 0, log2(0 + 2) = 1 ≤ 2 = f (0).

– Assume that, for some k, log2(k + 2) ≤ f (k).

– If k is even, log2((k + 1) + 2) ≤ log2(k + 2) + 1 ≤ f (k) + 1 =
f (k + 1).
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– If k is odd, log2((k + 1) + 2) ≤ log2(k + 2) + 1 ≤ f (k) + 1 ≤
f (k)2 = f (k + 1).

log2(n + 2) ≤ g(n) holds by the same proof, but replacing f with g
and "odd" with "even".

(3) The following proves that f (n) is space constructible:

– Let α = α1 . . . αn. The following Turing machine M will compute
f (n) in binary.

– Write 10 on the work tape. If α = ǫ, the computation is finished
and with SMdeciding = 2, and 2 ≤O f .

– Otherwise, write 1$ next to 10.

1$10

– We will refer to the numbers on the tape as

k$x1

All the variables and numbers on the tape will be in binary,
possibly padded with zeros on the left.

– For each symbol of α, repeat the following: If k = 1, replace k by
0, and replace x1 by x1 + 1. Else if k = 0, replace k by 1. Copy x1

two times, separated by $-symbols.

k$x1$x1$x1

Compute x2
1 by adding x1 to x1, x1 number of times.

k$x′1$x′2$x2
1

Shift x2
1 to the left, overwriting x′1$x′2$.

k$x2
1

– When M has iterated this n times, replace k$ with .

f (n)

– A space bound for this computation is

1+ 1+ ⌊log2( f (n)) + 1⌋+ 1+ ⌊log2( f (n)) + 1⌋+ 1+ ⌊log2( f (n)2) + 1⌋+ 1

≤ 3log2( f (n)2) + 8 ≤ 3 f (n) + 8 ≤ 7 f (n)

Where the last inequality holds since f (n) ≥ 2 for all n. Let
h(n) = 7 f (n)

Thus M has space bound h ≤O f such that on any input α of length n,
M halts with f (n) on the tape written in binary, which means that f
is space constructible. The same holds for g by the same proof where
we switch the case k = 1 with k = 0. Thus f and g are honest.
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• The following proves that g 6≤O f :

We have to prove that for any c, n0 ∈ N there exists n ≥ n0 such
that

g(n) > c f (n)

It is sufficient to prove that

g(2c + 1) > c f (2c + 1) (6.1)

and for any k ≥ c,
g(2k + 1) > c f (2k + 1) (6.2)

We prove 6.1 with induction on c. First we check the base cases
c = 0, c = 1, c = 2. Then we prove the inductive step for c ≥ 2.

g(2 × 0 + 1) = g(1) = 22

0 × f (2 × 0 + 1) = 0

Thus g(2 × 0 + 1) > 0 × f (2 × 0 + 1).

g(2 × 1 + 1) = g(3) = g(2)2 = (g(1) + 1)2 = (22 + 1)2 = 25

1 × f (2 × 1 + 1) = f (3) = f (2) + 1 = f (1)2 + 1 = (2 + 1)2 + 1 = 10

Thus g(2 × 1 + 1) > 1 × f (2 × 1 + 1).

g(2 × 2 + 1) = g(5) = g(4)2 = (g(3) + 1)2 = (25 + 1)2 = 676

2 × f (2 × 2 + 1) = 2 × f (5) = 2( f (4) + 1) = 2( f (3)2 + 1) = 2(102 + 1) = 202

Thus g(2 × 2 + 1) > 2 × f (2 × 2 + 1).

Assume that for some k > 2

g(2k + 1) > k f (2k + 1) (I.H.)

Then it follows that

g(2(k + 1) + 1) = g(2k + 3) = g(2k + 2)2 (definition of g)

= (g(2k + 1) + 1)2 (definition of g)

= g(2k + 1)2 + 2g(2k + 1) + 1

> k2 f (2k + 1)2 + 2k f (2k + 1) + 1 (by (I.H.))

