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Abstract - The onset of convection in a horizontal stratified 

porous layer heated form below is studied theoretically. The 

stratification is continuous and periodic, with N/2 periods 

within the layer. For large numbers of N the critical Rayleigh 

number Gonverges towards the limit of homogeneous anisotropy with 

a deviation proportional to N-2 • 

NOMENCLATURE 

a coefficient in the permeability distribution (21), parameter 

in the series expansion (32): 

c factor of proportionality in eq. (30): 

c specific heat at constant pressure: p 

D :::; d/dz; 

E relative difference between numerical and analytical results 

for Rc: 

f dimensionless inverse permeability, Kv/K(z): 

g acceleration of gravity: 

h depth of porous medium: 
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K( z) · permeability distributions; , 

K1 ,K2 permeabilities of the two layers in the disc~ete model 

[ S-7 ] ; 

KH,Kv effective horizontal and vertical permeabilities; 

k vertical unit vector; 

k, 1 dimensionless wave numbers; 

L dimensionless cell width, n/a; 

L0 preferred cell width, giving R ~ R0 min; 
(aniso) 1/4 L preferred cell width for homogeneous anisotropy, ~ ; c 

N number of layers in the discrete model [5-7], here twice 

the number of periods in the permeability distrib~tion; 

p pressure; 

R* Rayleigh number, Kvgyh8T/(Kmv); 

R redefined Rayleigh number, R*/(4n2)1 

R critical Rayleigh number, given by a = 0; c 

R(aniso) critical Rayleigh number for homogeneous anisotropy; 
c 

R i .Rayleigh number at onset of convection, given by c m n 

T dimensionless temperature; 

8T temperature difference betwe.en lower and upper boundary; 

t dimensionless time; 

-+-v dimensionless velocity; 

W z~dependent part of w; 

w dimensionless vertical velocity, 

x,y,z cartesian coordinates. 

GREEK SYMBOLS 

0: dimensionless overall wave number, (k2+12)~; 

~ layering parameter in the discrete model [5-7], K2/K1 ; 

y coefficient of volume expansion; 
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0 z-dependent part of 9; 

e dimensionless temperature perturbation; 

Km thermal diffusivity of saturated porous medium; 

A thermal conductivity of the saturated porous medium; m 

v kinematic viscosity; 

~ anisotropy parameter, KH/Kv: 

,<trunc) anisotropy parameter for a truncation of Fourier series 

{ 20); 

p density. 

1. INTRODUCTION 

The present paper is a contribution to the theory of free 

thermal convection in inhomogeneous porous media. We will first 

place it in a context of previous work. 

Masuoka et al. [1] studied thermal convection in a porous 

medium composed of two layers of different permeabilities or 

thermal conductivities. Earlier Gheorghitza [2] had treated this 

problem for weak permeability contrast. McKibbin & O'Sullivan [3] 

presented a general method of analyzing the onset of convection in 

a porous medium composed of discrete, homogeneous layers. In their 

second ~paper [ 4] .they made a corresponding analysis of the heat 

transport at slightly supercritical Rayleigh numbers. Only the 

cases of two and three layers were investigated in these papers. 

McKibbin & Tyvand [5-7] applied these methods to thermal convec-

tion in multilayered porous media composed of alternating layers, 

which are suited for a comparison with homogeneous anisotropy [a]. 

McKibbin & Tyvand [s-7] investigated only configurations with 

a number of layers of order 10 or less, because the treatment of 

the internal boundary conditions requires much computer capacity. 
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In the present paper the corresponding problem of continuous 

stratification is considered. This is simpler than the discrete 

case from a mathematical point of view, as internal boundary 

conditions are avoided. Thereby numbers of strata up to the order 

of 100 are tractable numerically. This enables us to perform a 

thorough investigation of the asymptotic convergence towards 

homogeneous anisotropy. The numerical results are confirmed by 

analytical results, where a series expansion valid for small 

variations in permeability is applied. 

