On the linear, stratified flow

rast three-dirensional cbstacles

| O34

™. Marthinsen
Institute of Mathenratics

University of Oslo

Abstract

The stecadv flow of a two laver atmosrhere nast an isolated
obstacle and other three-dinensional terrain is studied using
linear theory. Tlumerical solutions are obtained, and it is
studied how the static stabilit? influences the flow near
an obstacle. For example it is found that the larcer the
stability c¢radient, the larcer the disturbance of the hasic flow
for a given obstacle. 2 satellite photograrh of reqular lee-
waves aloncg the irreqular coast of western lMorway is presented,
and it is demonstrated that the waves are caused by a relatively
large scale torecgranhy where individval rountain peaks are

wiped out.



1 -~ Introduction

The studv of airflow over‘three-dimensional terrain has many
inportant applications, and vet there is not much literature on
the subjeét. In this naper we study the problem by assumingr
stationary, inviscid flow, and linearizing the equations with
respect to the perturhations caused by the terrain. A similar
investigation has been made by Smith (1920), but in addition to
the assumptions made here, he also assumes hydrostatic flow. We
shall therefore have most interest in features due to non-hydro-
static flow and stabilityv varving with height, which causes effects
that do not appear in a hydrostatic approximation.

Farlier pavers on this subject are mainly concerned with
lee-waves far downstream of an isolated mountain, as for example,
Scorer and Wilkinson (1956), Vurtele (1957), Palm (1958), Crapper
(1955, 1%62) ané Sawyer (19€2). CGjevik and Marthinsen (1978) and
Marthinsen (1980) computed lee-wave npatterns and conpared the
theory with observations. .

Except for the mentioned paper by Smith (19280), very few
attempts have been made to study the flow close to the obstacle.
Scorer (1956) comnuted the flow far above the mountain but he' used
an incorrect bhoundary condition aloft. Rlumen and McGreacr (1976)
conputed the flow numerically in a work mainlvy concerned with wave-
draq, and their result resemhles some of those presented in the
rresent paper. The authors mentioned above all used lineaf
theories, which are no longer valid when the paraneter NHO/U,
I=Rrunt-Vaisdla-~frequency, HO= mountain height, U = basic wind

velocity, exceeds a certain value. Drazin (1961) used an expansion
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in (--ﬁg-)"l to ohtain a nonlinear solution valid for larqge _ﬁg'

and he found expressions for small vertical deviations from the



twvo-dimensional, horizontal, rotential flow which must necessarily
be the limit as % > o,

In section 3 of the present paper we study the linear flow
near the mcuntain in the non-hydrostatic case, and we investigate
how the static stability influences the flow. In section 4 we
show how the method can ke used to study flow past more complex
terrain formaticns. Section 5 is devoterd to the study of lee-
waves caused by different kinds of torography. 72 satellite
photoaraph of lee-waves is analyzed and the calculations are

"compared with observations.

2 - The mathematical model

The ecuations

Uy = - gp - £ (2.1)
p_ ' o~
- 0 fo)
Jev = (2.2)
dp
Up, + w—a?‘j = 0 (2.3)

descrihe the steady flow of an inviscid, incompressil:ile- fluid in
the Poussinescue approximation. $=(u,v,w), p, P are snall pertur-
hations to the velocitv, density and pressure. The bhasic, constant
wind U is in the x-direction only. The z-axis is pointinag verti-
cally upwards. po(z) is the densitv far upstream wvhere 3, P, P

are assuried to vanish. The perturhations are due tc an ohstacle

z = I(x,y), ' >0 n o2
X > = (4-‘:)

. . . > . .
The displacement of a fluid particle, £=(%,8,n) 1is given by

and a single ecuation for n can be derivesd from those above

2 + v2920 = 0 5
v Nk Y th g (2.6)



dp 1

. q 0,3

Here vy is the Scorer iarameter, y=!1/U wherc MN=(- > ﬂz)2
, 7

is the Prunt-Vdisdla frequency.

If onec does not makce the Doussinescue and incompressibility

p (z)_ .
assunrtions, (2.6) with n reprlaced by [BQTET]zn can still be de-
o (F

rived bv neglecting a term Uc;2 dp/dx in comparison with Rw ,
B=%(9/C§-H2/q), S vielocitvy of sound, and the tern B2 comrarcd
to y2. For a detailed derivation, see e.q. Crapper (1959).

