
ABSTRACT 

OSCILLATORY AND STATIONARY FLOW INTO TWO­
AND T'EJREE-LAYERED ROTATING SE~H-INFINITE 
CHANNELS 

by 

Sverre Holte 

Linear inviscid theory is utilized to investigate stationary 

and oscillating flow into a rotating two- and three-layered semi~ 

infinite channel. In the stationary case the solution consist~ of 

geostrophic flow plus a geostrophic adjustment region near the 

inlet with length-scale of the order B/~ where B is the width 

of the channel. In this case an explicit solution is obtaip.ed. ln 

the oscillating case the solution consists of the adjustment region 

plus a train of Kelvin-waves travelling down the channel. Possible 

applications are river flow into a lake, flow through straits and 

ipternal tidal waves. 
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1 • INTRODUCTION 

The effect of the earth's rotation on river flow through a 

lake has been observed both in ·Norwegian lakesf Stigebrandt (1978), 

and in North American lakes, Hamblin and Carmack (1978}. Laboratory 

experiments, McClimans (1980} and Nof (1978), have verified the 

importance of the Coriolis force on the flow into a wide basin. Nof 

(1978) and Hamblin and Carmack (1978} also have presented mathemat­

ical models to describe the geostrophic adj~stment of flow into a 

wide basin. The first is nonlinear and inviscid, and the second is 

a stream-tube model which includes entrainment. 

Our study presents an explicit formula for the geostrophic 

adjustment of a river flo\'Ting into a wide basin when nonlineaz;- and 

viscous effects can be neglected. A discussion of these ass~mptions 

is given in Holte (1984). The solution method applied in our study 

is similar to Taylor (1922) and allows that the input oscillates. 

In this case a set of linear equations gives the solution to the 

problem. 

2. BASIC EQUATIONS 

We shall consider a three layered fluid with a surface layer 

with density p 1 , an intermediate layer with density p 2 and a 

bottom layer with density p 3 . The mean depth of the layers are H1 , 

H2 and H3 res-pectively. In the undisturbed state the surface and 

the interfaces between the layers are horizontal. We choose a Car­

tesian coordinate system (x,y,z} with the z-axis in the vertical 

direction and the x- and y-axis along the undisturoed surface. 

The displacements of the surface and the upper and lower inter~ 

faces between the layers are denoted by ~ 1 , ~ 2 and ~ 3 respect­

ively. We shall apply the usual inviscid shallow water approxima-
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tion and assume hydrostatic pressure. Hence the linearized equation 

of motion in the three layers can be written 

ov2 
fu 2 'f5"t + = 

ou3 
fv3 - = ot 

oc, 
-g­oy 

0 -g oy<c1+e:c2> 

0 -g ox(C1+e:C2+e:C3) 

(2-1 a} 

(2-lb) 

(2-2a) 

(2-;2b) 

(2-3a} 

(2-3b} 

where u. 'v. 
~ ~ 

i = 1,2,3 denote the hori~ontal velocity c~ponents 

in the three layers respectively, f is the Coriolis parameter, g 

tbe acceleration due to gravity and e: the relative density dif-

ference. Since the relative density differences between the layers 

are assumed to be small we have set (p 2-p 1 )/p 2 ~ (p 3-p 2 }/p 3 = e, 

p1/p 2 = 1 and p 1/p 3 = 1. By assuming no mixing across the layers 

the continuity equation for the three layers can be written 

oc2 oc3 o o 
~- 'f5"t =- ox(u2H2) - ay<v2H2) 

oc 3 
u= 

(2-4) 

(2-5) 

(2-6) 

For the internal or baroclinic motion the surface displacement is 

small and we neglect compared to in equation (2-4). 

