Ui0O ¢ Department of Informatics
University of Oslo

Errors and misunderstandings
among novice programmers

Assessing the student not the program

Mathias Johan Johansen
Master’s Thesis Autumn 2015

Errors and misunderstandings among novice
programmers

Mathias Johan Johansen

November 2, 2015

ii

Abstract

Novice programmers make a lot of programming errors as they strive to
become experts. This is a known fact to teaching faculty in introductory
programming courses. The errors play a major role in both formative and
summative assessment of the students. The Computer Science research
of today trends towards focusing on automatic assessment of program,
becoming more remote from the student who wrote the program.

In an attempt to create a better understanding of the novice program-
mers and the errors they make, this thesis takes a look at the errors novice
programmers produce in programming assignments and the misunder-
standings that may have caused them.

We use a qualitative approach to analyze assignments, interviews
and observations with 23 students of a second semester course in object-
oriented programming, using Java, at the University of Oslo. 33 solutions
to mandatory assignments were analyzed to identify errors. 14 students
were interviewed about their solutions to identify the misunderstandings
that caused the errors we identified. Nine students participated in think-
aloud observations to add further insights into how students of the targeted
course approach problem solving. Finally the misunderstandings are
analyzed to review the feasibility of using misunderstandings to guide
formative and summative assessment.

We have identified multiple student errors in both result and design.
Multiple errors and misunderstandings revolved around generic class
parameters, a topic that not much existing research covers.

Our findings suggest that misunderstandings considering the princi-
ples of object-oriented design lead to further misunderstandings about the
important aspects that must be considered to write good programs.

We did not find a feasible way to use pre-identified misunderstandings
as a sole metric for assessment but believe our research may be used to
help create a statistical analysis of the frequency of misunderstandings
causing errors. With a larger amount of participants a study could supply
examiners with an additional tool to help them gain insight into the
understanding of the students they assess.

iii

iv

Acknowledgments

I want to thank my supervisor Ragnhild Kobro Runde for her patient
guidance the past year. Thank you for all our interesting meetings where
we seem to never stay on topic.

I want to thank Stein Michael Storleer, Stein Gjessing and the rest of
the teaching staff of INF1010 for the spring of 2015 for helping me with
questions regarding mandatory assignments, expected errors and a whole
lot more. I also want to thank Kristin Broch Eliassen for her patience and
help giving me quick access to assignment solutions as soon as they were
delivered.

I want to thank Kristin Breenden taking the time to read my thesis and
give feedback on my writing. I want to thank my family and friends for
support on the days when the work with this thesis seemed to have no
end. I want to give special thanks to my mother for all the feedback on a
lot of the many typographic errors I have produced the last year.

Finally I want to thank everyone at the Department of informatics,
especially all the awesome people in the many student associations.
Thanks to you most days have been filled with laughs and funny moments.
The last five and a half years have been amazing for me.

vi

Contents

Abstract

Acknowledgments

Preface

1 Introduction

1.1
1.2
1.3

Ourgoals.
The scopeof thestudy
Thesis overview e

2 Background

21

2.2

2.3

24

2.5

Relatedresearch
211 Identifyingerrors
2.1.2 Identifying misunderstandings
213 Assessing programs
Defining errors and misunderstandings
221 Defininganerror
2.2.2 Categorization of errors and flaws
Elements of a university CScourse
23.1 Learningobjectives
2.3.2 Teaching activities and learning activities
233 Assessment
The targeted course L.
241 Intended learning objectives
242 Course prerequisites
2.4.3 Teaching activities and assessment
Object-oriented programming
251 ApproachestoOOP

3 Method and methodology

3.1
3.2

3.3

Possible sourcesofdata
Designing a qualitativestudy
321 Work-logs
322 Interviews e
323 Observations
Methods used in thisstudy
3.3.1 Interviews about solutions to assignments

vii

iii

*
<

W W N =

O NI OO\ ON U1 O U1 i

3.4

3.5

3.6
3.7
3.8
3.9

3.3.2 Supplemental data collection using observations . . .
Interviews
3.41 Thechoice of assignments
342 Preparations.
343 Usingretrospection.
344 Initialinterviews
3.45 Toolsandlocation
Observations v it
3.5.1 Thethink aloud method
3,52 Toolsandlocation
Dataanalysis.
Measurements for statistical analysis
Thesubjects
Handling subject privacy rights
3.9.1 Independence from the targeted course
39.2 Formal approval of thestudy

3.10 Overview of the timeline

Initial interviews

4.1
4.2
4.3
44
4.5
4.6

State of the targeted course
The assignment we reviewed
Expected studenterrors
The participants
The errors we experienced
Issues and points of improvement
46.1 Toolonginterviews
4.6.2 Errors that escaped our review
4.6.3 Too much time elapsed before the interviews
464 Theassignmentwastoolong

Second round of interviews

5.1
52
53
54
55
5.6
5.7

Experience from the initial interviews
State of the targeted course
The assignment we reviewed
Expected studenterrors
The participants
The errors we experienced
Issues and points of improvement
5.7.1 The time elapsed could have been improved further .
5.7.2 The assignment may have been a bit tooeasy

Think-aloud observations

6.1
6.2

6.3

State of the targeted course
Theexercises i
6.2.1 Limitations from the think-aloud method
6.2.2 Limitations due to the subjects’ skill levels
6.2.3 The chosensetofexercises
The participants

22
22
23
24
24
25
25
25
25
26
27
27
27
28
29
29
30

33
33
33
34
36
36
37
38
38
38
38

39
39
40
40
40
41
42
43
43
43

6.4 Supplemental datacollected
6.5 Issues and points of improvement
651 Method.
6.52 Thesubjects
6.5.3 Theexercises
654 Tools

Results

71 Omittederrors o L.
7.1.1 Most design flaws are omitted

72 Exceptionerrors

7.2.1 A method throws or catches the Exception super class

73 Linked listerrors
7.3.1 The insertion-method in a linked list fails to properly
update pointers L L oL

74 Array-errors
74.1 A method expands existing storage array but does

not update the original array-pointer

7.5 Errorsin genericclasses
7.5.1 A method compares generic objects using the result
fromtoString L

7.5.2 A private inner class is declared as generic without

ANY TEUSE .« v v v v v e e e e

7.6 Poor choice of data structure L.
7.6.1 An ArrayList is used instead of an array for storage
when indexes and number of elements are known . .

7.6.2 An object use "tags" to define which other objects it
"belongs" to instead of being pointed to by a field in
theotherobjects.

7.7 Data and functionality distribution errors
7.7.1 Almost identical classes are defined without using
heritage from asuperclass

7.7.2 Functionality is located in another class than the one

itshouldbein

Discussion
8.1 Misunderstandings concerning technical aspects of pro-
gramming
8.1.1 The importance of misunderstandings concerning
AITAYS « o v v e e e e

8.1.2 Other technical misunderstandings

8.2 Misunderstandings concerning object-oriented practice and
the importance of program design

8.2.1 Misunderstandings causing errors in program result
orcompilation.o o000

8.2.2 Misunderstandings causing design errors and flaws .

8.3 Assessing the misunderstandings
8.3.1 Using only misunderstandings

ix

8.3.2 Supplementing with misunderstandings

9 Conclusions and future work
91 Conclusions o L.
911 Errors. o
9.12 Misunderstandings
9.1.3 Assessing the misunderstandings
9.2 Suggestions to remedy the misunderstandings
93 Futurework L o oL

Bibliography

Appendices

A Participant Information Sheet

Interview Guide

Approval letter from the Data Protection Official for Research

INF1010 Mandatory Assignment 5

m g A W

INF1010 Mandatory Assignment 6

o]

INF1010 Mandatory Assignment 9-11

G Tasks created for observations

109

111

115

119

123

127

131

139

List of Figures

3.1

6.1

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
7.11
712
7.13
7.14

7.15

Model of our approach to data collection

Score distribution of students failing the INF1010 June 2015
o

Code example: catch-block used to handle a single subclass
of the Exceptionsuperclass
Code example: catch block used to handle instances of the
Exceptionsuperclass
Code example: Auto-generated catch block made by an IDE
Code example: Pointer error a LIFO-queue
Code example: Pointer error in LIFO linked list
Code example: Array pointererror
Code example: Comparison of generic objects using
toString e
Code example: Generic class with generic inner classes . . .
Code example: ArrayList chosen over an array
Code example: An implementation of the abstract method
inFigure7.9 oo o
Code example: Comments indicating the task premises are
ignored L
Code example: Intended container class don’t encompass
anyobjects
Code example: Ineffective search method that use the class
fromFigure7.12 Lo o
Code example: Almost identical classes without a proper
superclass Lo
Code example: Container class lacking proper methods . . .

xi

32

48

57
58
62
64
64
67
70
73
77
77
80
81

81

86

Xii

List of Tables

3.1
3.2

6.1
6.2

7.1
7.2
7.3
7.4
7.5

7.6

8.1

8.2

Pros and cons of proposed data collection procedures
Statistical measurements used in thisstudy

INF1010 June 2015 exam overview
Statistical analysis of the INF1010 June 2015 exam scores for
students with failing grades

Errors and flaws we identified that considers exceptions

Errors and flaws we identified that considers linked lists

Errors and flaws we identified considering erroneous use of
ATTAYS « « o v o v e e e e e
Errors and flaws we identified that considers generics and
class parameters L
Errors and flaws we identified that considers choice of data
structures L
Errors and flaws we identified that considers distribution of
functionality and data between classes in a program

Misunderstandings we identified regarding technical as-
pects of Java and programming languages in general

Misunderstandings we identified regarding object-oriented
practice and the importance of program design

xiii

Xiv

Preface

Computers and software have become a vital part of the daily life of most
people in developed countries, whether they are aware of it or not. We live
in a society where almost every single object we interact with either has or
will have a computer or network interface included. The need for experts
in the field of computer science shows no sign to stop growing.

The field of computer science may trace its origins all the way back to
the abacus invented some time between 2700-2300 BC. But one of the most
important pieces of any computer today is the software it runs and that is a
far younger invention. The first outline to a computer program was made
by Ada Lovelace in the 19th century. But neither it nor the computer it was
supposed to run on was ever created. It was not until 1936 when Alan M.
Turing published his article, “On computable numbers, with an application
to the Entscheidungsproblem,” that any theories about software was ever
proposed. And still it was first after 1946, and the appearance of the first
electronically coded computer, we started to see higher level (non-machine
code) programming languages appear.

For this reason the field of Computer Science Education and more
specifically Programming Education have only had a few decades to
develop. There is a growing number of students in the field of Computer
Science. Therefore the field requires much research on how to more
effectively teach students how to write program code and engineer large
pieces of code.

The last three years I have been a teaching assistant in different
programming courses at the University of Oslo. I have had the privilege
and responsibility to help students gain proper knowledge to become
better programmers. After having seen the effect my own teaching,
sometimes good and sometimes bad, I have developed a great interest in
how to improve upon it.

This interest lead me to write my master thesis about Computer Science
Education. Through my experience with assessing students assignments
and exams I learned a lot about what challenges the examiner face. These
experiences lead me to want to look at the programming errors made by
novice programmers. I have experienced the need for better ways to gain
insights into the understanding of a student and saw my thesis as a way to
help towards such a goal. My greatest wish for my work would be for it
be part of something that makes it easier for new students to learn how to
become an expert programmer.

XV

XVi

Chapter 1

Introduction

All novice programmers will inevitably make a lot of coding errors as they
stumble to become experts. Some of the errors are weeded out immediately
as the novices continuously learn how to detect and fix errors in their code.
But for programming students some errors persist and will show up in
their solutions to assignments and exams. From that point those errors are
instrumental in the work of teaching staff and examiners. They are tasked
with either helping the students avoid the errors in the future or give the
students grades based on their performance.

Unlike an essay or an oral report, program code contains few, if any,
direct answers to the authors intentions in writing them. Sometimes the
student provide the examiner with comments in the code or a README-
file to aid in understanding the program. But that is often limited to
explaining the functionality of entire methods, not the intention behind
single lines of code. The program code is written in a formal language
used to describe a sequence of instructions required to make a computer
complete a task. Unfortunately the novice may have misunderstood the
syntax or semantics of the language in a multitude of ways and may not
even be aware an error exists at all.

In an ideal situation all the feedback a student is given on their work
should have the sole goal to help the student improve upon his skill with
the topics at hand. That means the person tasked to review the code of
the student has to figure out the reason that error is made. It is not always
enough to say what parts of a program is erroneous and how it would
look like if it was correct. That type of response address the error, but
not necessarily the misunderstanding. The response should address the
misunderstanding instead and try to correct it. After the misunderstanding
is corrected the student should no longer make the same error. But
experience shows that due to limited time and skill in reviewing the code
of novices the error is addressed and the misunderstanding lives on.

The grades given a student is supposed to reflect his proficiency of the
topics in a course. We assess computer programs written by the students
to assess the student, not the program itself. What we really wish to
assess is the understanding and the mindset that has been used to create
the program, not simply whether it produces the correct result or not.

In that regard knowing and understanding the misunderstanding behind
the error is key. The error itself is only a symptom of something the
student is not suitably proficient at. An examiner needs to know what the
misunderstanding is to be able to judge whether the error is relevant to the
scoring system or not. Based on this we can assume that identifying the
source of errors in program code should have quite an impact on the grade
a student is given. Yet examiners do not have a good enough way of doing
this today.

Score are therefore often set based on criteria that consider the program
instead of the programmer. The last 15 years a lot of research has been made
into automatic assessment methods for programming assignments|[8, 9, 18,
19, 22, 26, 47, 56]. Many universities now include automatic assessment in
their courses to reduce the load on faculty. What we see is an increasing
trend where the students are assessed by strict formal demands that the
assessment software are given.

1.1 Owur goals

The intention of this study is to look for possibilities to to re-humanize
assessment of assignments. We want to analyze students solutions to
assignments to identify errors and the misunderstandings that cause them.
These errors differ from errors that occur while the student is working by
not being fixed before they hand in their solutions. The student either
believes the program to be complete or have not had the skill or time to
improve more upon it. In this thesis our main goal is to answer three
questions:

» Which programming errors do students of a first year programming
course make in their solutions to assignments?

» Which misunderstandings may have caused these errors?

¢ Is it feasible to use these misunderstandings as an aid in assessing
students?
— In formative assessment? !
- In summative assessment?

In this thesis the scope of misunderstandings extend beyond that
of misconceptions of certain concepts. It also extends to concepts and
principles the students simply do not understand or know of.

Additionally we will consider some aspects of the learning situation
that may effect the reasons certain errors are made such as how a course is
organized.

IFormative and summative assessment are two approaches to assessing students that
lead to different outcomes[29]. One aim to identify problem areas to help improve
understanding for the students. The other aim to evaluate the students proficiency in the
course an provide marks on his performance.

2

1.2 The scope of the study

We will focus on students learning to program in Java. All the participants
in this study are students in a second semester course in object-oriented
programming at the Department of Informatics at the University of Oslo
in the spring semester of 2015. A further description of the course can be
found in section 2.4.

This master thesis was written and conducted as an independent
study. Its goals and intentions was developed by the master student
and not designed to fit those of the targeted course or the Department of
Informatics in general.

The students we take a look at are at a level where preexisting research
on their errors is scarce. Their skill level is somewhere between what is
typical for students of CS1 courses and students of CS2 courses.? The
students have become skilled enough to avoid most syntax errors and the
simpler types of semantic errors that is common among students of CS1
courses. Yet they are not yet on the level of considering proper algorithmic
design in the way CS2 students should be.

1.3 Thesis overview

This thesis is divided into the following parts: In chapter 2 we present some
related research in the field of Computer Science Education Research and
discuss and customize the terms, measures and definitions used in this
thesis. In chapter 3 we discuss our choice of methods, give an overview
of what was done to gather data for the study and present the methods
used to attain that data. In chapter 4 and 5 we take a look at the errors
identified in interviews made with a total of 14 students. Then in chapter
6 we supplement the data found in the interviews through individual
observations of nine students solving programming tasks. In chapter 7 we
review the errors we identified and take a look at which misunderstandings
may have cause those errors. In chapter 8 we attempt to place those
misunderstandings into the scope of the course and discuss possible causes
and what we may learn from them. In chapter 9 we conclude our findings
and take a look at possible future work and improvements of the targeted
course.

2CS1 and CS2 are terms used by the ACM Computing Curricula to designate the first
two courses in the introductory sequence of a computer science major.[30]

Chapter 2

Background

In this chapter we take a look at some existing research and frameworks
from the field of Computer Science Education Research as well as terms
and constructs used in this study. We will also adapt some of these terms
to suit our needs better, creating the base knowledge upon which this study
rests. We will also present the university programming course in which this
study focus on.

2.1 Related research

2.1.1 Identifying errors

There has been done a lot of research on identifying programming errors
made by novice programmers. Several researchers have attempted to
identify the most common programming errors students taking CS1-
courses make [1, 6, 7, 15, 33, 34]. Many of them focus on how students
attempt to fix the errors or how long time they spend on fixing specific
errors[1, 15, 35]. Unlike this thesis the research mentioned above tend to
focus on the errors that arise in code as the novice is working to complete
some task, at the compilation of the code. This differs from the errors that
are part of a handed in solution as novices are likely to manage to fix most
errors that cause compiler-errors before they hand in an assignment.

2.1.2 Identifying misunderstandings

Some research has been done to identify different misunderstandings
that novice programmers have about different topics in introductory level
programming courses. Ragonis and Ben-Ari[45] study misunderstandings
about object-oriented programming that arise in a course that use the
"objects-first" approach to teaching programming. Turner et al.[53] take a
look at misunderstandings regarding design principles in object-oriented
programming. Danielsiek, Paul, and Vahrenhold[14] and Karpierz and
Wolfman[36] attempt to identify algorithmic misunderstandings among
students of CS2 courses and link them to specific topics and algorithms
and data structures such as binary heaps, hash tables and dynamic

5

programming. That is not something the novices we take a look at handle
yet. Unlike these studies we connect the misunderstandings we identify to
specific errors that are common for the students we take a look at.

2.1.3 Assessing programs

A lot of research has been done to improve assessment of programming
assignments. We can see a mix of research into ways of manually and
automatically assessing programs.

As for manual assessment Ginat and Menashe[27] attempt to use
the SOLO-taxonomy! to classify algorithmic components and assess the
algorithmic design of CS2-students. Fitzgerald et al.[24] take a look at
how the examiner’s view of his role affects what methods are used to
give scoring to a program. Olson[44] shows that different attributes of a
student’s program code is measured by using either a holistic or an analytic
method of scoring computer programs.

On the side of automated assessment a lot of case studies has been made
into testing specific automated assessment tools[13, 20, 31]. Carter et al.[9]
take a look at the extent of Computer Aided Assessment? across different
universities and how course planners and teaching staff experience its
use and benefits. Wilcox[56] review the benefits and drawbacks of
using automated assessment. They experience that student learning may
sometimes be impaired by the rigidity of the assessment scheme.

2.2 Defining errors and misunderstandings

In this thesis we focus mainly on errors in program code and the
misunderstandings that cause them. Before we go further we need to make
a formal definition of the use of the words error and misunderstanding.

2.2.1 Defining an error

The following definition of an error in program code and its relation to
other concepts is taken from McCall and Kolling[41]:

¢ The error is the nature of the problem in the source code that causes
the compilation or execution to fail.

¢ The diagnostic message is the human-readable message presented to
the programmer when execution or compilation fails.

* The programmer misconception is the nature of the misunderstand-
ing that resulted in the erroneous code being written.

1Learning taxonomies, such as SOLO, are explained in section 2.3.1

2Carter et al.[9] defines Computer Aided Assessment as any activity in which computers
are involved in the assessment process as more than just an information storage or delivery
medium

Our adapted definition

The definition by McCall and Kolling[41] suits our needs quite well. But
it does not fit completely. We discovered two types of errors that are
important in this thesis but not included in their definition:

* Logic errors in code that do not produce a compilation or execution
failure but ends up creating a faulty result.

* Design errors or flaws where either the efficiency, scalability or safety
of the program is reduced creating sub-optimal code.

With the new types of errors and flaws in mind the revised definitions
to be used in this thesis are as follows:

* The error or flaw is the nature of the problem in the source code that
causes the compilation or execution to fail, the program to give an
incorrect result or perform in a sub-optimal way.

¢ The diagnostic message is the human-readable message presented to
the programmer when execution or compilation fails.

¢ The programmer misconception is the nature of the misunderstand-
ing that resulted in the erroneous or flawed code being written.

As we can see here the diagnostic message only covers some of the
errors and flaws a programmer can may have in his code. This is the most
important reason why we will not focus on the diagnostic message at all in
this thesis.

The definition of a programmer misconception helps us see the relation
between misconceptions and misunderstandings. Misconceptions only
cover erroneous understandings of topics or concepts. In this thesis we will
focus on the broader perspective that misunderstandings provide such as
the lack of any understanding at all.

2.2.2 Categorization of errors and flaws

In addition to an exact definition of what an error or a flaw is we need
proper definitions of different classes of errors and flaws.

Categories from existing research

In an experiment to identify and help novices programmers understand
some of the most common errors made when writing Java code, Hristova
et al.[33] categorizes errors into syntax errors, semantic errors and logic
errors. They consider the first to be caused by spelling mistakes, bad
punctuation or order of words in the program. Semantic errors refers to
errors that deal with meaning of the code such as mistaking how certain
instructions works. Logic errors are the ones that arise from faulty thinking
by the programmer. These may also manifest as bad syntax or semantics.

7

So the border between them is not completely clear cut. Hristova et al.[33]
encountered the problem as some errors seemed to belong to sometimes
two and even all three categories. These categories have also been used by
other researchers[1, 6].

In their work to identify the most common syntax errors and time spent
solving them both Denny, Luxton-Reilly, and Tempero[15] and Jackson,
Cobb, and Carver[34] choose to only use a narrower classification usually
linked to either the diagnostic message from the compiler or the "reason"
the compilation failed. Examples of categorizations are: Cannot resolve
identifier, Missing ; and Using.length as a field.

Our adapted categories

The set of categories that fit our work best was the one made by Hristova
et al.[33]. It provides us with broader categories that can be applied to
our needs quite well. In their work Hristova et al. say they made the
classifications as an attempt to separate errors based on the thought process
of novice Java programmers. Others have used those definitions to analyze
programs. But those studies focus on simpler errors made while writing
and compiling code. The code we analyze is from solutions to assignments.
Our method involves classification of errors in code with consideration to
how they are detected and the impact they have on the Java program. To fit
those needs we made some adjustments to the categories of Hristova et al.

Modified to match our needs the definitions are more explicit and make
a clearer distinction between the three categories that cause a program to
not compile or give an incorrect result. We also include the definition of
design errors and design flaws included in the definitions of errors and
flaws in section 2.2.1.

It is important to understand that the line that separates design errors
and design flaws is highly context sensitive. Different courses and teaching
staff can place that line at different places.

¢ Syntax errors: spelling mistakes, punctuation and the order of words
in the program causing compiler failure.

* Semantic errors: non-syntactic errors ending in either compiler
failure or failure of the runtime execution.

* Logic errors: errors that result in an incorrect result at runtime.

* Design errors: errors that arise from bad choices considering program
efficiency, scalability and robustness, that students of the course are
expected to know based on the learning objectives of the course.

* Design flaws: errors that arise from bad choices considering program
efficiency, scalability and robustness, that are outside the scope of the
course but more experienced programmers would avoid.

Classifying errors within the first three categories is now quite easy. The
hard part is to decide whether an issue with design is an error or a flaw. It

8

requires good insight in the targeted course and how it is taught. In this
study we had the help of some of the teaching staff of the targeted course
to aid us in reviewing the classifications we use in chapter 4, 5, 6 and 7.

2.3 Elements of a university CS course

To understand the importance of errors and understandings in a CS course
we need to know which elements a course is based on. The elements
given below are in themselves not tied directly to any specific principles
for course design. But the interaction between them follows the principle
of Constructive Alignment[2].

2.3.1 Learning objectives

The very first thing a student should be presented with when starting a
new course should be the course learning objectives. A learning objective
is a short description of what the students should know or be able to do
at the end of the course that they were unable to do before. The learning
objective should be covering both what topic it covers (e.g stacks or binary
search trees) and to which extent the student should be familiar with the
topic (e.g be able to use a stack in different algorithms, or understand how
binary search trees improve search speeds in comparison to list structures).

Learning objectives should be used by course designers to help
deciding which topics should be included in the teaching activities of the
course, what should be included in the curriculum and also which teaching
activities are appropriate.

Learning taxonomies

To be able to formulate good learning objects course designers need to be
able to classify and formulate the depth of understanding required for an
action.

Learning something new is all about understanding a topic and the
concepts it is based upon. But the word is somewhat problematic
when used to describe wanted outcomes from a university course.
‘Understanding” may have different meaning to different people and in
different contexts. Entwistle, Entwistle, et al.[21] show that understanding
can be separated into different levels based on the subjects’ ability to
structure their answers about a topic.

Over the years a lot of different learning taxonomies have been pro-
posed. The most popular ones today are possibly Bloom’s Taxonomy[5]
and the Structure of the Observed Learning Outcomes (SOLO)[3]. They
share similarities by being hierarchically built as the higher levels encom-
pass all understanding of a lower levels. But they differ in both number
of levels and how the levels are designed. Both taxonomies are highly de-
pendent upon the learning context when it comes to classifying a certain
action or task based on the understanding required. Something that merely

9

requires recollection from someone who has seen that very example before
may require more analytical thought from someone who knows only the
concept used to complete the task.

Learning taxonomies are tightly bound to classifying learning objec-
tives and assessment. Yet they are often difficult to apply and require the
learning objectives to be well defined and understood. This difficulty cre-
ates possible discrepancies between how topics are taught and how they
are assessed.

While these general taxonomies have been used in the design of courses
for decades, they have not been adopted as wholeheartedly by Computer
Science educators. A lot of research has been done in attempting to use
the taxonomies in both writing learning objectives and assessing students
and their understanding [10, 28, 38, 48, 50, 51]. But some researchers in the
field of Computer Science Education feel these are inadequate to describe
learning outcomes in Computer Science. Fuller et al.[25] attempts to change
the taxonomies to adapt them to Computer Science by splitting Bloom’s
Taxonomy into two dimensions, Producing and Interpreting but are not
completely happy with the result.

2.3.2 Teaching activities and learning activities

It is common to separate between the concepts of learning activities and
teaching activities. Teaching activities are the activities the teachers do
to communicate knowledge to the students, such as lectures, lab sessions
and even private conversations. Learning activities are the activities done
by students in which they acquire knowledge and understanding about
the topic at hand. Biggs and Tang[4] states that teaching activities should
be chosen to stimulate the right kind of learning activities for as many
students as possible.

The learning objectives should be used to decide which learning
activities are relevant for the students to engage in to acquire proper
understanding of a topic. Based on this a decision can be made on which
teaching activities are best suited to engage the student in those learning
activities.

2.3.3 Assessment

The learning objectives should guide exam writers and others who create
assessments schemes - from now on denoted instruments of assessment
- for the course in how to assess the proficiency of the students. The
instruments of assessment should be able to give a reflection of the
proficiency of students compared to the intended learning objectives. This
should also in the end be reflected in how grades are given by examiners.
The intended learning objectives are the learning objectives presented
to the students. The actual learning objectives are the learning objectives
used to assess the qualities of the students. These are usually not
written and presented to students. They are the result of how writers of

10

instruments of assessment and the staff grading the students choose to
prioritize different elements of the curriculum.