The solution of (2.G) depends of coursc on the function y(z).
A nodel which is quite simple, and at the sanc time describes
most phenomena that occur in nature is a two layer model with vy
constant in each layer, the larger value near the dround, scc
fig. 2.1. The valucs of vy are ¥ and Yor Y12Y,s and the
height of the discontinuity in the undisturbed state is h., This
is the same model as used by Scorer and Yilkinson (1956).

The boundary conditions are: y=f(x,v) at =z=0, v and p
continuous at z=h, and when 2z»>e the perturbations must wvanish
or when this cannot he fulfilled, we requirce that the wave cnoerqgy
causcd bv the nountain rust radiate upwards.

7o obtain a solution, the dependent varinbles are written as

Fouricr integrals

i(kx+ly)dk

n(x,v,z) = %(k,l,z)e dl

8 — 8
8 “— 8

and the ecuatiocn and koundary conditions for n are

PN ) A ‘
=04 (- - a2y =0 (2.7)
Az ? k2
A
A dn i
n and Er continuous at 2z=h (2.2)
/ A
= (x,1) at z=0 (2.9)

A
n >0
’ 1 vhen 2z-oe (2.10)
or outward radiation of cnerqy}




Here a=vkZ+1Z2. The solution of the above rroblen is

A A T(k,1,2z)
) . ik,1,2) 2.11
n(]\lllz) I(k'l)T(k,l,O) ( )

pocos[u. (z=h) ]+ip.sin[p, (z-h)], z<h (2.12)
. Il 1 2 1
v(k,1,z) =
u]exp[iu2(z—h)] , z>h (2.13)
L
Ty2-xr2)* % t<yy,
Mp =1 ‘ , T=1,2 0 (2.14)
~\ , a 2- 2
-yl Ixlyg

A . . - . . ‘
“hen z»», n+0 if |k|>y2, and there is an cutward radiation of
enerqgy when |k|<72. If the mountain contours are svmnetric with

respect to the z-axis, the Fourier inteqral for n mnay be written

n = 4f cos(ly)pe[d(1l,x,z)]al (2.15)
(o]
where
© A - - . .
J(L,x,2) = [ Bk, 1)5Helezle kg, (2.16)
5 T(k,1,0) _
v, o
The integral (2.16) is split in two parts JA=I dk and Jp=f ax.
- * o )‘Y2

The branchpoint at k=y, will be discussed later. "e first look

at JA'

The integrand of J had a sinqularitv at k=0 because

A
u»>e when k»0. If the path of inteqration is along the real
k-axis towards k=0, however, the sinqularity there does no harn.
It is of the form

! 1

J sinZdu : (2.17)

o
Here the change of variable v=% renlaces the above inteqral with

@© .

sinv ,
[ sinve,
1 w2
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I'y the same change of variable in JA' we find that its integrand
is absolutely inteqrable, and accordingly this contribution to 17
vanishes as |x|+~ (Riemann-Lebesgues lemna).

For the =z derivative of 1, however, the sinqularity is of

the form

1 sinldu (2.18)
u u

O =~

and turns into

¢ sinv
[ =—=av
1V

which exists, but this integrand is not absolutely integrable.
Hiaher ‘z derivatives of 1 mayynot be expressed as Fourier
inteqrals.

The second integral Jh has sindgularities when 72<k<y1.
These are simple poles, due to zeros of 7T(k,1,0), giving rise to
trapped waves. 1le still assume the mountain to be the only enerqy
source, and from the fact that the group velocity of these trapped
waves is less than their phase velocity, it fcllows that they
should be situated downstrearm of the mountain. This is achieved
by taking the path of integration bhelow the sinqularities in the

complex k-plane. The path is deformed as shown on fiqure 2.2.

J,. may now be written
.+
Jo + I, x>C
Up T Jg %<0
vhere
+1ic
Y +0'f’e—'l"J
+ 2
Jo = ar
Y
2
s = oriy A : . T(kc,l,z) ikex
\R = 'ﬂ:l}r ”(“O, ) Dl’_(_"'—"‘kc'l)e

n(k,1) = ?(%x,1,0)




(real) solution of

o)}

and k =k (1) 1is
o o

it
e )
—~
(28]
.
—
(5o
~

Dk ,1)

The angle « mnust be chosen so that the Jq-integrals exist.

It is scen that
where the star denotes cornrlex conjugate, and from (2.15) we find

that this contribhution to n 1is symmetric about x=0. PReferring

to J

N

. ; +
in the following, we mean J..

v

There is a branchpoint in J, at ¥=y . TIovever, the siqgn

- 1
of y; drops out of the integrand, and this noint cauvses no
problenr. The branchpoint at k=y , on the other liand, must be
2
trcated carefully, otherwise J. mev not converge when z>h.