> (k + 1) f (2k + 1)2 + (k + 1) (since k > 2)

= (k + 1)( f (2k + 1)2 + 1)

= (k + 1)( f (2k + 2) + 1) (definition of f)

= (k + 1) f (2k + 3) (definition of f)

= (k + 1) f (2(k + 1) + 1)
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Thus, equation (6.1) holds for any c. We prove that (6.2) holds for any
k ≥ c. Fix c. Observe that when k = c, (6.2) is (6.1). Now assume that
for some i ≥ c,

g(2i + 1) > c f (2i + 1) (I.H.)

Now we have that

g(2(i + 1) + 1) = g(2i + 1)2 + 2g(2i + 1) + 1 (definition of g)

> c2 f (2i + 1)2 + 2c f (2i + 1) + 1 (by (I.H.))

> c( f (2i + 1)2 + 1)

= c f (2(i + 1) + 1) (definition of f)

Thus (6.2) holds for any k ≥ c, and g 6≤O f . Thus g 6≤O f

• To prove that f (n) 6∈ o(g(n)), we need to prove that

lim
n→∞

f (n)

g(n)
6= 0 .

which means that there exists ǫ > 0 such that for all n0 and some
n ≥ n0,

f (n) ≥ ǫg(n)

Let ǫ = 1. It is sufficient to prove that f (2k) ≥ g(2k) for any k. We
prove this by induction on k.

f (2 × 0) = f (0) = 2 ≥ 2 = g(0) = g(2 × 0)

Assume that
f (2i) ≥ g(2i) (I.H.)

for some i. Then

f (2(i + 1)) = f (2i + 1)2 = ( f (2i) + 1)2 = f (2i)2 + 2 f (2i) + 1

≥ g(2i)2 + 2g(2i) + 1 (I.H.)

> g(2i)2 + 1 = g(2i + 1) + 1 = g(2(i + 1))

Thus f(n) 6∈ o(g(n))
⊓⊔
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Chapter 7

The honest space degrees

In this chapter we present a neat degree theory for space complexity. This
theory is the main motivation of this thesis.

Definition 47 (≡O) We define the relation ≡O by

f ≡O g ⇔ f ≤O g and g ≤O f

Lemma 48 ≡O is an equivalence relation.

Proof.

• By lemma 10, ≤O is reflexive. Thus f ≤O f , which implies f ≡O f .
Thus ≡O is reflexive.

• Assume that f ≡O g and g ≡O h. Then f ≤O g, g ≤O f , g ≤O h, and
h ≤O g. By lemma 11, ≤O is transitive. Then, f ≤O h, and h ≤O f ,
which implies f ≡O h. Thus ≡O is transitive.

• Assume f ≡O g. Then f ≤O g and g ≤O f , which implies g ≡O f .
Thus ≡O is symmetric.

• Thus ≡O is an equivalence relation.
⊓⊔

We now introduce the honest space degrees.

Definition 49 (H of honest space degrees) We let H denote the set of ≡O-
equivalence classes of honest functions. The elements of H are the honest space
degrees, or just degrees. We use boldface lowercase Latin letters a, b, c, . . . to
denote our degrees.

Definition 50 (deg( f )) We let deg( f ) denote the degree of the honest function
f , that is,

deg( f ) = {g | g ≡O f } .

We will need some basic relations similar to ≤O for comparing honest
functions.
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Definition 51 (<O) The relation <O is defined by

f <O g ⇔ f ≤O g and g 6≤O f

We say that f is strictly below g and g is strictly above f if f <O g.

Not surprisingly, if f lies below g, or g lies above f , we will mean that
f ≤O g.

Definition 52 (|O) The relation |O is defined by

f |O g ⇔ f 6≤O g and g 6≤O f .

We will use <,≤, and | to denote the relations induced on the degrees
by <O,≤O, |O respectively. E.g. if a = deg( f ) and b = deg(g), we let a ≤ b

mean that f ≤O g. We say that c lies strictly between a and b if a < c < b.
We also say that a and b are incomparable if a | b.

