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!'1bstract 

The stcadv flovJ of a tt·ro laver atmosnhere nast an isolatec1 
- ..... ._ ! 

obstacle and other three-dimensional terrain is studied using 

linear theory. Numerical solutions are obtained, an~ it is 

studied hmr the static stability influences the flm-1 near 

an obstacle. For exaQple it is found that the larger the 

stability gradient, the larger the disturbance of the hasic flm1 

for a given obstacle. ~ satellite photograph of reqular lee-

waves along the irregular coast of western Norway is presented, 

and it is C:enonstratecl that the Haves are caused by a relatively 

large scale topogranhy where in2ividual Dountain peaks are 

uipec.1 out. 
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1 - Introduction 

'l'he study of airflow over three-c1 imens ional terra in has many 

important applications, and yet there is not much literature on 
-

the subject. In this naper we study the problel'1 by assuming 

stationary, inviscirl flm1, and linearizing the equations \·lith 

respect to the perturbations caused by the terrain. l> similar 

investigation has been r:1ade by Snith (1980), but in ac1dition to 

the assumptions made here, he also assumes hydrostatic flou. Pe 

shall therefore have most interest in features due to non-hydro-

static flov1 and stability varying vith height, Hhich causes effects 

that do not appear in a hydrostatic approximation. 

Earlier pacers on this subject are mainly concerned with 

lee-Haves far dmmstream of an isolated nountain, as for example, 

Scorer and Wilkinson (1956), Durtele (1957), Palm (1958), Crapper 

(1959, 1962) and Sauyer (1962). Gjevik and tlarthinsen (11)78) and 

narthinsen (l9BO) computed lee-Have patterns and compared the 

theory ,.,i th observations. 

Except for the mentionec'l naper by Smith ( 1900) , very few 

e:.tternpts have been I:Iade to study the fl0\1 close to the obstacle. 

Scorer ( 19 5G} computed the floH far above the mountain but he· userl 

an incorrect bounrlary condition aloft. Plumen and ncGrec;or (1976) 

computed the floH numerically in a Hork nainly concerned \lith Have-

drag, and their result resembles some of those presented in the 
\ 

present paper. ~he authors mentioned above all used linear 

theories, uhich are no longer valid ~ .. rhen the paraneter NH /U, 
0 

N=Drunt-VKisSla-frequency, II = mountain height, 
0 

U = basic vind 

velocity, exceeds a certain value. Drazin (1961) used an expansion 

nn 
in to obtain a nonlinear solution valid for large 0 u-r 
ancl he founrl expressions for small vertical deviations from the 
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tv7o-c1 imens ional, horizontal, potential flow vhich Bust necessarily 

be the 1 ir;d t as n 
- ~ CJ). u 

In section 3 of the present paper He study the linear flm-; 

near the mountain in the non-hydrostatic case, and \re investigate 

h011 the static stabi 1 i ty influences the flm1. In section 4 He 

shm1 hmv the 1"1lethod can be usecl to stuny floH past nore cor.:rrlex 

terrain formations. <";ection 5 is cJevoter'l to the sttH'1v of lee-

Haves caused by cHfferent 'kinds of topography. r, satellite 

photograph of lee-waves is analyzed and the calculations are 

·compared \·lith observations. 

2 - The rnathen1atical model 

The equations 

~ 1 .Lc:.t Uv = -Vp - ~J\.. 

X Po Po 
( 2. l) 

~ 

0 '\Jov = ( 2. 2) 

dp 
Upx + 0 0 \',7--,;-- = dz 

( 2. 3) 

clescrihe the steady floH of an inviscicl, incompressible fluid in 

the noussinesque approximation. 
~ 

v=(u,v,w), p, p are snall pertur-

hations to the velocitv, 2ensity ana pressure. The basic, constant 

wind U is in the x-direction only. The z-axis is pointing verti-

cally upHards. p ( z) 
0 

is the density far upstream ~~ere 
~ 

V 1 P 1 P 

are assurted to vanish. The perturhations are due to an obstacle 

z = H(x,y), r: ~ o 
X ~ -oo 

The displacement of a fluid particle, 

~ = v 

~ 

f:.=( r, ,6 ,rj) is given by 

( 2. 5) 

anrl a sinCJle equation for T1 can be c1erivec1 from 'those above 

( 2 • 6 ) 
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Here y is the Scorer 1arnrneter, y=H/U where 

is the nrunt-V~is~la frequency. 

If one docs not make the Doussinesouc and incomnressibility 

p ( z) 1 

[ 0 ) 2 n can still he de-
P ( () ) assunotions, (2.~) with n replaced by 

0 

rived by neqlectinc; a term uc- 2 op/ox 
s 

in comparison 1.!1 th 

B=i(g/c2-n2/g), c = V•:.:locitv of sound, and the tcrr1 B2 comparcrl . s - s -

to y2. For a detailed derivation, see e.g. Crappcr (1959). 