Because of this most courses will have a certain discrepancy between
the intended and the actual learning objectives. This may be caused by
difficulty in assessing the complexity and difficulty of different parts of
an instrument of assessment. It may also be that the intended learning
objectives are too poorly written, not up to date or that exam writers do not
consider them when grading.

Summative assessment vs. formative assessment

There are mainly two different ways to assess students, formative and
summative assessment.[29]

* Formative assessment is used for two reasons. To help students identify
their strengths and weaknesses and target areas that need more work.
To help teaching staff recognize where students are struggling and
address those problems.

* Summative assessment is used to evaluate student learning by compar-
ing it against some standard or benchmark and give marks on how
proficient they are.

The reasons for using these different methods should be considered
by course planners when they design which instruments of assessment
are to be used in the course. Research into the use of different types of
instruments of assessment show that an instrument should do either or
the other and not attempt to do both. Lauvas[37] explains how mixing
them cause the instruments to achieve less towards at least one of the goals,
student learning or grading properly. But in practice we see a lot of courses
having hybrids between the two. Whether this is due to time limitations or
poor course design is hard to say.

The reason the two should be used separately is the fact that students
prepare and work different when the goal is to get as good grades as
possible. Students tend to prepare for summative assessment using so
called surface approaches to learning, focusing on remembering facts and
details in anticipation of the questions they will be asked. Using such
methods may cause a lesser level of understanding than using the deep
approaches to learning which focus on understanding a topic in depth.

The examiner and methods of assessing programs

Fitzgerald et al.[24] show that different examiners have different ap-
proaches towards grading summative instruments of assessment depend-
ing on what they see their purpose as examiners to be. Some see them-
selves as gatekeepers tasked with ensuring only students with satisfactory
proficiency advance to later courses. Others see their task as making sure
the correct score is given based on the instrument of assessment. Their re-
search show that this can impact how they grade students with solutions

11

in the middle range. The best and poorest students are shown to be treated
very similarly not matter the approach used.

The examiner usually fall to one of two methods to analyze an answer to
an instrument of assessment. The examiners using a holistic method grade
the students based on their overall impression of the student’s answer.
The examiners using an analytic method bases the score on an analysis of
the constituent parts of the answer assigning them different priorities and
weights.

Formative assessment faces the same issue to a lesser extent. As the goal
of formative assessment is not to give some metric of student proficiency
the focus of the examiner is how to give proper feedback. But due to
large classes and limited time to review code the examiner is required to
prioritize different aspects of a program as well.

2.4 The targeted course

The subjects for this study are students from a second semester course in
object oriented programming, called INF1010, held by the Department of
Informatics at the University of Oslo. The programming language used in
the course is Java. From now on INF1010 is denoted "the targeted course’.

24.1 Intended learning objectives

The following points are the written learning objectives stated on the course
web page[16]:

After completing this course you will have a thorough knowledge
about, and be able to use yourself when you program:

e subclasses, abstract classes, interfaces, virtual methods, abstract data
types and alternative implementations

* cooperation between objects, including programming with server-
clients and peer-to-peer programming.

* some important data structures such as one way and doubly linked
lists and binary trees with associated algorithms

After completing this course you will have a good knowledge about,
and be able to use yourself when you program, simpler versions of:

® recursion

graphical user interfaces with event programming

parallel programming, shared data, synchronization and threads

the Java class library

12

2.4.2 Course prerequisites

The students attending the targeted course have some prior experience
with programming. Either through the course INF1000, which includes
Java programming and a simple introduction to some object oriented
principles, or through the course INF1100, which is a mathematics oriented
course using Python as programming language.

Because of the different backgrounds, some students have less experi-
ence with Java than others. But the assignments we have reviewed were
solved over halfway through the semester. The course is set up to allow
the Python students to catch up with the others. But they do have a slightly
more difficult start to the course. So whether all the students do catch up is
hard to know.

This may be a factor to why some students have certain misunderstand-
ings but is outside the scope of this study as we do not compare the back-
ground of the subjects.

2.4.3 Teaching activities and assessment

The teaching activities in the course include weekly lectures with the
professors, plenary programming sessions and seminars in smaller groups
(up to 40 students) with the teaching assistants. None of these activities are
compulsory.

The course includes 11 mandatory programming assignments through-
out the semester. All students are graded with a numerical score on each
task. To be allowed to attend the final exam a student must achieve a scor-
ing of minimum two thirds of the total possible score for all 11 assignments.
The final grade is decided by the final exam only, not the mandatory assign-
ments.

2.5 Object-oriented programming

As object-oriented programming (OOP) is an essential part of the targeted
course we take a quick look at the background and concepts that make up
the paradigm.

Object-oriented programming is a programming paradigm based on
the concept of "objects". Objects are data structures containing fields of
data and methods defining the behavior of the object.

A programmer using OOP utilize four concepts to design and write
object oriented programs. These are the simple, yet very powerful,
concepts encapsulation, composition, inheritance, and delegation of data
between the objects.

* Encapsulation of functionality and data within a class protecting the
data and implementation from the rest of the "world".

* Composition of objects as some objects contain other objects in their
instance variables.

13

* Creating specialized classes through inheritance of attributes from an
encompassing concept.

* Delegation of data and functionality as one object relies on another to
provide a certain set of functionalities.

These concepts make up the core of object-oriented programming and
design independently of which programming language is used.

2.5.1 Approaches to OOP

Object oriented programming started out with the creation of the first
object-oriented programming language, SIMULA[43], and has since the
1970s been the dominant paradigm used in software development. But the
paradigm has developed with two different views on what is important
when we are designing a program. The views are not always mutually
exclusive and share many traits yet programs may differ a bit in design
when considering the two different goals.

The separation between the concepts and the approaches may be a bit
unclear when we consider them in object-oriented design (OOD). In this
thesis we talk both about applying the concepts but also why they are
applied. The targeted course do mainly base itself upon the Scandinavian
approach, but it does not express this explicitly. Therefore students’
motivation behind their design may follow the Scandinavian approach.

The Scandinavian approach

The Scandinavian approach[43] is an many ways flavored by the way
SIMULA developed. The first version,SIMULA I, was created to be a
simulation language. But many of the concepts used in SIMULA I was
refined in SIMULA 67 that was a full fledged object-oriented programming
language.

The approach that was used in developing SIMULA 67 and has become
the standard Scandinavian approach to OOP focus on mirroring the part
of the world that is relevant to your program. This includes how the
constituent parts can be divided into concepts with specific actions and
attributes in common and how instances of the concepts communicate
to make up the world as a whole. A program designed using the
Scandinavian approach tend to follow rather strict rules of how classes are
designed and what traits need to be inherited and which can be rewritten
by the specialized classes.

The American approach

The American approach[40] started out with the concepts developed with
SIMULA but has a different goal than the Scandinavian approach. The
goal is more focused on the practical aspect of reducing the amount of
code written. This make the limitations to inheritance fewer. Programs
written using this approach tend to be more open to contain alternatives to

14

the "natural" concepts that the Scandinavian approach prefers. Alternative
structures are created with the programmer and his work in focus rather
than the world.

15

16

Chapter 3

Method and methodology

In this chapter we discuss the choice of methods used in the study. We
also describe those methods and how they may affect the validity of our
results. We also take a look at the time schedule of the study and how we
dealt with some of the practical requirements of running a study where you
gather personal information.

3.1 Possible sources of data

There are multiple ways to gain insights about novice programmers and
the errors their code contain. Common for them all is that we somehow
need to assess their assignments.

Looking at our possible sources for data we have several to choose from.
We can use code written in students’ solutions to assignments, the error
messages they produce or other information from the students who wrote
them.

Looking at the error messages we do not find them suitable for our
needs. Not all errors that are covered by our definition of errors and
flaws will output an error message. In addition McCall and Kolling[41]
concludes that a single error may, in different context, produce different
messages and the same diagnostic message may be produced by entirely
different and distinct errors. This all depends on the compiler and run-time
environment. The diagnostic messages do not get us any closer to gaining
any insights into the reasons why a student ends up with a certain error
in his program. It may be a reason for the error in itself as some students
may have issues with bad diagnostic messages, but they do not help us
identify misunderstandings. For that reason the diagnostic messages are a
poor source of data for our study.

Our main goal for the study is made up of three parts. The first is
to learn more about which errors students make in their assignments.
The second is to learn about the reasons why they make those errors.
The third is to attempt to answer whether it would be feasible to use
misunderstandings as an assessment metric in the two types of assessment.
The first of these is quantitative of nature, but the second is qualitative.
The second goal is by far the most important in this study. The

17

misunderstandings that are identified would answer our second research
question and an analysis of them can possibly answer the last question. For
that reason the study was designed with more weight on the qualitative
data collection than the quantitative. This makes it a qualitative, not mixed
method, study[12].

Fincher and Petre[23] states that the granularity of your data sources
must match the level of resolution of the data you need. We need data from
individuals so we can study their method of solving a programming task.
We have quite a few rich data sources available, such as student solutions
to assignments as well as the students themselves.

3.2 Designing a qualitative study

According to Creswell[12] the traits of methods for collecting qualitative
data is open ended in nature. That means it cannot be captured through
any standardized questionnaire or other non-flexible extraction method.
The data may take an unexpected turn and requires a certain amount of
flexibility of the method used. The questions asked or setting the subject
is put into need will usually adapt as new knowledge is gained about the
subjects” behavior.

That reduces the different methods available to us. According to
Creswell[12] data collection procedures adapted for qualitative research
involve at least one of four basic types. Creswell describes these in the
following way[12, p. 185]:

1. Observations, in which the researcher takes fieldnotes on the behavior
and activities of individuals at the research site. On these fieldnotes,
the researcher records, in an unstructured or semistructured (using
some prior questions that the inquirer wants to know) way, activities
at the research site. The qualitative observer may also engage in roles
varying from a non-participant to a complete participant.

2. In interviews, the researcher conducts face-to-face interviews with
participants, interviews participants by telephone, or engages in
focus group interviews with six to eight interviews in each group.
These interviews involve unstructured and generally open-ended
questions that are few in number and intended to elicit views and
opinions from the participants.

3. During the process of research, the qualitative investigator may
collect documents. These may be public documents (e.g., newspapers,
minutes of meetings, official reports) or private documents (e.g.,
personal journals and diaries, letters, e-mails).

4. A final category of qualitative data consists of audio and visual material.

This data may take the form of photographs, art objects, videotapes,
or any forms of sound.

18

Some of these definitions may be a bit strict and out of date. E.g.
interviews may involve semi-structured questions instead of unstructured
ones. New technology and use of the Internet has also introduced a
lot of new communication tools which can be used for observations and
interviews.

From the basic building blocks described above we devised three
possible strategies that could be used. The strategies are described below
and pros and cons are given in Table 3.1 on the following page. Some of
them are general, taken from Creswell[12] and Fincher and Petre[23], others
consider issues specifically related to our study.

3.2.1 Work-logs

With this strategy the subjects are tasked to log their work process as they
work on an assignment we want to review. The logs serve as written
reports that describe the subject’s thought process as he completes different
programming tasks. It would list the subject’s progress, issues and why he
believes those issues appear. Together with the subject’s solution to the
assignment the work-log provides the entire data set.

3.2.2 Interviews

With this strategy the researchers review solutions to programming
assignments to identify errors and interesting parts of the solution. The
subjects with interesting errors in their solutions to the assignment are
invited to an interview where they explain their process of solving that
assignment. The interviewer allows the subject to control the conversation
but ensures the interesting areas of the solution is explained. The
conversation covers all interesting parts of the subject’s solution to the
assignment and his reasons for choosing solution method. The interview
audio is recorded to allow the researcher to revisit the interview in detail.
Together with the subject’s solution to the assignment and the interviewers
notes, the audio provides the entire data set.

3.2.3 Observations

With this strategy the subjects participate in individual observations of
them as they solve either parts of, or an entire programming assignment.
The observation reveals the choices made by the subject step by step.
The observer can either be passive or active, by choosing whether to
ask questions or not, but does not participate in solving the assignment.
The observation audio is recorded to allow the researcher to revisit the
observation in detail. Together with the subject’s solution to the assignment
and the observer’s notes, the audio provides the entire data set.

19

Work-logs

Interviews

Observations

Pros

¢ Enables us to obtain the language and words of

subjects

Can be accessed at a time convenient to the us
Represents data that are thoughtful, in that subjects
have given attention to writing down

Enables us to obtain the language and words of
subjects

The subjects may disclose thoughts and actions
happening over a longer time period than the
interview lasts

Allows us to control over the line of questioning
Allows for selection of subjects before the interview
is conducted

We can record information as it is revealed
Unusual aspects of the solution can be noticed
during the observation

Subjects may disclose uncertainties and lacks of
knowledge they otherwise would not be comfort-
able to discuss

Cons

Requires a lot of attention from the subjects. In our
case over a two to three week period.

Requires proper instruction from the subjects in
how to write work-logs and which thoughts and
choices we are interested in.

Does not allow for selection of subjects before the
work-log is collected

Time consuming analysis due to the richness of data

Provides us with indirect information filtered
through the views of the subjects

Removes the subject from the natural setting in
which the actions are conducted

Our presence and questions may bias responses
Not all subjects are equally articulate and percep-
tive

The information is recorded quite a bit after the
programming is conducted and may be effected by
the subject’s ability to recall his actions

Time consuming analysis due to the richness of data

The subject may find the observer intrusive and not
behave in a normal manner

Requires skills at attending and observing from the
observer

All actions and thoughts that are to be recorded
must happen during the observation

Does not allow for selection of subjects before the
observation is conducted

Time consuming analysis due to the richness of data

Table 3.1: Pros and cons of proposed data collection procedures

20

3.3 Methods used in this study

In the introduction we stated that one of our goals is to learn which
errors students make in their solutions to assignments or exams. Choosing
mandatory assignments as the instruments of assessment that we are to
review gives us a huge benefit. The mandatory assignments are solved in a
setting equal to the one we wish to analyze. There is no need to pay special
attention into designing a task or experiment to ensure the students work
in the way we wish to capture.

The students are given between two and three weeks to solve each
assignment. That makes them fairly long and time consuming. With that in
mind we had a good basis to make a choice between the different strategies
we had proposed. We used the list of pros and cons given in Table 3.1 on
the preceding page together with the practical limitation given by our goal
to choose a strategy.

Since we do not look at shorter assignments such as classroom exams
our data will only be applicable to longer assignments such as the ones we
review.

Considering that the errors we were looking for are errors present in
solutions to assignments the choice of subjects became important. We did
not expect all students to have enough if any of these errors. This makes the
opportunity to weed out the students with no interesting errors a valuable
trait of the interview strategy.

We wish to explain one particular weakness with using observations
mentioned in Table 3.1 a bit further. The fact that the subject may find
the observer intrusive is something that may lead to a huge bias from
the very nature of someone knowingly being observed. The bias comes
from a reactivity called the Hawthorne effect, sometimes also called the
observer effect. It is a type of reactivity in which individuals modify or
improve an aspect of their behavior in response to their awareness of being
observed[39]. For example this may cause the participants to attack a
problem from more angles before choosing a solution than they normally
would.

The size of the assignments also made observations of the assignments
as a whole unfeasible. It would take too much time, both for us and the
students. It would also be unlikely that either observer or student could
remain alert for a long enough time period. Work-logs could provide good
data. But we were not confident in being able to train the students properly
in writing them. It may also have affected our ability to recruit participants
as it requires a bit more work than an observation or interview.

3.3.1 Interviews about solutions to assignments

Considering the nature of the assignments interviews proved most promis-
ing for our study. Many of its advantages could be exploited in the data
collection. We are able to choose our subjects based on criteria that mark
them as interesting for our study before we commit to interviewing them.
It enables us to obtain the language and words of subjects, giving us in-

21

sight into how they think about problem solving when writing computer
programs. The subjects may disclose thoughts and actions happening over
a longer time period than the interview lasts. This allows us to possibly
gain access to all they have done to solve an assignment in the targeted
course. It also allows us to control over the line of questioning to minimize
the amount of work in analyzing the results and avoiding topics that are
not interesting.

The most important cons, such as possible bias from the interviewers’
questions, can be reduced by carefully planning the interview. The cons of
not getting data in real time can be reduced as much as possible by ensuring
the interviews are conducted as soon as possible after the assignment is
handed in. We cannot, however, ensure that the subjects will always speak
truthfully.

The methods used in the interviews will be explained in section 3.4.
Details of how the interviews were conducted are provided in chapter 4
and chapter 5.

3.3.2 Supplemental data collection using observations

To supplement the results from the interviews with data without the loss
of detail that may arise from interviews being held after the assignment
was handed in we decided to conduct some observations as well. The data
from the interviews requires us to guess at their misunderstandings based
on statements given as much as a couple of weeks after they worked on a
particular problem in an assignment.

The observations allows a more detailed view of how they work
and may support our belief on certain misunderstandings students may
have. It is important to remember the biases caused by the Hawthorne
Effect mentioned in section 3.3. For that reason we cannot be sure if
the students do not change their method of problem solving as they are
being observed. So we will avoid making conclusions that discard certain
misunderstandings or issues the students show signs of in the interviews.

We designed a shorter set of tasks for the observations, solvable
within a time frame that is suited for the format. The methods used
in the observations will be explained in section 3.5. Details of how the
observations were conducted are provided in chapter 6.

3.4 Interviews

The interviews make up the main bulk of our data collection. They are
focused on errors made in assignments in the targeted course. This helps
us reduce the possible biases considering the main goal with this study. We
wish to identify errors and misunderstandings in the solutions students
submit to instruments of assessments such as programming assignments
and exams. Mandatory assignments fits that description so we know the
students work in the way that is natural for them in that kind of situation.

22

An added benefit is the targeted course requires students to complete
them. This makes recruiting subjects for the study easier. No additional
work had to be done by the subjects unless they were invited to participate
in an interview.

3.4.1 The choice of assignments

We wanted to review two different assignments giving us an opportunity to
test our methods before we committed to it. For that reason the interviews
are done in two rounds. The first round consists of only four interviews.
Yet the data we acquired in that round is usable in our results. The subjects
are the same in both rounds of interviews, though some were recruited
to the study after the initial interviews were conducted. So the data from
both rounds are applicable in the study. The assignments that are reviewed
include different topics so the two rounds will mostly result in identifying
different errors. But the misunderstandings causing those errors may
overlap.

The assignments are both "take-home" assignments spanning two to
three weeks. They are mandatory and students need a certain amount of
them approved to be allowed to attend the final exam. They are not part of
the grade the students are given. This may have an effect of how students
work to complete these assignments. Our results may be affected by
this and the errors and misunderstandings we identify are not necessarily
the same as in a four our written classroom exam. In shorter exams the
students are likely to make more serious mistakes and not have time to fix
them. Similarly the longer assignments may include more difficult tasks
than a short exam that challenge the students on different skills.

As the study required some preparations (see section 3.9.2 and 3.10) we
chose from assignments planned for the latter half of the course. It was
important that the topics being tested included topics that are core in this
course and likely to be part of most introductory programming courses.
That removed an assignment being solely about graphical user interfaces.

We wanted to optimize our chances of getting as many participants
as possible. Therefore we discarded using assignments due just before
holidays and too close to the final exam. The timing would have made
it harder to have the students participate in interviews. Also considering
the time needed to analyze and process the results between the two rounds
of interviews we made a good choice of assignments. The assignments
themselves are summarized in section 4.2 and 5.3. The assignment texts
can be found in Appendix E and F

Assessment method of the assignments

From talking to the professors responsible for planning the targeted course
we were told the intention with the assignments is to make the students
work with the topics in the curriculum throughout the entire semester
and give feedback to what their problems are. That would make the
assignments instruments of formative assessment.

23

But before we take that for granted we need to consider the scoring
system and the points requirement described in section 2.4.3. A scoring
system is a trait often seen in summative assessment. The fact that students
can fail the course based on their scores make it possible to argue that the
assignments are part of the material that is used in their final grade. Failing
to get the required score will technically give them a failing grade, even
if they do not get to take the final exam. From that we concluded that
assignments are hybrids between formative and summative assessment.

That may have an effect on how students work with the assignment.
According to Lauvas[37] students may cope with continuous summative
assessment using lesser learning activities such as copying and pasting
code from the Internet and blind trial and error to achieve the output they
want. This may cause long term learning to be reduced.

3.4.2 Preparations

Before we stated identifying errors in the students’ assignments we
analyzed the assignment given to them. As the mandatory assignments
in the targeted course are rather large, we chose to review the students’
solutions first and identify errors in their code as well as classifying them
according to the categories we created in section 2.2.2. The students
whose assignments contain errors that are interesting were invited for an
interview.

3.4.3 Using retrospection

The method chosen for the interviews is called retrospection[54]. When
using retrospection the subject for the interview is questioned about the
thought processes during the solving of a problem he has solved. For
example he may be asked: "How did you ensure the linked list do not
contain any duplicates?"" The questions may also be more detailed, like
"Which data structure did you use?". This method was chosen over
methods such as prompting and questioning to ensure the subject was
asked as few questions as possible. This consideration was made as the
questions themselves may be leading and several key points may be lost
due to the way the questions are formulated.

Retrospection has some weaknesses. The subject may not always
remember exactly what he did, especially if some time has passed after
completing the task. The subject may not even be aware of what he is doing
as he may not have a conscious process for solving the problem. The subject
may also present his thought process as more coherent and intelligent than
it originally was. This may happen both intentionally and unintentionally
as the subject may not remember his original process. His memory may by
guided if his knowledge of the problem has changed since the he solved it.
This may cause some misunderstandings to be lost. But any positive proof
of misunderstandings should not be impacted by this.

At the time the interviews were planned it was not certain how
many from the research group would interview the students. A detailed

24

interview guide was written to ensure all interviewers followed the same
procedure. It can be found in Appendix B!l. In the end all the interviews
were performed by the author of this thesis, but the interview guide was
still used in all the interviews to ensure the author followed the same
procedure in all the interviews.

3.4.4 Initial interviews

Trying to ensure our interview methods would give the best possible
results, the interviews were split into two rounds. The first round was
intended as a trial run with a smaller amount of participants. The
second round included more participants and revolved around a different
mandatory assignment than the first. Yet we still managed to get good
results from the initial interviews.

3.4.5 Tools and location

To complete the interviews we used an audio recorder and post-processed
all the interviews using the audio playing software VLC.

All interviews were conducted at the university with only the inter-
viewer and the participant present.

3.5 Observations

To supplement the data from the interviews our goal with observing
students work became to learn as much as possible of how the students
were attempting to solve a problem. More specifically we really wanted to
get a feeling of the level of understanding they had of the different topics
involved in the tasks.

For that reason we could not rely on the visual aspect of watching them
write code. The reasons behind their choices may still be uncertain even
if you know their choices and actions. Therefore we had to involve the
student in a different manner. To get insights into their thoughts we wanted
them to speak of their actions and choices while they were making them.

3.5.1 The think aloud method

The observations were conducted according to the think aloud method[54].
This method requires the subject to continually speak out loud everything
they are thinking as they are working. The observers job is to make sure
the subject does not stop verbalizing their thoughts using questions such
as "What are you thinking now?", "What are you doing right now?", "Why
did you do that just now?". The questions are there just to keep the subject
talking throughout the observation.

IThe interview guide in Appendix B is the one used for the initial interviews. The errors
we were to look for were changed for the second round of interviews

25

The think aloud method was chosen over other observation methods
such as retrospection, introspection and questions and prompting because
of its strengths in letting the data gained remain unbiased by the observer’s
questions and at the same time not lose any details from the subject
forgetting what he though about.

Pros

¢ The think aloud methods does not require waiting until the subject
has completed at least a part of the task like retrospection and
introspection do.

¢ The think aloud methods does not require the observer to choose
when the right time is to have the subject explain their actions like
introspection and questions and prompting do.

¢ The think aloud method keeps the questions asked by the observer
to a minimum avoiding leading questions that create biased data or
questions that lead to false answers as the subject may answer what
he believes the observer wishes to hear.

¢ The think aloud method avoids the subject unconsciously cover up
their mistakes as soon as he has figured out what he had though
wrong as the human brain has a tendency to also forget what we
though wrong as soon as we figure out what was truly correct,
creating false memories[54, p. 44].

There are some weaknesses to the think aloud method mainly regarding
the importance of choosing good tasks and having subjects that are good at
verbalizing their thoughts.

Cons

¢ The think aloud method requires the subject to be good at verbalizing
their thoughts and actions. Those who are bad at it simply do not fit
the method and leaves you with little data gathered.

¢ The think aloud method requires the problem solved by the subject
to not be too easy or too hard. Too easy tasks are solved on an
unconscious level and such thoughts are impossible to verbalize. Too
hard tasks cannot be solved at all and will yield few results.

3.5.2 Tools and location

The observation audio was recorded using an audio recording device. The
observer was taking notes and the recording was later reviewed by the
observer using the notes as backup.

All observations were conducted at a meeting room at the university
with only the observer and the participant present. The students were
allowed to write the code on a computer of their choosing. For most

26

students this meant the subject’s own personal laptops. This was to make
the problem solving as authentic as possible, having all the same resources
available as when they are solving an assignment in the targeted course
such as code they themselves has written. Due to difficulties in distributing
the software we chose to not have any software recording the screen during
the observation.

3.6 Data analysis

To analyze the data from interviews and observations we use a qualitative
approach[23].

The analysis is made in two passes through the data. First we analyze
the data from each individual attempting to isolate the individual misun-
derstandings. We use the errors identified in the subject’s assignments as
a guide to which parts of the recorded data are interesting. The interest-
ing parts are then more thoroughly searched for patterns that suggest lack
of or erroneous understanding that may explain the errors that was expe-
rienced. At the same time we search for patterns that may disprove the
suggested misunderstandings. If a subject’s statements indicate that the he
seem to understand the topic properly the misunderstanding may need to
be discarded.

After identifying what we believe to be likely individual misunder-
standings we cross-reference the misunderstandings that are identified in
the different interviews. In cases where a certain error or misunderstanding
appears for multiple subjects, we compare the data and use clear similari-
ties to strengthen the likelihood that the misunderstandings may be gener-
alized for novices of the targeted course in general. The skewed selection
of students do make this generalization limited to the students who have
more errors in their assignments.

The errors and misunderstandings that yield the most data are selected
as most likely to be common among students and presented in detail in
chapter 7.

3.7 Measurements for statistical analysis

This thesis mostly focus on qualitative data. So it does not contain
much use of statistics. But in preparation to the observations we use a
simple statistical analysis to help us choose appropriate exercises. The
measurements used are the basic statistical measurements mean, mode,
median and standard deviation. Their formal definitions are defined in
table 3.2 on the following page.

3.8 The subjects

A total of 41 students in the targeted course participated in this study. Of
those 41 students 23 participated in either an interview or observation. One

27

Name Denoted Explanation Formula

mean x The average of the data | J72F=-Ti1th
set
mode mode The most frequent value x; when
in the data set of all gath- | Vx(count(x;) >
ered data count(x))
median X The middle value separat- X(n4+1)/2 When
ing the lower and upper | Vx(x; < x;41) and
halves of the data set n%?2 =1
x(n/2)+2x(n/2)+1 When
Vx(x; < xi41) and
n%2 =20
standard s The average difference \/ (xl_f)2+'1'1‘+(x”_x)2
deviation from the mean in the data
set

Table 3.2: Statistical measurements used in this study

of the students participated in both rounds of interviews.

The students were recruited via email asking them to participate in the
study. This meant giving the research group access to their answers to
mandatory assignments in the targeted course, as well as their final grades
upon completing the course.