If f and g are honest, we know that

f ≤O g

⇔

SPACE( f ) ⊆ SPACE(g)

⇔

STRICTSPACE( f ) ⊆ STRICTSPACE(g)

from theorem 42. Thus, for any honest degree a, we have

SPACE( f ) = SPACE(g) for f , g ∈ a.

Furthermore, we have

deg( f ) ≤ deg(g) ⇔ SPACE( f ) ⊆ SPACE(g) .

Definition 53 (Least upper bound) The least upper bound of the degrees a

and b is the degree c such that

a ≤ c and b ≤ c

and

if a ≤ c0 and b ≤ c0 , then c ≤ c0

This means that c lies above both a and b, and below any other degree that lies
above both a and b

Definition 54 (Greatest lower bound) The greatest lower bound of the
degrees a and b is the degree c such that

a ≥ c and b ≥ c

and

if a ≥ c0 and b ≥ c0 , then c ≥ c0

This means that c lies below both a and b, and above any other degree that lies
below both a and b.
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Definition 55 (Lattice) A degree structure where each pair of elements has both
a least upper bound and a greatest lower bound is called a lattice.

The notion of a lattice is applicable to many other structures as well, as
the following example indicate.

Example 56 Let L be the structure

L = ({K | K ⊆ N},⊆)

Then, we let the least upper bound on the sets A and B be the set C such that

A ⊆ C and B ⊆ C

and

if A ⊆ C0 and B ⊆ C0 , then C ⊆ C0

Then, we let the greatest lower bound on the sets A and B be the set C′ such that

A ⊇ C′ and B ⊇ C′

and

if A ⊇ C0 and B ⊇ C0 , then C′ ⊇ C0

L is a lattice, since, for any pair of sets A, B such that A ⊆ N and B ⊆ N, the
above statements holds for C = A ∪ B and C′ = A ∩ B.

Definition 57 (Join) We define the join of the honest functions f and g, written
max[ f , g], by

max[ f , g](x) = max( f (x), g(x)) .

Definition 58 (Meet) We define the meet of the honest functions f and g,
written min[ f , g], by

min[ f , g](x) = min( f (x), g(x)) .

The following lemma will be useful in the proof of the next lemma
where we prove that min[ f , g] is space constructible. We will there need
a seemingly stronger version what it means to be space constructible. It
will be useful for us to obtain an Turing machine M which use exactly f (n)
space for any large enough n, and not just g(n) such that g ≤O f .

Lemma 59 Let f be an honest function. Then, there exists a positive integer n0

and a Turing machine M, such that on any input α of length n, M halts with f (n)
on the tape written in binary, and SM(α) = f (n) for all n ≥ n0.

Proof.

• Let f be an honest function.
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• Then f is space constructible. Let therefore M be a Turing machine
with space bound g ≤O f such that on any input α of length n, M
halts with f (n) on the tape written in binary. By lemma 17, we let
g be honest as well. Since g ≤O f , there exists c, k ∈ N such that
g(n) ≤ c f (n) for all n ≥ k.

• Since f and g are honest, we can use the same technique as we saw in
the proof of theorem 39. Then, for large enough work tape alphabet,
M′ can compute the same as M, but with compressed symbols. I.e.
The single symbol 1010 on the work tape of M′ corresponds to the
four symbols 1010 on the work tape of M. By the same arguments
as in the proof of theorem 39, for large enough n0 ≥ k, we have that
SM′(α) ≤ f (n) for all n > n0. When M′ has computed f (n) in a
compressed way, it transforms each symbol on the work tape back to
the corresponding symbols 0 and 1. This takes no more space than to
write f (n) in binary. To make M′ use at least f (n) space, we use that f
is honest, and observe the above still holds if we continue to increase
n0. Therefore we let n0 be large enough for M′ to make a copy of f (n)
without using more than f (n) space in total ( f (n) ≥ 16 should hold).
This copy will be used as a counter. Then, M′ decrements the counter
while moving a $ symbol one square away each time the counter does
not decrease in length. When the counter becomes zero, M′ erases the
$ symbol and the counter.