~he solution of (2.G) depends of course on the function y(z). 

A Bedel which is quite simple, and at the same tine describes 

most phenomena that occur in nature is a bJO layer rno~cl with y 

constant in each layer, the larger value near the ground, see 

fig. 2.1. 'l'he valuc:s of y u.re y1 and y2 , y1 >y 2 , ancl the 

height of the discontinuity in the undisturbed state is h. This 

is the sane model as usec1 by Scorer anrl ~7ilkinson (1956). 

':'he boundary conditions arc: y=JI(x,y) at z=(), y and p 

continuous at z=h, and w~en z+ro the perturbations must vanish 

or Hhen this cannot be fulfilled, vre recjuirc that the Have energy 

causc:d by the r:~ountain nust radiate up\varc~s. 

'I'o obtain a solution, the <Jepcnclent vn.rL1bles are uritten as 

Fourier integrals 

n(x,y,z) = I 
ro 

I 11 i(kx+ly) . n(k,l,z)e dkdl 
-co -oo 

anc1 the ec;uation and bouni.iary conditions for n arc 

II 
n a no 

II 
cJn 
c]z 

,, 1\ 
n = P(k,l} 

II n + o 

continuous at z=h 

at z=O 

1 z+a:> 

ra~iation of cnergvJ 

(2.7) 

(2.0) 

( 2. 0) 

{2.10) 
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Here a=lk 2+12. The solution of the above rroblen is 

A ~(k l)'l'~k,l,z) (2.11) T')(k,l,z) = -· 'T(k,l,O) 

{" 1cos[p 1 (z-h) ]+i~ 2 sin[~ 1 (z-h)]. z.s:h (2.12) 
'l,(k,l,z) = 

~ 1 exp[l~ 2 (z-h)] , z>h (2.13) 

, I:= 1 , 2 (2.14) 

rc.7hen z~co, ~~o if lkl>y 2 , an0 there is an ouhJarc1 radiation of 

ener{]y Hhen I k I <y 2 • If the r:<otmta in contours are synnetr ic ui til 

respect to the z-axis, the Fourier integral for n nay be >·rri t ten 

Hhere 

o:> 

n = ~f cos(ly)re[J(l,x,z)]ol 
0 

co 

.,. ( l ) = f AI' (} ] ) 'I! ( k, 1 1 Z ) ikx ~k 
u ,x,z J :, • 'I'(k,l,fl)e CL 

0 

The integral (2.16) is split in tuo parts 

(2.15) 

(2.16) 

y 
2 

J.7\= J dk and 
o:> 

J n= f dk. 
0 Y2 

The branchpoint at J.:=y 2 "Ill ill be discussed later. Pe first look 

at Ji\. 

The integrand of J~ had a singularity at k=O because 
d 

11~"' Hhen k~n. If the nath of integration is along the real 

k-axis to~1ards k=O, hm,ever, the sinrwlarity there does no harn. 

It is of the forn 

1 
. 1 ) f s1n-cu u 

0 

Here the change of variable 

Q) 

f sinvc3v 
1 v 2 

(2.17) 

1 v=- renlaces the above integral with 
u 
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ry the sane change of variable in J A, ~;.1e finc1 that its integrand 

is absolutely integrable, and accordingly this contribution to n 

vanishes as I x !-+co ( RieiJann-Lebesgues lemaa) • 

For the z derivative of n, however, the singularity is of 

the form 

l 
f l u 
0 

and turns into 

. 1 1 s1n-ru 
u 

co 
J sinv 3v 
1 v 

(2.18) 

which exists, but this integrand is not absolutely integrable. 

Higher ~ derivatives of n may not be expressed as Fourier 

integrals. 

The second integral JD has singularities \Jhcn y <k<y • 
2 1 

These are simple poles, due to zeros of T(k,l,O), giving rise to 

trapped vaves. Pe still assume the Dountain to be the only enerCJY 

source, and from the fact that the group velocity of these trapped 

waves is less than their phase velocity, it fcllm1s that they 

should be situated downstrean of the mountain. This is achieved 

by taking the path of inteCJrat.ion belcH the sinC)ularities in the 

corr1.plex k-plane. ':'he path is deforr:tcc'l as shmm on f iqure 2. 2. 