Select students were also invited to participate in interviews or
observations as explained in section 3.4 and 3.5. As our focus was to
identify errors in answers to instruments of assessment, that selection was
a bit skewed considering skill level. The higher level students don’t get
that many errors in their solutions. Therefore we invited mostly lower-
or mid-range level students. This should not have a huge impact on our
results as we are exploring the misunderstandings behind certain errors.
Those who don’t make the errors would not add any data to that specific
case. They may share the misunderstandings of the students who make the
errors and also have completely different misunderstandings. But those
misunderstandings cannot be connected to specific errors and are therefore
difficult to use when considering them as a metric to assessment. They
would be very interesting to use to test how they might impact a scoring
system based on misunderstandings, should it ever be created.

3.9 Handling subject privacy rights

In this study we wanted to review the solutions to assignments in the
targeted course. The intention was to invite the students who made them
to interviews or observations. For that reason we needed to store some
personal data such as who the authors of these solutions are and how to
contact them.

28

As we stored information that can identify students in the course
and their solutions we needed to have systems to handle the privacy
rights of those who chose to participate. This includes making the direct
data sources anonymous and replacing any personal identifiers such as
usernames or email addresses with unique numerical keys. A reference
list containing the numerical keys and the identities of the participants was
then stored separately from the data.

All subjects had to approve being part of the study before we were
given access to their solutions on the specified assignment and contact
information to be able to invite them to interviews and observations. They
were all given a Participant Information Sheet. The sheet discloses all the
specifics about study and what the data will be used for as well as privacy
handling. These sheets were signed by all the participants upon signing up
for the study. The sheet can be found in Appendix A.

The study was reported to and approved by the Data Protection Official
for Research? with the project number: 42265. Their letter of approval can
be found in Appendix C.

3.9.1 Independence from the targeted course

The study was conducted separately from the targeted course. That meant
that no teaching personnel or examiners were given any data that could
identify any of the subjects. But we have consulted with the professors and
teaching assistants to do a better job at analyzing assignments and their
intentions.

The author who was responsible for the interviews and observations
was a teaching assistant in the targeted course during the time the study
was conducted and had attended the targeted course before. Certain
steps were taken to remedy any biases that may have arisen from having
previous knowledge of how the students perform and remove any conflict
between tho roles of teaching assistant and researcher. That step was
omitting from the study all students whom he had responsibility for either
teaching or grading.

This disqualification of some students should not have any effect on
the selection available for the study. The targeted course consisted of 14
different groups of approximately 40 students that were not assigned based
on skill or grades. Disqualifying one group leaves approximately 560 of 600
students.

3.9.2 Formal approval of the study

Before we could start recruiting subjects for the study or get a hold of
answers to instruments of assessment to review we needed approval of
our methods to ensure privacy. The instances whom we needed formal
approval from were:

ZPersonvernombudet for forskning ved Norsk samfunnsvitenskapelig datatjeneste
(NSD)

29

The teaching staff of the targeted course

The administration at the Department of Informatics

The data administrators at the University of Oslo

The Data Protection Official for Research?

Getting approval from the local instances did not require too much
time and was done with a couple of emails in a matter of two weeks.
But the Data Protection Official for Research required 30 days to process
the application. Because of this a six week period went into writing the
application, getting approval from local instances as well as waiting for the
application to Data Protection Official for Research to be processed. This
pushed the entire start of the data collection of the study up to the middle
of March.

The approval letter from the Data Protection Official for Research can
be found in Appendix C.

3.10 Overview of the timeline

This master thesis was started in the beginning of January 2015. The thesis
spanned over two semesters giving a total of ten months to finish. The final
result was handed in in the beginning of November 2015.

The targeted course started in the middle of January and lasted until
the summer holiday in the middle of June. That placed a lot of our work
with collecting data quite early in the year.

Our first task was to use existing research in the field on Computer
Science Education Research to identify goals for the study. Following that
the study in itself was designed.

The study required formal approval from multiple instances, some
requiring up to a month to process the application for approval. That
time was spent preparing the initial interviews. The assignment text was
analyzed. Expected errors were identified and a time frame for the next
months was set. As soon as formal approval was granted we started
recruiting participants for the study. Shortly after the initial interviews
were conducted and analyzed.

After a short time analyzing the results and reviewing our method
for the initial interviews the next round of interviews were conducted.
During the summer our results from the interviews were analyzed and the
plan for the observations was finished. Participants for the observations
were recruited and in August the observations were conducted as the final
procedure for data collection. Our approach at reviewing and updating our
goals and methods used in data collection can be found in Figure 3.1 on
page 32. The first node from the top in the flow chart represents the work
described in this chapter. The second and third nodes describe the process

3Personvernombudet for forskning ved Norsk samfunnsvitenskapelig datatjeneste
(NSD)

30

of interviews disclosed in chapters 4 and 5. The observations in chapter 6
can be seen as covered by those two nodes as well. The fifth node, after the
first node that has to choices, represents the work explained in chapter 7
where our results are disclosed. The final node represents our discussion
and conclusion found in chapters 8 and 9.

The months following August were spent analyzing our results and
preparing our conclusions.

31

Problem analysis - Design data -
collection scheme
]

Identify errors in
subjects” assignments

!

Update .data Inte1'rv1ew sub]‘ects Recruit more
collection with errors in articipants
scheme their assignments P .

Y

Did we
find what
we were
looking
for?

yes
Identify
misunderstandings
and connect them
to errors through
interview analysis

l

Final analysis

Figure 3.1: Model of our approach to data collection

32

Chapter 4

Initial interviews

In this chapter we take a look at the first round of interviews we conducted.
We will discuss the state of the targeted course at the time the interviews
were concluded, the assignment that was reviewed and which errors we
expected before the students solutions to the assignments were reviewed.
Finally we will discuss the subjects that participated in these particular
interviews and compare the errors they made to the ones we expected.

4.1 State of the targeted course

At the time of the initial interviews the students of the targeted course had
been through a significant piece of the curriculum. They have been through
eight out of 15 lectures that contained new concepts and were not repetition
classes.

The assignment solutions reviewed required knowledge of a majority
of the intended learning objectives stated in section 2.4.1. The assignment
includes subclasses, interfaces, virtual methods, abstract data types and
alternative implementations as well as linked lists with the associated
algorithms.

Most students solved this assignment using pair programming. But
some did not have a partner and solved it on their own. This may have
an effect on the results, as it creates an extra reason for why a student may
have little knowledge of parts of the code that has been written. We still
chose this assignment because lack of knowledge of a particular solution
also may give interesting insights into which misunderstandings a student
may have.

4.2 The assignment we reviewed

The initial interviews revolved around the student solutions to the sixth
mandatory assignment in the targeted course. It is based on the previous
assignment. The assignment we reviewed was to make multiple container
classes that can hold the classes made in the previous assignments. But
none of the errors made in the previous assignment should have an effect

33

on how they perform in the assignment we review. The assignment text
used in the interviews can be found in Appendix E. The assignment text
for the previous assignment can be found inn Appendix D.

The assignment we reviewed is made up from multiple parts. Part
one is to design and make a drawing of an intended class hierarchy of a
specified set of classes and interfaces to be used later in the task. As this
study is about students errors in code, we have chosen not to assess that
part of the assignment at all.

Note that when we use the word implement we refer to how a class
implements an interface and not that a person has implemented a piece of
planned code.

The next part of the task was to write the code for the interfaces and
classes. The following classes were to be written:

* AbstraktTabell : a generic interface for containers where you can
add and search for things on given indexes.

* AbstraktSortertEnkelliste : a generic interface for sorted contain-
ers.

® Tabell : a generic container which implements the interface
AbstraktTabell using an array to store data.

* SortertEnkelListe : a sorted generic container which implements
the interface AbstraktSortertEnkellListe using a linked list
structure to store data.

* EnkelReseptListe: an unsorted linked list specified to contain a class
the students have made in a previous assignment.

* YngsteFgrstResepListe : a FIFO queue extending the linked list
given above

* EldsteFgrstReseplListe : a LIFO queue extending the linked list
given above

The final part of the assignment we reviewed was to create unit tests
for all the classes made in the second part of the assignment. To keep
the amount of work required for the analysis from growing too big we
chose to focus mainly on the second task and not spend too much time
with the unit testing. It may have been interesting to take a look at how
the students designed their tests and find out what,d in their programs,
students believed to be important aspects to test.

4.3 Expected student errors

Before the interviews the assignment was analyzed and expected errors
were based on a mix of the experience of the research team, interviews with
the assignment author, the professors and TAs in the targeted course as well
as some literature about student coding errors made at each compilation [1,

34

6, 33]. The list below do not contain many syntax errors. This is because the
students should be experienced enough to deal with all the simplest errors
in their code in the three week span they have to complete the assignment.

* No syntax errors were expected

e Semantic errors:

A class implements another class

A class extends an interface

An interface implements another interface

A method attempts to initialize a generic array

A class or interface does not implement or extending Iterable
but is attempted used in for-each -loops

* Logic errors:

An Iterator returns null-pointers

A class implements Iterator instead of Iterable

A method uses == instead of equals-method

An interfaces or class miss method from assignment description
A class does not bind the generic type to required interfaces

The insertion-method in an array-container does not handles all
edge cases

The implementation of an Iterator returns Node objects from
linked list

The insertion-method in linked list misuses the compareTo -
method

A method compares generic objects using the result from
toString

The insertion-method in a linked list does not handle all edge
cases

The concepts of FIFO- and LIFO-queues is mixed

The iterator in FIFO- or LIFO-queues outputs values in the
wrong sequence

* Design errors:

An interface does not bind the generic type to required interfaces

A method in an Iterator does not throw the appropriate
exceptions

Next-pointers are used directly in a class used in a linked list

The keyword private is used for fields in a super class and the
subclass uses super.variable_name

A class lacks the appropriate heritage from a natural super class

* No design flaws were expected

35

4.4 The participants

The assignments of ten different students were examined. The assignments
of seven of them were interesting. Out of those seven, four were able
to make an appointment for an interview. Two of those had cooperated
in pair-programming and handed in the same assignment. One of the
students who cooperated was clearly an inferior programmer to the other
and the work of the better one dominated the assignment. That left little
data to be gained from the second as he had little knowledge of what had
been done.

The students had a lot more errors in their assignments each than we
had anticipated. This may be due to a lower skill level than expected,
or that the task simply was more difficult than the level of knowledge
expected at that point in the course. But this should not have any negative
effects on our data. The misunderstandings of all students of the targeted
course that have errors in their code are relevant to our study.

4.5 The errors we experienced

In this section we take a look at the errors we identified in the assignments
of the students we talked to in this round of interviews. Most of the
errors were identified before the interviews were conducted, but some were
missed and identified during the interviews. Any errors that only appeared
in the assignments of students who did not participate in the interviews are
omitted.

¢ Syntax errors:

— Uses equals on a String-object with a generic object as parameter.
This is an extended version of using the wrong parameter type.

¢ Semantic errors:
— The program contains duplicate classes
* Logic errors:
— A class or interface implements a generic interface without
specifying the generic parameter

- An intended iterable class does not implement Iterable
interface

- A method compares generic objects using the result from
toString

— A non-recursive insert-method in a sorted linked list contains no
loops

— A non-abstract list-class lacks insertion method

- A method expands existing storage array but does not update
the original array-pointer

36

— A linked list contains an extra insertion method for sorted
insertion instead of using the inherited insert-method from
interface

— The insertion-method in a linked list fails to properly update
pointers

* Design errors:

— A non-exception class, which is never thrown , extends
RuntimeException

— A Node-class in a generic container contains a String id to
compare elements

— A class uses an Object-array for storing generic objects
* Design flaws:

— A private inner class is declared as generic without any reuse

— The insertion-method in a linked list uses a loop to insert last
element having a last -pointer

The students had been programming for at least one semester before
they attended the targeted course. The solutions to the assignment were
made during a three week period. It is therefore natural, as we predicted
in section 4.3, that not many syntax errors were found in the reviewed
solutions. In that time the students should have been able to sort out all
of the simpler errors causing compiler failure. Yet one of the students did
have one semantic error, causing compiler failure, in his code.

We do see that quite a lot of the errors we identified were similar to
the ones we expected. We experienced less errors related directly to linked
lists, but quite a bit more regarding generic classes and interfaces.

Due to the low amount of participants it is hard to say something
definitive about why the errors we experienced were different from the
ones we expected. But it seems we underestimated the difficulty of writing
and using generic classes and overestimated students issues with linked
lists. We also overestimated how many problems the students have with
the Java keywords extends and implements . None of the assignments
had any errors regarding these.

Further details about the errors and which misunderstandings we
identified during the analysis of the interviews are discussed in chapter
7 and chapter 9.

4.6 Issues and points of improvement

After completing the initial interviews we wanted to answer the following
questions. Have we gained any valuable data assisting in answering our
research questions? If so, were there parts of the interviews that could be
improved, to improve the quality of the data recorded?

37

We had gathered several interesting insights into the understanding of
certain errors and the misunderstandings that caused them. But we had
experienced some issues with the interview method that we needed to
address in the next round of interviews.

4.6.1 Too long interviews

The interviews became way too long and contains a lot of conversation
about things in the assignment that is not relevant to this study. This does
not affect our data, but causes a lot of extra work during the analysis that
may have been avoided through more careful planning of the interview.

4.6.2 Errors that escaped our review

We identified some additional errors during the interviews, as we had
overlooked them when first reviewing the assignments. Our hope is that
this issue may be fixed if we spend a bit more time running the programs
instead of simply reading them. Then we can cut some parts of the
assignment and not have the students talk about everything.

4.6.3 Too much time elapsed before the interviews

We believe the students may have forgotten some of the specifics consid-
ering their assignments. Some of the interviews were held as much as ten
days after the assignment deadline, and the time frame of the assignment
was three weeks. We had to wait for the deadline to elapse before any
of the assignments were made available even though some students may
have handed in their solution long before the deadline.

Some of the tasks may have been solved as much as 30 days before
the interview. This may cause us to miss some misunderstandings that
we could have caught had we talked to the students earlier. Some of the
students may have learned what they did wrong and no longer have the
misunderstandings that caused certain errors.

4.6.4 The assignment was too long

The assignment was a bit too long to effectively conduct many reviews and
interviews. The different Java classes that the students were to write were
often not related to each other, making the reviews difficult and adding to
the interview lengths.

38

Chapter 5

Second round of interviews

In this chapter we take a look at the second round of interviews we
conducted. We will discuss some experiences that was made during
the initial interviews and how they affected how the second round of
interviews were conducted. We will then take a look at the assignment that
was reviewed and which errors we expected before the students solutions
to the assignments were reviewed. Finally we will discuss the subjects
that participated in these particular interviews and compare the errors they
made to the ones we expected.

5.1 Experience from the initial interviews

The initial interviews proved that our method of gaining insights into
which errors students make in their solution to instruments of assessment
worked. For that reason no major changes were made. Some minor
changes to the interview technique was made in an attempt to rectify some
of the issues listed in section 4.6. The issues we tried to deal with was the
overly long interviews and time lapsed between when a student solved a
problem and the interview was conducted. The following steps to improve
our results was made:

* We worked to become more concise in our questions and try to make
the interviews shorter than in the initial interviews.

* We tried to get the students to participate within a shorter time frame
of their deadline to attempt to reduce the time between a student
solved a problem and the interview was conducted.

¢ The assignment that was chosen only spanned two instead of three
weeks, reducing the time between when the assignment started and
was handed in.

¢ We asked the students who had signed up for the study to email us
as soon as they handed in the assignment allowing us to review the it
earlier than in the initial interviews.

39

* We chose to ask even more questions about the errors we had
identified in students assignments. This includes getting a full
explanation of the concept and some of its constituent parts.

5.2 State of the targeted course

At this point the students of the targeted course had been through all the
new concepts in the course excluding graphic user interfaces. For that
reason we can expect the assignment reviewed in the interviews to require
knowledge of any of the concepts stated in the intended learning objectives
from section 2.4.1 on page 12.

The assignment requires knowledge of subclasses, virtual methods, ab-
stract data types and alternative implementations as well as the possibility
of linked lists with the associated algorithms. What makes it more difficult
than some previous assignments is that it requires more from the students
in regards to planning and designing their program.

Unlike the assignment reviewed in the initial interviews everyone had
to complete this assignment on their own. Pair programming was not
allowed.

5.3 The assignment we reviewed

The initial interviews revolved around the student solutions to the ninth
mandatory assignment in the targeted course. The assignment text can be
found in Appendix F.

The assignment is to make the first step in creating a program able to
solve Sudoku boards using a brute force method. Sudoku is a logic-based
number puzzle[55].

The task is split into three assignments. In the first assignment the
students are asked to create the underlying data structure of a Sudoku
board. That includes classes and structures to represent squares, rows,
columns and boxes. In addition they need to write a file reading scheme for
text files containing the dimensions and values of a given Sudoku board as
well as a class to store valid solutions to the Sudoku board.

The second and third assignments involve creating a recursive method
to try all possible solutions of the board and a graphical user interface for
the Sudoku solving program.

5.4 Expected student errors

Before the interviews the assignment was analyzed and expected errors
were based on the same sources as the initial interviews (see section 4.3 on
page 34). The difference in the analysis of the assignment as is that we used
some of our experience from the initial interviews. The design errors and
flaws may be hard to understand unless you read the assignment text.

* No syntax errors were expected

40

* Semantic errors:

— The program does not handle input files with alphanumerical
values

¢ Logic errors:

— Squares reference the wrong Box-objects

— Squares lacks linked list structure
* Design errors:

— Use of ArrayList instead of array for storage when indexes and
number of elements are known

— Almost identical classes are defined without using heritage from
a super class

— An object use "tags" to define which other objects it "belongs" to
instead of being a pointed to by a field in the other objects

* Design flaws:

- A class uses two-dimensional arrays for storage of elements
when position is irrelevant

— An ArrayList is used instead of an array when maximum length
is known but final size is uncertain

For this assignment we expected more design flaws than the one
reviewed in the initial interviews. This is partly because the assignment
requires an unfamiliar yet quite strict data structure. The chance of students
making poor design choices was considered as quite high by the teaching
staff in the targeted course.

We also expected less semantic and logic errors than in the assignment
reviewed in the initial interviews. This is because of the smaller size of the
assignment as well as a correction based on our experiences from the initial
interviews.

5.5 The participants

We reviewed 23 different assignment solutions and interviewed ten
students about them. Another seven were invited to participate but either
did not respond or were unable to make time for an appointment. The
final six did not have enough interesting errors in their code to be invited.
The errors identified for the seven who were unable to make time for an
appointment did not show a different pattern than for those who were
interviewed. They would not have added any errors to our list but their
misunderstandings may have been different.

In the initial interviews most of the students that were interviewed
made a lot more errors than we had expected. This time around it was
a lot less. The added participants this round had less errors and showed an

41

all over better understanding of the assignment and their work. This may
be because they were better programmers, or because the assignment was
easier than the last one.

The very best students were not invited to participate in the interviews
as their solutions did not contain sufficient errors to be interesting for this
study.

5.6 The errors we experienced

In this section we take a look at the errors we identified in the solutions
of the students we talked to in this round of interviews. Most of the
errors were identified before the interviews were conducted, but some were
missed and identified during the interviews. Any errors that only appeared
in the solutions of students who did not participate in the interviews are
omitted.

¢ Logic errors:

— A method throws or catches the Exception super class
— Program failure data is stored outside the thrown exception

— A method throws wrong exceptions at failure events
* Design errors:
- An ArraylList is used instead of an array for storage when

indexes and number of elements are known

— Almost identical classes are defined without using heritage from
a super class

— An object use "tags" to define which other objects it "belongs" to
instead of being a pointed to by a field in the other objects

— The program contains extra data structures to describe the state
of the program state instead of using appropriate methods to
compute the state

— A non-exception class extends an exception
— The program does not convert the data type of values read from
a file to appropriate non- String types
¢ Design flaws:
— An ArrayList is used instead of an array when maximum length
is known but final size is uncertain

- A class uses two-dimensional arrays for storage of elements
when position is irrelevant

— The program contains improper use of private internal classes

- Functionality is located in another class than the one it should
be in

42

— A class uses different data types for storage of data and functions
used on those data and converts between the two types

Most of the students managed to make their program work properly, so
a lot of the errors are classified as design errors and design flaws and lack
of attention to the object oriented model. We did not experience a single
syntax or semantic error. All programs compiled with no issues. Some
errors are classified as logic errors even though the programs produced
the correct result. That is because they are related to exceptions and error
handling which may cause the wrong result to be produced in particular
situations and uses.

Further details about the errors and which misunderstandings we
identified during the analysis of the interviews are discussed in chapter
7 and chapter 9.

5.7 Issues and points of improvement

The second round interviews were a lot more to the point in comparison to
the initial ones. This, combined with the fact that the task was smaller made
both the interviews and the analysis a lot easier. Our attempts at addressing
the issues from the initial interviews were successful on most points. We
spent more time analyzing and reviewing the assignment solution before
the interviews. This made analyzing our results a lot easier.

The second round of interviews gave a lot more relevant data than the
initial interviews. After completing the interviews we only have a small
list of possible improvements.

5.7.1 The time elapsed could have been improved further

Similarly to the initial interviews a lot of students had forgot some of the
reasoning behind their choices. Some students had also corrected the errors
and problems they had as the code they had made were to be used in a new
assignment. Because of that they were sometimes aware of the problem
but had already replaced their faulty knowledge with new understanding
rendering the information we sought lost forever. If possible we would
have conducted the interviews as soon as the day after the solution was
handed in to improve upon this measure.

5.7.2 The assignment may have been a bit too easy

This assignment was far more fitting in size than the assignment used in
the initial interviews. The assignment may have been a bit too easy as
almost all the students managed to complete it without any errors causing
the program to produce the wrong result.

43

44

Chapter 6

Think-aloud observations

In this chapter we take a look at the observations conducted to gather
supplemental data to the assignment reviews and interviews. This final
data collection activity was an observation of subjects programming small
exercises. We will discuss the state of the course when the observations
were conducted and the subjects we expected to participate in the
observations. We will then take a look at the exercises that were made
for the observations, how the topics were chosen and which errors and
misunderstandings we hoped they would add further data to. Finally we
will take a look at the subjects who actually participated and what data the
observations contributed to.

6.1 State of the targeted course

At the time of the observations the semester was over. The final exam was
finished and all students who got a passing grade on the final exam had
completed the targeted course. The observations were held as part of an
extra set of lectures and problem solving sessions, offered to students who
were allowed to resit a the exam in August. The reasons for having to resit
the exam are usually that students either get a failing grade on the previous
exam or fail to show up due to being ill.

For this reason we expected the subjects in this group to have a skill
level well below average for the targeted course. A large portion of them
did not manage to get a passing grade on the previous exam. For that
reason they are not truly a representative group for the course as a whole.
It is important to know that when considering the data gained from these
observations.

6.2 The exercises

The goal of the exercises was to supplement the data we collected in the
interviews. This was done to help us identify more misunderstandings
causing the type of errors we previously had experienced. Therefore the
exercises had to be designed to suit our previous results. That gave us the

45

following list of possible error types to look into:

¢ Exception errors

e Poor choice of data structure

Data and functionality distribution errors

Linked list errors
¢ Array-errors

¢ Generics errors

Iterator errors

6.2.1 Limitations from the think-aloud method

Because the exercises were to be solved during think-aloud observations
it was important to design the exercises to fit the observations with the
method described in section 3.5.1.

With regards to the work required to analyze the observations and the
time available to the students who were practicing to resit the exam the
exercises should not take more than 30 minutes to complete for a skilled
novice programmer.

The topics covered should be ones the subjects do not master fully yet
manage to at least attempt creating a solution to. If the exercises are too
hard no subject will be able to make a proper attempt. If the exercises are
too easy they will have learned how to solve it using rote learning and a
lot of the choices made would be unconscious ones. This is a reason why it
is often a problem to figure out how experts solve simpler problems. They
have reached a point where they know it so well they no longer have a good
way of verbalizing the process they went through to solve the problem.

Additionally there should be a warm-up exercise to let the subjects get
comfortable with verbalizing their thoughts and actions when they write
program code. That exercise should take five to ten minutes and not be
included in the recording of the observation to help the subjects relax and
get comfortable.

6.2.2 Limitations due to the subjects’ skill levels

As the subjects were expected to not be the most skilled programmers the
exercises would need to consist the simpler parts of the core curriculum.
We had no other data from the study to help us do this. But we were
allowed to use the scores achieved in the final exam in the targeted course
held a few months earlier. One of the professors teaching the targeted
course provided us with the scores of the students who failed the exam.
We were given the scores of the individual tasks of the exam without the
candidate numbers of the students.

Most of the students we expected to participate in the observation
would have tried to solve that exam and gotten a failing grade. Therefore it

46

Theme

Task 1 | Class hierarchy and pointer structure
Task 2 | Data structure from program definition
Task 3 | Ordered linked list and recursion

Task 4 | GUI, Java Swing and Java AWT

Task 5 | Threads, monitors and sorting algorithms

Table 6.1: INF1010 June 2015 exam overview

X x s | Students with 0%
Task 1 | 20.82% | 10.00 | 23.89 23
Task 2 | 23.65% | 17.50 | 24.79 10
Task 3 | 19.82% | 18.50 | 14.36 6
Task 4 | 20,49% | 11.25 | 19.32 14
Task5 | 9,03% | 5.50 | 10.67 35

Table 6.2: Statistical analysis of the INF1010 June 2015 exam scores for
students with failing grades

helped us make some assumptions about which topics are suited for them
to solve during an observation. If they scored too high in a topic it might
be too easy. If they scored close to zero it is unlikely that asking them to
solve such an exercise may give any insights into their thinking, as they
will probably not have any idea at all on how to solve it.

The exam of June 2015

The exam was made up of 5 different tasks. Those may also have been
divided into extra subtasks. But the scores we were supplied with were
separated into those scores only. Therefore we have chosen to consider
them as a whole. The topics of the different tasks can be found in Table 6.1
and a histogram containing the distribution of the students’ scores can be
found in 6.1 on the next page.

To analyze the scores the students achieved we made a quick statistical
analysis. We used the statistical measures we presented in section 3.7 on
the students’ scores. The results of those measures are listed in Table 6.2.

The statistical measure mode is not included as it computed to 0 for all
five tasks. When the granularity of the scoring system is so detailed (0-
100%), the number of equal non-zero scores are unlikely to be very high.
Instead the number of students who did not get any points at all were
added as a metric. This is very relevant as it may highlight topics that
should be avoided in tasks in the observation.

The mean, ¥, is quite similar, at approximately 20%, for all tasks except
task 5 which is at 9%. So it is hard to make any assumptions except that
threads, monitors and sorting algorithms would have been likely to be too
difficult to fit in the exercises for the observations.

47

60

50

[T

£ 40 -

U

S B Task1l

7]

%5 W Task?2

2 W Task3

E

— M Task 4
mTask5s

0 10 20 20 40 50 o0 70 80 90

Percentage of score achieved

Figure 6.1: The distribution of students failing the INF1010 June 2015 exam
based on percentage of the maximum score they achieved

The median, %, on the other hand varies a bit more. A median lower
than the mean indicates a large amount of students scoring very low and
a few students scoring very high. A median above the mean indicates the
opposite. And a median closer to the mean indicates a more even spread.
A median above the mean indicates the opposite.

Finally a low standard deviation, s, and few students scoring 0% shows
less spread in the score and more students who got a score close to the mean
as the mean cannot have been pulled up far by a few very high scores.

From this we can see that the third topic, linked lists and recursion, may
prove to be a good choice for these students.