Among earlier works on convection in porous media with 

continuous permeability variation, we mention Gheorghitza [2] 

and Ribando & Torrance [9]. These authors studied monotonic 

permeability variations, in contrast to the periodic variation 

to be considered here. 

2. MATHEMATICAL FORMULATION 

We consider an isotropic porous medium with permeability 

K(z) confined between two horizontal planes z = 0 and z = h. 

z is the vertical coordinate. Average horizontal and vertical 

permeabilities are defined by [10, p.157]: 

-1 h 
= h !0 K( z)dz ( 1 ) 

= h( Jh dz ) -1 
Kv 0 KTZ1 ( 2 ) 

We introduce the ratio of effective anisotropy: 

From Schwartz' inequality it is readily proved that ~ > 1, with 

the equality sign reserved for the case of constant permeability. 

We introduce a notation for the dimensionless inverse permeabili-

ty: 
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f(z) = K /K(z) v 
(4) 

The fluid-filled porous medium is assumed to have a constant 

thermal conductivity A • Its thermal diffusivity is given by [11] m 

K = A /(c p)f m m p 
( 5 ) 

where c is the specific heat at constant pressure and p the 
p 

density. The subscripts f and m refer to the saturating fluid 

and the porous medium (mixture of solid and fluid), respectively. 

By choosing 

h, (c p) h 2/A , K /h, t:,T, pvK/K 
p m m m v 

(6) 

as units of dimensionless length, time, velocity, temperature and 

pressure, we get the dimensionless equations for buoyancy-driven 

convection: 

+ * + fv + Vp - R Tk = 0 ( 7) 

+ 
V•v = 0 (8) 

(9) 

valid in the standard Darcy-Boussinesq-approximation. The Rayleigh 

number R* is defined by: 

(1 0) 

The layer is heated form below with a temperature difference 

between the boundaries. The dimensionless temperature field is 

written: 

( 11 ) 

where e denotes the deviation from the conduction solution. The 

requirements of impermeable, perfectly conducting boundaries may 

then be expressed as: 

W = e = 0 at Z = 0 1 1 ( 1 2) 
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The convective term in the heat equation (9) is linearized, 

and a horizontal Fourier component is considered: 

w = W(z)exp[i(kx+ly) +at] 

e = e(z)exp[i(kx+ly) + at] 

From eqs. (9)-(11) we then get: 

f(D 2-a 2)w + f•ow = -a 2R*e 

W = ( a-D 2+ a 2) 0 

with boundary conditions 

W=0=0,z=0,1 

In (15)-(16) we have introduced the notation 

D = d/dz 

and the overall wave number 

a= (k 2+1 2 )~ 

( 1 3) 

( 14) 

(15) 

( 16) 

(17) 

( 18) 

( 19) 

The eigenvalue problem (15)-(17) is solved numerically by the 

shooting method [12, p.142]. For given a and R, the eigenvalue 

a may be found by one integration from z = 0 to z = 1 • The 

boundary value problem ((15)-(17) is self-adjoint [13, p.53]. Then 

a is real and marginal stability is given by a= 0. A Newton

Raphson iteration procedure determines the value of R giving 

a = 0 for each chosen value of a. By putting a = 0, R may be 

considered as eigenvalue in the problem. We will find only the 

solution with the lowest eigenvalue for R, being the physically 

preferred solution. This is achieved by starting the iteration 

with values of R close to the lowest eigenvalue for homogeneous 

anisotropy. 
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In their first study, McKibbin and Tyvand [s] concentrated on 

N alternating layers of equal thicknesses and permeabilities K1 

and ~K 1 • The Fourier series of that distribution is (with respect 

to inverse permeability): 

sin( 2n-1 ) N1tz 
2n-1 

This series converges slowly and is not suited as a direct 

representation of the discrete model. 