Jr. r.1ay noP be Hr it ten 

where 

± iw y +coe 

2 J d}: 

y 
2 

x>O 

x<O 

1\ T ( k I l, z ) ik X 
= 2 ·~ n(k 1) o e o 

1t 1 ,_, ' ' .·. ' D ( 1 ~ 1 ) 
J~ 0 ··t.- J" .. , • - .,_ c 

0 

D(k,l) = T(k,l,r) 
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and k =k (1) is a (real) solution of 
0 0 

[l (k '1) = 0 
0 

(2.19) 

The angle w nust be chosen so that the Jc-integrals exist. 
•' 

It is seen that 

Hherc the star denotc::s conn lex conj uqatc, anc1 from ( 2. 1 5) \m f i ncl 

that this contribution to n is symmetric about x=O. Pefcrrinq 

to J("' ,, in the follm?ing, "~ilC mean 

There is a branchpoint in Jr at Y.=y • 
1 

Povever, the sign 

of p 1 drops out of the intcqrancl, and this noint cause>s no 

problcrn. The branchpoint at k=y , on the other hand, must he 
2 

treated carefully, othcrv,ise ,J(~ ma~' not converge Hhen z>h. 

Convc?rt:Jence is chsurccl by choosing 

'i.Je argue as follm1s: He have ifJJ k=y +tc , t real and 
2 

positive. Since 

Re(a)>C', and ue nust have The arcrunent of 

(y 2-k2) can only be in the interval and thus \-re have 
2 1 I 

Pc i(~2-k2) 1<0, Irn i(y2-k2) 1 <0. It follows that h~ ( ip )< C, 1>Jhich 
2 2 2 

ensures a negative real nart of the exponent of (2. 13), an<l thereby 

conver0cnce of Jc, provided that ~(k,l) ~oes not cause any 
•' 

~lifficulties. '·Tc shall discuss this factor later. 
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·pe nm1 conclude the procedure of computing Tl• It is a surr: 

of three parts 

TJ = Tl + Tl + Tl A S r; 

.., y 
= ~J (1 ) 'n f2~(}· l)T(k,ltz) ik~J~ ·.11 nh 'cos y 1-c .• , D(k,l) e (r. • 

0 0 

(2.20) 

.., Y2A . T(y2+teiw,l,z) 
n8 = 4/cos(ly){Ref H(y +te 1 w,l)-----r---

2 D(y +te 1 w,l) 0 0 
2 

i{(y +tcosw)!xl+w}-sinwlxl 
2 dt}dl (2.21) 

.., A T(k (l),l,z) 
nn=-81tfcos(ly)rl(k (1),1) D ~l- (l) l)sin(k (l)x)dl 

J. 0 . k ..... . , 0 
0 • 0 

(2.22) 

where nn=C when x<O, and \re have taken into account only the 

first node of the solutions of (2.19). ?he integrals (2.20)-(2.22) 

may now be computed numerically. (2.22) may also be studied by 

asymptotic P.lethods for large x and y, see for example, 

r!arthinscn (1980). An asymptotic expression for (2.20) will be 

given in sec. 3. 

The other dependent variables arc computed in the same way. 

The only difference is a factor in the: inte:qrand,' '"he relations 

between some of the Fourier transforrmd 0uantities are 

A k2u2 A (2.23) p = - - nz a2 

fl k 2 u A 
(2.24) = - Tlz a2 

A 1 A .1 A 
5 = -=-r-P' = -1- nz (2.25) 

1 • ; a2 
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Here 6 is the displacement in the y-dircction. tJote ho\<l the 

singularity at k=O enters the different JA-integrals for 

n,o,u,p. A 
n is absolutely inteqrablc, but 

A 

nz and accordingly 

& is not. This reflects the fact that 6 does not decay far 

dm-mstream, as noted by Smith (1980). 

Finally we specify the nocintain. In section 3 we study the 

floH oast a circular mountain, and we use 

!: (X' y) = 
n 

0 

which has the simple Fourier transform 

A 
I!(k,l) 

H p2 
o -pa =-e 21t 

(2.26) 

(2.27) 

In sect ion 4 and 5, hoHever, "''c study the flow past more cor.1-

plicated terrain, obtained by superposition of siuple mountains. 

The "basic" mountain to be used there is of Gaussian shape 

(2.28) 

with the Fourier transform 

(2.29) 

The way of creating ri~gcs and plateaus of different shape 

by superposing mountains of the type (2.2R) will be explaine~ in 

section 4. neither of the choices (2.27) or (2.29) will alter 

th0 convergence properties of (2.21) as long as 
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3 - The flow near an isolated obstacle 

In this section, He shall evaluatE} the integrals for 11, 

i.e. the integrals (2.20)-{2.22), by Gau~s quadrature and study 

the results. 't.Je scale the variables of dimension length with 1 km, 

e.g. h=l .5 ~cans h=l .5 km, y=O.S means y=O.S km-1=0.5•10- 3 rn-1, 

and so on. Since we arc only dealing with linear theory, the height 

of the mountain, E , onlv cntr:rs the results as a factor outs ide 
0 • 

the integrals, and when talking about values of 11, n=0,1,0.2, ••• , 

He actually mean 11=0.1H ,0.2T~ , •••• 
0 0 

Throuqhout this section we 

usc the mountain (2.26) \lith p=l.O 1:,hen nothing else is said. 