• Thus, there exists a positive integer n0 and a Turing machine M′, such
that on any input α of length n, M′ halts with f (n) on the tape written
in binary, and SM′(α) = f (n) for all n ≥ n0.

⊓⊔
We will now see several properties of the meat and join function.

Lemma 60 Let f and g be honest functions. Then, max[ f , g] and min[ f , g] are
honest functions.

Proof.

(1) For (2) and (3) below, we prove the statements for n such that
max[ f , g](n) = f (n). The case where n is such that max[ f , g](n) =
g(n) holds by the same arguments when we replace f with g.

(2)

max[ f , g](n) = f (n) ≤ f (n + 1) ≤ max( f (n + 1), g(n + 1))

min[ f , g](n) = g(n) ≤ g(n + 1) ≤ min[ f , g](n + 1)

(3)

log2(n + 2) ≤ f (n) = max[ f , g](n)

log2(n + 2) ≤ g(n) = min[ f , g](n)
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(4) Let α be any input of length n, and M be a Turing machine with space
bound h ≤O f , such that M halts with f (n) on the tape written in
binary, and let M′ be a Turing machine with space bound h′ ≤O g
such that M′ halts with g(n) on the tape written in binary. By lemma
17, we may obtain honest h and h′ such that the above still holds.
Let MAX be a Turing machine that first computes f (n) by executing
M, and then computes g(n) by executing M′. Then MAX keeps the
largest value. The following defines a space bound t(n) for MAX
such that t ≤O max[ f , g]:

h(n) + h′(n) + 1

≤ 3max(h(n), h′(n)) Honest implies h(n), h′(n) ≥ 1

≤ 3 max(c f (n), cg(n)) h ≤O f and h′ ≤O g

= 3c max( f (n), g(n))

= t(n) defines t(n)

Thus max[ f , g](n) space constructible and honest. Since f , g
is honest, it follows from lemma 59 that there exists a positive
integers n0, n′

0 and Turing machines N and N′ such that for all n ≥
max(n0, n′

0):

– N halts with f (n) on the tape written in binary

– SN(α) = f (n).

– N′ that halts with g(n) on the tape written in binary

– SN′(α) = g(n).

For the finite number of n < max(n0, n′
0), we let MIN use the states

only to count the length of n, and then write min[ f , g](n) on the tape.
Thus, MIN require less than min[ f , g](n) space for this case, and
min[ f , g](n) ≤O min[ f , g](n) by lemma 10. For n ≥ max(n0, n′

0), we
let MIN be a Turing machine that first mark off two segments on the
tape. Then, MIN executes one step of N with the work tape head of
MIN inside the first segment. Then it moves to the second segment
and executes one step of N′. Every time MIN needs to write a symbol
where it is a marker, it makes the current segment one cell larger by
shifting the outermost marker, and every symbol on the way back
to the first marker. Then it makes the other segment one cell larger
by shifting the outermost marker of that segment. Lets call the first
out of N and N′ that finishes for H, and the other for J. MIN then
continues to execute J, but without shifting the markers. If J requires
more space than H, then the value of H is the one to keep. Otherwise,
MIN compares the values from H and J, and keep the minimum of
them. MIN requires min[ f , g](n) number of cells for each of N and
N′, plus a small finite number k of marking symbols. The following
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defines a space bound r(n) for MIN such that r ≤O min[ f , g]:

2 min[ f , g](n) + k

≤ (2 + k)min[ f , g](n) Honest implies f (n), g(n) ≥ 1

= r(n) defines r(n)

Thus min[ f , g](n) space constructible and honest.

⊓⊔

Lemma 61 Let f , g, h be honest functions.

(i) min[ f , g] ≤O f and min[ f , g] ≤O g.

(ii) If h ≤O f and h ≤O g, then h ≤O min[ f , g].

Proof.

(i) For all n, we have that min[ f , g](n) ≤ f (n).

• Let c = 1. Then min[ f , g](n) ≤ c f (n) for all n ≥ 0.

• Thus min[ f , g] ≤O f .

• The other case where min[ f , g] ≤O g follows by replacinging f with
g in the argument above.