<

Convcrgence is cnsured by choosing

a 1
ho = §(y2-k2)°
2
(v 2} 2 - & 3m
arq(y -k yE[- 3.5

O(w(%

. iw
’le arguc as follows: In J, we have k=y +te”, t real and
A 2

positive. Efince
a2 = 12 + y2 + 2y te'® + t2c2' €[e,2 >
2 2 <
a

Re(a)>0, and we nust have Pe(%)>0, Im(;)<0. The araument of

2 2 : : 3 1
(y“-k<) can only bhe in tho interval [n,§—> , and thus we have

2

1 1
re i(y2-:k2)2<0, Im i(y2-k2)%<0. It follows that Pa(ip )<0, which
2 2 ' 2
ensurcs a negative rcal part of the cxpenent of (2.13), and thereby
converagence cf J_, provided that ﬁ(k,l) loes hot cause any

Adifficulties. "¢ shall discuss this factor later.



e now conclude the oprocedure of computing n. It is a sum

of three parts

= + +
=, fn I

m

with
@® YZA .
n, = 4[cos(1ly) {ref H(k,l)i%%#lf%lelkxdk a1 (2.20)
o 0 : ) ST
"
© Y2A iw T(‘Y2+te w,llz)
ng = 4fcos(ly){Ref F(y +te ",1) o
o 0 2 D(y +te " ,1)
2
i{(y +tCOSm)lx|+m}-Sinw|x|
e 2 dt}al (2.21)
@ A T(ko(l)lllz)
=—S T S' . 4 ?-2
T nfcos(ly)ﬂ(ko(l),l) D) in(k_(1)x)dl ( 2)
, o k7o
where = ‘when x<0, and we have taken into account only the

r
first mode of the solutions of (2.19). The integrals (2.20)-(2.22)

may now be computed numericallv., (2.22) mav also be studied by
asymptotic methods for large x and v, see for éxample,
Marthinscn (1980). An asvmptotic expression for (2.20) will be

aiven in scc. 3.

The other dependent variables are computed in the same way.
The only diffcrence is a factor in the inteqrand., The relations

betwecn some of the Fourier transforned cuantities are

k272
p = - > n, (2.23)
R :
.2
b =223 (2.24)
a2 *
S N, S S
S = oY < i n, (2.25)



Here & 1is the displaccment in the y-dircction. Yote how the
singdlarity at k=0 entcrs the different JA—integrals for
n,6,u,p. ﬁ is absolutcly integrable; but ﬁz and accordingly
6 1is not: This reflects the fact that & does not decay far

downstream, as notcd by Smith (1580).

Finally we sprecify the mountain. In scction 3 we study the

flow past a circular mountain, and ve use

13
I(x,y) = ° (2.26)

p2

which has the sinple Fourier transform

A rp? _
M(k,1) = 55— 2 ©(2.27)

In section 4 and 5, however, we study the flow past more comn-
plicated terrain, obtained by superposition of simple mountains.

The "basic" mountain to be used there is of Gaussian shape

H(x,y) = Hbexp[(—xz—yz)/dAz] (2.28)
with the Fourier transform

A n2

A(k,1) = HOA; exp[ (~k2-12)22] (2.29)

The way of crecating ridges and plateaus of different share
by supernosing mnountains of the tyve (2.28) will be explained in
section 4. 1!either of the choices (2.27) or (2.2%) will alter

. T
the convergence properties of (2.21) as long as w<—.



3 - The flow near an isolated obstacle

In this scction, we shali evalvate the integrals for n,
i.ec. the integrals (2.20)-(2.22), by Causs quadrature and study
the results. We scale the variables of dimension length with 1 kn,
e.g. h=1.5 means h=1.5 km, y=0.,5 means y=0.5 kmn~1=0,5.10-3 p-1,
and so on. Since wc arc only dealing with linear theory, the height
of the mountain, Ho, only entcrs the results as a factor outside
the integrals, and when talking about values of n, n=0.1,0.2,...,
we actually mecan n=0.1HO,O.2hO,... . Throughout this section we
use the mountain (2.26) with p=1.0 when nothing c¢lse is said.