6.2.3 The chosen set of exercises

With all the aforementioned requirements in mind we designed the set of
exercises described below. The full text given to the subjects can be found
in Appendix G.

* A warm-up exercise requiring the subjects to create a simple print-
method for a class called Car and create a functioning program that
creates a few instances of the class Car and prints the info about them.

¢ The first proper exercise required the subjects to design and program
a simple class hierarchy for a vehicles with some predefined require-
ments.

48

* The second exercise required the subjects to program a LIFO-queue
in the form of a linked list.

e If the subjects were to complete both exercises the subjects were to
solve an additional exercise to make the LIFO-queue from the second
exercises iterable.

How will these exercises fit our requirements?

The warm-up exercise fills the requirement to ease the students into
verbalizing their thoughts.

The first proper exercise is designed to help us identify misunderstand-
ings that lead to errors in distribution of data and functionality. Those were
very common errors in the interviews. It was made to be a lot easier than
the exercises from the final exam from June 2015 that consider class hierar-
chy and pointer structure. So it should be feasible to solve for the students
participating.

The second exercise was designed to help us identify misunderstand-
ings that lead to errors with linked lists and generic classes. They are two
types of error we experienced a bit, and the teaching assistants in the tar-
geted course described them as "very common" in our talks with them.

The additional exercise was made to help us identify misunderstand-
ings that lead to errors both in linked lists and iterators. This is achieved
because writing an iterator requires knowledge of the container is written
for.

We did not have a student with the proper level of experience available
to test our exercises. Instead they were tested by a student with one
additional year of experience. He spent twenty-six minutes solving the
exercises. From this we believe a skilled student with one year less
experience may have to spend a couple of minutes more.

6.3 The participants

27 students signed up for the extra lectures and problem solving session.
They were offered a crash course consisting classroom lectures and plenary
problem solving. 16 out of the 27 showed up for the crash course and
of them a total of nine students chose to participate in the individual
observations.

The lectures were held over two days and the individual observations
were held afterwards. The lectures were not designed to improve skills in
topics specific to the observations but to prepare them to resit the exam.
Thus the topics covered in the observation exercises did not receive any
more focus than other topics in the course.

The nine participants were all students who were going to resit the
exam. As they chose to participate themselves there was no random
selection of students. Based on their choice to participate first in the crash
course and then the observations we can expect them to be among the more
motivated students. But as mentioned in the beginning of this chapter,

49

most of them are still likely to be less skilled than the average student of
the targeted course.

6.4 Supplemental data collected

The observations were focused on dealing with the student misunderstand-
ings we wanted to learn more about, but this chapter deal only with which
errors we have supplemental data to. By that we mean which errors from
the interviews that the observations yielded more misunderstandings. We
summarize the results from the observations as a list that only contains er-
rors that we have identified in the assignments reviewed for the interviews
that we have found supplemental data for.

¢ Logic errors:

— A class or interface implements a generic interface without
specifying the generic parameter

— A method compares generic objects using the result from
toString

— The insertion-method in a linked list fails to properly update
pointers

® Design errors:

— Almost identical classes are defined without using heritage from
a super class

* Design flaws:

— A private inner class is declared as generic

— The insertion-method in a linked list uses a loop to insert last
element having a last -pointer

But similarly to most research that look at errors made while novices are
programming and attempting to compile their programs, we observed a lot
of syntax and semantic errors[1, 6, 7, 33]. But we had not identified many
of them in the solutions to assignments reviewed before the interviews.
Therefore they are not represented in the list above.

There are fewer errors represented here than in chapter 4 and chapter 5.
This is caused by the shortened format of only 30 minutes to write the code
and the fact that we omitted all errors that did not occur in the solutions we
reviewed. "Fresh" errors from the observations may not have been present
in a final delivery with a longer time span than 30 minutes

In addition to insights about the errors listed above, the data from the
observations may lead to useful insights into other misunderstandings that
do not consider the errors that the subjects made during observations.
Further details about these errors and which misunderstandings we
identified during the analysis of the interviews are discussed in chapter
7 and chapter 9.

50

6.5 Issues and points of improvement

After completing the observations the following points are things that
either were or could have been addressed to improve the data recorded.

6.5.1 Method

Some of the subjects fell back into habit at times, stopping to verbalize their
thoughts. We were not always quick enough to address this and have them
back on track.

6.5.2 The subjects

Some of the subjects were not the best suited for observations using the
think aloud method. About a third of the subjects needed a lot of reminders
to continue speaking. One had trouble typing and speaking at the same
time. And a few had issues with keeping their comments free of references
to visual cues. The using of visual cues makes the analysis very difficult.
The observer is forced to be a lot more attentive and to make good notes to
be sure he knows what the subject is referencing.

This may have been improved by having more subjects so the less
suitable ones could be replaced. The other problems could have been
solved by making it clearer that their comments should be verbose enough
to describe the thing they are referring to without a doubt.

6.5.3 The exercises

The subjects differed quite a lot in how much of the exercises they managed
to complete. Two of the subjects never got to start on the second proper
exercise, whereas one of them did not finish the first. The rest completed
the first but only three of them completed the second one. None of them
had no errors in their solution of the second exercise. Only one subject
started to solve the additional exercise but did not have enough time to
complete it.

After observing the first two subjects we learned that the first exercise
was a bit too long, with much of repetition without giving any new insights
into the subjects abilities or knowledge. It was fixed before the last seven
observations with some minor changes to the exercise. A few required
classes were removed and we made sure to make a better job at telling
the subjects when they could move on to the next exercise.

The second exercise may have been a bit unclear in the formulation of
the requirement that the class parameter should be unrestricted. It was
formulated so that the class should be a container able to store any object.
A lot of subjects interpreted this as a requirement that a single instance of
the container class should be able to contain any of the classes in Java at
once.

The second exercise could also have been improved by revising the
formulation of the specifications of the remove method.

51

6.5.4 Tools

In retrospect it would probably have been useful to record the computer
screen as the subjects were programming. It would have made visual
references easier to understand and be better than having only the final
code when reviewing the work of the subjects.

52

Chapter 7

Results

In this chapter we go further into the results from the interviews and ob-
servations. We will share our findings of different misunderstandings stu-
dents of the targeted course seem to have and how these misunderstand-
ings cause the errors we have seen. Some readers may need additional
explanation of some of the Java constructs discussed in this chapter, such
as specific classes. The complete definitions of all classes and interfaces can
be found in Oracle’s Java 8 API[11].

To make the reading of this chapter easier, we start with a short
explanation of how we deal with separate errors and misunderstandings.
Section 7.1 contains an explanation on some of the error types and specific
errors we have chosen to not focus on. Section 7.2 to 7.7 each deals with a
different type of error. The types are created based on subject. For each
type of error we first define what requirements an error must fit to be
that kind of error. Then we list the different errors we encountered, their
classification based on the error classifications in section 2.2.2 and whether
they are discussed in depth in this chapter. The most interesting errors are
discussed in depth as we:

1. Explain how the error can be recognized and explain using code
examples from the assignments we reviewed!

2. Identify the students” misunderstandings by taking a look at their
statements? and sometimes comments from their code

The misunderstandings we identify are categorized in chapter 8, where
we will discuss the different misunderstandings we have encountered, how
they led to the different types of errors and what may have caused them.

As the assignments we reviewed in the two rounds of interviews were
about different topics the amount of overlap of data between the two is not
great. But in some classes of errors we do find examples from both rounds.

1 The code examples have been edited and stylized to fit the pages and ensure anonymity for the
subjects.

2 All original quotes are in Norwegian but have been translated to English. As our study does
not concern itself with the gender of the students all of them are referred to as 'he’.

53

7.1 Omitted errors

In this study we have identified a large amount of different errors in the
assignment solutions of students that would have been possible to discuss
in depth. From all the errors, we have chosen the ones we believe are the
most important to discuss in this chapter. A number of errors are omitted
from further study based on a few different reasons that we have listed
below. All errors that are omitted qualify for at least one of those criteria.

* Some errors have too few occurrences in the solutions of the students
we interviewed. In these cases we often believe the errors to be
less common among students of the targeted course and outliers
compared to the other errors. Cases that may contradict this are:
Either the teaching assistants or professors in the targeted course
have specified the error as common. The error is present i multiple
solutions of students we did not get to interview.

* Some errors yielded too few revealing statements about the misun-
derstandings that may have caused them. This causes us to have too
little data to comfortably make conclusions about their analysis.

* Some errors are less relevant to the topics in the targeted course.
We avoid focusing our analysis on these errors as we believe they
are less likely to be caused by misunderstandings that are highly
relevant to our study. We wish to focus on mainly identifying
misunderstandings about topics the students are supposed to have
learned.

* Some errors yielded mainly misunderstandings that are covered in the
analysis of other errors. We avoid spending time on multiple errors
that do not add any new errors. Those errors will be mentioned
in the analysis of the errors that are focused on, having the same
misunderstandings .

Most of the errors we identified are listed in the following sections. But
some errors, such as errors concerning iterators, were categorized as types
that only contained errors we omitted. Those categories and their errors
are left out of this chapter entirely.

7.1.1 Most design flaws are omitted

As a result of the third of the criteria above a lot of the design flaws are
omitted. We can see why many of them fulfill the last criteria listed above
in the definition of design flaws from section 2.2.2:

A design flaw is an error that arise from bad choices considering
program efficiency, scalability and robustness, that are outside
the scope of the course but more experienced programmers
would avoid.

54

The fact that they are outside the scope of the course cause them
to be loosely linked to the topics taught by the targeted course and are
far less interesting to us. However, we will still take a look at some
of the data gathered about the errors that are omitted, as some of the
errors we highlight are closely connected to these flaws through the
misunderstandings that have caused them.

55

Error Category Further analysis?
A method throws or | Logic error This error is analyzed
catches the Exception further in section 7.2.1
super class
Failure data is stored | Logic error This error had too few
outside exception occurrences and is not

considered common.

A method throws | Logic error This error had too few
wrong exceptions at occurrences and is not
failure events considered common.
A non-exception | Design error This error had too few
class, which is never occurrences and is not
thrown , extends considered common.
RuntimeException

Table 7.1: Errors and flaws we identified that considers exceptions

7.2 Exception errors

These are errors that arise from poor use of exceptions. To be able to
consider these errors properly we first take a look at what an exception
is.

Put in a pure technical view exceptions in Java are objects with the
special ability of being Throwable . That means that they can be passed to
the calling function in a different way than using the return value, giving
the programmer an additional way of handling errors. According to the
textbook of the targeted course, Big Java: Late Objects[32], an exception is:

“A class that signals a condition that prevents the program from
continuing normally. When such a condition occurs, an object
of the exception class is thrown.”

(Horstmann, p. 958, [32])

Instead of looking for a predefined "error-value" in the return value the
programmer uses a special keyword catch to get hold of an exception
object. Exceptions are divided into different classes. Typically the class of
an exception decides the type of error that arose. The object may contain
additional information such as where in the code the issue appeared and
which method calls that led to it - called stack trace.

The different errors we encountered considering exceptions can be
found in Table 7.1.

7.2.1 A method throws or catches the Exception super class

The most common error concerning exceptions was the use of the statement
catch(Exception e) . This statement catches all possible exceptions.
It may hide both minor and major flaws in a program causing the

56

catch (Exception e) {
System.out. println (
"The file: " + filename +
return ;

n

was not found");

Figure 7.1: catch-block used to handle a single subclass of the Exception
super class.
(From the code reviews for the second round of interviews)

programmer to never realize an issue appears. In the worst case a program
catches an exception that is produced very rarely. If the exception is not
handled properly and information is stored, fixing the problem will not be
possible until the next time it arises. This is not good in critical systems.

In addition it makes the program less readable as the reader have no
easy way of gaining insights into which exceptions the catch -block was
intended to handle.

The error is in some cases less critical as the students include the
statement e.printStackTrace() , or something similar, in the catch
block. That statement prints any types of exception to the terminal if e
is an Exception -pointer. However, the readability of the code is still
impaired. In multiple cases the interviewer was required to explicitly
change the catch block to handle a FileNotFoundException to ensure
no other exceptions were meant to be handled.

This error is a bit special as we have split it into three different types
of occurrences to help us understand the motives the students have when
using the Exception super class:

e The Exception class was used to catch one specific exception, as
shown is Figure 7.1.

e The Exception class was used to catch multiple exceptions in a single
try-catch statement.

e The Exception class was used to catch instances of the class
Exception , as shown in Figure 7.2 on the next page

The Exception class was used to catch one specific exception

This case was the most common of the three different cases. Most of the
students explained the use of catch(Exception e) by saying they needed
to catch an exception or the program would not have compiled. We will
see why they did not choose a specific exception when looking at specific
misunderstandings that may have caused this error.

57

try {

if (counter > data.length)

throw new ArraylndexOutOfBoundsException ();
else if (counter < data.length)

throw new Exception ();

createNewBoard () ;
}
catch (FileNotFoundException e){...}
catch (NumberFormatException e){...}
catch (ArraylndexOutOfBoundsException e){...}
catch (NullPointerException e){...}
catch (Exception e){

System . out.format("\n"
"[ERROR]: file format\n"
"The two frist lines specifies a
"%d x %d board with %d squares.\n"
"readFile () has not found enough data
"for %d squares in your file \"%s\".\n"
"\n",
row, col, n * n, n =+ n, filename);

"

"

+ + 4+ + + + 4

Figure 7.2: catch block used to handle instances of the Exception super
class.
(From the code reviews for the second round of interviews)

58

The Exception class was used to catch multiple exceptions in a single
try-catch statement

One student had this error in multiple places in his code. When asked
about it he had similar arguments as the students that showed the first
behavior. His explanation to the use was that it handled the exceptions he
wanted to catch and let the program react accordingly. When asked about
other possibilities to solve multiple exceptions in a single try -statement he
had no alternatives in mind. His answers did not make it apparent that he
knew of the possibility to use multiple catch -statements. When informed
of the possibility he still preferred his own solution as it had fewer lines of
code.

The Exception class was used to catch instances of the class Exception

This last error only appeared once and we do not believe it to be very
common. The code in Figure 7.2 contains far more than one error, but we
will concentrate on this one. The explanation differs as the student had
chosen Exception to represent a specific error incident. He chose to use it
because he thought he had no other exceptions available to him. His words
exactly were:

“ It was the only one I hadn’t used ”
(participant, second round of interviews)

He also states that he finds handling large bodies of text inside the
program logic quite messy. So he preferred moving the text-generation
into the catch blocks instead of adding it as a message in the instances of
the exceptions.

Encountered misunderstandings

Despite some minor differences in explanation we believe that there are a
few common misunderstandings between most of the occurrences of this
error. We have identified three areas where the students understanding is
lacking and examine them a bit more in detail. Each student lacks proper
understanding of at least of one these.

Exception type is not important when handling exceptions

The students show little understanding of the hierarchy of exceptions
and how exception type in many cases determine what went wrong in
the program. One student summarizes his knowledge of exceptions by
limiting it to the fact that he knows that there exists multiple ones but he
has not learned them:

“ I've seen the [exception] class hierarchy... or tree. But I haven't
bothered learning about it. It did not seem very important when they
showed it to us in class. ”

(participant, second round of interviews)

59

This shows a lack of knowledge of just how important the type of
exception may be.

Some students did not show any understanding that catching the
Exception super class provides any potential issue to be aware of. When
asked about how it affected their program their answers reflected that it
made no difference at all. The exception they wanted to catch was handled
properly. One student explained that he used Exception simply as he
would get a compiler error unless he did so:

“ Because of the Scanner I get an error message if I don’t catch an
exception. ”
(participant, second round of interviews)

Once the compiler error no longer showed up the student considered
the problem to be solved.

This seem to be consistent with the findings of Rashkovits and Lavy[46].
In their study to pinpoint college students level of understanding of
exceptions, only 57.5% reached a level of understanding where:

“... the student understands that the non-hierarchically-related
thrown exceptions can be caught and handled inside the calling
method in separate catch-clauses referring to these exceptions.
She also understands that a try-catch block can contain one or
more commands, and when an exception is thrown the fluent
execution stops and the control is passed to the appropriate
catch-clause and continues from there ...”

(Rashkovits and Lavy[46])

As explained in section 3.8 the students participating in this study do
not fit the average skill level of students attending the targeted course. We
may expect most of them to belong to the less skilled half of students.
Therefore it is very likely that even more than 40% of the participants in
our study have trouble reaching that level of understanding.

That does not mean none of our participants were aware that there is a
difference. One student showed he was aware that he should have used a
different exception.

“ Here I have a catch-clause with Ezception . It should have been a
FileNotFoundEzception but I did not remember which package to
include it from. ”

(participant, second round of interviews)

When asked why it should have been a FileNotFoundException his
answer was that being explicit when catching methods is good practice.
While not showing perfect understanding of why it is good practice he was
aware that it was an issue, unlike many of the other students.

60

Exceptions do not adhere to the same rules a other Java-classes

The fact that the student quoted above hesitates to call the class hierarchy
of exceptions a class hierarchy and chooses to change to call it a tree made
us believe the student is not completely aware that exceptions are defined
just as any other class in Java. This is consistent with the statements of the
student who used Exception to model a specific error incident instead of
writing his own code. When asked why he had not done so he answered
that he was not aware that was possible. Yet the possibility to extend a class
with a subclasses is a common trait for all classes in Java.

From our talks not all students showed awareness of the fact
that catch(Exception) will catch any runtime exception, such as
NullPointerException and IndexOutOfBoundsException . This supports
the lack of understanding how heritage affects all exceptions as any other
class. This may also be related to a lack of understanding how handling a
super class or interface make a method, pointer or catch -statement deal
with all subsequent subclasses. It may also be that they do not really un-
derstand that exceptions they need to catch explicitly do not differ from
exceptions that are handled implicitly by the Java Virtual Machine.

Program robustness is not as important as other program attributes

Another first thing the students fail to explain is how their solution impact
program robustness. They talk as if their program is finished and will not
ever have any work made to expand upon it again. Even though that is
true in some cases students should still learn to code as if there always will
be changes made. They may need to implement such changes themselves,
when they have forgotten their intentions. Or someone else may be tasked
to do so.

When asked if catching Exception could cause a problem a few
students mentioned that no other exceptions appeared in their program.
One said the following:

“ That’s not a problem. The exception from the Scanner is the only
one which can appear. ”
(participant, second round of interviews)

The students with this kind of explanation shows signs of understand-
ing that multiple exceptions may appear. But their view of their program
seem somewhat static and finished.

The students seem to think the most important thing with exceptions
was to catch them so the program would compile. Potential issues at
runtime was not something they really got into when asked to elaborate
on their choice to catch the Exception super class. They seemed happy
their program already produced the correct result.

IDE solutions to problems are good enough

Another student had obviously used an IDE that had solved the problem of
handling the exception for him. We can see from the comment in his code,

61

} catch (Exception e) ({
// TODO Auto—generated catch block
e.printStackTrace ();

Figure 7.3: Auto-generated catch block made by an IDE
(From the code reviews for the second round of interviews)

given in Figure 7.3, that this is the work of an IDE.

But the code in the try block only produced one exception that was
not a RuntimeException , namely FileNotFoundException . This may
have been caused by blind trust that the IDE would solve the issue in a
good way. Even when this student’s answer to whether it was a problem
was similar to that of the others we believe IDEs may at least cause these
kind of errors to appear more often.

62

Error Category Further analysis?
The insertion-method | Logic error This error is reviewed
in a linked list fails in section 7.3.1
to properly update
pointers
The insertion-method | Design flaw We consider this error
in a linked list uses a to be less relevant to the
loop to insert last ele- topics in the targeted
ment having a last - course.
pointer
A non-recursive | Logic error The interviews and
insert-method in a observations yielded
sorted linked list too little data about this
contains no loops error.
A non-abstract list- | Logic error This error had too few
class lacks insertion occurrences and is not
method considered common.
A linked list contains | Logic error This error had too few
an extra insertion occurrences and is not
method for sorted considered common.
insertion instead of
using the inherited
insert-method from
interface

Table 7.2: Errors and flaws we identified that considers linked lists

7.3 Linked list errors

These are errors that arise when implementing linked lists. According to
the textbook in the course a linked list is:

“A data structure that can hold an arbitrary number of objects,
each of which is stored in a linked list object, which contains a
pointer to the next link”

(Horstmann[32])

This means that linked lists require a steady mind when updating
pointers to ensure the links are organized in the way you want. The errors
we experienced with linked lists, their classifications and whether we will
go further into them in this chapter are shown in Table 7.2.

7.3.1 The insertion-method in a linked list fails to properly
update pointers

This error concerns insertion and deletion from linked lists. Typically
this is due to bad updating of the first - and/or last -pointers in the

63

public void insert(Prescription p){
Node temp = new Node(p);
nrOfElements ++;
if (first == null){

first = temp;

last = temp;

}else{

/* We put the new prescription in the
start of the list — meaning last.next
points at the oldest prescription */

last = first;

temp.next = last;

first = temp;

Figure 7.4: Pointer error in insertion-method in a LIFO-queue implemented
using a linked list structure.
(From the code reviews for the initial interviews)

linked list. This may cause that the element is lost forever or that the list
is compromised losing other data or causing runtime errors when other
methods are called.

The code in Figure 7.4 and Figure 7.5 show two methods that attempt
to do insertion in a LIFO-queue.

The code in the first figure attempts insertion in the beginning of a
linked list. But what really happens is that first does end up pointing to
the newest element of the queue but the last -pointer ends up pointing to
the second one instead of the last one.

The second method attempts to insert the new element in the end of

public void insert(Node next) {
if (head == null) {
head = next = tail;
} else {
Node temp = tail;
tail = next;
temp.next = tail;

Figure 7.5: Pointer error in insertion-method in a LIFO linked list where the
new element is lost.
(Code written during the observations)

64

the list instead. But it has an error when inserting the first element in the
queue. Both head and next aresetto null as the assignment of pointer
values appear in the wrong sequence. The list head and tail remains
null after the insert -method is done.

Encountered misunderstandings

In the interviews only one student whom we spoke to delivered this type
of error. But linked list pointer issues appeared in more of the other
assignments we reviewed where we were unable to interview the students.
Additionally this was one of the issues that was highlighted in all the
interviews with teaching assistants in the targeted course.

Data structure visualization is too difficult

When the student who wrote the code in Figure 7.5 was asked to explain
the flow of insertion, it took a very long time. It took him about two
minutes of drawing to explain the insertion before he noticed something
was wrong. This shows signs that the student has trouble with visualizing
what happens in the program and how it relates out to the data structure.

One students also made this error during the observations. As he was
working on the code he spent about five minutes writing the code in Figure
7.5. He spent a lot of time changing small pieces of code, starting out with
a method that was about thrice as long before he shortened to this and
believed it worked properly. When asked about the piece of code with the
wrong sequence of pointer update he noticed immediately. For that reason
we do not believe that pointers in themselves were a problem. But we
believe the student spends so a lot of focus trying to keep track of the data
structure that other issues arise.

65

Error Category Further analysis?
A method expands | Logic error This error is reviewed
existing storage ar- in section 7.4.1
ray but does not
update the original
array-pointer

Table 7.3: Errors and flaws we identified considering erroneous use of
arrays

7.4 Array-errors

These are errors that arise from bad use of arrays. This means errors where
technical aspects of the array is utilized in an erroneous way causing the
result to be wrong or efficiency to be less than ideal. The only direct error
of this type we experienced and its classification is shown in Table 7.3.

Errors where an array is chosen as data structure instead of a more
suiting one, would classify as a poor choice of data structure and be listed
in section 7.6.

741 A method expands existing storage array but does not
update the original array-pointer

This issue can in many cases be a simple case of forgetting to write a line
of code. Yet issues with arrays and their nature seem to be a problem for
several students.

The problem is that any changes made to the new array is lost as the
previous array is never changed in a permanent reference. If we take a
look at Figure 7.6 on the next page, we can see the insert-method in a class
where an array stores values and the interface allows users to choose the
index an element is inserted on. The method handles indexes being larger
than the array length by expanding the array by 10. That causes another
error where the index may be larger than the previous length + 10. But we
do not look at that error here.

Encountered misunderstandings

There is one really big issue that we encountered in this error and in the
explanation of arrays found with another student as well. It is the only one
we found in this study.

Array-pointers are somehow different from regular pointers

This is a belief we have come through due to the explanations from
multiple students as they try to explain what an array is. In the case in
Figure 7.6 the author expressed an uncertainty about the method without
being asked specifically about it.

66

public boolean insert(T object, int index)

{

int newLength;
T[] newContainer;

if (index < container.length && index >= 0){

if (conatiner[index] == null){
container[index] = object;
nrOfElements ++;

return true;

}
)

else if (index > container.length){
newContainer = (T []) new Object [index+10];
for (int i=0; i<conatiner.length; i++){

newContainer[i] = container[i];
}
newContainer[index] = object;
nrOfElements++;

return true;

)

return false;

Figure 7.6: A method that attempts to expand an array to avoid going out
of bounds with a high index but fails to update the pointer to the newly
generated array.

(From the code reviews for the initial interviews)

67

“ We don'’t really know if it [the object containing the array] will keep
the new container as it has a different name. ”
(participant, initial interviews)

We asked the student further about the issue and if he could update the
array-pointer to point to the new array. He answered:

“I'm not sure as it does not have the same length ”
(participant, initial interviews)

This make us believe the student has failed to understand that an array
simply is a pointer pointing to an array of pointers of the specified type
including some additional fields such as length . Fro this understanding
moving the pointer would naturally not cause any issue.

An interview with a student who did not have this error at all confirmed
the belief that this misunderstanding does exist and that it causes problems
with arrays. The student was attempting to debug his program and had
some trouble doing that:

“ I tried to print the array. But it did not work. I only got a weird 1D
from it. ”
(participant, second round of interviews)

Obviously the student attempted to print the contents of the array by
simply printing the pointer. But that is only a memory address, like any
other pointer in Java. So we asked him to explain what an array truly is
and he answered:

“ I can’t give you a concrete answer of what the concept is. As far as I
understand it is a collection of variables ”
(participant, second round of interviews)

68

Error Category Further analysis?
A class uses an | Design error We consider this error
Object-array for to be less relevant to the
storing generic objects topics in the targeted

course.

A method compares | Logic error This error is reviewed
generic objects us- in section 7.5.1
ing the result from
toString
Implements generic | Logic error This error had too few
interface without occurrences and is not
specifying class pa- considered common.
rameter sent to the
interface
A private inner class | Design error This error is reviewed
is declared as generic in section 7.5.2
without any reuse
A Node-class in a | Logic error This error had too few
generic container occurrences and is not
contains a String id to considered common.
compare elements

Table 7.4: Errors and flaws we identified that considers generics and class
parameters

7.5 Errors in generic classes

These are errors that are caused by poor use of or inability to set up generic
classes and objects. Before we take a look at the errors we experienced we
will define what a generic class is.

The textbook of the targeted course defines a generic class as a class
with one or more type parameters[32]. This allows a single class definition
to be used on different types of objects that would otherwise need its own
implementation of the class. The ArrayList -class mentioned previously
in this chapter is an example of a generic class and it can hold any object.

But you cannot substitute the generic parameter with any of the eight
primitive types in Java. Only classes are allowed.

The way we program these classes is by defining a generic incoming
parameter in the class definition such as class Container<T> where T is
the class we expect to use. Since we do not tell anything more about T we
cannot say anything more about it’s properties except the fact that it must
extend the class Object, like any other Java class.

The errors we experienced considering exceptions can be found in
Table 7.4.