In the present paper we consider a continuous periodic 

permeability distribution given by 

f = 1 + a sin N1tZ 

(20) 

( 21 ) 

This corresponds to truncating the series in (20) after one term 

only. The number of periods of permebility variation is N/2. We 

consider only even numbers for N, so that only complete periods 

are present within the boundaries. Then the effective anisotropy 

parameter attached to the permeability distribution (21) is 

(22) 

The effective anisotropy parameter for the discrete model of 

McKibbin & Tyvand [s], represented here by the full Fourier series 

( 20) is 

(23) 

By interpreting (21) as a truncation of (20) we determine a value 

for a: 

a = !~ 1t 1 + ~ (24) 

Through (22) this gives an effective anisotropy parameter for the 

truncated Fourier series: 
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l;(trunc) (1 16 (1-~) 2 -~ (25) = - -;2 (1+~)2) 

In fig. 1 the anisotropy parameters I; and 
l;(trunc) are 

displayed as functions of ~. The curves are symmetric about ~=1 

in the log-log diagram. We have two intersection points given by 

~ = 0.24 and ~ = 4.2, where I;= l;(trunc)= 1 .609. In the regions 

0.24 < ~ < 1 and 1 < ~ < 4.2 we find that l;(trunc) is slightly 

below 1;. outside these regions l;(trunc) may become much larger 

than 1;. There are vertical asymptotes for l;(trunc) at ~min = 

0.120 and A - 8.32. J!'(trunc) does not exist for A< A or 
~max - ~ ~ ~min 

A > A This is because the one-term truncation of the Fourier 
~ ~max· 

series (20) in meaningless when it corresponds to regions of 

negative permeability. At A = A and 
~ ~min ~ = ~max the value of 

I; is 2.606. Accordingly, a representation of a given discrete 

layering by a one-term truncation of its Fourier series is 

relevant only for small effective anisotropy. 

As a supplement to the numerical computations, we will also 

give analytical results in terms of series expansions with respect 

to the parameter a introduced in (21). These results are valid 

only for small values of a, i.e. for I; of order one, cf. (22). 

Eq. (22) may be expanded in powers of a: 

J!' = 1 + !a 2 + 1 • 3 4 + 1 • 3 • 5 6 + ••• 
~ 2 ~a 2•4•6a (26) 

relevant to the discussion in chapter 4. 

3. NUMERICAL RESULTS 

In the presentation of the results we will apply a Rayleigh 

number R defined by 

(27) 



- 9 -

so that the onset of convection in the classical Lapwood problem 

[14,15] occurs for R = 1. We will investigate the critical 

Rayleigh number R 
c 

at marginal stability (a= 0) as a function 

of the dimensionless cell width L(= n/a). The convergence towards 

homogeneous anisotropy as N increases will be studied in detail. 

From Kvervold & Tyvand [a] we quote the critical Rayleigh 

number for a layer with homogeneous anisotropic permeability 

R(aniso) 
c 

with a minimum value 

= 1 0 + ~;-~> 2 
4 

corresponding to the preferred cell width 

L(aniso) = 1;1/4 
c 

(28) 

(29) 

(30) 

In fig. 2 some numerical results for R as a function of 
c 

L are displayed. Fig. 2(a),(b) and (c) represent !; = 2.294, 

!; = 7.089 and !; = 25.005, respectively. These figures show a 

convergence towards homogeneous anisotropy as N increases. 

Above we have linked the comparison with the discrete model 

[5-7] to a truncation of its Fourier series. However, one might 

argue that a better way of comparison is by equal values of 1;. 

To compare with the present fig. 2, (a) & (b) we then have figs.1 

& 3 in [5]. Those figures show results for alternating discrete 

layers of equal thicknesses with effective anisotropy given by 

!; = 2.0 and !; = 25.5, respectively. 

Characteristic for the discrete models in [5] and [6] where 

the thinner layer is not the more permeable one, is the possibil-

ity of local convection. Local convection takes place when a local 

Rayleigh number (with respect to a single layer) reaches its 
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critical value before the whole layered system becomes unstable 

to large-scale disturbances. Local convection mainly consists of 

recirculations within single layers. It is characterized ~ by 

a small preferred cell width (L < 1) and a corresponding critical 
c 

Rayleigh number qelow the value for homogeneous anisotropy. 