The flow is still affected by three paramcters vy;,yvz,h that
may vary indcpendently, and we can only try to get a rough idea
about the behavior of the flow for diffcrent atmospheric conditions.
At the end of this section we discuss the validity of the lincar
theory. The conclusion there is that linear theoryv breaks down for
small 2z when y;h and of coursc HO exceed certain values.

The simplest atmosphcre is the one obtained when y);=yj,.

Then nR=0 and n=nA+nS. The contribution from ng is symmetric

about x=0 while which represents a field of vertically pro-

Npr
pagating waves, is not. Thus if y is very small, so is the
contribution from Ny and the flow has nearly fore-aft symnetry.
rig. 3.1 shows contour lines of n at 2z=1.0 when y;=y,=0.2,
and it is scen that the flow is guite symmetric. The sinking down-
strcam is small compared to the liftina above the mountain. This
cannot bc¢ described in the hydrostatic approximation which assumes
|k|>>y. The calculations of Smith (1980) thercfore show only
strongly asymmetric situations.

As y increascs, the flow hecomes more asymnetric; there is
a lifting of the air in front of the mountain, and sinking in the

lee. In fig. 3.2 y;=y,=1.0, z=1.0 we sce an exarple of this.



The flow pattern now roesembles those of Smith; the flow is ncarly
hydrostatic. The slight sinking in the lec apparent on fig. 3.1,
gets slowly broader and stronagcr while the lifting in front dimin-
ishes as y incrcascs. This is so because when the stability
increases, a larger bart of the flow passes to thc side of the
sountain rathef than above. To compensatce for the horisontal
divergence, there is a sinking of air from above. VWhen vy is
incrcased even further, the lincar thecory will no longer be valid
except for cxtrenely small nountains. For large y we cxpect to
find no vertical rotion, and it has been shown by Drazin (1961)
that asvmptotically when y»e, the flow is trucly two-dincnsional
with potential flow (and thus fore-aft symnmetry) in each xy-vlane.
| 7Then y»+e, we can easiiy find an asymptotic cxpression for

n in our linear thcory. The integral forv n for larqe y can

A
be writtcen (with ¥ given by 2.27)

21 T o . . .
- -1 S “+x
n = 2n0 f [ e paelyz/covwela(xcosw /Slnw)adadm (3.1)

(This is the cxpression for n in the hydrostatic aproxination).

Carrying out the a-intcqration, we find

Y7
p2n T 1cosq:
_ 0 e do
n = oy

-% (p-i(xcoseptvsing))?2

fince vy is large, the inteqgrand cscillates raridlv except near
stationary points of the exponent, ¢=06,n,2n. Arnlying the method

of stationary phase, we find an asymntotic cxpression for 1

2
P,
N 0,2My 3 1 2_.2 LRPEP o X 1
1 57 (72) ?;;:;;7;{(p x )cos(yz+z) -x51n(ya+z)}+0(7g) (3.2)



This cxpression describes a field of verticallv nronogating waves
with phasc fronts perneﬁdicular to the basic flow, i.e. §§=O, and‘
it has no rescriblance to a real flow in the case of large vy.
Returning to moderate values of y, we find on fig. 3.3 the
rcsult when y;=y,=0.2 at =z=2.0. This is the sane atmosphecre as
on fig. 3.2 At this higher level the disturbancce has grown wider,
but weaker, and it now differs less from the hydrostatic casec.
The reason for this is that long waves propagate faster than shortcr
oncs, and thus the flow bhecomes more hydrostatic for larger =z
(keeping x and vy constant). Conscquently (3.2) is an asymptotic

expression for n, valid for large =z, and we find that the flow

far above the mountain is independent of v.
1

The formula (3.2) predicts that n decay as z ° when 2z»w,

This 1is not correct in a rcal atmosphere where the density decreasces
with height, but we obtain the result as a conseouence of having
made the Boussinesque-approximation. 2As explained in scction 2

we can avoid this approximation and thcen obtain the same integral
for =n, but this time nultiplicd by the factor (po(O)/po(z))%.