Hence eq. (2-4) reads 

(2-7} 
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apd similarly we have 

(2-8) 

By dif:t:erentiating with respect to t we may eliminate either u1 

or from (2-1a) and (2-1b) and we obtain 

and from (2-2, a,b) and (2-3, a,b) 

and 

Dv3 = -gD 2 (c 1+ec 2+ec 3 

- a2 2 - a2 a where the operators D = ot2 + f , D1 - ~ + f~ 

D2 = o~ot- f~x· By multiplying (2-9)-(2-11) with 

respectively and differentiating with respect to x 

(2-9) 

(2-11) 

and 

and, 

y the 

velocity components can be eliminated by using ~qs (2~~)-(2-8} and 

we finally obtain 

g(H1+H2+H3 )V 2 C1 + eg(H2+ij3 )V 2C2 + ega3v2c 3 = 0 

DC 2 + gH1V2 C1 = 0 

DC 3 - gH3v2 <c 1+ec 2+ec 3 > =a 

From (2-12)-(2-:14) we find 

c 1 = -
e( (H2+H3)C2+B3C3) 

H1 +H2+H3 

DC -
egH1v2 [ (H2+H3 )c 2+a3c3) 

2 H1 +H2+H3 
= 0 

DC -
egH3v 2 [ (H1C2+(H1+a2 )C 3] 

:;::; 0 3 H1 +H2+H3 

(2-12) 

(2-13) 

(2-14) 
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If we assume that the bottom layer is very deep compared to the 

other layers, i.e. H3 >>B1 , H2• these equations simplify further 

'1 = -£ (' 2+1:: 3} 

DC 2 - £gH1V2 (C 2+c 3 } = 0 

DC 3 - £gV 2 [H1C2+(H1+H2 }C 3] = 0 

The latter two equations possess solutions of the form c2 ~ q~ 3 

where q is a· constant and both c 2 and , 3 are determined by 

the equation 

{2-15) 

where c 2 = £gH1 (1 + ~}. The constant q has two differ~nt values 

q = - _21 HH2 ± J, + !_(~}2 
1 I 2 1 4 H1 

The positive value, q 1 , corresponde to vertical deflection q£ the 

middle layer while the negative value, q2 , corresponds to ~tretch­

ing and thickening of the middle layer. Table 1 shows values of q 1 

and q 2 together with the corresponding values of tb~ velocitie$ 

c. = [ £9Hl ( 1 + ql . } ] \ i = 1 I 2. 
~ ~ 

Table l 

H2 c1 c2 

H, q1 q2 II:: gH1 .; e; gHl 

0 1 -1 1 • 41 0 

0. 1 0.95 -1 • OS 1.43 0.22 

0.5 0.78 ... , • 28 1 • 51 0.47 

1 • 0 0.62 -1 • 62 1 • 62 0.62 

2.0 0. 41 -2.41 1 • 85 0.76 

3.0 0.30 -3.30 2.08 0.83 

1 0. 0 0. 10 -1 0. 1 3. 31 0.95 
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In cases with a deep bottom layer where eq. (2-15) applies it is 

possible to show that both the velocity components in the interme-

diate layer u2 and satisfy a corresponding equation. We 

have c 1 + eC 2 = -ec 3 and by differentiating (2-10) and invoking 

(2-15) we find 

(2-17) 

Similar equations for a two layer model are obtained by ~aking 

the limit H2 + 0 which leads to q 1 , 2 = ±1. In this case only the 

positive value has a physical meaning and we set c 2=c 3=c. Hence 

( 2-1 8) 

where c 2 = 2egH1 . vle also have 

C = -2eC 
1 2 

(2-19) 

The factor 2e occurs since we by taking the limit H2 + 0 obtain 

a two-layered model with relative density difference 2e. In a 

similar way as described above it can be $hown that the velocity 

components and in the surface layer satisfy the equation 

( 2-20) 

3. FLOW INTO A LONG RECTANGULAR TWO-LAYERED BASIN 

In this work we shall consider situations where the inflow is 

at one end of the basin. The x-axis is oriented along the longitu-

dinal axis with the origo at the inlet and the lateral side-walls 

have coordinates y = ±b/2 where b is the width of the basin. 

We shall first examine the case where the flow enters the surface 

layer of a two-layered basin with a deep bottom layer. In this case 

eqs (2-18) and (2-20) apply and we introduce dimensionless coordi-

nates 



- 7 -

n = 2x/b, ~ = 2y/b, 

Hence eq. (2-20) can be rewritten 

b ~2 ~2 ~2 . 
( (-)2 - + a2 - - - -2) (u1 ,v,) = 0 

2c ~t2 ~n2 0 ~ 
( 3-1 ) 

where the parameter a= fb/2c and c ~ 12tgH1 • The boundary 

conditions at the side t;ll'alls ~ = ± 1 are 

v = 0 
1 . 