The flm1 is still affected by three pararncters y 1 , y 2 ,h that 

may vary indcmendently, ann we can only try to qet a rough idea 

about the behavior of the fl0111 for diffe:ro.nt atmosnheric concHtions. 

At the end of this section we discuss the validity of the linear 

theory. ThE: conclusion there is that linear theory breaks dovm for 

small 

Then 

and of course P 
0 

exceed certain values. 

The simplest atmosphere is the one obtained 14hen y 1 =y 2 , 

T) =0 p and The contribution from is symmetric 

about x=O t<~hile 111\, \lhich represents a field of vertically pro­

pagating waves, is not. Thus if y is very small, so is the 

contribution fron 11,1\, ann the flow has nearly fore-aft symmetry. 

Fig. 3.1 shoHs contour lines of 11 at z=l .P Hhen y 1=y 2=0.2, 

and it is seen that the floH is quite symmetric. The sinking dmm-

strear:1 is small comnar0.d to thQ liftinq above the mountain. ~his 

cannot be described in the hy0rostatic approximation Hhich assumes 

I k I >>Y. The calculations of Pmi th ( 198 0) therefon; shm·J only 

strongly asymmetric situations. 

As y increases, the flo"' becomes r.1orc asynnetric; there is 

a lifting of the air in front of the mountain, awJ sinking in the 

lee. In fig. 3.2 y 1 =y 2=l.O, z=l.O \Ye see an exarnplc o.f tt1is. 
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The: flov1 pattern nmv rcscr:1blc:s those of Smith: the~ flow is nearly 

hy~rostatic. The slight sinking in the lee apparent on fig. 3.1, 

gets slm·Ily broatler ancl stronger uhi lc the 1 i fting in front d imin-

ishcs as y increases. ~his is so because wh~n the stability 

increases, a larger part of the flow passes to tho side of the 

sountain rather than above. To cm~ensatc for the horisontal 

c1ivcrgencc, there is a sinking of air from above. Vhen y is 

increased even further, the linear theory will no longer he valid 

except for cxtrc.?nt::ly snail nounta ins. For large y \·Te exn(~ct to 

find no vci.·tical notion, and it has been sho~m by "!Jraz in ( 1 9G 1 ) 

that asymptotically vhcn y+m, the flow is trucly two-din~nsional 

ui th potential flm1 ( ancl thus fore-aft syr.metry} in each xy-nlane. 

Nhen y+m, we can easily find an asynptotic expression for 

~ in our linear theory. ~he integral for ~ for large y can 

be \.rr it ten (Hi th H C] i ven by 2 • 2 7) 

1t m 

f f -pa iyz/cos~ ia(xcos~+vsin~) ~ l e c a · aoaa~ ( 3. 1 ) 
-n: 0 

(This is the expression for Tl in the hydrostatic aproxination). 

Carrying out the a-integration, we find 

n2n 
' 0 

n=-2n: 

i~ 
n: e cos~0 (J) 

f 
-n <r-i(xcosw+ysin(J)))2 

Since y is large, the inteqran~ oscillates rapi~ly except near 

stationary points of the exponent, ~=O,n:,2n:. Applying the r~thod 

of stationary phase, ~··e find an asynmtotic c:xr>rcssion for ~ 

n2tr 
j·. 1 ' 0 ., 1t l 1 1t 1t 1 

T) "' -(..:.__) 2 { (p2-x2 )cos(yz+-)-2xsin(yz+1) }+0(-} 
2n yz (p2+x2)2 4 4 yz 

( 3. 2) 
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This expression describes a field of vertically propagating waves 

0 with phase fronts pernencHcular to the basic flou, i.e. -=0, and oy 

it has no r.:osemblance to a real flov in the case of large y. 

Returninq to moderate values of y, \/C find on fig. 3._3 the 

rc:sult when y 1=y 2=0.2 at z=2.0. This is the sane atnosphere as 

on fi~. 3.2 At this higher level the disturbance has grown wider, 

but weaker, antl it nO\tl differs less from the hydrostatic case. 

The reason for this is that long waves propaqate faster than shorter 

ones, ancl thus th(~ flm,7 becomes norc hydrostatic for larger z 

(keeping x and y constant). Consequently (3.2) is an ~syrnntotic 

expression for n, valid for large z, and we fin~ that the flow 

far above the Mountain is independent of y. 
1 

The formula ( 3. 2) prcr1icts that n r~ccay as z - 2 t,,hcn z-+co. 