69

public E getFromString (String key){
Node value = null;
boolean found = false;
int res;
String string;
Node temp = first;
while (temp != null & !found){
string = temp.data.toString ();
res = string.compareTo(key);
if (res == 0){
found = true;
if (debug){
return temp.data;
}
temp = temp.next;

}

return value;

Figure 7.7: A method that compares a generic object to a string using
toString.
(From the code reviews for the initial interviews)

7.5.1 A method compares generic objects using the result from
toString

This error is made by some of the the students whose assignments were
reviewed for the initial interviews. The issue with doing this is that
we have no way of guaranteeing the toString -method has any proper
implementation for the classes that are used as a generic class parameter.
Unlike using methods that are bound using interfaces where the author
of the class is obliged to make sure it does the toString-method from the
Object class may never be overwritten.

The method in Figure 7.7 is intended to lookup an object using a String
-object. But the student who wrote the code has not exploited the fact that
the generic class E is bound to an interface called Lik that has a method,
boolan samme(String s) that returns true if the object can be identified
using that particular String -object. We see the very same error in the
method find in Figure 7.8.

Encountered misunderstandings

We encountered two different misunderstandings considering this error.
They are closely related and sometimes students have them both.

70

toString is our only alternative to "know" anything about generic objects

This misunderstanding comes from a lack of understanding of what
you get from binding a generic class parameter to an interface, such as
Comparable . The students do not really understand that this guarantees
that every class used as a parameter must have that method implemented.

The student who wrote the code in Figure 7.7 explain his choice by
saying it was the only option:

“ But I don’t have any other option when I need to compare the object
toa String.”
(participant, initial interviews)

In this case it may have been a bit misgiving that the method was
given a String -object as parameter. This makes it easier to immediately
get pushed into believing toString() is the right choice. The student
even states he had problems when using different classes than String for
testing, but did not understand why that was:

“ I have a problem using other objects than strings as the toString
-method does not give a good result. ”
(participant, initial interviews)

This shows the student knows that this is not a good solution and
toString don’t really provide a good answer to the problem. But he did
not manage to come up with an idea to use one of the interfaces available.
We believe this shows a clear lack of knowledge of how binding generic
objects to interfaces is a way to "know" more about how to use them.

Using toString to compare generic objects is not a problem

The second misunderstanding we encountered is the belief that using
toString for this type of matter is no problem at all.

One of the students had attempted to sort the elements in a linked list
using toString() .compareTo() and never bound the generic parameter
to Comparable, in way an expert programmer would when needing to sort
generic objects.

He had not notices any problems even after testing his program:

“ I tested this using String-objects. It worked without a hitch. ”
(participant, initial interviews)

When asked if it would cause an issue for other classes he came up
with what he believed was the solution. That was to simply implement a
working toString -method that identified the other classes properly. His
statements make us believe that some students do not see that we cannot
know that the toString -method will be overwritten and that other classes
may need the same treatment in the future.

71

Program robustness is not as important as other program attributes

Program robustness is mentioned for multiple errors in this chapter. The
lack of consideration of how this error affects any expansions on the
program lead us to believe that this errors is partially caused by the same
misunderstanding that has been listed in section 7.2.1.

7.5.2 A private inner class is declared as generic without any
reuse

This is an error we typically have seen when students create Node -classes
to use inside a generic container. The issue with doing this is that the
programmer is forced to explicitly state what class is used as a parameter
to the Node -class each time a data field is defined or an instance is created.
The scope of the generic parameter from the outer class does include the
inner class, but redefining it overwrites the original definition. This forces
a lot of extra work and makes the code a lot more messy.

In Figure 7.8 on the facing page we see a class where the author has
defined both a node class and an iterator as generic. But neither would have
needed to be. We also see that the student does not specify the parameter
used and expects it to still be inside the scope of the outer class. This
includes the class MyIterator where the name of the generic parameter is
different.

Encountered misunderstandings

We encountered two different misunderstandings leading to this type of
error. The first leads to the type of case that we see in Figure 7.8, where the
class parameter for the nodes are not specified and the values need casting.
The other leads to a very similar version of the issue where the parameter
is set properly and no casting is required. But they may overlap.

A class name cannot be overwritten

The student who wrote the code in Figure 7.8 had problems with having
to cast the data from the nodes before returning it or using the compareTo
-method. When we asked him why those problems appeared he did not
know. He said he got some compiler error about not being allowed to
return the object without casting.

After being asked what type of element T was in one of the
nodes he used he said it was the same as was specified for the class
SortertEnkellListe :

“ It a generic object of the class we specified as T in the class. ”
(participant, initial interviews)

Based on this we believe the student think that because it says T in

both places the classes are somehow the same and is not overwritten by the
second specification in the Node -class.

72

public class SortertEnkelListe <T extends Comparable<T>
& Lik> implements AbstraktSortertEnkelListe <T>
{
class Node<T>{
public Node neste;
public T data;

public Node(T objekt){
data = objekt;
}

public T data (){
return data;
}
}

class Mylterator<E> implements Iterator<E>{...}

public T find (String key)

{
Node temp = first;

while (temp != null){
if (temp.data.toString (). equals(key)){
return (T)(sjekk.data);
}
temp = temp.next;
}
return retur;
}
public Iterator <T> iterator (){
return new Mylterator <>(first);

)

Figure 7.8: A generic class that has two inner classes that are generic as
well.
(From the code reviews for the initial interviews)

73

A class must have its own generic parameter to be able to use one

We believe the student who had the problem above also has this misun-
derstanding. We asked him what would happen if he removed the generic
parameter from the Node -class. His response was that he was not sure. But
he expected the program to no longer work as we could not use the generic
parameter without specifying it.

“ Ehhh, I think everything demands it to be. The whole class is generic
and can be used by any object that is Comparable and Lik.”
(participant, initial interviews)

We had this misunderstanding supported by the observations where
one of the students while writing the node class said he added the generic
parameter so we could use it in the node.

“ Now I'm writing the Node class. I add the parameter T so I can
use it for the data pointer. ”
(participant, observations)

But the student who did this did specify the type of node used every
time. So we believe he understood it could overwrite the existing type. But
he did not understand that everything inside the Node -class is also inside
the list and that the scope of the list extends to the private class also for
generic parameters.

74

7.6 Poor choice of data structure

These are errors and flaws that arise in two different occasions. The first
is when the programmer choose the wrong preexisting Java construct to
provide a basic data structure either for storage of data or for implementing
an algorithm. As the students we have reviewed are not taking a course in
data structures these errors mostly involve more basic data structures such
as two-dimensional arrays and the class ArrayList . The other occasion
is when the programmer makes a poor design in their own custom data
structure, creating an inefficient program as a total. It is different from the
functionality distribution errors discussed in section 7.7 as the issue in this
section is how data is stored, not where.

Of course there may be pros and cons when choosing a data structure.
One option is not always clearly best or better than another. Yet some
choices are often considered worse than others in certain situations. For
these errors the context they were made in is vital.

The different flaws and errors we encountered considering choice of
data structure can be found in Table 7.5 on the next page.

7.6.1 An ArrayList is used instead of an array for storage when
indexes and number of elements are known

This issue bounds into the fact that some problems have an upper limit of
possible data elements, whether these are instances of a class or primitive
types. The Java class TTArrayList is a container that implements the List
interface and it implements the interface using an array. It supports a few
additional methods such as public E get(int index) and public void
add(int index, E element) . But ArrayList does not support an upper
limit in the way an array does. Nothing stops a program from adding
additional elements beyond the initial capacity even if it has been specified.

This error was very common in the programs that we reviewed. Almost
half of all students we reviewed in the second round of interviews showed
this very error. One of the students produced the code in Figure 7.9 on
page 77 as part of his solution to the mandatory assignment reviewed in
chapter 5. The student has implemented an abstract class Field to handle
storage of N elements of the class Square. He has also added some methods
including one that returns the stored squares as an array. The error is
not apparent from the code itself. Therefore we will supply you with the
problem that the code is supposed to solve. The intention is to create a
container to hold a fixed number of Square -objects, playing the role of
row, column and box in a game of Sudoku. We can see that the structure
used in Figure 7.9 in no way limits the amount of elements that can be
inserted. Nor did any of the classes extending this abstract class.

An implementation of the addSquare -method can be found in
Figure 7.10 on page 77.

75

Error

Category

Further analysis?

An ArrayList is used in-
stead of an array for stor-
age when indexes and
number of elements are
known

Design error

This error is reviewed
in section 7.6.1

An ArrayList is used
instead of an array when
maximum length is
known but final size is
uncertain

Design flaw

We consider this error
to be less relevant to the
topics in the targeted
course.

An object use "tags" to de-
fine which other objects it
"belongs" to instead of be-
ing a pointed to by a field
in the other objects

Design error

This error is reviewed
in section 7.6.2

The program contains ex-
tra data structures to de-
scribe the state of the pro-
gram state instead of us-
ing appropriate methods
to compute the state

Design error

This error yielded
mainly misunder-
standings that are

covered in the analysis
of other errors.

Use of two-dimensional
arrays when position is ir-
relevant

Design flaw

We consider this error
to be less relevant to the
topics in the targeted
course.

Table 7.5: Errors and flaws we identified that considers choice of data
structures

76

public abstract class Field {
protected ArrayList<Square> squares =
new ArrayList<Square >();
public abstract void addSquare(Square s);
public boolean contains(Square square) {

boolean found = false;
for (Square s : squares)
if (sqare == s) found = true;

return found;
)
public Square[] getSquares() {
return squares.toArray (
new Square[squares.size ()]);

Figure 7.9: Class used to store N elements in an ArrayList
(From the code reviews for the second round of interviews)

public void addSquare(Square s) {
squares.add(s);
s.setColumn (this);

Figure 7.10: Implementation of the addSquare-method from Figure 7.9
(From the code reviews for the second round of interviews)

77

Encountered misunderstandings and issues

The students whose program contains this type of error explain that they
find it quicker and easier to use than an array, which would be more
appropriate. Ending up with a shorter code base is mentioned by most
as something positive they achieve using the ArrayList .

The students do not appear to be able to clearly distinct the ArrayList
from the array. They see the similarities such as the fact that elements can
be accessed using an index. The fact that a container class is used as the
sole element inside another container class do not seem to be an issue to the
students. This lead us to take a look at the following misunderstandings.

An upper bound of elements in a container serves no function

In all the programs we reviewed none of the students used the alternative
constructor ArrayList(int size) . They do not specify a size for the
list. We believe this reduces the chance that the students actually believe
ArrayList supports an upper bound like the array does. We managed to
find further evidence of that during the interviews. We asked the students
to explain what would happen if we were to add an extra element to the
ArrayList . Some got a bit confused by the question but all of them ended
up saying it would simply add that extra element.

Since the students knew there was no upper bound it seems their
misunderstanding is likely to be regarding whether an upper bound serves
a function or not. We therefore took a look at what the students believed the
effect the lack of an upper bound has on their programs. Only one of the
students actually reasoned that his program might put too many elements
in the ArrayList if there was a breach in his logic.

The others needed to be asked specifically if a logical error could be
hidden by this lack of an upper bound. About half the students asked this
question responded with a certain amount of understanding but stating
that it was not something they had ever considered. The rest stated that
their program was indeed correct and contained no such logic breach.
Based on those statements we believe the students do not understand the
purpose of an upper bound and how it helps program robustness.

Using arrays is too difficult

An additional issue we found is that a few students also showed signs
of having trouble dealing with arrays and indexes. One task that proved
difficult was finding the correct spot to insert elements.

In Figure 7.10 on the preceding page we can see the implementation of
the method addSquare in of the subclasses of the abstract class in Figure
7.9. In this implementation the student does not even use the specific
insert-method in ArrayList that uses an index. This allows him to avoid
considering the position of the Square -object in the container. In many
ways that is quite handy. In this task you do not have a strict need to know
the internal position of a Square within the containers. If you use an array

78

you are forced to at least find an empty place in the array when inserting
an element. That may be the very thing many students wish to avoid and
find too difficult.

Multiple students state having to deal with indexes being a bother. One
of the students stated he finds ArrayList a lot easier and prefer using it to
an array.

“ I think ArraylList is easier to use. I don’t have to think about that
kind of thing [indexes] then. ”
(participant, second round of interviews)

Multiple students give similar statements where they say having to deal
with the index can be quite bothersome.

This is supported by statements we got when taking a look at a similar
issue: the almost identical case where you only know the max number of
elements you need. We have classified it as a design flaw instead of an
error. For that reason we have chosen to omit it from further scrutiny. But
some of the data collected may be interesting none the less. Among the
students one said the following when asked if he could solve a task with
those assumptions using an array:

“ That would have been problematic since I don’t know the size in
advance. I could have made an array with a lot of zeros. But no matter
what I get a problem to decide where a value is supposed to go. ”
(participant, second round of interviews)

In total it seems students choose to use an ArrayList for its simplicity.
Handling arrays require a bit more work and longer code due to having to
explicitly handle which position to insert an element, that many other data
structures don’t have. It may be that they do not realize that when they
create their own container they are free to add helping structures such as a
size -field to help with this kind of matter.

The premises for a task are not absolute

One of the students have both a comment in his code and a statement in his
interview that made us realize that he did not consider the premises given
in the task are absolute. The code can be found in Figure 7.11 on the next
page. During an interview with the student his explanation to his choices
was:

“ I planned to support the possibility of the file containing values that
don’t give a fixed size. If that is possible then an array won’t work as
I won’t know the size anymore. ”

(participant, second round of interviews)

In this case he takes into account that the rules may not apply in the
future. And if the rules don’t apply then there may not be any max limit

79

/]

// in case I decide to make some kind of
// freakshow sudoku, I'm gonna be precise.

//

Column[] cols = new Column[cells[0].length];
Row[] rows = new Row|[cells.length];

// as I said freakshow sudoku might happen
ArrayList<Box> boxes = new ArrayList<Box>();

Figure 7.11: Comments indicating the task premises are ignored.
(From the code reviews for the second round of interviews)

to the number of squares in a dimension. For that reason he chose to use a
data structure without an upper bound.

We believe this could indicate that some students may not realize the
need to capitalize on the restrictions on the problems they are to solve. This
shows a distinction between some types of students.

7.6.2 An object use "tags" to define which other objects it
"belongs" to instead of being pointed to by a field in the
other objects

This error was quite common in the solutions to one of the assignments we
reviewed. About one fourth of all the subjects of our study had delivered
a solution like this. In addition an equal number said they had started out
with this type of solution and fixed it when either a teaching assistant or
fellow student made them aware of its weaknesses.

This matter is an issue of poor design of a data structure. The result is
poor performance and increased time complexity of the algorithms which
uses the structure. When you look for specific objects you need to search
through all the objects in the larger structure instead of pointing to them
from a container. An additional issue appears if another problem causes
the tags to not be unique. That would break this entire algorithm.

In Figure 7.12 on the facing page we see how a student designs a class
supposed to model a column containing squares in a game board. In
addition the squares have a pointer to the Column -object.

In Figure 7.13 on the next page the same student has created a method
to aid him in finding the squares that are located in the same column. But
instead of getting them directly from the object representing the column he
is forced to go via the entire game board and siphon out those squares that
point to the same column.

This kind of solution is also a case of an error concerning distribution
of functionality in object-oriented programming that we take a look at in
section 7.7.

80

public class Column{
private static int nrOfColumns;
private int columnNr;

public Column () {
this .columnNr = ++nrOfColumns;

}

public String toString (){
return "" + columnNr;

)

public int hentAntallKolonner (){
return nrOfColumns;

)

Figure 7.12: This class uses an int to say which column it represents and
then you search for objects that point to a column with that number like in
Figure 7.12.

(From the code reviews for the second round of interviews)

public Square[] lookUpSquaresByColumn(String columnNr){
Square[] squares = new Square[n];
int counter = 0;

for (Square[] row : squareArray)
for (Square s : row)
if (s.getColumn (). equals(columnNr))
squares|[counter++] = s;

return squares;

Figure 7.13: This code is used to search a major data structure for tags
instead of pointing to elements directly from the class shown in Figure 7.12.
(From the code reviews for the second round of interviews)

81

Encountered misunderstandings

Most students who had produced this error knew that their solution was
not the best. They described their own solution as kind of messy and not
computationally efficient. They explained it by saying it was the solution
they first tried to make work. And their reasons for not improving upon it
was either lack of time or that their program already produced the correct
result.

Separating functionality from data storage is good practice

The student who wrote the code in Figure 7.12 and Figure 7.13 explained
his choice by calling the Column -class stupid and that other classes were
assigned the responsible for coordinating how the program interpreted the
data in it.

“ Boxes, columns and rows are 'stupid’. They only know what number
they have. They don’t know anything about which squares belong to
them. That allows me to use them [the numbers] later in the solving
algorithm. ”

(participant, second round of interviews)

Refactoring is not important when the program works

We believe students producing this error share at least one misunderstand-
ing regarding the program result and refactoring. It seems they view the
program as finished as soon as the result is correct. A typical answer from
the students that had this kind of solution were:

“ My program was working, so I did not change it. ”
(participant, second round of interviews)

When asked about the how much refactoring he usually does one
student answered:

“ Not much really. I leave it if something works properly. It sucks if I
ruin it again. ”

(participant, second round of interviews)

This makes us believe that some students find refactoring a bit difficult
and that they do not trust their own ability to improve their program.

82

Error Category Further analysis?
Almost identical | Design error This error is reviewed
classes are defined in section 7.7.1
without wusing her-
itage from a super

class

The program contains | Design error This error had too few
improper use of pri- occurrences and is not
vate internal classes considered common.
Functionality is lo- | Design flaw This error is reviewed
cated in another class in section 7.7.2

than the one it should

be in

Table 7.6: Errors and flaws we identified that considers distribution of
functionality and data between classes in a program

7.7 Data and functionality distribution errors

In section 7.6 we considered errors in how data is stored. In this section
we take a look at errors in where data is stored and how functionality is
distributed, on top of that data, through choice of classes and how they
are designed. These kinds of errors and flaws are often noticeable as either
programs with very few very large classes supporting a large amount of
functionality, or a very skewed and unnatural distribution of methods
between a larger number of classes.

These errors and flaws all relate quite closely to the basic principles that
guide the object-oriented programmer shown in section 2.5.

The different flaws and errors we encountered considering choice of
data structure can be found in Table 7.6.

7.7.1 Almost identical classes are defined without using heritage
from a super class

This error was quite common in the second assignment we reviewed. The
issue is one considering bloated code and difficulty editing the code. It is
better to only need to add, remove or rewrite code in one place than having
to do it in three places to fix the same problem. We see an example of this
in Figure 7.14 on the next page. Both classes are part of the same program.

Encountered misunderstandings and issues

After talking to the students who had these errors in their assignments we
came to two possible problems they had. The majority of the students
list creating a super class as a possible improvement before ever being
prompted to do so. The concept of heritage in itself seem to be well
understood.

83

class Row{
private int length;
private ArrayList<Square> arr =
new ArrayList<Square >();

public void addSquare(Square s){
arr.add(s);
s.setRow (this);

}

class Colmun{
private int length;
private ArrayList<Square> arr =
new ArrayList<Square >();

public void addSquare(Square s){
arr.add(s);
s.setColumn (this);

Figure 7.14: Two almost identical classes with no heritage used. They also
include methods for printing and to check if an element is present in the
container.

(From the code reviews for the second round of interviews)

84

The problem at hand is not fully understood

When they describe the process of writing the different classes they did
not see the similarity between them until the program was finished. The
students do not appear to have understood the problem they were to solve
sufficiently to make such a decision before they had a working program.
Therefore we believe quite a few students have trouble reading and
understanding their assignments. This is supported by our interviews with
multiple teaching assistants in the targeted course during our preparation
to review the assignments.

Refactoring is not important when the program works

We prompted the students to explain why they did not change their code
when they realized that it was an improvement. Similarly to the question
of refactoring a poor solution in section 7.6.2 many students said it was
not important as their program already produced the correct result. Some
also listed time limitations as a factor. So it might be that they would have
refactored the code given time.

For this reason we believe the conclusion on the same misunderstand-
ing as in section 7.6.2 applies here as well. Some students do not under-
stand the importance of refactoring or have problems doing it, fearing they
will cause more harm than good by trying.

7.7.2 Functionality is located in another class than the one it
should be in

This is the most common error that programs we reviewed had. It was
apparent in all programs but a few. Some to a larger extent than others.
This issue is overlapping with some of the other issues. So we did not
always address this issue directly. Our impressions are therefore partially
based on things we learned from addressing other errors and flaws. The
code in Figure 7.12 on page 81 is a good example of this as it contains this
error as well.

The problem with programs that has poor code placement is that the
code gets really hard to read, understand and change. In many cases the
functionality is affected so that scaling the program or reusing components
becomes almost impossible. The object-oriented principles are explained in
section 2.5.

We can see this error well in Figure 7.15 on the next page. Instead
of implementing a contains -method which most containers should
have, this implementation forces anyone who uses the container to see for
themselves. If the implementation of Row was to change many other parts
of the program would need so as well.

85

public class Row {
Square[] row;

public Rad(int size) ({
this .row = new Square[size];
}
public void insert(Square s) {...}
public void remove(Square s) {...}

}

public boolean isThisUsed (int a) {
boolean used = false;

for (int i = 0; i < row.row.length; i++) {
int tall = Integer.parselnt(
row.row|[i]. toString ());
if (tall == a) {
used = true;
}
}

return used;

Figure 7.15: This class contains a lot of data but no functionality to check if
it contains an object is in a method inside a different class body.
(From the code reviews for the second round of interviews)

86

Encountered misunderstandings
MVC is fully compatible with object-oriented principles

This case is quite special. One student had used a completely different set
of principles when designing his program than in any other program we
reviewed. The student had tried to model his program after the Model-
View-Controller principles. A set of principles that places all program
functionality within the Controller, the storage description within the
Model and user interface within the View. These principles are designed
for dealing with applications with advanced user interfaces. MVC is not
well suited for solving the kind of tasks given in the targeted course as well
as being in conflict with several object oriented principles.

“[The class] Sudoku is the controller, Board is the model 0g GUI is
the view. The board was to know everything, squares, columns, boxes
and rows. ”

(participant, second round of interviews)

Especially the use of a single class as the Controller made the
decomposition of the program quite poor. Most container classes ended
up having no functionality at all, while the class meant to represent the
Controller had way too much functionality included. In Figure 7.12 on
page 81 we see how some classes become very empty while Figure 7.13
on page 81 is an example of functionality that belong within Figure
7.12 according to object-oriented principles, yet is present in the class
representing the Controller.

When asked about his choice the student answered that it seemed
natural as the assignment was supposed to have a graphical user interface.
A follow-up question revealed that he thought object-orientation and MVC
was about two completely different things. The first about the abilities of a
language and the second about how to design your program:

“ Isn’t object-orientation about objects and stuff? While MV C is how
you put it all together, function and display? ”
(participant, second round of interviews)

Distribution of functionality does not matter

When asked about their choices of method location many of the students
did not really grasp that there are other concerns to code quality than code
length. They were not all aware that certain functions naturally belong in
certain classes. Some of the students simply considered certain classes as
a set of pointers with no true functionality or methods contained within
them. This naturally created a heavy weight on the classes referencing
those classes.

We asked the students with bad distribution of functionality specifically
about how they chose to design these things. One of the students gave an
answer that sums what we heard from almost all of them:

87

“ I don’t really know. I put it where it feels natural. If I see that 1
have similar code in two locations I see if it can be put together as one
method. ”

(participant, second round of interviews)

We believe the students are aware that moving code may improve upon
a program. But it seems they limit improvements to those that reduce the
amount of code. This excludes improvements made to the way semantics
of a class is designed to achieve a "natural" role in the program. We see that
they do not include the design-aspect of object-orientated programming
explicitly into their arguments. None of the terms usually used in object-
oriented design were mentioned when they explained their choices.

We believe this shows a lack of understanding that object-orientation
also plays a strict role in design. They may have some implicit understand-
ing of many of the concepts used. But why they matter is not something
they understand beyond the obvious improvements in size and time spent.

From the statements of the student using MVC we believe he the did
not understand that object-oriented programming is not simply a tool for
writing code. He chose to fill the role usually filled by object-oriented
design with the MVC-paradigm.

88

Chapter 8

Discussion

In this chapter we discuss the misunderstandings we identified during
the interviews and observations. In chapter 7 we focused on the errors
and how we found the misunderstandings. In this chapter we take a
look at possible sources of these misunderstandings and compare our
findings with those made by other researchers. Finally we discuss if
and how our findings would impact an attempt at using pre-defined
misunderstandings to improve summative and formative assessment in
first year programming courses.

We separate the misunderstandings into two main groups as we discuss
how they relate to each other, their origin and extent. We also take a look at
what effects they may have overall. In the final section of this chapter we
take a look at how the misunderstandings we identified may be utilized in
assessment methods in programming courses.

One of the misunderstandings we identified, "IDE solutions to problems
are good enough”, does not fit into the two groups we chose. It would need
a group of its own for misunderstandings concerning tools aiding us in
writing code. However, this type of misunderstanding is not very relevant
to this study. The targeted course do not teach the use of tools such as IDEs
and the students’ skills with them is not target for assessment.

8.1 Misunderstandings concerning technical aspects
of programming

The second type of misunderstandings we take a look at are misunder-
standings concerning skills and knowledge required to write Java code at
the level of the targeted course. This include knowledge of some data struc-
tures, Java and programming languages in general. This means misunder-
standings of specific classes, components or structures that are frequently
used or provided by the programming language. The technical misunder-
standings we identified in chapter 7 are displayed in Table 8.1 on the fol-
lowing page.

We see from this that all of the technical misunderstandings we
identified are about either exceptions, arrays, generics or data structures

89

Misunderstanding Theme
Exception type is not important when | Exceptions
handling exceptions
Exceptions do not adhere to the same | Exceptions
rules a other Java-classes
Array-pointers are somehow differ- | Arrays
ent from regular pointers
Using arrays is too difficult Arrays
toString is our only alternative to | Generics
"know" anything about generic ob-
jects
Using toString to compare generic | Generics
objects is not a problem
A class must have its own generic | Generics
parameter to be able to use one
A class name cannot be overwritten | Generics

Data structure visualization is too | Data structures
difficult

Table 8.1: Misunderstandings we identified regarding technical aspects of
Java and programming languages in general

in general. All of these these misunderstandings regard topics that are
expected knowledge from students of the targeted course.

The misunderstandings we identified were both from errors that cause
an erroneous program result and errors that are related to design. Some
of the misunderstandings have caused both. We believe this shows that a
working program does not always prove that the student have a working
understanding that would always lead to a working program. Since they
ended up with a working program in the assignment we reviewed we
could argue that they do have the proper understanding to attain a working
program later. This leads to an argument of what proper understanding is.
Lauvas’[37] argument that many students deal with summative assessment
using bad learning techniques does apply in this case.

Bad learning techniques can be used to attain a good result on an
assignment without resulting in a proper understanding of the concepts
involved. An example of this is that we do not know exactly how the
working program was created. Some of the details were unfortunately
lost before we conducted our interviews. It is not unlikely to assume it
could have been made with help from sources that provide code examples
or using a trial and error approach. A good way to understand this is to
look at how novices debug programs to fix their errors. Murphy et al.[42]
found that a lot of novices apply ineffective techniques for debugging their
programs, techniques that show little understanding of the problem they
are solving. The debugging often lacks aim and keeps on until the novice
gives up or reaches the goal by accident.