Although stationary inflow will be most relevant for the applica­

tion we shall allow for the possibility that tbe inflow may vary in 

time. Hence the inflow is specified as a periodic function 

(3-3) 

at the end of the basin i.e. for n ~ 0. w is the angular velocity 

and steady state solutions are obtained by taking the limit ~ ~ 0. 

Eq. (3-1) has solutions of the form 

1\ iwt 
u 1 = u 1 ( n , ~ ) e 

1\ iwt 
v 1 = v1 ( n , ~) e 

where 

~ -~ n 
C1 = -A e-a~e-ipn - I A [i\ ~ C (~ )+iapS (~ >] e n 

0 n=l n n n n n 
(3-4) 

1\ v, = 
~ -~ n 
I A (i\2+a2)s (~)e n 

n=l n n n 
(3-5) 

Here p = wb/2c. 

The corresponding displacement of the interface between the 

surface and the bottom layer is 

A0 ,A1 , ••• ,An are integration constants and the functions 

and S (~) are defined by 
n 

(3-6) 

c (~) 
n 
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c ( ~ ) = cos ~ ( 1 -~ ) 
n n 

S ( ~) = sin ~ ( 1-~) 
n n 

The boundary conditions at the side wal·ls are satisfied with 

~n = n~/2. The parameter ~n is given by 

We are mainly ~nterested in long periodic variation of the inflow 

when ~n can be assumed real. Our solution method then has a cut­

off frequency 

w = 0· 

The cut-off frequency w0 is of the same order of magnitude as 

the Coriolis parameter f in most geophysical applications. The 

integration constants are determined by the inflow condition (3-3) 

which requires 

a> 

A0 e-a~ +I A[~ ~ c (~)+iapS (~)j = 
n=1 n n n n n 

(3-7) 

The constants A0 ,A1 , ..• ,An can be found from eq. (3-7) by replac-

-a~ A ing e , Sn(~) and u0 (~) with their Fourier-series in 

Taylor (1921 ). Alternatively eq. (3-7) can be multiplied by 

n = 0,1,2, ... and integrated from ~ = -1 to ~ = 1. The methods 

are identical and lead to a set of linear equations for the unknown 

quantities. 

In general A 
n 

n = 0,1, •.. are complex which reflects a 

phase-shift between the inflow and the flow in the basin. We put 

A = a + i b n n n 
n = 0,1, .•. (3-9) 

We can define the phase-shift as 0 = -arc tan (bo/ao>· The result-

ing equations for a and b can then be written n n 

sinh a 
+ I apbk 

2 (3-10) ao = Yo a k odd k~ 
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k odd {k even) 

4a 
- Ak~kak + I 41 

tlkbl xkaO ap = yk 1t2 1 even 1t 
{ 3-11 ) 

{1 odd} 

sinh a: 
b - I 2 

a:p k1t ~ = 0 a: 0 
k odd 

{3-12) 

k odd {k even) 

4a 
- Ak~kbk + I 41 

0 2 xkbo a:p tlkal = 
1t 1 even 

1t {3-13) 

{ 1 odd) 

In these equations we have introduced the quantities 

= 
( - 1 ) n e a: - e -a: 

{4 a:2 /1t2 )+n2 

t = (n2-m2) -1 
nm 

Yn - coefficients in the series for 

We note that when the inflow is stationary, i.e. p = 0, eqs {3-10)-

{3-13) give explicit expressions for the unknown 

b = 0. In this case 
n 

Y oa: 
ao = - sinh a: 

a = n 

-y n- (4a: /1t2 )x naO 

An~ n 

The flow in the basin is now described by 

(X) -~ T] 

A = -a e-a:~ - I a A ~ C {~)e n 
u1 0 n=1 n n n n 

A v, = 

a whereas 
n 

{3-14) 

{3-15) 

{3-16) 

The first term in A u 1 I namely 
-a:~ 

-a0 e 1 describes geostrophic 

motion which is present for all positive values of· x. 

The contribution from the series in eqs (3-15) and {3-16) 

diminishes rapidly away from the inlet and the e-folding distance 

for the dqminant term is n = 2/1t. This shows that the geostrophic 
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adjustment takes place over a remarkably short length scale of 

order b/n, see fig. 4. 