Thus with constant M, lincar thecory actuallv prcdicts an exponen-
tial incrcase of n as 2z»«, vhich implies that nonlincar effccts
nust be taken into account. This has heen done in the two-dinen-
sional case by Mobbs (1221) who by using thce Gencralized Lagrangian-
-Mean formulation fcund that the intcraction of a singlzs wave modce
with the mecan flow acts to reduce the wave amplitude, particularlv
at levels where the wind specd is low. %ith a constant basic
velocity, IMobbs obtains an approximatelv lincar increase in ampli-
tude ur to akout 10C km. The lincar theory works well at low

levels with a 108 Jdeviation at 10 km and for-the altitudes we have
most intcrest in herc, i.2.  z=1-5 km, there is no significant

difference in amplitude betwecn linear and nonlincar theorv.
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When y2<y1 the tern R is no lonrer zero. This tern re-
presents a field of trapped lee-waves, i.e. they decay exponentially
when 2z increases above h. R vanishes for x<0, and calcula-
tions show that it is negative for small x and y, so that 1t
contributes to the sinking behind the mountain. For large x and
y the trapped lee-waves are the domninant contribution to n.

These lee-waves are madéwup of two parts, both contained in a wedge
behind the mountain. There are transverse waves with wave crests
nearly perpendicular to the wind, and diverging wavecs with the
crests more inclined to the wind. The transverse waves may be
partially or completely missing. In section 5 we discuss sone
consequences of this. Tor a nore detailed study of the lee-waves,
see Marthinsen (1980).

We now study how the different parameters of the two layer
riodel affect the flow near the mountain by varying one at the tine.
Fig. 3.4-3.7 show n at z=h=1.0. vy is kept fixed equal to 0.2

2
while v takes the values 0.4, 0.6, 0.8, 1.0. It is seen that the

1
lifting of air above the nountain gets flater and wider cross-wind
as the stability increases. There is also a strong sinking behind
the mountain due to the lee—waves} If we compare the effect of

increasing vy with an increase in both y and y (y =y ), we
1 1 2 1 2

find that the picture is roughly the same behind the mountain.
This could bec expected because the sinking is due to lee-waves in

both cases. Whether the waves are trapped or not is unimportant

near the source.

On fig. 3.8-3.711 v is fixed, vy =1.0, while y =0.0, 0.4,
1 1 2

0.6, 0.8. =z=h=1.0 as before. Note that fig. 3.7 fits in here .

with vy =0.2 and also fig.3.2 with y =1.0. As ¥y increases,
2 2 » 2

the sinking area gets wider and the amplitude increases. This was

also the case when ¥y Increased, and the reason 1s that a larpe
1




- 14 -

stabllity causes most of the air to pass to the side of the
rnountain instead of above. The sinking is to compensate for this
horizontal divergence.

In contrast to the sinking, the lifting area above and in
front of the nountain is seen to widen as Yz decreases. Thus the
width of this area seems to depend upon the magnitude of 71-72,
that is the change in stability with height. The larger yl-yz,
the further out to the sides of the obstacle will the disturbance
be felt.

Now, let us keep yl and Yz fixed, y1=1.0, yz=0.2 and
vary h and z. First with 2z fixed, 2z=1.0, we have on fig.
3.12-3.16 h=1.0, 1.5, 2.0, 2.5, 3.0. It is seen that as h in-
creases, the with of the disturbance increases to a maximum and
then decreases. We also see that (roughly) the largest values
of mn are found in the cases when the disturbance has its largest
spreading cross-stream. For these parameter values theré must be
nuch rore wave-energy than for other values.

When h Dbecomes very large, it might be expected that one
obtains the same result as when h+», that is fig. 3.2. But this
is not the case. Our computations show that as h 1increases, with
z fixed, the downstream disturbance vanishes instead of approaching
the result on Tig. 3.2, see fig. 3.17 where h=6.0. The difference
is due to the assumed steadiness of the flow. The flow has had an
infinite time to develop, and thus reflection from even very large
heights influences the flow. In a real situation with discontinu-
ity of vy at a large altitude, the flow will first take the form
on fig. 3.2 while energy radiates upwards. Then after a long

time, the reflected waves are also fully developed and fig. 3.17

describes the flow.



Finally, fig. 3.18, 3.19, 3.20 have vy =1.0, y =0.2, h=2.0,

1 2
and z 1s 0.5, 1.5, 2.0. We note that the lifting region above
the mountain vanishes quite rapldly but apart from this, nothing

new is revealed here.

As mentioned earlier in this section, the linear theory we are
using breaks down when 2z becormes small. As noted by Smith (1980)
there are several criteria which can be used to indicate this break-
down. They all show that linear theory can no longer be used when
the Scorer parameter nultiplied with the.mountainvheight becomes
too large. The cfiterion that mives the smallest limit is the one
that requires nZ>—1o When nz<-1, the n-surfaces and thereby the
density surfaces intersect. Snith finds that this first cccurs at
z=0 when yHom% (hydrostatic flow, y constant with beight). But
the breakdown seems to be confined to a layer close to the ground.