This is not correct in a real atmosphere where the density decreases 

with h~ight, but we obtain the result as a conscnuencc of having 

made th(: Boussinesque-approximation. l\s explained in section 2 

we can avoid this approxination and then obtain the same integral 

for n, but this th::e nultiplicd by the factor 
l 

(p (0)/p (z)) 2 • 
0 0 

Thus with constant n, linear theory actually predicts an exponen-

t ial increase of n as z-+"", \lhich inpl ics that nonl incar effects 

must he taken into account. This has been done in the two-diucn-

s ional case by T1obbs ( 1981) uho by using the Generalized Lag rang ian-

-r1ean formulation found that the: interaction of a single Have mode 

with the mean flow acts to reduce the wave amplituac, particularly 

at levels where the wind speed is low. With a constant basic 

velocity, Hobbs obtains an approxirtately linear increase in ampli-

tude up to about 100 kn. The linear theory \Jerks t.•lell at lm1 

levels with a 10% ~eviation at lQ ~n and for the altitudes we have 

most intc.;rest in here:, i.e:. z=l-5 km, there is no significant 

d iffc'rence in arnpl i turle bct\Jec:n 1 inear anll nonlinear thsory. 
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2 1 

the tern 
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is no lon~er zero. This tern re-

presents a field of trapped lee-waves, i.e. they decay exponentially 

when z increases above h. vanishes for x<O, and cRlcula-

tions shov1 that it is negative for soall x and y, so that it ....... 

contributes to the sinking behind the mountain. For large x and 

y the trapped lee-waves are the do~inant contribution to n· 
,,, .. 

These lee-waves are nade up of two parts, both contained in a wedge 

behind the mountain. There are transverse Haves \'fi th v1ave crests 

nearly perpendicular to the wind, and divercing waves with the 

crests more inclined to the wind. The transverse Vfaves may be 

partially or completely oissing. In section 5 we discuss sone 

consequences of this. For a more detailed study of the lee-waves, 

see Marthinsen (1960). 

We now study how the different parameters of the two layer 

model affect the flow near the Mountain by varying one at the time. 

Fig. 3.4-3.7 show n at z=h=1.0. y is kept fixed equal to 0.2 
2 

while y takes the values 0.4, 0.6, 0.8, 1.0. It is seen that the 
1 

lifting of air above the oountain gets flater and wider cross-wind 

as the stability increases. There is also a strong sinking behind 

the mountain due to the lee-waves. If we coopare the effect of 

increasing y with an increase in both y and y (y =y ), we 
1 1 2 1 2 

find that the picture is roughly the same behind the mountain. 

This could be expected because the sinking is due to lee-rmves in 

both cases. \Jhether the waves are trapped or not is unimportant 

near the source. 

On fig. 3.8-3.11 y is fixed, y =1.0, while y =0.0, 0.4, 
1 1 2 

0.6, 0.8. z=h=1.0 as before. Note that fig. 3.7 fits in here 

with y =0.2 and also fig.3.2 with y =1 .o. As y increases, 
2 2 2 

the sinl~ing area gets Hider and the anpl:t tude increases. This was 

also the case when y increased, and the reason is that a lar(\e 
1 
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stability causes most of the air to pass to the side of the 

nountain instead of above. The sinking is to compensate for this 

horizontal divereence. 

In contrast to the sinking, the lifting area above and in 

front of the nountain is seen to widen as y decreases. Thus the 
2 

width of this area see.r.1s to depend upon the nagni tune of y -y , 
1 2 

that is the change in stability with height. The larger y -y , 
1 2 

the further out to the sides of the obstacle will the disturbance 

be felt. 

Now, let us keep y and y fixed, y ~1.0, y =0.2 and 
1 2 1 2 

vary h and z. First with z fixed, z~l.O, we have on fig. 

3.12-3.16 h=l.O, 1.5, 2.0, 2.5, 3.0. It is seen that as h in-

creases, the with of the disturbance increases to a maximum and 

then decreases. We also see that (roughly) the largest valu~s 

of n are found in the cases when the disturbance has its largest 

spreading cross-stream. For these paraneter values there must be 

much nore wave-energy than for other values. 

When h becones very large, it night be expected that one 

obtains the sane result as when h~~, that is fig. 3.2. But this 

is not the case. Our computations show that as h increases, vrith 

z fixed, the downstream disturbance vanishes instead of approaching 

the result on fig. 3.2, see fig. 3.17 where h=6.o. The difference 

is due to the assuned steadiness of the flow. The flow has had an 

infinite time to develop, and thus reflection from even very large 

heights influences the flow. In a real situation with discontinu-

ity of y at a large altitude, the flow will first take the form 

on fig. 3. 2 11fhile enere;y radiates upwards. Then after a long 

time, the reflected waves are also fully developed and fig. 3.17 

describes the flow. 
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Finally, fig. 3.18, 3.19, 3.20 have y =1.0, y =0.2, h=2.0, 
1 2 

and z is 0.5, 1.5, 2.0. We note that the lifting region above 

the mountain vanishes quite rapidly but apart from this, nothin~ 

new is revealed here. 