90

8.1.1 The importance of misunderstandings concerning arrays

It is quite interesting that there are multiple misunderstandings consider-
ing arrays among the misunderstandings we identified . Arrays are part of
the topics that the targeted course does not really teach at all. It is expected
that all students of the course have had proper introduction to arrays from
previous courses. But it seems arrays are not as well understood as the
teaching staff of the targeted course expect. We did not experience a huge
amount of errors that considered arrays directly. But we did learn that
many students choose other data structures provided by Java. They find
arrays difficult to handle and prefer using classes that give a simpler set of
methods to deal with when inserting and looking for elements. Our find-
ings may indicate that problems using arrays are more widespread than
previously expected.

The misunderstandings we identified concerning arrays were not
only misconceptions where the students have developed a consistent
understanding that is wrong. They seem to have trouble explaining the
very concept and are in no way certain in their choices or knowledge. That
indicates that they may not have gotten enough practice with the concept.

The choice to use classes from the Java library over arrays may indicate
that the use of arrays often cause an inconvenient number of bugs. These
are bugs are time consuming for the students. This would be in line with
a study made by Soloway, Bonar, and Ehrlich[49]. Their study shows that
novice programmers more often use strategies for looping through data
that are prone to contain bugs such as the "off-by-1" bug where reading
and processing data is not aligned properly. If the students are unable to
properly set up looping strategies, that may explain why they prefer using
classes that provide simple methods for inserting and looking up data.

8.1.2 Other technical misunderstandings

The other technical misunderstandings are all about topics that the targeted
course attempts to teach its students. A small discussion only about
misunderstandings considering exceptions is held in section 7.2.1. Most
of the misunderstandings concerning exceptions and generics share one
common trait. They all seem to revolve around inheritance of fields and
methods. This is not strange considering both exceptions and generic
class parameters are in a way specialized classes in Java. The exception
is technically just a class with an additional ability of being thrown, and a
generic parameter is a placeholder for a class of a certain type just like a
pointer to an interface.

It seems some of the students who took the targeted course have
not properly understood how these types follow the same rules as other
classes. Since they are used in a very different way than regular classes
they may never have seen this similarity. We do not really know if the
other students in the targeted course see this either. We know they manage
to write their programs correctly. But that can just as easily be attained
through learning the "patterns" of the syntax or copying a working example

91

from the lectures or somewhere else on the Internet.

We did experience one of these uses of copying and pasting code in one
of the observations we conducted. The subject was tasked to write a LIFO-
queue using linked list structure. As he was not sure how to write a linked
list he quickly decided to try to find an appropriate implementation on the
Internet or among previously completed assignments. He ended up using
code from a sorted linked list, which has completely different requirements
than a LIFO-queue. The methods in the Java class were barely changed
before the subject considered them finished and submitted the code. This
shows how many students are rather careless when copying code, often
not understanding the code in which they copy. By using such a method
with trial and error it is possible to attain a working program without ever
understanding the basics of it.

It is interesting to note that there is a very limited amount of existing
research in Computer Science Education concerning generic classes. This
provides us with little data to compare our findings. This may be explained
by generic classes not being among the original features of Java. It was
introduced with the Java Developer Kit (JDK) 5.0 in 2004 but took some
time getting traction in courses in object-oriented programming such as
the targeted course. Yet courses have taught the concept for at least half a
decade and little research has been produced.

8.2 Misunderstandings concerning object-oriented prac-
tice and the importance of program design

The last group of misunderstandings are those concerning object-oriented
practice and the importance of program design. These are misunderstand-
ings concerning how to use the technical constructs provided to us by the
Java programming language in a good way.

Even though this class of misunderstanding contains fewer categories
than the technical misunderstandings discussed in the section above, this
type of misunderstanding was far more frequent among the students we
interviewed or observed. All but very few of our subjects had at least one
of these misunderstandings.

Matching these misunderstandings with the errors they were the cause
of in chapter 7 we see they cause errors in both program result and program
design. Most of the misunderstandings, however, cause only design errors
and design flaws. This is not surprising as they mostly relate to good
practice and priority of other aspects of a program than which result it
produces. But some misunderstandings, such as the lack of focus on
program robustness, may cause errors that have an effect on the results
of a program.

92

Misunderstanding Java theme
Program robustness is not as | Program design
important as other program
attributes
An upper bound of elements | Data structures
in a container serves no func-
tion
The premises for a task are | Program design
not absolute
Separating functionality from | Program design & object-
data storage is good practice | oriented practice
Distribution of functionality | Program design & object-

does not matter oriented practice
MVC is fully compatible with | Program design & object-
object-oriented principles oriented practice

Refactoring is not important | Program design
when the program works
The problem at hand is not | Program design
fully understood

Table 8.2: Misunderstandings we identified regarding object-oriented
practice and the importance of program design

8.2.1 Misunderstandings causing errors in program result or
compilation

The few misunderstandings of this category that may have lead to errors in
result or compilation are mostly about program robustness. Our experience
shows that misunderstandings that do not relate directly to the technical
aspects of a solution still may lead to technical errors. This is very
interesting indeed. Students’ erroneous notions of what is important
in a program may lead to the very thing they find important being
compromised.

But there were not that many different misunderstandings that we
linked directly in such a way. Our findings may be wrong in giving it this
direct link. The misunderstandings are still very likely to be present for
many students. But as we identified multiple possible misunderstandings
that cause those errors, this shared misunderstanding, may simply occur
from chance.

8.2.2 Misunderstandings causing design errors and flaws

The many occurrences of these misunderstandings in this study may have
a natural explanation. The assignments we reviewed spanned up to three
weeks. For most students that should be enough time to get rid of most
errors in result or compilation. The students of the targeted course are
taught to test their programs so we may expect them to, more often than

93

not, be able to see if their result is correct. This leaves a lot of errors
regarding how they achieve this result.

We have seen two distinct ways these misunderstandings turn in our
results. The first way is a lack of understanding the factors that are
important to write a good a program, such as scalability, efficiency and
robustness. Ragonis and Ben-Ari[45] identify multiple misunderstandings
that cause issues in design, such as misconceptions about modularity and
information hiding. Interestingly Ragonis and Ben-Ari[45] also identified a
lot of technical misunderstandings that we did not experience in this study.
The subjects in their study are students that have no prior experience with
programming, while our subjects have at least one semester. Yet they share
a lot of misunderstandings about how to design a program.

The second way is a misunderstanding considering whether such
aspects of a program are important in an assignment solution. In a
study to identify misunderstandings about object-oriented design, using
code reviews by novice programmers, Turner et al.[53] noticed one very
interesting point. While they found lack of knowledge and understanding
if several concepts used in OOD, they also summarize one particular trait
shared by the novices’ reviews:

“... indicating, what is common knowledge to instructors, that
students tend to write code to meet the assignment specification
to the letter and no more.”

(Turner et al., p. 100, [53])

This may apply to what we have experienced in this study. The students
often seemed happy as soon as the specifications given in the assignment
text appeared to be fulfilled. Their choices when it comes to refactoring
and sometimes quite good knowledge about points that may have been
improved does support this theory.

Some may argue that these types misunderstandings are the same. The
students who stick to bad solutions because they don’t bother to change
them don’t understand the factors that make a program good. But multiple
students in our study were able to point out clear weaknesses in their
programs, sometimes even without being asked about them. That shows
that the students are aware that their solution do not fit the criteria to
be "good". In other cases the students are not aware their programs has
weaknesses and why they matter. This shows a clear boundary between
the two types.

Misunderstandings about object-oriented design (OOD)

When reading the course title we expect the students to at least know of
the principles used when applying object-oriented programming (OOP)
to solve a problem. They are the reasons why we use the concepts
encapsulation, composition, inheritance and delegation we explained back
in section 2.5. If we take a look at the learning objectives stated on the
course website[16] we do not find any mentioning of the principles of

94

object-oriented programming. That may explain why a lot of the students
seem to not understand these principles.

This coincides with the results of Turner et al.[53]. They experienced
that many novices have problems understanding the intention behind the
use of both decomposition and encapsulation. The novices tend to see
proper use of encapsulation as overkill, misunderstanding encapsulation
with abstraction. Some of them seem to prefer long blocks of code,
explaining that they are easier to maintain than multiple smaller classes.
We experienced both of them in how some of the subjects in the
observations designed their classes in the first task. They attempt to
keep the amount of classes and interfaces low by sacrificing proper
encapsulation of data. Ragonis and Ben-Ari[45] also identified a lot of
misconceptions considering encapsulation among novice programmers.

Eckerdal et al.[17] experience that students, even those who are grad-
uating from university, do not know how to properly design programs.
More surprisingly, their research show that the ability to design software
do not correlate to academic performance. That may indicate that we were
wrong about a lot of the "more skilled" students which we never invited to
interviews because they did not have enough errors or flaws in their pro-
grams. They may either have flaws in their programs that we did not notice
or they may not be "more skilled" than the ones we interviewed as far as
academic results show.

But even though their actions may match we do not experience them
to be misconceptions about the principles of OOD and how they should
apply the concepts. Except from the student who attempted to solve his
assignment using the MVC-principles none of the students made many
arguments for the their choices using design principles. Their statements
are similar to some of the goals expressed in the American approach to
OOD that was introduced in section 2.5.1, such as shorter code. That may
be caused by a "selfish" wish to make their own work as easy as possible. It
does not have to be caused by them knowing only the American approach
to OOD.

Unfortunately this was not something we focused enough on in our
questions. Therefore we do not really have any obvious data showing
us the extent of the students” knowledge of the or the concepts of OOP
or the OOD principles applied when arguing for the use of the concepts.
But we do have the feeling that the students do have of any structured
reasoning behind their design choices at all. This seems likely if we take
into account that the course does not teach the concepts or any of the
approaches explicitly.

The importance of OOD-misunderstandings

The OOD-misunderstandings almost always show up in relation to other
misunderstandings causing error in the students” programs. The differ-
ent misunderstandings may not be be related at all. But we believe that
the OOD-misunderstandings may cause a lot of other misunderstandings
related to good practice and good design. The secondary misunderstand-

95

ings then cause even more errors. If that is true then remedying the OOD-
misunderstandings may lead to a reduction in other misunderstandings
and improvement of issues that are not directly caused by misunderstand-
ings of OOD.

Such a claim would need further verification. A study must be designed
to include students with a better mix of skill and academic results and
fewer other errors, as well as getting a better look at how the code made
in the solutions of an assignment develops over a period of time. A case
study could be suitable.

8.3 Assessing the misunderstandings

One of the questions we wanted to answer in this study is: Is it feasible
to use these misunderstandings as an aid in assessing students? We will
take two different looks at it. The first is basing an assessment method
on misunderstandings alone. Another is to use them as additional data to
existing methods.

8.3.1 Using only misunderstandings

We suggest two different strategies for the examiner to assess a student
based only on the misunderstandings the student has and use the misun-
derstandings we have identified to see if the nature of the misunderstand-
ings support them.

¢ If the examiner knows the misunderstanding in depth he can make a
direct assessment of how far away from the understanding stated by
the learning objectives of the course the student is.

e If the examiner only knows the seriousness of the misunderstanding
he can assess how he can make an educated guess towards how far
away from the understanding stated by the learning objectives of the
course the student is.

The first would be a viable strategy for both formative and summative
assessment. The second is unlikely to be viable for formative assessment.
Formative assessment is supposed to help the student improve his
understanding. A metric of how far away from a good solution a student
has come is unlikely to help him correct the actual misunderstandings.

From our findings in this study we can say pretty safely that few,
if any, errors can only be caused by one misunderstanding. We have
found multiple possible misunderstandings that seem plausible in causing
an errors. It was not uncommon that students even had more than one
misunderstanding considering one single error.

Earlier we discussed how simple errors sometimes seem to hide
more serious misunderstandings than what is obvious. We may ask
an additional question that is very relevant: Is the opposite possible as
well? In the observations we experienced that some students had grave

96

errors caused by simple typographical errors. While the exercises in the
observations do not fit the criteria for being a programming assignment, it
is not unlikely to assume that such cases exist in programming assignments
as well.

In this study we were able to learn which misunderstandings a student
may have based on lengthy code reviews, interviews and observations. But
examiners would probably not have the time and resources to do this. It
would at least require most computer science courses to completely remake
their assessment schemes. It does not seem likely that any method to assess
an assignment can rely on judging misunderstandings alone. The work
needed to identify them all would be very time consuming.

8.3.2 Supplementing with misunderstandings

Improving existing methods for assessment with the most likely misun-
derstandings seems like a more viable alternative. In many cases examin-
ers most likely already try to figure out why a student made some error
whether he uses an holistic or analytic approach to assessment. Although
we have not been able to identify all possible misunderstandings in the tar-
geted course, it would be possible to extend our work and get more data on
which misunderstandings are most likely to have caused a specific error.

A list of errors and likely misunderstandings could be given to the
examiner. The examiner would then use that list to guide him in gaining
insight into the understanding of the student being assessed. If the student
has multiple errors in his assignment, the examiner can compare the likely
misunderstandings from the different errors and improve his chances to
get his assessment right.

In formative assessment

In formative assessment it would be possible for the feedback given to a
student to be formed based on the likely misunderstandings he has. Say we
have a case where a student has both an error in a method that handles an
array and he chooses an ArrayList or other container from the Java library
in many places in the solution. The misunderstandings we experienced
would indicate that the student has trouble understanding how to design
methods to manage the data in the array. Feedback given the student can
be customized to include helping points on how to design methods that
treat looping structures and array structures:

Your solution has some weaknesses in regards to using arrays. When
you choose a structure to store data in, an array is a good choice but
often requires designing extra methods to deal with insertion, deletion
and lookup of data. Storing the index of the next free spot and using
for-each-loops to look for elements will be helpful in designing these
methods. After the methods have been designed the rest of the program
can access the data in the array through them and serve as its own
container similarly to that of ArrayList.

(Example feedback)

97

In summative assessment

A similar approach can be used in summative assessment. Instead of
designing customized feedback to the student the examiner could use
the likely misunderstandings to help him make an educated guess at
how much the student understands. That level of understanding can
be compared to the one expected by the course, expressed through the
intended learning objectives. A scoring system can be devised based on
the different levels of understanding.

98

Chapter 9

Conclusions and future work

In this thesis our goal was to identify errors that are present in assignments
submitted by students of a first year programming course and the
misunderstandings that may have caused those errors. In addition we
wanted to answer whether it would feasible to use the misunderstandings
as a metric for assessing the students who write the assignments. In this
chapter we take a look at how our results answer the questions stated in
section 1.1, suggest some possible ways to address the misunderstandings
we identified and present how our work can be used in future research.

9.1 Conclusions

From reviewing the assignments of 23 students of the targeted course,
written in Java, we have identified multiple errors that appear to be
common in submitted assignments. The assignments were "take-home"
assignments, spanning up to three weeks, that every students needed to get
approved to be allowed to attend the final exam. The errors we have found
may vary in other types of instruments of assessment such as multiple
choice tests and classroom exams.

9.1.1 Errors

Which programming errors do students of a first year programming
course make in their assignments?

Our findings show that almost no students deliver programs that do
not compile. Syntax and semantic errors are barely present in the list of
errors we experienced during our code reviews.

The assignments we reviewed considered most of the topics covered by
the targeted course. Of these topics lists, exceptions and writing generic
classes appear to be the most common problem areas for the students
whose solutions we reviewed. Previous research into errors considering
generics is lacking and our study presents multiple errors that were
common among novice programmers in the targeted course.

The majority of the errors present in assignments do not cause compiler
errors, runtime errors or a faulty result. Instead they are errors and flaws

99

that cause the program to be sub-optimal in the measurements of efficiency,
scalability or robustness. We saw many students struggling to design their
programs well. The most common flaw of all was code placement that
was in direct conflict with one or more of the principles of object-oriented
programming. These errors make code hard to read, expand upon and
often coincide with other errors.

9.1.2 Misunderstandings

Which misunderstandings may have caused these errors?

From interviews or observations of a total of 23 students we have
identified misunderstandings that seem to cause the errors we identified
during code reviews. The misunderstandings may differ for other types of
instruments of assessment than the one we analyzed.

The misunderstandings we identified include both technical misunder-
standings of constructs used in Java and the art of using them. In our dis-
cussion in chapter 8 we disclose findings showing how the different types
of misunderstandings relate to each other and whether they cause different
or similar outcomes for different students.

9.1.3 Assessing the misunderstandings

Is it feasible to use these misunderstandings as an aid in assessing
students?

e [n formative assessment?
* In summative assessment?

As expected our findings show that errors may be caused by multiple
misunderstandings and no one-to-one relation between errors and misun-
derstandings was found. We also learned that the one misunderstanding
may cause errors that do not have an effect on the program result, as well
as errors that do. That shows that a working program may "hide" misun-
derstandings that should have additional impact on the feedback given to
the student who wrote it.

We use that to conclude that the examiner can never be certain in his
interpretation of a student’s understanding based on code alone. Studies
can supply the examiner with predictions on which misunderstandings are
likely or not, but not definitive answers.

This makes an approach to assessment using only misunderstandings
unfeasible. Identifying the correct misunderstandings would require a lot
of additional work when using the most common assessment schemes such
as written exams or multiple choice tests.

Predictions of likely misunderstandings, given certain errors, may
provide good additional data to better equip the examiner to effectively
assess a program. In formative assessment the predictions can be used to
help the examiner present helpful feedback that attempts to address the
likely misunderstandings. In summative assessment the predictions can be

100

used to help create a better guess at the level of understanding a student
has considering different topics. That level of understanding will aid in
deciding the appropriate grades for the student.

9.2 Suggestions to remedy the misunderstandings

One suggestion to remedy some of the misunderstandings of the students
of the targeted course would be to introduce object-oriented design
principles in an explicit way. Our belief is that by making the students
aware of the many additional metrics we use when we assess the quality of
a program we ensure they are aware that program result and lines of code
is not all they must consider.

We would also suggest that the number of mandatory assignments
in the course either be reduced or the score requirement removed. We
experienced how the students worked with the primary goal to be done
in time for the deadline instead of focusing on writing good programs and
improve their learning, similar to what existing research into continuous
summative assessment has found[37].

9.3 Future work

We recommend that the work to identifying common errors and the
misunderstandings that cause them be continued for a larger amount
of students of the targeted course. A statistical model predicting the
likelihood of a certain misunderstanding causing an error can be used to
aid in assessment. This model should be tested for validity as a metric
for both formative and summative assessment. For formative assessment
the tests could be designed to measure how well the created feedback
fits the student through interviews before and after the feedback is given
to see if the misunderstandings have been addressed. For summative
assessment a comparison against the results of assessment methods such
as automatic assessment and holistic and analytical methods without the
aid of a statistical model.

Another possibility would be to focus on gaining further insight into
the nature of the misunderstandings to be able to suggest remedies for
the technical misunderstandings. We would recommend doing multiple
case studies of students throughout an entire assignment to experience the
students process of solving a complete assignment. In such case studies
it would be interesting to also review some of the students with better
academic performance to see if their misunderstandings overlap with those
of the students who perform worse.

Last it would be very interesting to expand the study to include
INF1000, one of the prerequisites of the targeted course, to look at the
level of understanding over a longer period of time. In such a study it
would be possible to compare the misunderstandings of students at the
end of INF1000 to those they develop during their time with the targeted
course. As seen in the example of arrays some students begin the targeted

101

course lacking some of the knowledge they are expected to have. Do these
misunderstandings cause further problems for the student in the targeted
course?

102

Bibliography

[1]

2]

[3]

4]

[5]

[6]

[7]

[8]

[9]

Amjad Altadmri and Neil C.C. Brown. “37 Million Compilations:
Investigating Novice Programming Mistakes in Large-Scale Student
Data.” In: Proceedings of the 46th ACM Technical Symposium on
Computer Science Education. SIGCSE "15. Kansas City, Missouri, USA:
ACM, 2015, pp. 522-527.

John Biggs. “Aligning teaching and assessment to curriculum ob-
jectives.” In: Imaginative Curriculum Project, LTSN Generic Centre 12
(2003).

John B. Biggs and Kevin F. Collis. Evaluating the Quality of Learning:
The SOLO taxonomy. New York: Academic Press, 1982.

John B. Biggs and Catherine Tang. Teaching For Quality Learning
At University. 4th ed. SRHE and Open University Press Imprint.
McGraw-Hill Education, 2011.

Benjamin S. Bloom, Max D. Engelhart, Edward J. Furst, Walker H.
Hill, and David R. Krathwohl. Taxonomy of educational objectives. The
classification of educational goals. Handbook 1: Cognitive domain. New
York: Longmans Green, 1956.

Neil C.C. Brown and Amjad Altadmri. “Investigating Novice Pro-
gramming Mistakes: Educator Beliefs vs. Student Data.” In: Proceed-
ings of the Tenth Annual Conference on International Computing Educa-
tion Research. ICER "14. Glasgow, Scotland, United Kingdom: ACM,
2014, pp. 43-50.

Neil C.C. Brown, Michael Koélling, Davin McCall, and Ian Utting.
“Blackbox: A Large Scale Repository of Novice Programmers” Activ-
ity.” In: Proceedings of the 45th ACM Technical Symposium on Computer
Science Education. SIGCSE "14. Atlanta, Georgia, USA: ACM, 2014,
pp. 223-228.

Kevin Buffardi and Stephen H. Edwards. “Reconsidering Automated
Feedback: A Test-Driven Approach.” In: Proceedings of the 46th ACM
Technical Symposium on Computer Science Education. SIGCSE ’15.
Kansas City, Missouri, USA: ACM, 2015, pp. 416—420.

Janet Carter, Kirsti Ala-Mutka, Ursula Fuller, Martin Dick, John En-
glish, William Fone, and Judy Sheard. “How Shall We Assess This?”
In: Working Group Reports from ITiCSE on Innovation and Technology in

103

Computer Science Education. ITiICSE-WGR ’03. Thessaloniki, Greece:
ACM, 2003, pp. 107-123.

Charles C. Chan, M. S. Tsui, Mandy Y. C. Chan, and Joe H.
Hong. “Applying the Structure of the Observed Learniing Outcomes
(SOLO) Taxonomy on Students Learning Outcomes: An empirical
study.” In: Assessment & Evaluation in Higher Education 27.6 (2002),
pp- 511-527.

The Oracle Corporation. Java Platform, Standard Edition 8 API Specifi-
cation. URL: http://docs.oracle.com/javase /8 /docs/api/ (visited on
10/11/2015).

John W Creswell. Research design: Qualitative, quantitative, and mixed
methods approaches. Sage publications, 2013.

Charlie Daly. “RoboProf and an Introductory Computer Program-
ming Course.” In: Proceedings of the 4th Annual SIGCSE/SIGCUE
ITiCSE Conference on Innovation and Technology in Computer Science Ed-
ucation. ITICSE "99. Cracow, Poland: ACM, 1999, pp. 155-158.

Holger Danielsiek, Wolfgang Paul, and Jan Vahrenhold. “Detecting
and Understanding Students” Misconceptions Related to Algorithms
and Data Structures.” In: Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education. SIGCSE "12. Raleigh, North
Carolina, USA: ACM, 2012, pp. 21-26.

Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. “All Syntax
Errors Are Not Equal.” In: Proceedings of the 17th ACM Annual
Conference on Innovation and Technology in Computer Science Education.
ITiCSE "12. Haifa, Israel: ACM, 2012, pp. 75-80.

University of Oslo Department of Informatics. INF1010 - Object
oriented programming. URL: http://www.uio.no/studier/emner/matnat/
ifi/INF1010/index-eng.html (visited on 02/15/2015).

Anna Eckerdal, Robert McCartney, Jan Erik Mostrom, Mark Ratcliffe,
and Carol Zander. “Can Graduating Students Design Software
Systems?” In: SIGCSE Bull. 38.1 (Mar. 2006), pp. 403—407.

Stephen H. Edwards, Zalia Shams, and Craig Estep. “Adaptively
Identifying Non-terminating Code when Testing Student Programs.”
In: Proceedings of the 45th ACM Technical Symposium on Computer
Science Education. SIGCSE "14. Atlanta, Georgia, USA: ACM, 2014,
pp- 15-20.

John English. “Experience with a Computer-assisted Formal Pro-
gramming Examination.” In: SIGCSE Bull. 34.3 (June 2002), pp. 51—
54.

John English and Phil Siviter. “Experience with an Automatically
Assessed Course.” In: SIGCSE Bull. 32.3 (July 2000), pp. 168-171.

104

http://docs.oracle.com/javase/8/docs/api/
http://www.uio.no/studier/emner/matnat/ifi/INF1010/index-eng.html
http://www.uio.no/studier/emner/matnat/ifi/INF1010/index-eng.html

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Noel Entwistle, Abigail Entwistle, et al. “Revision and the experience
of understanding.” In: Marton, Ferrence, Hounsell, D.ai & Entwistle,
Noel(Eds) The Experience of Learning: Implications for Teaching and
Studying in Higher Education 2 (1997), pp. 145-155.

Nickolas Falkner, Rebecca Vivian, David Piper, and Katrina Falkner.
“Increasing the Effectiveness of Automated Assessment by Increas-
ing Marking Granularity and Feedback Units.” In: Proceedings of the
45th ACM Technical Symposium on Computer Science Education. SIGCSE
"14. Atlanta, Georgia, USA: ACM, 2014, pp. 9-14.

Sally Fincher and Marian Petre. Computer science education research.
CRC Press, 2004.

Sue Fitzgerald, Brian Hanks, Raymond Lister, Renee McCauley,
and Laurie Murphy. “What Are We Thinking when We Grade
Programs?” In: Proceeding of the 44th ACM Technical Symposium on
Computer Science Education. SIGCSE "13. Denver, Colorado, USA:
ACM, 2013, pp. 471-476.

Ursula Fuller, Colin G. Johnson, Tuukka Ahoniemi, Diana Cukier-
man, Isidoro Herndn-Losada, Jana Jackova, Essi Lahtinen, Tracy
L. Lewis, Donna McGee Thompson, Charles Riedesel, and Errol
Thompson. “Developing a Computer Science-specific Learning Tax-
onomy.” In: SIGCSE Bull. 39.4 (Dec. 2007), pp. 152-170.

Matheus Gaudencio, Ayla Dantas, and Dalton D.S. Guerrero. “Can
Computers Compare Student Code Solutions As Well As Teachers?”
In: Proceedings of the 45th ACM Technical Symposium on Computer
Science Education. SIGCSE "14. Atlanta, Georgia, USA: ACM, 2014,
pp- 21-26.

David Ginat and Eti Menashe. “SOLO Taxonomy for Assessing
Novices” Algorithmic Design.” In: Proceedings of the 46th ACM
Technical Symposium on Computer Science Education. SIGCSE ’15.
Kansas City, Missouri, USA: ACM, 2015, pp. 4562-457.

Richard Gluga, Judy Kay, Raymond Lister, Sabina Kleitman, and
Tim Lever. “Over-confidence and Confusion in Using Bloom for
Programming Fundamentals Assessment.” In: Proceedings of the 43rd
ACM Technical Symposium on Computer Science Education. SIGCSE "12.
Raleigh, North Carolina, USA: ACM, 2012, pp. 147-152.

Wynne Harlen and Mary James. “Assessment and Learning: differ-
ences and relationships between formative and summative assess-
ment.” In: Assessment in Education: Principles, Policy & Practice 4.3
(1997), pp. 365-379.

Matthew Hertz. “What Do "CS1" and "CS2" Mean?: Investigating
Differences in the Early Courses.” In: Proceedings of the 41st ACM
Technical Symposium on Computer Science Education. SIGCSE ’10.
Milwaukee, Wisconsin, USA: ACM, 2010, pp. 199-203.