In the case of a very permeable thinner layer [7] no local 

convection is found. The preferred cell width is always relatively 

large (L > 1) and the critical Rayleigh number is mostly above 
c 

the value for homogeneous anisotropy. 

Also in the present continuous model truely local convection 

is absent. Only for N = 2 we find a small preferred cell width 

(L < 1 ). But the corresponding critical Rayleigh numbers are 
c 

always above the values for homogeneous anisotropy. One reason for 

the absence of local convection is that there is no clear notion 

of individual layers in which recirculation might take place. So 

the influence (due to continuity) of passive regions of low per-

meability is much stronger than in the discrete case. Returning to 

the Fourier series (20) we have now found that a one-term trunca-

tion has a significant physical effect: to remove the possibility 

of local convection. 

The derivation of R from homogeneous anisotropy is much 
c 

less dependent on ~ than in the discrete case. This is related 

to the fact that local convection is absent, and will be discussed 

further in connection with fig. 3 below. 

The preferred cell width L giving minimum value R min c c 

at marginal stability has been investigated. Some of the results 

are shown in table 1 0 For N = 2 it differs much from L(aniso) 
C I 

and this case is not included in the table. But already for N = 4, 

L is relatively close to 
c 

between R (L(aniso)) and 
c c 

accuracy of computation. 

L (aniso) F • or 
c 

N :> 6 no difference 

R . are detectable within our c m~n 
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N 4 

L 1 • 207 
I; = 2. 294 c 

Rc min 0.7416 
L(aniso)=1 .231 

c 
R (L(aniso)) 0.7418 c c 

N 4 

Lc 2.206 
I; = 25.005 

R min 0.4477 
L(aniso)=2.236 

c 

c 
R (L (aniso)) 0.4478 c c 

Table 1 • Some results for the critical 
corresponding Rayleigh number 
R corresponding to critical c 
anisotropy. 

6 8 10 

1 • 225 1 • 228 1. 230 

0.7160 0 •. 7049 0.6993 

0.7160 0.7049 0.6993 

6 

2.235 

0.3986 

0.3986 

cell width L , the 
c 

R . and th~ value of c m1.n 
cell width for homogeneous 

In fig. 3 the convergence of Rc towards R(aniso) 
c is 

displayed in a log-log diagram. For different values for N, the 

deviation R -R(aniso) is marked. For I; the three values 2.294, 
c c 

7.089 and 25.005 are chosen. 

In fig. 3(a) we have chosen the cell width L = L(aniso). 
c 

Only for N = 2 this causes a significant difference between Rc 

and R . • So for N ) 4 the points represent the onset of c m1.n 

convection given by R Each of the three series of numerical c min" 

data has a slope with angle coefficient very close to -2, except 

for some "stochastic" deviations present for N ) 60. These are 

due to inadequate convergence of the shooting method, and are very 

sensitive to the way the Newton-Raphson iteration is terminated. 

In fig. 3(b) similar results are shown for L = 1 • 7 L (ani so) • 
c 

The error tolerance applied in the shooting method is larger here 

than in fig. 4. Therefore results are displayed only up to N=40. 



- 12 -

The same angle coefficient -2 for the numerical data is found 

here. 

~ve conclude that for N » 1 we have with good accuracy: 

R 
c 

R(aniso) = C 
c N2 ( 31 ) 

where the factor of proportionality C is a function of L and 

of ~ (or a). The ~-dependence is only slight for large values of 

~.It is more pronounced for small values of ~, see eq. (36). 

The nice asymptotic power law (31) is not likely to be sig

nificantly dependent on our choice of K(z) and probably applies 

to discrete layering [S-7] as well. The results for large-scale 

convection in those papers are compatible with this conjecture. An 

odd power dependence of N is prohibited both in the discrete and 

continuous models, because the physical problem is conserved under 

the transformation 

N + -N (32) 

provided N is an even number. 