As mentioned earlier in this section, the linear theory we are 

using breaks down when z becomes small. As noted by Smith (1980) 

there are several criteria which can be used to indicate this break-

dovm. They all shoH that linear theory can no longer be used v-rhen 

the Scorer parameter multiplied with the mountain hei~ht becomes 

too large. ~he criterion that sives the smallest licit is the one 

that requires 11 >-1 . z When n2 c-1, then-surfaces and thereby the 

density surfaces intersect. Smith finds that this first occurs at 

z=O when yH ~~ (hydrostatic flow, y constant with height). But 
0 

the breakdown seens to be confined to a layer close to the r;round. 

This is illustrated on fic-3.21. It shows TJ as a function 

of x in the plane y=O at different values uf z. The thick 

dotted line is the ground. H 
0 

is 1, and y =y 
1 2 

is larger on 

fig. 3.21a. We see that the n-surfaces intersect at the mountain 

top and for the larger stability also downstre~1 close to the 

ground. On fig. 3.22 we see what the situation is like when H 
0 

is smaller, here 0.5. There is still some intersection downstream 

for larce y, but only in a very thin layer. 

The conclusion nust be that the linear theory br>eakes dol'm 

near> the hround, but as far> as the cr>iterion used here is concer>ned, 

this is far> fror being violated when z is about 1 or> greater for 

yil as lar>ge as 1.0. Of cour>se viscous effects also become 
0 

irnpor>tant near the gr>ound, and the flow at these low levels is 

quite another> problen than the one studied in this paper. 
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11 - The flow past nore cor.1plex terrain 

Since our equations an~ boundary conditions are linear, we 

nay obtain the solution for flow pa:::t more complex terrain by 

superposition. The flow field generated by two or more oountain 

tops is simply the sur;1 of the field generated by each of the single 

nountains. An exanple raay be found in r1arthinsen (1980) where 

the lee-waves behind the tvTO peaks at Jan f1ayen are calculated. 

We May also nake mountain ridp:es and plateaus by integrating the 

expression for a single nountain. 

Assune that the single peak is z=H(x,y), H r:;iven by (2.28). 

Then a ridge fran y=O to y~a(~ is given by 

a a 
R(x,y) = R jH(x,y-t)dt//H(O,t)dt 

0 
( 4 • 1 ) 

0 0 

Here · R is the height at the origin. A plateau above the donain 
0 

y>a(x), a(O)=O (see fig. 4.1) 

Fig. 4 .1 

is r;iven by 

a> CXI 

P(x y)=P f 
' 0 

-a> 

f H(x-s,y-t)dtds/ffH(s,t)dtds 
a(s) 

( 4. 2) 

If the displacenent created by the countain H(x,y) is ~H(x,y,z), 

the displacencnt due to P(x,y) is 
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00 CD 

= f f nH(x-s,y-t!-z)dtds/JJH(s,t)dtds 
-CD a(s) · 

= 
00 CD 

J J nH(u,v)dvdu!//H(s,t)dtds 
-w -y+a 

(4.3) 

Inserting (2.28) in (4.1) with a=ro gives a simple ridge 

(4.4) 

where erf denotes the error function 

2 xf -t2 erf ( x) = - . e dt 
11t o 

Fig. 4.2 shows the flow field near the end of the ridge (4.4). 

The atmospheric parameters are y =1.0, y =0.2, z=h=1.0. Thus 
l 2 

fig. 3.7 is the same atnosphere flowing past a circular r.1ountain. 

The floN past the ridge is quite s inilar to that cor1puted by 

Snith (1980). For large y the flow becones two-dimensional, 

and the figure reveals the transition between two-dinensional and 

three-dimensional flm·l. The width of the transition region is 

determined by the with of the wake in the case of a single peak. 
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5 - Lee-waves due to ridges and corners 

In this section we study closer the lee-wave part of (4.3), 

i.e. the pole-contribution to the integral. On satellite photo-

graphs one can often see a very regular lee-wave pattern generated 

by a rather irregular terrain, see Gjevik (1980). Fig. 5.1 shows 

lee-waves along the coast of Norway. The wave syster:1 is quite 

regular although the Mountainous area of western Norvmy is not. 

It looks as if the individual peaks are sMoothed out, and the waves 

~enerated by soMe larger topographical structure. The wave system 

seems to start at Stad (the point S on fj_g. 5. 2), and we shall 

denonstrA.te that a "corner" like the norv.;egian coast at Stad is 

able to generate a wave system as seen on the satellite photo-

~raph, fig. 5.1. 

The photograph is taken at 10.00 Gr1T and fig. 5. 3 shows the 

upper air data as recorded by a radiosonde released at 0rland (0 on 

fig. 5. 2) 11.05 GriT. The wind derection above the planetary bound-

ary layer seeMs 
0 

to have the constant value of about 240 • However, 

on a weather map it is found that further south (west of Bergen, B) 

the wind is nore from the south. It is therefore guessed that the 

direction at Stad is as indicated by the arrow on fig. 5.2. Except 

for a thin, very stable layer near the ground, the Scorer paraneter 

y=N/U has an almost constant value of 0.7-0.8 up to 620 rnb (=3.7 km) 

where it drops to about 0.2. n1us the atmospheric situation is well 

approximated by the two-layer nodel we use in this paper. 