105

[41]

[42]

Colin Higgins, Pavlos Symeonidis, and Athanasios Tsintsifas. “The
Marking System for CourseMaster.” In: Proceedings of the 7th Annual
Conference on Innovation and Technology in Computer Science Education.
ITiCSE "02. Aarhus, Denmark: ACM, 2002, pp. 46-50.

Cay S Horstmann. Big Java: Late Objects. John Wiley & Sons, 2013.

Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri.
“Identifying and Correcting Java Programming Errors for Introduc-
tory Computer Science Students.” In: SIGCSE Bull. 35.1 (Jan. 2003),
pp- 153-156.

James Jackson, Michael Cobb, and Curtis Carver. “Identifying Top
Java Errors for Novice Programmers.” In: Frontiers in Education, 2005.
FIE ’05. Proceedings 35th Annual Conference. Oct. 2005, T4C-T4C.

Matthew C. Jadud. “Methods and Tools for Exploring Novice
Compilation Behaviour.” In: Proceedings of the Second International
Workshop on Computing Education Research. ICER '06. Canterbury,
United Kingdom: ACM, 2006, pp. 73-84.

Kuba Karpierz and Steven A. Wolfman. “Misconceptions and Con-
cept Inventory Questions for Binary Search Trees and Hash Tables.”
In: Proceedings of the 45th ACM Technical Symposium on Computer
Science Education. SIGCSE "14. Atlanta, Georgia, USA: ACM, 2014,
pp. 109-114.

Per Lauvas. “Changing assessment practices in higher Norwegian
education.” In: Balancing dilemmas in assessment and learning in
contemporary education. Ed. by Anton Havnes and Liz McDowell.
Routledge, 2007, pp. 157-168.

Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley,
and Christine Prasad. “Not Seeing the Forest for the Trees: Novice
Programmers and the SOLO Taxonomy.” In: SIGCSE Bull. 38.3 (June
2006), pp. 118-122.

Ritch Macefield. “Usability studies and the Hawthorne Effect.” In:
Journal of Usability Studies 2.3 (2007), pp. 145-154.

Ole Lehrmann Madsen and Birger Meller-Pedersen. “What object-
oriented programming may be-and what it does not have to be.”
In: ECOOP’88 European Conference on Object-Oriented Programming.
Springer. 1988, pp. 1-20.

Davin McCall and Michael Kolling. “Meaningful categorisation of
novice programmer errors.” In: Frontiers in Education Conference (FIE),
2014 IEEE. IEEE. 2014, pp. 1-8.

Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon,
Lynda Thomas, and Carol Zander. “Debugging: The Good, the Bad,
and the Quirky — a Qualitative Analysis of Novices” Strategies.” In:
SIGCSE Bull. 40.1 (Mar. 2008), pp. 163-167.

106

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Kristen Nygaard and Ole-Johan Dahl. “History of Programming
Languages I.” In: ed. by Richard L. Wexelblat. New York, NY, USA:
ACM, 1981. Chap. The Development of the SIMULA Languages,
pp- 439-480.

David M. Olson. “The Reliability of Analytic and Holistic Methods
in Rating Students” Computer Programs.” In: Proceedings of the Nine-
teenth SIGCSE Technical Symposium on Computer Science Education.
SIGCSE "88. Atlanta, Georgia, USA: ACM, 1988, pp. 293-298.

Noa Ragonis and Mordechai Ben-Ari. “A long-term investigation of
the comprehension of OOP concepts by novices.” In: (2005).

Rami Rashkovits and Ilana Lavy. “Students” Misconceptions of Java
Exceptions.” In: Knowledge and Technologies in Innovative Information
Systems. Springer, 2012, pp. 1-21.

Riku Saikkonen, Lauri Malmi, and Ari Korhonen. “Fully Automatic
Assessment of Programming Exercises.” In: SIGCSE Bull. 33.3 (June
2001), pp. 133-136.

Judy Sheard, Angela Carbone, Raymond Lister, Beth Simon, Errol
Thompson, and Jacqueline L. Whalley. “Going SOLO to Assess
Novice Programmers.” In: SIGCSE Bull. 40.3 (June 2008), pp. 209-
213.

Elliot Soloway, Jeffrey Bonar, and Kate Ehrlich. “Cognitive Strategies
and Looping Constructs: An Empirical Study.” In: Commun. ACM
26.11 (Nov. 1983), pp. 853-860.

Christopher W. Starr, Bill Manaris, and RoxAnn H. Stalvey. “Bloom’s
Taxonomy Revisited: Specifying Assessable Learning Objectives in
Computer Science.” In: Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education. SIGCSE "08. Portland, OR,
USA: ACM, 2008, pp. 261-265.

Errol Thompson, Andrew Luxton-Reilly, Jacqueline L. Whalley, Min-
jie Hu, and Phil Robbins. “Bloom’s Taxonomy for CS Assessment.”
In: Proceedings of the Tenth Conference on Australasian Computing Edu-
cation - Volume 78. ACE "08. Wollongong, NSW, Australia: Australian
Computer Society, Inc., 2008, pp. 155-161. URL: http://dl.acm.org/
citation.cfm?id=1379249.1379265.

Alan M. Turing. “On computable numbers, with an application to the
Entscheidungsproblem.” In: J. of Math 58.345-363 (1936), p. 5.

Scott A. Turner, Ricardo Quintana-Castillo, Manuel A. Pérez-
Quifiones, and Stephen H. Edwards. “Misunderstandings About
Object-oriented Design: Experiences Using Code Reviews.” In:
SIGCSE Bull. 40.1 (Mar. 2008), pp. 97-101.

Maarten W Van Someren, Yvonne F Barnard, Jacobijn AC Sandberg,
et al. The think aloud method: A practical guide to modelling cognitive
processes. Vol. 2. Academic Press London, 1994.

107

http://dl.acm.org/citation.cfm?id=1379249.1379265
http://dl.acm.org/citation.cfm?id=1379249.1379265

[55]

[56]

Wikipedia. Sudoku. URL: https://en.wikipedia.org/wiki/Sudoku (visited
on 09/17/2015).

Chris Wilcox. “The Role of Automation in Undergraduate Computer
Science Education.” In: Proceedings of the 46th ACM Technical Sympo-
sium on Computer Science Education. SIGCSE "15. Kansas City, Mis-
souri, USA: ACM, 2015, pp. 90-95.

108

https://en.wikipedia.org/wiki/Sudoku

Appendices

109

Appendix A

Participant Information Sheet

111

Foresporsel om deltagelse i forskningsprosjekt

Undersokelse av underliggende misforstaelser av
faglig karakter bak kodefeil i introduksjonsemner
innen programmering

Bakgrunn og formal

Undersgkelsen er en del av en masteroppgave ved Institutt for informatikk (Ifi)ved Universitetet i
Oslo. Hensikten med undersegkelsen er & oke kunnskap om hvilke underliggende misforstdelser som
ligger bak ulike kodefeil som gjores av studenter og hvilke tiltak som kan benyttes for & redusere
forekomsten av misforstdelsene.

Programkode forteller lite om forfatterens hensikt og tanker. Det gjor det vanskelig for rettere og
undervisere 4 identifisere hva det er en student misforstar og hvor det eventuelt er hull i kunnskapen
om faget.

Maélet med undersgkelsen er:

1. A identifisere noen av de vanligste kodefeilene studenter gjor i kurset.
2. A identifisere noen av de mest vanlige misforstdelsene som er arsak til de overnevnte kodefeil

3. Forsgke nye tiltak for & redusere forekomsten av de identifiserte misforstaelsene

Undersokelsen er rettet mot studenter ved kurset INF1010 - Objektorientert programmering, holdt
av Ifi.

Hva inneberer deltakelse i studien?

Studien involverer forst analyse av utvalgte besvarelser pa noen av de obligatoriske oppgavene i
kurset. Dersom besvarelsen inneholder kodefeil som er relevante for studien vil studenten som skrev
besvarelsen inviteres til 4 delta pa et personlig intervju.

Hensikten med intervjuet er & avdekke hva som er drsaken til at vedkommende fikk en slik feil og
identifisere misforstaelser av faglig karakter. Spersmélene vil omhandle besvarelsen pd den obliga-
toriske oppgaven og hvordan man gikk frem for a lose den. Intervjuet vil tas opp med diktafon.

Dersom det viser seg hensiktsmessig vil deltagerne i studien inviteres til a delta i en del av studien
der en fra prosjektgruppen observerer dem mens de loser en obligatorisk oppgave. Hensikten med
observasjonen vil veere & fa utdypt dataene som samles inn i intervjuet.

Informasjonen fra studien vil kunne brukes til tester med formdl om & redusere forekomsten av kode-
feil hos studenter.

Hva skjer med informasjonen om deg?

Alle personopplysninger vil bli behandlet konfidensielt og vil ikke fa innvirkning pa resultater i
kurset eller veere tilgjengelig for personer med undervisning- eller retteransvar for deltagerne.

Personopplysninger vil kun veere tilgjengelige for masterstudenten (Mathias J. Johansen) og veileder
(Ragnhild K. Runde). Dataene fra studien, inkludert transkriberte lydopptak, blir anonymisert og
erstattet med referansengkkel som lagres separat fra resten av dataen. Lydopptak vil transkriberes
og deretter slettes.

Prosjektet skal etter planen avsluttes 31/12-2015. Alle personopplysninger vil da slettes og alle data
vil veere anonyme. Personopplysninger vil ikke veere med i masteroppgaven og deltagere vil ikke
veere mulig & gjenkjennes ut fra den.

Frivillig deltakelse

Det er frivillig & delta i studien, og du kan ndr som helst trekke ditt samtykke uten & oppgi noen
grunn. Dersom du trekker deg, vil alle opplysninger om deg bli anonymisert. I likhet med op-
plysninger som avdekkes i lopet av studien vil ikke hvorvidt man deltar i studien eller velger a
trekke seg bli kommunisert til personer med undervisning- eller retteransvar for deltagerne.

Dersom du har spersmadl til studien, ta kontakt med Ragnhild Kobro Runde via epost
(ragnhild.runde@ifi.uio.no) eller eventuelt telefon (22840144 /94436221).

Studien er meldt til Personvernombudet for forskning, Norsk samfunnsvitenskapelig datatjeneste
AS.

Samtykke til deltakelse i studien

Jeg har mottatt informasjon om studien, og er villig til & delta

(Signert av prosjektdeltaker, dato)

] Jeg samtykker at mine besvarelser pa obligatoriske oppgaver brukes i studien
] Jeg samtykker til & delta i intervju

] Jeg samtykker til & delta i obervasjon

] Jeg samtykker til at mine eksamensresultater i INF1010 brukes i studien

114

Appendix B

Interview Guide

115

Intervjuguide

March 23, 2015

1 Hensikt

Hensikten med intervjuet er 4 kartlegge hvordan studenten har gatt frem for a lose en oppgave. For
intervjuet gjennomfores ma intervjuer ha satt seg inn i intervjuobjektets besvarelse av oppgaven og
identifisert kodefeil som er relevante for studien. I tillegg skal intervjuer ha lest grundig gjennom
oppgaveteksten og identifisert mulige tekstlige drsaker til misforstdelser om hensikten og gjennom-
feringen av oppgaven.

Feilene vi onsker & finne drsaken bak er av felgende type:

e Feil i iterator:

— Feil bruk av Iterable vs. Iterator

— Metoder som itererer igjennom hele containeren i stedet for a hente ett og ett objekt
- Pekerkroll

¢ Feil i generiske typer:

- Manglende bruk av metoder som kommer gjennom restricted types (compareTo og samme)

- Tegn som typer pa at studenten tror navnet pa den generiske typen er "vesentlig"

e Fil i lenket liste:

- Pekerkrgll ved innsetting og sortering

- Feil bruk av metoden compareTo

2 Spersmal vi skal besvare:

Innen intervjuet er over bor folgende ting kunne svares pa for alle identifiserte kodefeil:
[[] Var studenten klar over at det var feil i koden?

[] Hvordan gikk studenten frem for a lose problemet der feilen er?

[[] Hva er 4rsaken til at studenten valgte a lose det slik?

(] Hvor viktig del av oppgaven ansa studenten at delen feilen var i til & veere?

I tillegg vil folgende informasjon veere interessant pa generell basis:

[] Hvilket ferdigheter /hvilken kunnskap tror studentene oppgaven tester ut?

3 Off topic:

Folgende ting er ikke relevante for undersgkelsen og skal ikke sperres om:

¢ Studentens kjonn, alder osv.
¢ Studentens studieprogram
¢ Studentens tidligere og videre studieplan

¢ Studentens besvarelse av andre oppgaver enn den intervjuet omhandler. Med mindre opp-
gavene bygger pa hverandre.

* Opplysninger om tredje person (fagleerer, gruppeleerer, medstudenter)
¢ Informasjon om undervisning fra spesifike gruppeleerere eller faglerere

¢ Informajson om utsatt innlevering av oppgaven som bla. kan inkludere informasjon om helse-
forhold (sykemelding/egenmelding)

4 Struktur

4.1 Introuksjon
Presenter deg selv, bakgrunnen din og arbeidet du gjer. Forklar hensikten med studien for & minne
studenten om hva vi ensker 4 oppna med intervjuet.

Fortell studenten at han/hun kan prate fritt og at han/hun ikke trenger a vente pd noe spersmal,
men bare fortsette & forklare oppgaven slik det foles naturlig.

Serg for a gjore det klart at ingen opplysninger fra dette intervjuet vil pavirke hans/hennes resultater
i kurset eller & noe vis komme i hende de som underviser eller retter oppgavene hans/hennes.

Forklar bruken av lydopptaker. Dette er for at intervjuer skal f med seg alle detaljer i samtalen
og skal transkriberes i etterhdnd. Forklar at ingen andre enn prosjektgruppen kommer til a hore
lydbandene og at de slettes etter at de har blitt transkribert og anonymisert.

Forklar at hvis det er noe studenten ikke ensker & svare pé eller ensker & trekke seg fra intervjuet sa
kan han/hun gjore det nar som helst.

Sper om studenten har noen spersmal for du starter.

4.2 Start

Start intervjuet med & sporre studenten hva han/hun tror var det viktige 4 teste i denne oppgaven.

Sper studenten om han/hun vet om noen feil i den innleverte besvarelsen. Hvis ja: be studenten om
a forklare hvorfor han/hun tror det er en feil. Hvis nei: be studenten forklar hvordan han/hun gikk
frem for a lose oppgaven steg for steg.

Eks: Nar du startet & jobbe med obligen. Hvor startet du hen da?
4.3 Per tema/deloppgave/feil

For et tema i oppgaven eller en feil studenten gir innpd sa ber du serge for at han/hun forklarer i
tilstrekkelig detalj hvordan han/hun jobbet for & lose det.

2

Folgende sporsmal kan veere greie hvis studenten stopper opp eller ikke gdr dypt nok inn pa temaet
til & fa besvart spermalene i seksjon 2:

¢ For 4 lose denne oppgaven, hvor startet du?

Hva er problemet her?

Hvordan leste du problemet?

Hvorfor gikk du for den lesningen (kontra en annen losning)?

Ser du noen mate din lesning kan skape problemer/feil i programmet?

Hvorfor tror du at du bes om a bruke losningstype X i stedet for Y her?

Utenom det er det onskelig & la studenten styre samtalen. Intervjuers oppgave er a sette i gang
samtalen og guide studenten ved behov. Vi har lite grunnlag for & gjore antagelser om rekkefolge
noe er gjort i og er interessert i 4 vite hva studenten anser som mest relevant i sin besvarelse.

Veer oppmerksom pa om studenten forklarer seg med grunnlag i hva oppgaveteksten ver om eller an-
dre kilder til hva poenget er (f.eks andre studenter eller muntlig beskjed fra fagleerere/gruppelerere).
Kilden til misforstdelsen kan veere interessant.

Hyvis studenten gar off topic skal du lede intervjuet tilbake til temaet, studentens besvarelse.

5 Avslutning

Sper studenten om han/hun var inne til rettetime for besvarelsen ble levert og om det har blitt endret
etter det.

Sper ogsa hvorvidt han/hun gjorde dette alene eller som del av et parprogrammeringsteam.

Forklar studenten hva det videre arbeidet med analyse vil foregd hvordan intervjuene vil presenteres
i masteroppgaven. Hvis studenten ensker s kan han/hun bli satt pa en liste for 4 motta evt publisert
materiale.

Sper om studenten har noen flere spersmal nd som intervjuet er over.

6 Etter intervjuet

Skriv ned eller lag memo med diktafonen med tanker om hvordan intervjuet gikk. Tanker om faglige
misforstdelser studenten kan ha hatt og hvordan det lenker til resten av arbeidet. Vurder om inter-
vjuet kan ha blitt pavirket av atmostfeere eller at studenten har veert nerves, sliten, trott osv.

Appendix C

Approval letter from the Data
Protection Official for Research

119

Norsk samfunnsvitenskapelig datatjeneste AS
NORWEGIAN SOCIAL SCIENCE DATA SERVICES

Ragnhild Kobro Runde

Harald Hdrfagres gate 29

Institutt for informatikk Universitetet i Oslo N-5007 Bergen
. Norway
Postboks 1080 Blindern Tel: +47-55 58 21 17
Fax: +47-55 58 96 50
0316 OSLO nsd@nsd uib.no
www.nsd.uib.no
Var dato: 11.03.2015 Var ref: 42265/ 3/ KH Deres dato: Deres ref: Orgine 885 521 684

TILBAKEMELDING PA MELDING OM BEHANDLING AV PERSONOPPLYSNINGER

Vi viser til melding om behandling av personopplysninger, mottatt 15.02.2015. Meldingen gjelder
prosjektet:

42265 Undersgkelse av underliggende misforstaelser av faglig karakter bak
kodefeil i introduksjonsemner innen programmering

Behandlingsansvarlig ~ Universitetet i Oslo, ved institusjonens gverste leder
Daglig ansvarlig Ragnhild Kobro Runde
Student Mathias Johan Johansen

Personvernombudet har vurdert prosjektet og finner at behandlingen av personopplysninger er
meldepliktig i henhold til personopplysningsloven § 31. Behandlingen tilfredsstiller kravene i
personopplysningsloven.

Personvernombudets vurdering forutsetter at prosjektet gjennomfgres i trdd med opplysningene gitt i
meldeskjemaet, korrespondanse med ombudet, ombudets kommentarer samt
personopplysningsloven og helseregisterloven med forskrifter. Behandlingen av personopplysninger
kan settes i gang.

Det gjgres oppmerksom pa at det skal gis ny melding dersom behandlingen endres i forhold til de
opplysninger som ligger til grunn for personvernombudets vurdering. Endringsmeldinger gis via et
eget skjema, http://www.nsd.uib.no/personvern/meldeplikt/skjema.html. Det skal ogsa gis melding
etter tre &r dersom prosjektet fortsatt pagar. Meldinger skal skje skriftlig til ombudet.

Personvernombudet har lagt ut opplysninger om prosjektet i en offentlig database,
http://pvo.nsd.no/prosjekt.

Personvernombudet vil ved prosjektets avslutning, 31.12.2015, rette en henvendelse angdende
status for behandlingen av personopplysninger.

Vennlig hilsen

Katrine Utaaker Segadal
Kjersti Haugstvedt

Kontaktperson: Kjersti Haugstvedt tIf: 55 58 29 53

Dokumentet er elektronisk produsert og godkjent ved NSDs rutiner for elektronisk godkjenning.

Avdelingskontorer / District Offices:
OSLO: NSD. Universitetet i Oslo, Postboks 1055 Blindern, 0316 Oslo. Tel: +47-22 85 52 11. nsd@uio.no
TRONDHEIM: NSD. Norges teknisk-naturvitenskapelige universitet, 7491 Trondheim. Tel: +47-73 59 19 07. kyrre svarva@svt.ntnu.no
TROMS@: NSD. SVF, Universitetet i Tromsg, 9037 Tromsa. Tel: +47-77 64 43 36 nsdmaa@sv.uit.no

Vedlegg: Prosjektvurdering
Kopi: Mathias Johan Johansen mathiajj@ifi.uio.no

Per sonver nombudet for forskning @)

Progjektvurdering - Kommentar

Prosjektnr: 42265
Utvalget informeres skriftlig om prosjektet og samtykker til deltakelse. Informasjonsskrivet er godt utformet.

Personvernombudet legger til grunn at studentene etterfalger Universitetet i Oslo sine retningslinjer for
datasikkerhet.

Forventet progjektslutt er 31.12.2015. If@lge prosjektmeldingen skal innsamlede opplysninger da anonymiseres.
Anonymisering innebaaer & bearbeide datamaterialet slik at ingen enkeltpersoner kan gjenkjennes. Det gjares
ved &

- dette direkte personopplysninger (som navn/koblingsnekkel)

- dette/omskrive indirekte personopplysninger

- dette lydopptak.

Appendix D

INF1010 Mandatory
Assignment 5

123

Om obligatorisk oppgave 5, 6 og 7 i INF1010, viaren 2015: "Leger og resepter"
Versjon 1,0
Innledning.

Du skal jobbe med en problemstilling omkring leger og resepter i 4 uker fra 19. februar til 25.
mars og du kan til sammen fa maksimum 8 poeng. Den forste delen av oppgaven (oblig 5),
som du skal jobbe med de forste to ukene (maks 2 poeng), skal leveres senest 4. mars kl 10:00.
Den 26. februar frigis den andre del av oppgaven (oblig 6). Denne skal leveres senest 18.

mars kl 10:00 og gir maks 3 poeng. Den siste delen (oblig 7) frigjeres 5. mars. Den skal
leveres senest 25. mars kl 10:00, og har ogsa maks 3 poeng.

Siden disse tre oppgavene bygger pd hverandre er det bare mulig & hoppe av underveis. Det
er ikke mulig & hoppe pé, dvs. at du mé ha godkjent 5 for & fi godkjent 6, og du mé ha
godkjent 6 for & 4 godkjent 7. Du har godkjent en oppgave om du fér ett eller flere poeng.

Obligene 6 og 7 skal lgses vha. systemutviklingsmetoden ”Parprogrammering”.
Du MA melde deg pé oblig 6 og 7 innen 25. februar. Informasjon om dette finner du
under “oblig 6 og 7” pa kursets hjemmeside.

I hovedsak bestar oblig 5 av & lage et klassehierarki, oblig 6 av & lage en del beholdere, og
oblig 7 av 4 sette det hele sammen til slutt til et ordrestyrt program. I oblig 6 og oblig 7 ma du
kanskje gé tilbake til klassehierarkiet i oblig 5 og gjere sma forandringer.

Obligatorisk oppgave 5, INF1010, viaren 2015, maks 2 poeng.
Innlevering senest onsdag 4. mars kl. 10:00

KLASSEHIERARKIENE til Leger og Resepter m.m.

Hensikten med denne oppgaven er at du skal lere deg & skrive klassehierarkier med
subklasser og grensesnitt (interfaces). Det er ingen generiske klasser eller generiske
interfacer i oblig 5. Ikke gjor oppgaven for stor eller for vanskelig. Som beskrevet over ma
du kanskje utvide noen av klassene du skriver i oblig 5 ndr du ser hva obligene 6 og 7 trenger.
Du skal derfor forelepig bare ta med de variable og metodene som det eksplisitt blir bedt om
her. Hvis du synes noe er uklart, gjor dine egne fornuftige presiseringer.

Legemidler

Et legemiddel har et navn, et unikt nummer og en pris. Nar nye legemidler registreres gis de
et nytt lopende (unikt) nummer som starter pa 0.

Et legemiddel er enten av type A, narkotisk, eller av type B, vanedannende, eller av type C,
vanlige legemiddel. For alle legemidler mé vi kunne vite hvor mye virkestoff (mg) det
inneholder totalt.

Det er stor forskjell pa legemidler av disse tre typene, men i denne oppgaven skal vi bare ta
hensyn til:

Legemidler av type A har et heltall som sier hvor sterkt narkotisk det er.

Legemidler av type B har et heltall som sier hvor vanedannende det er.

Legemidler av type C har ingen nye egenskaper (annet enn klassens navn).

I tillegg til egenskapene beskrevet over kommer legemidler enten som piller eller som
mikstur (flytende). Disse egenskapene skal du beskrive vha. grensesnitt (interface).

For enkelhets skyld skal vi for piller bare vite hvor mange piller det er i en eske og hvor mye
virkestoff det er i hver pille. For mikstur skal vi vite hvor mange cm3 det er i en flaske og
hvor mye virkestoff det er i hver cm3.

Resepter

En resept har et unikt nummer som starter pa 0 med forste resept som opprettes. En resept
inneholder en peker til et legemiddel, en peker til den legen som har skrevet ut resepten, og
nummeret til den personen som eier resepten (se nedenfor om leger og personer).

En resept har et antall ganger som er igjen pa resepten (kalles "reit"). Hvis antall ganger
igjen er null, er resepten ugyldig.

Noen resepter er bld, andre er hvite. Vi skal ta heyde for at det er stor forskjell pé hvite og bla
resepter, men igjen skal vi gjore en forenkling og si at bare prisen er forskjellig: Bla resepter
er sterkt subsidiert, og for enkelhets skyld sier vi her at de er gratis.

Leger
En lege har et unikt navn.

I oblig 6 skal vi kunne finne en lege basert pa navn. Klassen Lege skal derfor implementere
grensesnittet (interfacet) Lik der sammenlikningen (likheten) skal skje med legens navn.

Grensesnittet Lik inneholder en metode kalt "samme" som har som parameter en String og
returnerer sann eller usann. Dette grensesnittet kan f.eks. brukes til & finne om et objekt som
inneholder et navn (String) har samme navn som parameteren til metoden.

Noen leger har avtaler med kommunen der de jobber (fastleger). Dette & ha en avtale med
kommunen er noe ikke bare leger kan ha. Denne egenskapen skal derfor beskrives med et
grensesnitt (interface). For alle som har en avtale med kommunen skal vi kunne fa tak i et
avtalenummer.

Personer

Personer har et navn og et fadselsnummer (11 siffer) og en adresse. Adressen skal vere et
veinavn og nummer (som til sammen lagres i en String) og et firesifret postnummer. Nér en
ny person registreres gis personen i tillegg et nytt lapende (unikt) nummer som starter pa 0
med forste personen som programmet oppretter.

Oppgave 5.1
Tegn opp klassehierarkiene beskrevet over. Ta ogsa med alle grensesnitt (interface). I denne
tegningen skal du ikke ta med data og metoder.

Oppgave 5.2
Skriv programmene for alle klassene og grensesnittene (interface) beskrevet over.
Skriv konstrukterer som initialiserer alle variable og konstanter i alle klasser.

Du skal lever inn tegningen fra oppgave 5.1 og programmene (kildekoden) til alle klassene og
grensesnittene (interface) fra oppgave 5.2. Du skal folgelig ikke levere noe fullstendig,
kjerbart program i denne oppgaven.

Slutt obligatorisk oppgave 5.

126

Appendix E

INF1010 Mandatory
Assignment 6

127

Obligatorisk oppgave 6 i INF1010, viaren 2014: "Beholdere til Leger og resepter"
Versjon 1,0. Frigis 26, februar, 3 poeng. Leveres innen kl 10:00 onsdag 18. mars.

I denne oppgaven skal dere vise at dere kan bruke grensesnitt, abstrakte klasser, generiske
klasser, subklasser, lenkelister og tabeller.

Dere skal programmere en del beholdere som skal brukes i oblig 7. Mange av disse
beholderene skal kunne brukes til andre formél, men for & ikke gjore oblig 6 for abstrakt er
det kanskje lurt & ha bruken i oblig 7 klart for gyet hele tiden.