(ii) Assume that h ≤O f and h ≤O g.

• Then there exist c1, c2, and n0 such that for all n ≥ n0

h(n) ≤ c1 f (n)

h(n) ≤ c2g(n)

• Then, for all n ≥ n0 such that min[ f , g](n) = f (n), we have that

h(n) ≤ c1 f (n) ≤ max(c1, c2)min[ f , g](n)

For all n ≥ n0 such that min[ f , g](n) = g(n),

h(n) ≤ c2g(n) ≤ max(c1, c2)min[ f , g](n)

• Thus h ≤O min[ f , g].
⊓⊔

Lemma 62 Let f , g, h be honest functions.

(i) f ≤O max[ f , g] and g ≤O max[ f , g].

(ii) If f ≤O h and g ≤O h, then max[ f , g] ≤O h.

Proof.

(i) For all n, we have that f (n) ≤ max[ f , g](n).
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• Let c = 1. Then f (n) ≤ c max[ f , g](n) for all n ≥ 0.

• Thus f ≤O max[ f , g].

• The other case where g ≤O max[ f , g] follows by replacinging f with
g in the argument above.

(ii) Assume that f ≤O h and g ≤O h.

• Then there exist c1, c2, and n0 such that for all n ≥ n0

f (n) ≤ c1h(n)

g(n) ≤ c2h(n)

• Then, for all n ≥ n0 such that max[ f , g](n) = f (n), we have that

max[ f , g](n) = f (n) ≤ max(c1, c2)h(n)

For all n ≥ n0 such that max[ f , g](n) = g(n),

max[ f , g](n) = g(n) ≤ max(c1, c2)h(n)

• Thus max[ f , g] ≤O h.
⊓⊔

Lemma 63 For any honest functions f , f1, g, g1 such that f ≤O f1 and g ≤O g1,
we have that

(i) min[ f , g] ≤O min[ f1, g1]

(ii) max[ f , g] ≤O max[ f1, g1]

Proof.

• Assume that f , f1, g, g1 are honest, and that f ≤O f1 and g ≤O g1.

• By (i) from lemma 61, it follows that min[ f , g] ≤O f and min[ f , g] ≤O

g.

• By lemma 11, ≤O is transitive. Then we have that min[ f , g] ≤O f1 and
min[ f , g] ≤O g1.

• By (ii) from lemma 61, min[ f , g] ≤O min[ f1, g1].

• Thus, (i) holds.

• We can see that (ii) follows by the same argument if we replace
max[ f , g] with min[ f , g], and use lemma 62 instead of lemma 61.

⊓⊔
Notice that our previous lemma entails that

( f ≡O f1 and g ≡O g1) ⇒ (max[ f , g] ≡O max[ f1, g1] and min[ f , g] ≡O min[ f1, g1])

when f , f1, g, g1 are honest functions. By Lemma 60, we know that
max[ f , g] and min[ f , g] are honest functions whenever f and g are. This
justifies the following definition.
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Definition 64 (The join ∪ and the meet ∩ of degrees) Let f and g be honest
functions such that deg( f ) = a and deg(g) = b. We define the join of a and
b, written a ∪ b, by a ∪ b = deg(max[ f , g]). We define the meet of a and b,
written a ∩ b, by a ∩ b = deg(min[ f , g]).

As the following theorem states, our degree theory have the nice
property of being a distributive lattice.

Theorem 65 (Distributive Lattice) The structure 〈H,≤,∪,∩〉 is a distributive
lattice, that is, for any a, b, c ∈ H, we have that

(i) a ∩ b is the greatest lower bound of a and b under the ordering ≤

(ii) a ∪ b is the least upper bound of a and b under the ordering ≤

(iii) a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c) and a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c)

Proof.

• Let f , g, h, and i be honest functions such that deg( f ) = a, deg(g) =
b, deg(h) = c0, and deg(i) = c.

• By definition 64, we have that a ∩ b = deg(min[ f , g]).

• By lemma 61 (i) we have that f ≥O min[ f , g] and g ≥O min[ f , g],
which means that a ≥ a ∩ b and b ≥ a ∩ b.