The general solution of eqs (3-10}-(3-13} describes Kelvin-

waves with frequency w that travel along the right-hand side of 

the channel. In a region near the inlet with length of the order 

b/n the flow adjusts from the prescribed inflow to this train of 

Kelvin-waves, see fig. 5. 

We can now find the flow for various input conditions simply 

by replacing yk with the appropriate series in eqs (3-10}-(3-13} 

in the oscillatory case or in eq. {3-14} in the stationary case 

respectively. 

A first approximation to river flow into a lake or flow 

through straits is to prescribe as a box-profile: 

1\ 
uo < ~ > = uo I ~ I ._ 1 . 

1\ 
u0 <~ > = o 1 < 1 ~ 1 .. 1 

The coefficients then become 

Yo = uol 

2u0 
A sin n Yn = --- cos 

An n n 

(3-17} 

The solutions are linear in and in the computations we have 

put u0 =1. This corresponds to a scaling of the results with u0 /c. 

In figs 1, 2 and 3 we have displayed the dependence of the 

motion far downstream, given by a 0 and b 0 , on a, 1 and w. The 

solution for stationary flow is given by eq. (3-14}, and in this 

case is a linear function of 1, see fig. 2. a0 decreases 

\'lith increasing a I see fig. 1. The amplitude of the thermocline 

displacement ~ 2 is a 0 ea 1 however, and an increase in a must be 

compensated by a decrease in a 0 . The thermocline displacement ~ 2 

is shown in fig. 4 for a = 2 and 1 = 0.2. The rapid geostrophic 
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adjustment is clearly revealed. The resemblance with fig. 10.7c in 

Gill (1982) should be noted. 

When the input oscillates, the motion in the channel is out of 

phase with the input. The phase-angle o increases with increasing 

a and w. In the case depicted in fig. 1, the phase-angle o is 

small for a ( and it inceases to o ~ ~ for a = 4. The motion 

grows fast out of phase when w increases. The phase-~ngle 6 

increases almost linearly with w and o ~ ~12 for w = f when 

a = 2 and 1 = 0.2, see fig. 3. 

Fig. 3 shows a feature in the oscillating case which is not 

present in the stationary case. The increase of a 0 and b 0 with 

1 is slower than linear when w t 0. This reflects that even 

though more water oscillates back and forth near the inlet when 1 

increases, this does not lead to a proportional increase in the 

amplitude in the Kelvin-waves far down-stream. a0 is a linear 

function of 1 when c0 = 0 as has been pointed out. 

The solution converges fast both in the stationary case and in 

the oscillating case, see table 2. The convergence in the station-

ary case is given explicitly in eqs (3-14)-(3-16). The convergence 

in the oscillating case closely follows the stationary case. In our 

computations we have used N = 10 terms in the series for u and 

v. A change in N yields no change in the leading terms. 

4. FLOW INTO A THEREE-LAYERED BASIN 

We now consider flow into a three-layered basin. We utilize 

the analysis from the two-layer case since the governing equations 

in the two cases are similar. There is one typical wave-velocity, 
1 

c = (2£gH)~, present in the two-layer case. In the three-layer 

case, however, two velocities are present 
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c 1 , 2 = [e:gH1 (1 + -1-)]~ 
q1 2 

I 

is given by eq. (2-16). 

(4-1 ) 

The inflow must be specified for both the middle and upper 

layers, 

T) = 0 (4-2) 

We shall assume submerged inflow, i.e. u 0 = 0 and 

The motion has two modes connected to q1 and q-2 
respectively, 

c ( 1 ) = c ( 1 ) 
2 q1 3 

(4.3) 
I; ( 2) I; ( 2 ) = q2 3 2 

The velocities in the upper and the middle layers are for each mode 

related through eq. (4-3) and the equation of continuity: 

oc 2 0 u1 ov1 

rr-- = E,<ax- + -) oy 
(4-4) 

oC 3 ou1 0 v1 ou2 o v2 
= H1 <ax-- + oy ) + H2 ( fiX"'"" + ----) 

ot oy (4-5) 

For each mode in each layer the expressions ( 3-4) and ( 3-5) can 

be used for the velocities. The complex numbers A0 ,A1 , ... are 

replaced as follows: 

a. + i b. for q1 mode middle layer 
J J 

d. + i e. II 

q2 
II II II 

J J 

A. + i B. II 

q1 
II upper II 

J J 

D. + i E. II 

q2 
II II II 

J J 
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Invoking eqs {4-3)-{4-5) gives 