Pé gruppene vil dere fa hjelp til & lage iteratorer. Nar dere implementerer iteratorer behgver
dere ikke implementere remove().

De beholderene dere skal programmere i oblig 6 skal i oblig 7 ta vare pa alle legemidler,
resepter, leger og personer. I tillegg skal en lege ha en beholder over alle reseptene
vedkommende har skrevet ut, og en person skal ha en beholder som inneholder alle
personenes resepter. Legemidlene skal lagres i et objekt av klassen Tabell, reseptene skal
lagres i et objekt av klassen EnkelReseptListe, legene skal lagres i et objekt av
SortertEnkelListe og personene skal lagres i et objekt av klassen Tabell. Beholderen som
inneholder en leges resepter skal veere av klassen EldsteForstReseptListe, mens beholderen
som inneholder en persons resepter skal vare av klassen YngsteForstReseptListe.

Les gjennom hele oppgaven for du starter & svare pa noen spersmal. Du ma ha klar oversikt
over resten av oppgave 6 for du besvarer oppgavene 6.1.

Oppgave 6.1.a. Tegn opp klassehierarket for beholderne.
Ikke ta med navn pa metoder og variable

Oppgave 6.1.b. Tegn opp datastrukturen.

Tegn alle beholderne, noen legemiddel-objekter, noen lege-objekter, noen person-objekter og
noen resept-objekter. La det komme klart frem at en resept er med i mange beholdere. Tegn
inn ”public” metodene (grensesnittet) i alle beholderene. Ikke ta med andre metoder. Nar det
er flere like objekter behgver du bare tegne inn all variable i ett objekt.

I oppgave 6.2 og 6.3.a frigjer vi oss fra leger, resepter mm. og definere generelle grensesnitt
og klasser for beholdere:

Oppgave 6.2. Grensesnitt (interface) for beholdere

Skriv programmet for det generiske grensesnittet AbstraktTabell. Det skal ikke vare noen
restriksjoner pa hva slags elementer den abstrakte tabellen skal kunne inneholde.
AbstraktTabell beskriver en beholder og du skal kunne:

- sette et objekt inn i tabellen pa en oppgitt plass (indeks). Metoden returnerer sann eller
usann avhengig om operasjonen gikk bra eller ikke.

- finn et objekt basert pa en indeks.

- iterere over listen.

Skriv programmet for det generiske grensesnittet AbstraktSortertEnkelListe. En slik liste skal
bare kunne inneholde elementer som implementerer grensesnittene Comparable (med seg
selv) og Lik. En slik liste skal kunne:

- sette inn et nytt element (i sortert rekkefolge, minste forst).

- finne et element basert pa en nekkel av typen String

- itereres over, slik at innholdet kan bli listet opp i sortert rekkefolge, minste forst.

Oppgave 6.3. Klasser for beholdere
a) Generiske Kklasser

Skriv den generiske klassen Tabell som implementerer AbstraktTabell.
Klassen skal lagre alle elementene i en array, og arrayens lengde skal oppgis som parameter
til konstrukteren.

Hvis du har lyst og tid: Nér du setter noe inn i Tabellen og det ikke er plass, skal du lage en
ny array som er lang nok (innenfor rimelighetens grenser), og sé kopiere alle elementene over
til den nye arrayen.

Skriv den generiske klassen SortertEnkelListe som implementerer AbstraktSortertEnkelListe
som en enveisliste. Du skal programmere denne listen selv, ikke bruke klasser fra Java-
biblioteket.

b) Ikke generiske klasser

Skriv klassen EnkelReseptListe. Klassen EnkelReseptListe skal inneholde en envisliste med
en peker til forste og en peker til siste element i listen. Klassen skal kunne ta vare pa resepter,
og en resept ma kunne vare med i flere objekter av denne klassen. Metodene i klassen skal
kunne sette inn en resept og finne en resept basert pa reseptnummeret. Hvis resepten som det
letes etter ikke finnes i listen, skal det kastes et unntak. Skriv ogsa en iterator over listen.
Igjen skal du programmere denne listen selv, ikke bruke klasser fra Java-biblioteket.

Skriv subklassene EldsteForstReseptListe og YngsteForstReseptListe. Nar du itererer over
den forste klassen skal du starte med den eldste resepten (den som ble satt inn forst) og ga
mot yngre (de som ble satt inn sist). Nar du itererer i den andre klassen, skal du starte i den
yngste enden.

Hint: Forskjellen pa de to subklassene til klassen EnkelReseptListe kan vare bare metoden
som setter inn en resept.

Utfordring: I bade SortertEnkelListe og EnkelReseptListe skal du skrive en iterator. Kan du
klare & bruke den samme iteratoren i begge klassene? Da maé de to listene kanskje ha de
samme nodene?

Oppgave 6.4. Lag enkle enhetstester for alle beholderene.
Skriv et lite testprogram for hver av klassene Tabell, SortertEnkelListe,
EldsteForstReseptListe og YngsteForstReseptListe. Prov & lage programmene slik at bade

vanlige tilfeller og noen spesialtilfeller blir testet.

Innleveringen pé denne oppgaven er tegningene fra oppgave 6.1, alle grensesnittene og
klassene, og de fire kjorbare programmene fra oppgave 6.4

130

Appendix F

INF1010 Mandatory
Assignment 9-11

131

INF1010 2015 — Obligatorisk oppgave 9, 10 og 11 — SUDOKU

Versjon 26. mars. Ved behov for presiseringer i del 10 og 11, kan det komme
ny versjon 16. april, men ingen endringer i selve oppgaven.

Denne obligatoriske oppgaven skal lgses individuelt. Det betyr at alt som le-
veres for retting skal du selv ha skrevet inn. Det er ikke lov d ta inn kode
som er laget av andre. Hverken andre studenter, fra nettet eller andre kilder.
Oppdages slik kode © noe som er levert vil det blv oppfattet som forsok pa fusk
og fulgt opp i trad med regelverket om forsgk pa fusk.

Denne obligen dekker folgende deler av pensum (stikkord): objektorientert
programmering, rekursjon, GUI, lenkelister, ...

Obligen er delt inn i tre innleveringer (9, 10 og 11), slik at det er mulig & fa
tilbakemeldinger underveis. Oppgave 9 og 10 er igjen delt i to, slik at arbeidet
fordeles pa en 5-ukers periode med ca. 2 poengs arbeid pr uke. Tilsammen
skal du ende opp med et program som kort fortalt lgser sudokuoppgaver. Men
for vi beskriver de enkelte delene, tar vi en gjennomgang av hele oppgaven
for oversiktens skyld:

Hva er sudoku?

Se denne wikipediartikkelen:

http://no.wikipedia.org/wiki/Sudoku. (For mange fler detaljer, gi til
den engelske wikipediaartikkelen http://en.wikipedia.org/wiki/Sudoku.)

Sudokubrettet

Et sudokubrett bestar av n x n ruter. Vi bruker fglgende begreper i oppgaven:

e rute er feltet som det kan std ett tall

1 6 (eller én bokstav) i.
1 4 e brett er alle n x n ruter.
3 e rad er en vannrett (fra venstre mot

hgyre pa brettet) rekke med n ruter.

3 e kolonne er en loddrett (ovenfra og

o
Ui
o [Bo

6 nedover) rekke med n ruter.
5 9 1 e boks er flere vannrette og loddrette
8 9 4 5 ruter, markert med tykkere strek i opp-
gavene, ofte med vekslende bakgrunns-
5 3 7 farge; i 9x9-sudoku er en boks pa 3x3

1 7 ruter, mens i lynsudoku bestar en boks
av 2x3 ruter.

Brettet ovenfor er et 9x9-brett (n = 9), dvs. rader, kolonner og bokser har
alle 9 ruter. Det er ogsa 9 rader, 9 kolonner og 9 bokser i brettet. 2 kolonner er
markert med rgd og gronn bakgrunnsfarge. Nederste (niende) rad er markert
med fiolett, mens boksen nederst til hgyre er rammet inn med gult. Det er
vanlig a si at gverste rad er forste rad, mens kolonnen lengst til venstre er
forste kolonne.

Disse begrepene vil i javaprogrammet finnes igjen som objekter. F.eks. vil
hele brettet representeres av et objekt som bl.a. ineholder en todimensjonal
array av ruter. Hver rute vil igjen inneholde informasjon om hvilken rad,
kolonne og boks ruta ligger i.

Du skal lage programmet sa generelt at det ogsa kan lgse sudokubrett som
ikke har kvadratiske bokser. Brettet ovenfor er eksempel pa et brett med
kvadratiske bokser. Merk at 9x9 ikke er noen gvre grense for stgrrelsen pa
brettet. Eksempel pa et ikke-kvadratisk brett ser du nedenfor (6 x 6).

En sudokuoppgave er et delvis utfylt brett som kan ha tre lgsningsmulig-
heter:

1. én lpsning (slike finner vi i aviser, bgker og blader)
2. ingen lgsning (tallene er plassert slik at det ikke finnes en lgsning)
3. flere lgsninger (for fa forhandsutfylte tall)

Et tomt 9x9 brett har 6.670.903.752.021.072.936.960 lgsninger.

Hovedtappene under utfgrelsen av programmet
e lese inn brettet
e opprette en datastruktur som tilsvarer det innleste brettet
e finne alle lgsninger og lagre disse i en beholder
e skrive ut lgsningene til skjerm og fil
e skrive ut lgsningene én etter én, nar brukeren trykker pa en knapp

Men utviklingen trenger ikke skje i denne rekkefglgen. Mer avansert GUI,
f.eks. kan utvikles uavhengig av resten. Det samme gjelder innlesing fra fil,
og beholderen som lagrer lgsninger. Datastruktur og metoden som finner
lpsninger, derimot, henger tett sammen. Vi anbefaler at man begynner med
datastrukturen. Dette er av erfaring den delen man trenger lengst tid pa.
Derfor er lgsningen av denne skilt ut som det forste du skal gjore.

Filformatet vi bruker

For a lagre sudokuoppgaver har vi derfinert et eget filformat. Dette 6x6-
brettet beskrives av filen til hgyre. Merk at filen ikke har blanke tegn i seg:

3|6 .

114

Forste tall (2) er antall rader i hver boks, og neste tall (3) er antall kolonner
i hver boks. 2 x 3 = 6. Brettet er da 6 x 6 = 36 ruter. 6 er ogsa antall
ruter i kolonne, boks og rad. Sa folger selve brettet. Punktum (.) betyr tom
rute. Hvis vi trenger mer enn 10 siffer, bruker vi A = 10, B = 11, osv. (Se
sudokusiden for eksempler).

Programmodulen som leser fra fil og oppretter brettet kan lgses tidlig eller
senere. For a fa poeng for denne delen, ma den seinest tas med i leveringen

av oblig 10.

Del 9a—TLes inn fra fil og datastruktur for brett og ruter
Denne delen kan du fa rettet og testet i perioden 8. april - 28. april.

Sterrelsen brettet og selve oppgaven (de sifrene som alt er fylt inn) leses fra
fil.

Det er mulig a gjgre selve innlesningsdelen etter del 9b, men for & ha data
a jobbe med er det greit a lage en metode som leser inn sudokuoppgaven
fra fil med en gang. Den forste oppgaven bestar derfor av a lage en metode
som lgper gjennom filen, bestemmer stgrrelsen pa brett og boks og oppretter
datastrukturen for brettet.

Klassen Brett ma inneholde info om alle rutene i sudokubrettet. Info om hver
rute lagres i objekter av klassen Rute.

Klassen Rute mé inneholde en verdi (husk at noen av rutene ikke har en verdi
enné). For hver rute du leser inn; opprett et objekt av klassen Rute og lagre
verdien. Lagre s& hver rute i brettet (f.eks. i et array).

Lag sa en utskriftsmetode som lgper gjennom rutene i brettet ditt og skriver
ut verdiene til skjerm. Utskriften fra eksempelfilen i oppgaven bgr se sann
ut:

Oppsummering: Lag en metode lesFil() som leser inn en fil og lagrer infoen
i et objekt av klassen Brett. Lag sa en utskriftsmetode som skriver ut det
innleste brettet til skjerm.

Del 9b—utvid datastrukturen. Leveringsfrist 22. april
Denne delen kan du fa rettet og testet i perioden 8. april - 28. april.

For a gjore det mulig a lgse sudokubrettet ma klassen Rute i tillegg til verdi
inneholde info om hvilken rad, kolonne og boks den tilhgrer.

Dette gjgres ved at hver rute inneholder pekere til ett objekt av klassen Boks,
ett objekt av klassen Rad og ett objekt av klassen Kolonne. Ruter i samme
rad skal peke pa samme radobjekt osv.

Disse klassene skal brukes for a bestemme hvilke verdier som er «opptatty i
raden, kolonnen og boksen. Klassen rad, kolonne og boks méa derfor inneholde
info om hvilke verdier som allerede er tatt i den raden/kolonnen/boksen.

Lag en metode
void dellnnRuter ()

som oppretter riktig antall rader, kolonner og bokser, for sa & fa hvert rute-
objekt i brettet til a peke pa sine respektive rader, kolonner og bokser. For at
inndelingen i bokser skal bli riktig ma du ha tatt vare pa de 2 fgrste verdiene
i fila som sier antall rader i hver boks og antall kolonner i hver boks.

Tegn datastrukturen til ruta i 3. rad og 2. kolonne i figuren under beskrivelsen

av filformatet. Denne tegningen skal leveres i Devilry hvis din retter ikke har
gitt fritak i forbindelse med retting.

Skriv tilslutt en metode 1 klassen Rute

int [| finnAlleMuligeTall ()

som returnerer en array med de tallene som er mulige lgsningstall i en blank
rute. F.eks. skal metoden kalt i gverste rute til venstre i eksempelbrettet pa
forste side returnere en array med tallene 2, 3, 4, 7, 8 og 9.

Oppsummering: Utvid klassen Rute til & inneholde info om rad, kolonne og
boks. Lag s& metoden int[] finnAlleMuligeTall(). Husk tegning av datastruk-
turen til en rute.

Tips: Gi hver rad/kolonnoe/boks en unik ID, pa denne méaten kan du enkelt
lage en testutskrift som lgper gjennom brettet og skriver ut hvilken rad/ko-
lonne/boks hver rute tilhgrer. Da ser man fort om man har gjort en feil. Eller:
Lag en testmetode som lgper igjennom alle rutene og som for hver rute skri-
ver ut info om verdi, rad, kolonne og hvilke tall som er mulige lgsningstall

(ved kall pa finnAlleMuligeTall)

Del 10a—Ilgsningsmetoden og utskrift av lgsninger

Del 10 og 11 kan bli endret noe ved behov. Det vil tkke bli noen endringer
1 hva som skal gjores, men evt. bedre formuleringer, presiseringer og flere
detaljer. Det skjer i safall i ny versjon av obligteksten som publiseres seinest
16. april.

Denne delen kan du fa rettet og testet i perioden 22. april - 5. mai

Lgsningene skal finnes ved a ga gjennom alle rutene pa brettet og prgve alle
mulige (lovlige) verdier i hver eneste rute. Dette kalles «ra kraft»-metode
(«brute force» pa engelsk).

Utvid klassen Rute med en metode, fyllUtDenneRuteOgResten, som prover
a sette alle mulige lgsningstall i seg selv. Det aller forste denne metoden
gjor er a kalle pa metoden finnAlleMuligeTall. Deretter prgver den & sette
alle disse tallene i denne ruta, ett om gangen. For hvert tall som settes i
ruta kalles samme metode (fyllUtDenneRuteOgResten) i neste rute (dvs den
rett til hgyre). Nar en vannrett rad er ferdig (det finnes ingen rute rett til
hgyre), kalles metoden i ruta helt til venstre i neste rad, osv. Nar et kall pa
fyllUtDenneRuteOgResten-metoden i neste rute returnerer, prgver ruta neste
tall som enda ikke er prgvd, osv. helt til alle tall er prgvd i denne ruta.
Main-metoden starter det hele ved & kalle fyllUtDenneRuteOgResten i den
gverste venstre ruta. (Hint: Du kan gjerne lenke sammen alle rutene med
en nestepeker, slik at en rute bare kan kalle neste.fyllUtDenneRuteOgResten).
Nar metoden har funnet en lovlig verdi i den siste ruta (den nederst til hgyre)
pa brettet, er en Igsning funnet.

Losningen(e) skal skrives ut pa skjermen.

Hint: Under utviklingen kan det veere lurt a fgrst lage et program som gene-
rerer alle lgsninger for et tomt brett for sa senere & utvide med at noen av
rutene kan ha forhandsutfylte verdier. Ikke bruk et tomt brett med mer enn
9x9 ruter, da dette kan ta fryktelig lang tid.

Del 10b—utskrift og lagring av lgsninger. Leveringsfrist 6. maz
Denne delen kan du fa rettet og testet ¢ perioden 9. april - 15. mas.

Filnavnet oppgis som parameter til programmet (pa kommandolinja). Filfor-
matet skal veere slik som beskrevet over (retter vil teste programmet ditt med
andre filer). Hvis det oppgis ett filnavn skal lgsningen(e) skrives til skjerm.
Hvis det oppgis to filnavn skal oppgaven lgses fra den forste filen, og lgsnin-
gen(e) skrives pa den andre filen (og ikke skrives til skjerm).

Filformatene for utskrift er beskrevet nedenfor.

Programmet skal inneholde class SudokuBeholder som igjen inneholder de tre
offentlige metodene settlnn, taUt og hentAntallLosninger. Du kan lage behol-
derklassen selv (da leerer du best), men kan ogsa gjenbruke klassen fra en
tidligere oblig, eller fra Javas API.

Programmet skal finne lgsninger og legge dem inn i et objekt av klassen
SudokuBeholder. Hvis det finnes flere lgsninger enn 2500, skal beholderen
holde orden pa hvor mange lgsninger som er funnet, men ikke ta vare pa flere
enn 2500 lgsninger.

Oblig 11—framvisning av lgsninger med vindusbasert GUI. Leve-
ringsfrist 13. mazi

Denne delen kan du fa rettet og testet i perioden 6. - 20. mai.

I denne skal du lage et grafisk brukergrensesnitt (GUI) med Swing og Awt
for & kommunisere bedre med brukeren og for a skrive ut lgsninger. Altsa 2
nye krav:

1. Programmet skal bruke JFileChooser til a finne/velge filen med oppgaven.

2. Et annet vindu skal vise fram lgsningen(e) ved & hente den/dem fra be-
holderen etter at oppgaven er lgst. Er det flere enn en lgsning vises bare den
fgrste fram, men informasjon om hvor mange lgsninger som totalt ble funnet.

I den avsluttende delen skal du utvide GUlI-et med lyttende knapper slik at
lgsningene (hvis flere) kan vises fram en etter en nar brukeren tryker pa en
knapp. Her kan du ogsa legge inn ande nyttige GUI-funksjoner som f.eks.
muligheten til & legge inn en oppgave direkte i vinduet.

Om progresjonen underveis

Retteperiodene under hver del er veiledende. Den enkelte retter kan avvike
fra dette, men veer oppmerksom pa at retteperiodene strekker seg etter
fristen! De som ikke mgter til retting i retteperioden kan ikke regne med &
fa tilbakemelding for siste del skal leveres.

Om trader

I denne oppgaven trenger du ikke programmere med andre trader enn main-
traden og GUI-traden. Maintraden starter med a opprette et eller flere vin-
duer for a lese inn data. Disse vinduene skal sa lukkes nar data er lest inn.
Da startes selve lgsningsalgoritmen. Nar maintraden har funnet en lgsning
legges denne inn i en beholder. Nar alle lgsningene er funnet skal maintraden
apne et vindu der brukeren kan be om at en og en lgsning blir vist fram ved
a trykke pa en knapp i vinduet.

Prgv a lage et robust program, dvs. et som ikke kraesjer nar filformatet er
feil eller noe annet uventet skjer.

Om du synes at noen av disse kravene er urimelige, eller du synes du kan
lgse oppgaven mer elegant eller bedre pa en annen mate, ta det opp med din
retter i forbindelse med rettingen av de tidlige delene. En forutsetnig for a
gjore dette, er at man har mett til retting underveis.

Om formatet for utskrift til skjerm /fil

Nar det er fa lgsninger, kan du bruke samme format for a skrive lgsningene
ut til skjerm og fil. Punktum byttes ut med lgsningstallet. Nar det er mange
lpsninger kan du bruke det alternative utformatet som vises nedenfor. Denne
sudokuoppgaven har 28 Igsninger, de fgrste 9 av dem er listet opp til hgyre i
alternativt utformat:

421563//653214//134625//265431//512346//346152//
421653//536214//143526//265431//612345//354162//
421653//536214//153426//264531//612345//345162//
421653//635214//513426//264531//142365//356142//
451263//623415//135624//264531//512346//346152//
451263//623514//134625//265431//512346//346152//
451263//632415//513624//264531//125346//346152//
521463//643215//135624//264531//412356//356142//
521643//436215//143526//265431//612354//354162//

© 0 NO O WN =

Retting underveis

Du bgr minst ukentlig diskutere med retteren din hvordan du skal lgse denne
oppgaven. Pass pa a hele tiden ha et program som kompilerer og kjorer (men
som i starten ikke gjor seerlig mye). Du ber i det minste kontakte retteren
din for a fa tilbakemelding etter hver av de fem delene.

I tillegg kan det veere greit a fa tilbakemeldinger:

e nar du har laget main og mange tomme klasser og har en fgrste grove skisse
av hele programmet ditt

e nar du har bestemt formatet pa lgsningene slik de skal lagres i sudokube-
holderen

e nar du har laget en skisse av klassen Rute og dens subklasser

e nar du har laget en skisse av klassene Boks, Kolonne og Rad og superklassen
til disse klassene.

e nar du har laget en skisse av GUI-programmet som henter ut lgsninger fra
sudokubeholderen og tegner dem ut.

Flere eksempler, eksempler pa brett laget med Swing, flere sudokuoppgaver,
samt utfyllende informasjon om sudoku finner du pa INF1010s Sudoku-side:

http://heim.ifi.uio.no/inf1010/v15/0blig/91011/sudoku.html

Her vil vi ogsa legge ut ekstraoppgaver til dem som gnsker flere utfordringer
og informasjon om var programmeringskonkurranse!

Om alternativ datastruktur

Hvis du gnsker a ha variable i klassen Rute som kan brukes til a midlertidig
begrense gyldige verdier i denne ruta, eller gjgre andre stgrre endringer i
datastruktur, skal du forst diskutere dette med din retter og fa tillatelse.

Lykke til med programmeringen!

Stein Michael Storleer

138

Appendix G

Tasks created for observations

139

Oppgaver

Oppvarmingsoppgave:

I denne oppgaven blir du gitt klassen under:
class Bil {
String modell;
int vekt;
int hk;
Bil(String m, int v, int hk){
this.modell = m;
this.vekt = v;
this.hk = hk;
}
public void printInfo() {

. //skriv denne metoden

}

Fullfegr koden i metoden printInfo() og skriv et fullstending java-program som lager fire biler og printer
ut informasjonen i dem.

Oppgave 1:

I denne oppgaven skal du lage et lite progran som beskriver forholdet mellom ulike typer kjaretay.

* Alle kjgretgy skal ha en vekt.

* Kjgretgy deles i landkjgretay og vannkjgretgy

* Alle landkjgretgy har et visst antall hjul og alle vannkjgretgy skal ha en lengde i antall fot

* Kjoretgy kan ogsa vere motoriserte. Motoriserte kjgretgy skal vite noe om antall hestekrefter
kjgretgyet har.

Lag klasser og interfaces for kjagretayene sykkel, bil, varebil, taxi, robat og motorbat med passende
ekstra egenskaper. Merk: det er kun disse klassene det skal kunne lages objekter av.

Oppgave 2:

I denne oppgaven skal du lage en LIFO-kg i form av en lenket liste. Kgen skal veere generisk og kunne
lagre alle ulike klasser.

Skriv klassen med metoder for innsetting, a sjekke om et objekt finnes i kgen og far 4 ta ut et objekt
(tips: du trenger kun a kunne ta ut det siste objektet som ble satt inn i keen).

Dersom du skulle ha tid. Gjgr kgen itererbar ved hjelp av grensesnittene Iterable og Iterator

	Abstract
	Acknowledgments
	Preface
	Introduction
	Our goals
	The scope of the study
	Thesis overview

	Background
	Related research
	Identifying errors
	Identifying misunderstandings
	Assessing programs

	Defining errors and misunderstandings
	Defining an error
	Categorization of errors and flaws

	Elements of a university CS course
	Learning objectives
	Teaching activities and learning activities
	Assessment

	The targeted course
	Intended learning objectives
	Course prerequisites
	Teaching activities and assessment

	Object-oriented programming
	Approaches to OOP

	Method and methodology
	Possible sources of data
	Designing a qualitative study
	Work-logs
	Interviews
	Observations

	Methods used in this study
	Interviews about solutions to assignments
	Supplemental data collection using observations

	Interviews
	The choice of assignments
	Preparations
	Using retrospection
	Initial interviews
	Tools and location

	Observations
	The think aloud method
	Tools and location

	Data analysis
	Measurements for statistical analysis
	The subjects
	Handling subject privacy rights
	Independence from the targeted course
	Formal approval of the study

	Overview of the timeline

	Initial interviews
	State of the targeted course
	The assignment we reviewed
	Expected student errors
	The participants
	The errors we experienced
	Issues and points of improvement
	Too long interviews
	Errors that escaped our review
	Too much time elapsed before the interviews
	The assignment was too long

	Second round of interviews
	Experience from the initial interviews
	State of the targeted course
	The assignment we reviewed
	Expected student errors
	The participants
	The errors we experienced
	Issues and points of improvement
	The time elapsed could have been improved further
	The assignment may have been a bit too easy

	Think-aloud observations
	State of the targeted course
	The exercises
	Limitations from the think-aloud method
	Limitations due to the subjects' skill levels
	The chosen set of exercises

	The participants
	Supplemental data collected
	Issues and points of improvement
	Method
	The subjects
	The exercises
	Tools

	Results
	Omitted errors
	Most design flaws are omitted

	Exception errors
	A method throws or catches the Exception super class

	Linked list errors
	The insertion-method in a linked list fails to properly update pointers

	Array-errors
	A method expands existing storage array but does not update the original array-pointer

	Errors in generic classes
	A method compares generic objects using the result from toString
	A private inner class is declared as generic without any reuse

	Poor choice of data structure
	An ArrayList is used instead of an array for storage when indexes and number of elements are known
	An object use "tags" to define which other objects it "belongs" to instead of being pointed to by a field in the other objects

	Data and functionality distribution errors
	Almost identical classes are defined without using heritage from a super class
	Functionality is located in another class than the one it should be in

	Discussion
	Misunderstandings concerning technical aspects of programming
	The importance of misunderstandings concerning arrays
	Other technical misunderstandings

	Misunderstandings concerning object-oriented practice and the importance of program design
	Misunderstandings causing errors in program result or compilation
	Misunderstandings causing design errors and flaws

	Assessing the misunderstandings
	Using only misunderstandings
	Supplementing with misunderstandings

	Conclusions and future work
	Conclusions
	Errors
	Misunderstandings
	Assessing the misunderstandings

	Suggestions to remedy the misunderstandings
	Future work

	Bibliography
	Appendices
	Participant Information Sheet
	Interview Guide
	Approval letter from the Data Protection Official for Research
	INF1010 Mandatory Assignment 5
	INF1010 Mandatory Assignment 6
	INF1010 Mandatory Assignment 9-11
	Tasks created for observations