• By lemma 61 (ii) we have that if f ≥O h and g ≥O h, then min[ f , g] ≥O

h, which means that if a ≥ c0 and b ≥ c0 , then a ∩ b ≥ c0.

• Thus a ∩ b is the greatest lower bound of a and b.

• The proof of (ii) is symmetric, where we use lemma 62 in place of
lemma 61.

• (iii) holds since

a ∪ (b ∩ c) = deg(max[ f , min[g, i]]) =

deg(min[max[ f , g], max[ f , i]]) = (a ∪ b) ∩ (a ∪ c)

and
a ∩ (b ∪ c) = deg(min[ f , max[g, i]]) =

deg(max[min[ f , g], min[ f , i]]) = (a ∩ b) ∪ (a ∩ c)
⊓⊔

We finish with the following conjecture.

Conjecture 66 (Density) For any degrees a and b, such that a < b, there exist
degrees c1 and c2 such that

(i) a < c1 < b

(ii) a < c2 < b

(iii) a = c1 ∩ c2

(iv) b = c1 ∪ c2
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Appendix A

More details of U

In chapter 3 we defined the universal Turing machine U without giving
all the necessary details. This chapter is intended to fill in these holes.
Let’s say 〈c〉 = [110] and 〈c′〉 = [11011] should replace one another, or
the binary number [11] is incremented, or [100] decremented. Sometimes
U needs more space in the middle of the tape. Other times U need to erase
symbols and fill the erased space. U should manage these cases well.

We will here cover how U deals with

• replacing a symbol c with c′ when |〈c′〉| > |〈c〉|

• incrementing an odd binary number

• replacing a symbol c with c′ when |〈c′〉| < |〈c〉|

• decrementing a even binary number

Here is how U solves them.
We need more space when U is about to write s ∈ {0, 1} at a cell

containing ]
. . . s1][. . .

U will replace ] by ∗.
. . . s1 ∗ [. . .

Move to the rightmost non-blank symbol of the work tape.

. . .] . . .

Move each symbol one cell to the right until it is back at ∗ again.

. . . s1 ∗ [[. . .

∗ is replaced by s, and ] is written at the new available cell to the right.
Move one cell left.

. . . s1s][. . .

We might also need more space when incrementing a binary number,
say [11].

. . . [11] . . .
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U will replace [ by ∗.
. . . ∗ 11] . . .

Move to the rightmost non-blank symbol of the work tape.

. . .] . . .

Move each symbol one cell to the right until it’s back at ∗ again.

. . . ∗ 111] . . .

∗ is replaced by [. Then, make two steps to the right, and write 0’s until ].

. . . [100] . . .

Move left until [
. . . [100] . . .

We need to erase some cells when U are about to write ] at a cell
containing 0 or 1.

. . . [s1s2s3][. . .

U will write ].
. . . [s1]s3][. . .

Move right while writing ∗, until the first ], which is also replaced.

. . . [s1] ∗ ∗[. . .

Move one step to the right.

. . . [s1] ∗ ∗[. . .

Swap it with the ∗ to the left.

. . . [s1] ∗ [∗ . . .

This swapping continues rightwards until . Then, ∗ is replaced by .

. . . [s1] ∗ [. . . ]

Move left until ∗ and continue the swapping. If there are none ∗’s left, U
moves to the leftmost non-blank symbol.

[. . . [s1][. . .

We may also need to erase some cells when decrementing a binary

number, say [100].
. . . [100][. . .

Move rightwards, replacing every 0 with 1 until ].

. . . [111][. . .
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Move left and write ].
. . . [11]][. . .

Move two steps to the right.

. . . [11]][. . .

Swap with the symbol to the left.

. . . [11][] . . .

Move one step right, and continue to swap ] rightwards until .

. . . ]]

Write .
. . . ]

Recall the form of the left end of the tape.

〈q[b] . . .〉

To move back at the binary number again, move the head left until , then
right past the first ].