This is illustrated on fig.3.21. It shows n as a function
of x in the planc y=0 at different values of 2z. The thick
dotted line is the ground; Ho is 1, and yl=y2 is larger on
fig. 3.27a. We see that the n~surfaces intersect at the mountain
top and for the larger stability also downstream close to the
ground. On fig. 3.22 we see what the situation is like when Ho
is smaller, here 0.5. There 1is still sorme intersection downstream
for large vy, but only in a very thin layer. »

The conclusion rust be that the linear theory breakes down
near the ground, but as far as the criterion usedrhere is concerned,
this is far fronm belng violated when =2z 1s about 1 or greater for
yHO as large as 1.0. Of course viscous effects also becone

important near the ground, and the flow at these low levels is

quite another problem than the one studied in this paper.
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= The flow past more complex terrain

Since our equations and boundary conditions are linear, we
rnay obtain the solution for flqw past more complex terrain by
superposition. The flow field generated by two or more nountailn
tops is simply the suﬁ of the field generated by each of the single
nountains. Aﬁ exanple may be found in Marthinsen (1980) where
the lee-waves behind the two peaks at Jan Mayen are calculated.
- We may also make mountain ridges and plateaus by integrating the
expression for a single nountain.

Assume that the single peak is 2z=H(x,y), H given by (2.28).
Then a ridge from y=0 to y=a<e is given by

a a -
R(x,y) = ROIH(x,y-t)dt/jH(o,t)dt (4.1)
(o] (e]

Here ‘Ro is the height at the origin. A plateau above the donain

y>a(x), a(0)=0 (see fig. 4.17)

NY
/
O((x)
\'C
<
> X
Fig. 4.1
is given by
P(x,y)=Po [ [ H(x-s,y-t)dtds/[[H(s,t)dtds (4.2)
- (s

If the displacement created by the mountain H(x,y) is nH(x,y,z),

the displacenent due to 7P(x,y) is
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nP(x,y,z) = [ nH(x-s,y—t,z)dtds/f[H(s,t)dtds

- G(S)
= [ nH(u,v)dvdu/ffH(s,t)dtds (4.3)
) ..y+a

Inserting (2.28) in (4.1) with a== gives a simple ridge

- _x2
R(x,y) = R, e EK7(1+erf(%K)) (4.

where erf denotes the error function

-2

erf(x) = e dt

\lm

Al

O — N

Fig. 4.2 shows the flow field near the end of the ridge (4.4).
The atmospheric parameters are yl=1.0, y =0.2, z=h=1.0. Thus
fig. 3.7 1s the same atrosphere flowing p;st_a circular mountain.
The flow past the ridge is quite similar to that computed by
Smith (1980). For large y the flow becornes two-dimensional,
and the figure reveals the transition between two-dimensional and

three-dinensional flow. The width of the transition region is

determined by the with of the wake in the case of a single peak.
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5 - Lee-waves due to ridges and corners

In this section we study closer the lee-wave part of (4.3),
i.e. the pole-contribution to the integral. On satellite photo-
graphs one can often see a very regular lee-wave pattern generated
by a rather irregular terrain, see Gjevik (1980); Fig. 5.1 shows
lee-waves along the coast of Norway. The wave system is quite
regular although the mountainous afea 6f western Norway 1is not.

It looks as if the individual peaks are smoothed out, and the waves
generated by sdme larger topographical structure. The wave systemn
seems to start at Stad (the point S on fig. 5.2), and we shall
denonstrate that a "corner" like the norwegian coast at Stad is
able to generate a wave systerm as seen on the satellite photo-
graph, fig. 5.1.

The photograph is taken at 10.00 GNT and fig. 5.3 shows the
upper air data as recorded by a radiosonde released at @rland (@ on
fig. 5.2) 11.05 GMT. The wind derection above the planetary bound-
ary layer séems to have the constant value of about 2400. However,
on a weather map it is.found that further south (west of Bgrgen, B)
the wind is nore from the south. It is therefore guessed that the
direction at Stad 1s as indicated by the arrow on fig. 5.2. Ixcept
for a thin, very stable layer near the ground, the Scorer parameter
y=N/U has an almost constant value of 0.7-0.8 up to 620 mb (=3.7 kn)
where it drops to about 0.2. Thus the atmoépheric situation is well
approximated by the two-layer nodel we use in this paper.