To make a choice we take y =0.8, y =0.2, h=3.7. The relative 
1 2 

hurlidi ty is 9G% at 700 mb, and less than this at all other levels. 

Thus it is reasonable to assune that the clouds naking the lee-waves 

visible are situated at this level, and we conpute the wave field 

at z=h=3.7. 
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The "cot•ner" at Stad is approximated by (4 .3) with a(x)=-~ jx I· 
The corner angle is then 127°, which agrees quite well wit~ the 

angle qeasured on the nap. Anyhow we do not expect that the choice 

of this angle is crucial since earlier computations of lee-waves 

behind isolated obstacles (Marthinsen (1980)) have shown that the 

shape of the mountain does not influence the wave field very much. 

Fig. 5.4 shows a part of the wave pattern. Only the positive 

values of n, corresponding to the visible clouds, are displayed. 

The corner is situated at x=y=O, and the solid line is the "coast", 

y=-ilxl, with land below. If we measure the wavelength on the pho­

tograph, we find that it is about 12 kn, and measuring at fig. 5.4 

gives 12.1 krl, so there is good agreement. The V{avelength, ho\<rever, 

is determined exclusively by the atmospheric conditions, so that 

the good agreement here has nothing to do with how the waves are 

generated. 

Let us instead try to compare the shape of the computed wave­

crests with those observed. Since we have only computed the pole­

contribution to n, the computation is only valid some distance from 

land. Thus we do not look at the lower left corner of fig. 5~4. 

When this part is excluded, however, we see that the shape of the 

computed waves agrees quite well with the first 5-6 wave crests on 

the photograph. Further north the crests bend more northwards, and 

the wavelength decreases. This is most probably due to a horizontal 

variation in wind direction and speed. Such effects are not 

included in the model considered here. 

The waves on the photograph differ fror1 \ovaves generated by an 

isolated peak in that they curve away from the y-axis. Fig. 5.5 

shows the lee-waves behind a single peak with the sane atmospheric 

conditions. The waves there curve towards the y-axis, while for 

the waves generated by a corner (fig. 5.4), the curvature has the 

correct direction. 
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Accepting now that the waves in this case are generated by a 

relatively large scale structure where the individual peaks are 

wiped out, there still remains an open question. \fuy is it that 

sometimes the situation is as it is here, while at other tines the 

individual peaks generate their own separate waves, and a quite 

irregular interference pattern is observed? This question we do 

not attenpt to answer here. 

As mentioned in section 3 the waves behind an obstacle consist 

of transverse waves with crests nearly perpendi6ular to the wind 

and diverging waves inclined to the wind (like the Kelvin ship wave 

pattern) with the transverse waves sonetimes partially or complete-

ly missing. Only when the transverse waves are fully developed, 

¥'Till there be any lee-vmves in a t\m-dinensional flow behind a lone; 

mountain ridge. In order for this to be the case there must exist 

a solution to (2.19) with 1=0, that is 

D (k , 0) = 0 ( 5. 1 ) 
0 

where 

Since we r.~ust have y <k < y , ( 5.1) has a solution if 
2 ° 1 

that is 

D(k1 ,0) 

/y 2-lc2 
1 

Thus a sufficient condition for the transverse waves to be fully 

developed is that 

(5.2) 
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One can also show that this is a necessary condition. The 

criterion was first derived by Scorer (1949). 

In cases when (5.2) is not satisfied, something interesting 

happens at the end of a long ridge. Fir;. 5.6 shows the lee-Have 

pattern behind a circular mountain. The paraneter values are 

y =1 .4, y =0.5, h=z=1.2 so that (5.2) is not satisfied. If we 
1 2 

superpose solutions to obtain the lee-wave pattern behind a ridge, 

eq. (4.1), we find the waves shown on fig. 5.7. The nest 
0 striking feature here is a 180 phase shift at y=O. It seens like 

~(x,y)=-n(x,-y) exactly. This can be explained physically. 