{A.,B.) = r 1 (a.,b.) 
J J J J 

(D.,E.) = r 2 (d.,e.) 
J J J J 

where 

i = 1,2 

The velocities at ~ = 0 can then be written 

middle layer 

co 

~2 =-a e-al~ - L (a~ ~ C -a pbS ) 
0 n=l n n ln n 1 1 n n 

co 

-ib e-al~ - iL {b ~ ~l C +a 1p 1a S ) 
0 n=l n n n n n n 

co 

-d e-a2~ - L (d ~ ~ C -~ peS ) 
0 n=l n n 2n n 2 2 n n 

co 

-a ~ ~ -ie0e 2 - iL. {e A. ~ 2 c +a 2p 2d s ) 
n=l n n n n n n 

A 
v2 - correspondingly 

upper layer 

(4 ... 6) 

{4-7) 

(4 .... 8) 

same as middle layer, only a 1 b 1 d n n n 
and e ~re rep1&c~d by 

n 

The subscripts 1 and 2 in a 1 , a 2 p 1 , p 2 , ~ln and ~ 2n relate 

these quantities to the q 1- and q 2-mode respectively. 

By the same procedure as in the two-layer case we get the 

following set of equations for 

middle layer 

sinh a 1 

al 
a -0 

a 1 b 1 d n n n 
and e : 

n 

{4-9) 
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k odd (k even) 

4a 1 4a 2 
- ~ XlkaO- ~ X2kdO- ~k~lkak- ~k~2kdk 

41 
+ L -tlk(alplbl+a2p2el) .= yk 

1 even 1t 
( 1 odd) 

sinh al sinh a2 

al bo 
a2 

eo 

- L , alpl 
2 - L a p 

2 
dk 0 k1t ak k1t 

._, 

k odd 2 2 
( 4-11 ) 

k odd 

k odd (k even) 

4a 1 4a 2 
- ~ XlkbO- ;r- x2ke0- ~k~lkbk ~ ~k~2kek 

t 41 
- L ~tlk(alplal+a2p2dl) = 0 (4-12) 

1 even 
(1 odd) 

upper layer 

same as middle layer, only a , b , d 
n n n and e are replaced by 

n 

r 1 an, r 1 bn' r 2dn' r 2 en respectively. The right-hand side equals 

zero in all equations. 

In the calculations we have put u = 1 0 which corre$pOnds 

a scaling of the results with uolco where co= 
~ 

( E gHl ) • It 

should be noted that c2 < co and c, > co always. A criterion 

to 

for the linearization of the basic equations is u 0 /c 2 <<1 which 

may be much stronger than u 0/c0 <<1 when H2/H1 <<1, see table 1. 

When w * 0 the motion far down-stream consists of two Kelvin 

wave-trains moving with velocity c 1 and o2 respectively. The 

Kelvin waves cause vertical deflection (q1-mode) and stretqhing and 

thickening (q2-mode) of the intermediate layer. 

In fig. 6 we have shown how the amplitude of the two wave-

trains vary when the effect of the earth's rotation increases. This 

effect is measured by the parameter a 0 = ~0 Since c 1 > c 0 and 



- 15 -

c 2 < c 0 we have a 1 < a 0 and a 2 > a 0 • The rotation of the earth 

is therefore more strongly felt by the q 2-mode than by the q 1-mode. 

One notes the similarity between the curves for the q 2-mode (d0 ,e0 ) 

in fig. 6 and the corresponding curves in the two-layer case, see 

fig. 1. The q1-mode (a0 , b 0 ) has a much weaker dependence on a 0 -

reflecting that .the Coriolis force has not come fully into play for 

this mode. The curves for a 0 and b 0 are indeed similar to those 

for d0 and e·0 respectively, only the a 0-axis must be stretched. 

The phase angle for the two modes shows dependence on a 0 similar 

to the two-layer case after stretching of the a 0-axis for the q 1-

mode and narrowing for the q 2-mode. 

An increase in the width of the inlet, 21, does not lead to a 

proportional increase in the amplitude for the two modes. With 

a 0 = 2 (corresponding to a 1 = 1.24 and a 2 = 3.24) and w = f, 

a 0 and b0 depend almost linearly on 1 whereas d0 and e0 

increases for 1 < 0.4 and decreases for 1 > 0.4, see fig. 7. 