To make a choice we take y1=0.8, y =0.2, h=3.7. The relative
hunidity is 96% at 700 mb, and less thanzthis at all other levels.
Thus it is reasonable to assume that the clouds making the lee-waves
visible are situated at this level, and we compute the wave fileld

at z=h=3.7.
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The "corner" at Stad is approximated by (4.3) with a(x)=-%]|x|.
The corner angle is then 7270, which agrees quite well with the
angle neasured on the map. Anyhow we do not expect that the choice
of this angle is crucial since earlier computations of lee-waves
behiﬁd isolated obstacles (Marthinsen (1980)) have shown that the
shape of the mountain does not influence the wave field very much.

Fig. 5.4 shows a part of the wave pattern. Only the positive
values of n, corresponding to the visible clouds, are displayed.
The corner is situated at x=y=0, and the solid line is the "coast",
y=—%lx|, with land below. If we measure the wavelength on the pho-
tograph, we find that it is about 12 km, and measuring at fig. 5.4
glves 12.1 km, so there 1s good agreement. The wavelength, however,
is determnined exclusively by the atmospheric conditions, so that
the good agreement here has nothing to do with how the waves are
generated.

Let us instead try to compare the shape of the cormputed wave-
crestﬁ with those observed. Since we have only compgted the pole-
contribution ta n, the computation is only valid some distance from
land. Thus we do not look at the lower left corner of fig; S;H,
When this part is excluded, however, we see that the shape of the
conputed waves agrees quite well with the first 5-6 wave crests on
the photograph. Further north the crests bend more northwards, and
the wavelength decreases. This i1s most probably due to a horizontal
variation in wind direction and speed. Such effects are not
included in the model considered‘here.

The waves on the photograph differ from waves generated by an
isolated peak in that they curve aWay from the y-axis. Fig. 5.5
shows the lee-waves behind a single peak with the sarie athospheric
conditions. The waves there curve towafds the y-axis, while for
the waves generated by a corner (fig. 5.4), tﬁe curvature has the

correct direction.
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Accepting now that the waves 1in this case‘are generated by a
relatively large scale structure where the individual peaks are
wiped out, there still remains an open question. Why is 1t that
sometimes the situation is as it is here, while at other times the
individual peaks generate their own separate waves, and a quite
irregular interference pattern 1s observed? This question we do

not attenpt to answer here.

As mentioned in sectlon 3 the waves behind an obstacle consist
of transverse waves with crests nearly perpendicular to the wind
and diverging waves inclined to the wind (like the Kelvin ship wave
pattern) with the transverse waves sometimes partially or complete-
ly nissing. Only when the transverse waves are fully developed,
will there be any lee-waves in a two-dinmensional flow behind a long
mountain ridge. In order for this to be the case there mnust exist

a solution to (2.19) with 1=0, that is

D(ko,O) =0 (5.1)

where _
D(k,0) = /y2-k? cos(V/y2-k2 h) + /k2-y2 sin(/y2-k2 h)
1 1 2 1
Since we must have vy <k0<y » {(5.1) has a solution if
2 1

Nk, ,0) Dlky,0)

/Qz—kz Yy2-k2
‘ 1

1

<0

that 1is
(1+/;2—y2 Yeos(Vy2-y2 h) < 0
1 2. 1 2
Thus a sufficient condition for the transverse waves to be fully

developed is that

2
Y2 - .Y2 s X (5.2)
1 2 hnp?
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One can also show thét this 1s a necessary condition. ‘The
criterion was first derived by Scorer (1949). |

In cases when (5.2) is not satisfied, something interesting
.happehs at the end of a long ridge. Fig. 5.6 shows the lee-wave
pattern behind a circular nountain. The pérameter values are
y1=1.u, y2=0.5, h=z=1.2 so that (5.2) is not satisfied. If we
superpoée solutions to obtaln the lee-wave pattern behind a ridge,
eq. (4.1), we find the wéves shown on fig. 5.7. The nost
striking feature here is a 180°phase shift at y=0. It seems 1like
n(x,y)==n(x,~-y) exactly. This can be explained physically.
Every point along the ridge acts as a source for a lee-wave pattern
as on fig.5.6. This wave pattern 1s contained in a wedge, with a
wedge angle ¢. Accordingly, at each point downstreanm of the
ridge, the displacenent is caused by disturbances inside the wedge
angle ¢ upstream of this point, see fig. 5.8. Thus 1n at P,
is coused only by the part'of the ridge from C to D, whille at
P2 it is caused by the segment from C to E. However, since
there are in this case no two-dimensional waves behined an infinite
ridge, the displacement at P2 would have been zero if the ridge
filled up the whole segment from B to E. Therefore, at P2 n
rmust have exactly the negative value of what would have been caused

by disturbances from B to C, and that 1s precisely the negative

of n at P].