〈q[11] . . .〉
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Appendix B

Detailed description of U f

In chapter 4 we defined the space bound universal Turing machine U f

without giving much details on how it works. But, since we like details,
the following is intended to satisfy us. Each time we use the terms x1,
x2, f (|α|), a f (|α|) or a f (|α|) + b in this description, the tape will actually
contain the terms written as binary numbers. We expect the input β to be
of the form

β = 0a10b$〈M〉〈α〉

Stage 1.

First stage is to verify that the input β is of the form

0a10b$ . . . 〈⊲〉z〈 〉

for any a, b ≥ 0 and z = s1 . . . sn, where si is of the form [x] such that
x ∈ {0, 1}∗ for 0 ≤ i ≤ n. Starting at the leftmost non-blank symbol, read
zero or more 0 symbols, then a 1 symbol, then zero or more 0 symbols, and
then the symbol $. Then continue rightwards until reading [1], which is
〈⊲〉. Then read zero or more strings on the form [s], where s ∈ 0, 1∗. Each
time [10] is read, go to stage 2. if the next symbol is . Otherwise, reject if

is read after something different from [10]. If any of these searches fail,
then reject.

Stage 2.

Since f is honest, and therefore space constructible, there exits a Turing
machine N with space bound h ≤O f , such that on any input of length |λ|,
N halts with f (|λ|) on the tape written in binary. U f will run as N does, but
it will treat 〈⊲〉 and 〈 〉 as N treats ⊲ and respectively. Any sequence [x],
where x ∈ {0, 1}∗, will be treated as N treats one symbol of α. With f (|α|)
on the work tape, U f can compute a f (|α|) + b in the following way.

1. Make a copy x1 of f (|α|), so that the work tape is of the form

0$x1$ f (|α|)
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2. For each symbol of 0a, set x1 = f (|α|) and add x1 to the leftmost
number.

a f (|α|)$x1$ f (|α|)

3. Then, increment a f (|α|) for each symbol of 0b.

a f (|α|) + b $x1$ f (|α|)

4. Erase x1$ f (|α|) and write a $-sign to the left of a f (|α|) + b

$a f (|α|) + b$

5. Let w = a f (|α|) + b so that we can denote the current work tape as
$w$. Subtract 1 from w and move the rightmost $-sign one square to
the right if w and w− 1 has the same number of digits. Continue until
w = 0, and then replace 0 with .

$ . . .
︸ ︷︷ ︸

a f (|α|)+b

$

Stage 3.

Now, U f computes 4a f (|α|)+b. Observe that 4a f (|α|)+b written in binary is
1 0 . . . 0

︸ ︷︷ ︸

2(a f (|α|)+b)

. Write 00 for each of the a f (|α|) + b-blanks between the two

$-symbols on the work tape, and then a 1 to the left of them.

1 0 . . . 0
︸ ︷︷ ︸

2(a f (|α|)+b)

$ . . .
︸ ︷︷ ︸

a f (|α|)+b

$

Stage 4.

Now, U f moves the input head to q0, and the work head to the on the
left side of the rightmost $ symbol, and is ready to simulate M.

⊲0a10b$〈q0δ〉〈⊲α1 . . . αn 〉

x2$ . . .
︸ ︷︷ ︸

a f (|α|)+b

$

where x2 = 4a f (|α|)+b. During this simulation, U f will execute an altered
version Ulim of U. We construct Ulim by first letting it be the same as U.
Then, Ulim will treat any $-symbol at the input tape as U treats . Let any
state of Ulim reject if a $-sign is read from the work tape (we will soon add
states processing $-signs without halting). Then, let any transition rule that
moves the work head to the right go to an intermediate subroutine where
Ulim checks the symbol on the work tape. If it is not $, Ulim continues as U.
If it is $, Ulim needs to shift every symbol in the marked area on the work
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taped one square to the left. This shifting is done by first moving leftwards
until reading a . If a $-sign is read before a , Ulim rejects. Otherwise, it
shifts every symbol which is to the right of the -symbol one cell to the
left. The shifting stops when it reads $ again, then it moves one step left,
writes a , and continues as U.