For 1 ~ 0.82 the q 2-mode is not excited at all. In the absence of 

rotation, i.e. when f = 0, the amplitude of the downstream waves 

will depend linearly on 1. The more complicated dependence when 

f * 0 is possible since in this case the motion in the channel 

may be out of phase with the inflow. 

The q1-mode is only slightly out of phase for different 

choices of w when a = 2 and 
0 

1 = 0.2, see fig. 8. The q2-mode, 

however, grows fast out of phase when w increases. Again this can 

be related to .the slower phase-speed for the q 2-mode which implies 

that the earth'S: ro.t,a}.;i..on is more stronly felt for this mode. 

As can be seen from figs 6-8, the two modes are of the same 

order of magnitude for most choices of w, 1 and a 0 . The relative 

magnitude of the two modes may, however, vary as a function of the 

ratio H2 /H1 . In fig. 9 we have displayed a 0 , d0 and e 0 as 
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functions of H2/H1 when w = f and a 0 = 0.5, i.e. the effect of 

rotation is weak. In this case b 0 is close to zero for all H2/H1 . 

The q 2-mode is the greater for H2/H1 < 1 and the q 1-mode is the 

greater for H2/H 1 >>1, i.e. when the upper layer is shallow com­

pared to the intermediate layer. For larger values of a 0 , d0 and 

e0 become small. The q 2-mode may still be significant though, 

since the amplitudes for this mode are d 0 ea2 and 

The conve'rgence is typically shown in table 2. The convergenc-

rate is about the same as in the two-layer case and the leading 

terms are independent of a variation of the number N of terms in 

the series. +n the computations displayed, we have put N ~ 10. 

5 STATIONARY FLOW INTO A THREE-LAYERED BASIN 

Solution when the inflow is steady is not obtained by letting 

p 1 ,p2 + 0 in eqs (4-9)-(4-12). In the stationary case there shall 

be no motion in the upper layer as long as the inflow is in the 

intermediate layer. In the solutions obtained in sect.4, the veloc-

ities in the upper and middle layers are coupled and there will be 

motion in the upper layer also for p 1 = p 2 = o. Stationary flow in 

a three-layered channel must therefore be treated specially. In 

this case c = 0 1 since there is no motion in the upper layer. 

From c 1 + eC 2 + eC 3 = 0 follows c 2 = -c 3 • Conservation of poten­

tial vorticity yields 

(5-1 ) 

The equations for the horizontal motion in this case read 

-fv 
oc 2 

= -e::g 2 ox ('5-2) 

fu 2 
oc 2 

= -eg oy (5-3) 
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By combining (5-1 )-(5-3) we get 

(5-4) 

Equation (5-4) 

c = ( ~ e: gH2 ) \ 

corresponds to e.g. eq.(2-15) with 0 
ot = 0 and 

We note that this quantity is independent of 

and therefore principally different from the corresponding veloc-

ities c1 and c 2 in the time-dependent case. 

The velocities in the intermediate laye+ can then be written 

-aC: CX) -~ Tl 
u2 = -a0e - L a A ~ c (C:)e n 

n=1 n n n n 
(5-5) 

CX) -~ Tl 
L a ( A 2 +a 2 ) S ( C: ) e n 

n=l n n n 
(5-6) 

where 

(5-7) 

with the new value for c in the appropriate places. This follows 

from arguments similar to those given in the stationary two-layer 

case, see sect. 3. The results obtained in the stationary two-layer 

case are therefore valid also for stationary flow into a three-

layered channel. 

CONCLUSION 

In absence of rotation the waves in the channel will be in 

phase with the inflow (6 = O) and the amplitudes will depend 

linearly on the inlet width 21. The amplitudes will also be 

independent of the frequency w of the inflow. This can be seen 

e.g. by putting a= 0 in eqs (3-10)-(3-13). When rotation is 
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introduced, none of this is true. In a wide rotating channel fluid 

near the inlet will have a velocity component normal to the channel 

axis because of the Coriolis force. The motion in the channel may 

therefore be out of phase with the inflow and the response of the 

channel to the prescribed inflow then becomes more complex than in 

the non-rotating case. 