6 - Concluding remarks

For an atmosphere with constant vy, the flow past an isolated
obstacle changes qualitatively with the parameter yHo. For the
two extremes, yHO very small and very large, there exists nonlinear

solutions of the problem given by Drazin (1961). VWhen yHO is
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small, the linear theory used in the present paper also gives a
good approximation. The hydrostatic computations done by Smith
(1980) require that yp 1is large (p 1is the horizontal iength—scale
of the obstacle). Thus when y is small and p has a moderate
value, the hydrostatic assumption cannot be made. In section 3 we
showed that when yp=0.2 the flow was far from hydrostatic; instead
it was more like the symmetric flow, while the (near) hydrostatic
flow obtained when yp=1.0 has strong fore-aft symmetry with 1lift-
ting in front of and above the mountain and strong sinking in the
lee. For large yHo the nonlinear effects become crucially impor-
tant, so that the linear hydrostatic theory requires Ho/p<<1.

The hydrostatic approximation is of limited interest when vy
varies with height, since it would neglect important contributions
to the dependent quantities. In section 3 we studied the flow past
an isolated obstacle for different vertical distributions of «y.

It was found aniong other things that the cross-section of the flow
influenced by the rnountain increased with increasing difference in
Yy Dbetween the two layers.

In section 5 we looked at trapped lee-waves only and demon-
strated that the regular lee-wave pattern along the norwegian coast
seen on fig. 5.1 could very well be generated by a relatively
large scale topopgraphic structure where the individual peaks are
smoothed out. We are not, however, able to explain why the peaks

are snoothed out in some cases but not in others.
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Figure captions

Fig 2.1 The atnospheric nodel. y=N/U, the Scorer paraneter.

Fig. 2.2 Path of integration. The path is taken below the
\ singularities so that these only contribute for x>0.

Fig. 3.1-3.20 Lines of constant mn. Solid lines lifting or
zero, broken lines sinking. The values of n are
nétO.OEHO, iO.THo,... . The parameter values for the
figures are shown in the table below

Fig. Y Y b Z
1 2
1 0.2 0.2 1.0 1.0
2 1.0 1.0 1.0 1.0
3 0.2 0.2 2.0 2.0
h 0.4 0.2 1.0 1.0
5 0.6 n " 1
6 0.8 " " 1"
7 1.0 " 1y "
8 " 0.0 " "
9 ] o.u n n
10 " 0.6 " "
11 " 0_8 1] "
12 " 0.2 n "
13 " " 1.5 n
]u " 11 2.0 "
15 " " 2.5 "
16‘ n 1% 3.0 "
17 " 7" 6°0 "
18 " " 2.0 0.5
19 1" " " 1.5
20 ” " n 2.0

Fip. 3.217 7 as a function of x for 2z=0.0,0.05,...,1.0 when
y=0, HO=1.O, y =y =1.0 in 3.27a and y =y =0.2 in

1 1 2

3.27b. The thick, %roken line is the ground.

Fig. 3.22 As fig. 3.27, but H0=0.5a
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n-contours for the flow past a ridge given by eq. (4.4).
The thick line is the "top" of the ridge, i.e. %%=0,

and R>RO/2.

Satellite photograph showing a lee-wave pattern along
the western coast of Norway. (Reproduced with the kind
pernission of Department of Electrical Fngineering,
University of Dundee).

Map of Norway with the lee-wave crests observed on fig.
5.1 indicated, starting at S. To the left is the
"corner" used in the model. The two points S8 are

ment to correspond.

The upper air data as recorded by a radiosonde released
at Prland (@ on fig. 5.2) one hour after the photograph
5.1 was taken.

n—-contours generated by the "corner" on fig. 5.2. Only

nonnegative values are shown. vy =0.8, y =0.2, z=h=3.7.
2

The thick 1line is the "coast".

n=contours generated by an isolated, obstacle with the
same atmosphere as on fig. 5.4. ’

NDiverging lee-waves behind a single peak. vy =1.4,
1
y =0.5, z=h=1.2.
2

Lee-waves behind the end of a long ridge. The ridge is
along the positive y-axis. The atmosphere 1s as on
fig. 5.6.
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