Every point along the ridge acts as a source for a lee-wave pattern 

as on fig.5.6. This wave pattern is contained in a wedge, with a 

wedge angle 4•. Accordingly, at each point downstrean of the 

ridge, the displacement is caused by disturbances inside the wedge 

angle ~ upstream of this point, see fig. 5.8. Thus n at r 1 

is caused only by the part of the ridr;e fr.om C to D, while at 

r 2 it is caused by the segment from C to E· However, since 

there are in this case no two-dimensional waves behined an infinite 

ridge, the displacement at r 2 would have been zero if the ridge 

filled up the whole segment from B to E. Therefore, at P2 ~ 

must have exactly the negative value of Hhat would have been caused 

by disturbances fron B to C, and that is precisely the negative 

of n ·at P 1 • 

6 - Concluding remarks 

For an atmosphere with constant y, the flow past an isolated 

obstacl~ changes qualitatively with the parameter yH • 
0 

For the 

two extremes, yH very small and very large, there exists nonlinear 
0 

solutions of the problem given by Drazin (1961). \!hen yH 
0 

is 
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small, the linear theory used in the present paper also gives a 

good approxiMation. 'I1he hydrostatic computations done by Snith 

(1980) require that yp is large (p is the horizontal length-scale 

of the obstacle). Thus when y is snall and p has a moderate 

value, the hydrostatic assunption cannot be made. In section 3 we 

showed that l'lhen yp=0.2 the flow was far fro!71 hydrostatic; instead 

it was more like the symmetric flov1, while the (near) hydrostatic 

flow obtained when yp=1 .0 has strong fore-aft symnetry with lift-

ting in front of and above the mountain and strong sinking in the 

lee. For large yH 
0 

the nonlinear effects become crucially inpor-

tant, so that the linear hydrostatic theory requires H /p<<1. 
0 

The hydrostatic approxination is of limited interest when y 

varies with height, since it would neglect important contributions 

to the dependent quantities. In section 3 we studied the flow past 

an isolated obstacle for different vertical distributions of y. 

It was found ar.wng other things that the cross-section of the flmv 

influenced by the nountain increased with increasing difference in 

y between the two layers. 

In section 5 we looked at trapped lee-waves only and demon-

strated that the regular lee-wave pattern alon~ the norwegian coast 

seen on fig. 5.1 could very well be generated by a relatively 

large scale topographic structure where the individual peaks are 

snoothed out. \Je are not, hoHever, able to explain why the peaks 

are snoothed out in some cases but not in others. 
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Figure captions 

Fig 2.1 The atnospheric nodel. y=H/U, the Scorer paraneter. 

Fig. 2.2 Path of integration. The path is taken below the 

singularities so that these only contribute for x>O. 

Fie;. 3.1-3.20 Lines of constant TJ• Solid lines lifting or 

zero, broken lines sinking. The values of Tl are 

n=±0.05H , ±0 .lH , • 0 0 . The parar.1eter values for the 
. 0 0 

figures are sho~;m in the table below 

Fir,. 'Y 'Y h z 
1 2 

1 0.2 0.2 1 • 0 1 • 0 
2 1 • 0 1 • 0 1 • 0 1 • 0 
3 0.2 0.2 2.0 2.0 
4 0.4 0.2 1 • 0 1 • 0 
5 o.G " " II 

6 0.8 " " " 
7 1.0 If " " 
8 II o.o " li 

9 " 0. ~~ " II 

10 II 0.6 II II 

11 II 0.8 " " 
12 II 0.2 " " 
13 " " 1 0 5 II 

1 4 " " 2.0 " 
15 " " 2.5 II 

16 II II 3.0 " 
17 " II 6.0 " 
18 " n 2.0 0.5 
19 II " " 1.5 
20 II " " 2.0 

Fie. 3.21 n as a function of x for z=0.0,0.05, ••. ,1.0 when 

y=O, H =1.0, y =y =1.0 in 3.21a and y =y =0.2 in 
0 1 2 1 2 

3.21b. The thick, broken line is the ground. 

Fir;. 3.22 As fig. 3 .21, but n =0.5. 
0 
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Fig. 4.2 TJ-contours for the flow past a ridge given by eq. (4.4). 

'Ihe thick line is the "top" of the ridge, i.e. ~~=0, 
and R>R /2. 

0 

Fig. 5.1 Satellite photo~raph showing a lee-wave pattern along 

the western coast of Norway. (Reproduced with the kind 

pernission of Departnent of Electrical Engineering, 

University of Dundee). 

Fi~. 5.2 f1ap of Uorway with the lee-wave crests observed on fig. 

5.1 indicated, starting at S. To the left is the 

"corner" used in the model. The two points S are 

ment to correspond. 

Fig. 5.3 The upper air data as recorded by a radiosonde released 

at 0rland (0 on fig. 5.2) one hour after the photograph 

5 .1 was taken. 

Fig. 5.4 TJ-contours generated by the "corner" on fig. 5.2. Only 

nonnegative values are shown. y =0.8, y =0.2, z=h=3.7. 

The thick line is the "coast" • 
1 2 

Fig. 5.5 TJ-contours generated by an isolated, obstacle with the 

same atnosphere as on fig. 5.4. 

Fig. 5.6 Diverging lee-waves behind a single peak. 

y =0.5, z=h=1.2. 
2 

Fig. 5.7 Lee-waves behind the end of a long ridge. 

y =1 • 11' 
1 

The ridge is 

alonr, the positive y-axis. The atnosphere is as on 

fig. 5.6. 
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