The response when the channel rotates has been determined 

analytically in this work. The analysis is based upon lineari:z;ation 

and that viscous effects may be neglected. The solution is there­

fore not valid close to a river inlet where mixing processes.may be 

strong and the river water forms a well-defined plume. This inlet 

region must be excluded from the domain, see Holte (1984) for a 

discussion. The prescribed flow into the channel in this study is 

the flow-pattern down-stream from the inlet mixing region. 

Bottom and interface friction and background turbulence in the 

channel may also affect the flow even when they are weak, see Holte 

(1984) in the stationary case and Martinsen and Weber (1981) when 

the inflow oscillates. From the discussion in the latter study one 

may question whether the q2-mode in the three-layer case is gener­

ated at all in most circumstances. 

The geophysically most interesting part of the paper is the 

res~lts for stationary flow since it covers a variety of flow 

phenomena, e.g. river flow into a lake or a fjord, ocean currents 

through straits or waste-water outlets. The motion when w * 0 may 

describe internal tidal waves generated e.g. over fjord sills. 
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Stationary Oscillating 

n a a b 
n n n 

0 -0. 11 -0.04 0. 1 

1 -0.06 -0.07 0.05 

2 0.04 0.04 -0.02 

3 -0.003 10 
-4 

0.007 

4 -0.006 -0.008 -0.001 

5 10 
-4 10-5 10-4 

6 0.002 0.002 1 o-4 

7 10 
-4 10-5 10-4 

8 10,..4 1 o-4 10-5 

9 10-5 10-6 10-5 

10 10-5 10-6 1 o-5 

Table 2. Convergence of the solution in the two-layer case. 
a = 2, 1 = 0.2. w = f in the oscillating case. 

q 1-mode q 2-mode 

n a b d e n n n n 

0 -0.05 10-4 -0.13 0.014 

1 -0.006 10-4 -0.04 -0.002 

2 0. 01 10-5 0.03 -0.001 

3 10-5 10-5 10-4 10-4 

4 -0.002 10-6 -0.005 1 o-5 

5 1 o-6 10-7 10-5 10-6 

6 1 o-4 10-7 0.002 10"'"5 

7 10-6 10-7 10-5 10-5 

8 10-4 10"'"'8 1 o-4 10-6 

9 10-7 10-8 10-6 10-6 

10 10 
-7 10-8 10-6 10-6 

Table 3. Convergence of the solution in the three-layer case. 
a 0 = 0. 5, w = f, 1 = 0. 2, H2 / H1 = 1 • · 
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FIGURE CAPTIONS 

Fig. 1 -a0 {1 - stationary, 2 - oscillating) and b 0 {3) as 

functions of a in the two-layer case. 1 = 0.2. w = f 

in the oscillating case. The phase angle {4) downstream 

in the oscillating case. 

Fig. 2 -a0 {1 ~ stationary, 2 - oscillating) and b 0 {3) as 

functions of 1 in the two-layer case. a = 2. w = f in 

the oscillating case. 

Fig. 3 -a0 {1) and b 0 {2) as functions of w in the two-layer 

case. a= 2 and 1 = 0.2. The curve 3 gives the phase 

angle downstream. w0 is the cut-off frequency. 

Fig. 4 Thermocline displacement {C 2 ) for stationary flow into a 

two-layered channel. a = 2. 1 = 0.2. Scaled by H1 • 

Fig. 5 Thermocline displacement {C 2 ) for oscillating flow into 

a two-layered channel. w = f, a = 2. 1 = 0.2. Contour 

interval: 0.1. Scaled by H1 . 

Fig. 6 -a0 {1 ), b 0 {2), -d0 {3) and e 0 {4) as functions of a 0 • 

1 = 0.2, w = f and H2/H1 = 1. 

Fig. 7 -a0 {1 ), b 0 {2), d0 {3) and e 0 {4) as functions of 1. 

w = f, a = 2 and H2/H1 = 1 • 0 

Fig. 8 -a 0 { 1 ) 1 bo { 2) 1 -d 0 
{ 3) and eo { 4) as functions of w. 

1 = 0.2, ao = 2 and H2/H1 = 1 . 

Fig. 9 -a 
0 

{ 1 ) 1 -d 
0 

{ 3) and eo { 4) as functions of H2/H1 . 

1 = 0.2, w = f and ao = 0.5. bo .... 10 
-4 

in this case. 
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