Each time Ulim is on the 8’th step of the Simulation stage, and before
going to the Halting check, go left until $, and then one more step to the
left so that the work tape head is over x2. Decrement x2. If x2 = 0, reject,
otherwise, go rightwards until $, and then rightwards until the first non-
blank symbol after $. Then, go to the Halting check.

Stage 5.

U f will accept if Ulim accepts, and reject if Ulim rejects.
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Appendix C

Detailed description of Dg

In the last chapter we made the definition of U f more precise. Here we will
do the same for the Turing machine Dg, which were given in chapter 4 in
definition 31.

We will construct Dg so that when the input tape is

⊲0a10b$〈M〉

it does the opposite of what Ug does when the input tape is

⊲01100$〈M〉〈⊲0a10b$〈M〉 〉

where 0a, 0b, and 〈M〉 is written out before we apply 〈〉 on ⊲0a10b$〈M〉 .
Let σ = 0a10b$〈M〉. When encoding σ as 〈σ〉, each symbol in {0, 1, $, [, ]}
is assigned an associated number i ∈ {5, . . . , |{0, 1, $, [, ]}|+ 4} If b equal i
written in binary,

〈ci〉 ≡ [b]

Since we may freely choose which symbol gets associated with which
number, we make a choice.

〈0〉 ≡ [101]

〈1〉 ≡ [110]

〈$〉 ≡ [111]

〈[〉 ≡ [1000]

〈]〉 ≡ [1001]

Dg runs as follows:

Stage 1.

Notice in the definition of Dg, g is an honest function and therefore space
constructible. Thus, computing g(|σ|) in binary can be done by a Turing
machine M having space bound h ≤O g. Let Dg first run M, then write a
$-symbol at each side of g(|σ|).

$g(|σ|)$
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Then, let w = g(|σ|) so that we can denote the current work tape as $w$.
Subtract 1 from w and move the rightmost $-sign one square to the right if
w and w− 1 has the same number of digits. Continue until w = 0, and then
replace 0 with .

$ . . .
︸ ︷︷ ︸

g(|σ|)

$

Stage 2.

Now, Dg computes 4g(|σ|). Observe that 4g(|σ|) written in binary is 1 0 . . . 0
︸ ︷︷ ︸

2g(|σ|)

.

Write 00 for each of the g(|σ|)-blanks between the two $-symbols on the
work tape, and then a 1 to the left of them.

1 0 . . . 0
︸ ︷︷ ︸

2g(|σ|)

$ . . .
︸ ︷︷ ︸

g(|σ|)

$

The Turing machine Ug where given in detail in the last chapter. Let Dg

simulate M on σ by executing an altered version of what is explained in
step 4. of Ug. If the counter for each step of M ever gets zero, accept, which
is the opposite of what Ug would have done. Let each action done on the
work tape be as Ug, unless otherwise is stated.

• To move the input head to q0 in 〈M〉, go left until ⊲, then right until
[1001], which is 〈$〉, and then one step to the right.

• Ulim treat any $-sign at the input tape as U treat . Use the original
rules of U here, instead of replacing them by rules about $-sign at the
input tape.

• When Ulim executes U, at the initialize work tape stage, step 2, when
moving the input head leftwards until 〈⊲〉, continue until ⊲ instead.
Also count every symbol, including the -sign, and not just ].

• At the initialize work tape stage, step 3, copy α1, which in our case is
〈0〉, to the work tape. This is done by moving one step right on the
input tape, and then writing [101] on the work tape.

• At the simulation stage of U, step 7., when U moves input head
leftwards while decrementing π for each [, start decrementing at ,
and decrement for each symbol, not just [, until π = 0. Then move
one step left instead of until the next [. When replacing c by x, use
the encoding given above. I.e. replace c by [101] is 0 is read from
the input tape. When U moves the input head rightwards until the
symbol while incrementing π for each [, increment for each symbol
read instead, including . The right case is done similarly.

Stage 3.

If the simulation requires more space than marked, accept.
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Stage 4.

If M accepts, reject. If M rejects, accept.
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