4. ANALYTICAL RESULTS 

When a is relatively small, the eigenvalue problem (15)-

(17) may be expanded in powers of a. Hereby we write 

CX> 

W( z) = l: a~ (z) 
n=O n 

(33) 
CX> 

e(z) n 
= l: a en(z) 

n=O 

The physical problem is conserved under the transformation 

a +-a (34) 

implying that only even powers of a are represented in the 

expansions. 
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For N ) 4 the critical Rayleigh number is found to be: 

1t 2+ a 2 a 2 a 2 a 2 a 2 a 2 
4 a 2 {-;2' + 1 - 2 + 2N 2 -;2' ( 3 - -;2') } 

+ O(a 2 ,N-4 ) + O(a\N°) (35) 

From a physical point of view it is clear that the sum of all 

terms independent of N in the series expansions must correspond 

to homogeneous anisotropy. The terms independent of N in the 

complete expansion for Rc will then have as their sum R(aniso) C I 

given by (28). By adding these terms to the expression (35) we 

find the improved result: 

1t 2+~2 ~2 · 1 a2 ~2 ~2 

Rc = 4 a; {~ + ~- + 2N 2 ~ ( 3 - ~) } 

+ O(a 2 ,N-4 ) + O(a 4 ,N-2 ) 

In (35) the first two terms in the expansion for 

included, cf. eq. (26). 

-1 
~ were 

(36) 

From (36) it is clear that the factor of proportionality C 

defined in eq. (31) is a quadratic function of a for weak 

effective anisotropy (a<< 1). By (22) we find that C is then 

a linear function of ~. 

A minimization of (36) with respect to a may produce the 

Rayleigh number at onset of convection. More interesting is the 

result for the corresponding preferred cell width 

deviation from homogeneous anisotropy is given by: 

L(aniso) 
c 

L • Its c 

(37) 

From the considerations above it might have been conjectured that 

the leading term in this deviation would have been of order 

(a 2,N-2 ). But the correct result is that it is of order (a 4 ,N-2 ), 

showing the necessity of a quantitative analysis. 
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We have earlier found the asymptotic power law (31) for 

Rc - R~ aniso) • This has now been confirmed analytically for weak 

effective anosotropy. In addition a similar law has been found for 

Lc - L~aniso), which we were not able to find numerically. 

In table 2 a quantitative comparison between numerical and 

analytical results is performed. This gives us some idea of the 

validity of the series expansion (33). All results are given for 

L = L(aniso). The symbol E denotes the relative amount by which 
c 

the numerical results for R exceed the analytical result (36). 
c 

We conclude that the series expansions are useful at least in the 

interval 0 < a < 0.8. 

a 0.2 0.4 0.8 0.9 0.99 
l; 0.05 1 .09 1 .67 2.29 7.09 

0.05 0. 25 2.08 3.80 9.56 (N=4) 
E 0.04 0.20 1 • 32 2.23 5.00 (N=6) 

0.03 0. 13 0.83 1 • 36 2. 90 (N=8) 

Table 2. Comparison between numerical an analytical results for 

the critical Rayleigh number at L = L(aniso). 
c 

(numerical) (analytical) 
Rc -Rc 

E = ~-------r----~--~~------R ( numerical) 
c 

X 100% 1 

where R(analytical) 
c is given by eq. (36). 

5. SUMMARY 

A numerical and analytical study of the marginal stability 

in a horizontal porous layer heated from below has been performed. 

The porous medium is periodically stratified, with a sinusoidal 

variation of the inverse permeability. The basic difference from 

the corresponding problem of discrete layering is that local 
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convection never occurs in our model. We have found power laws for 

the deviation from homogeneous anisotropy with respect to critical 

Rayleigh number and preferred cell width. Good agreement between 

numerical and analytical results has been found. 
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FIGURE LEGENDS 

Fig. 1 Effective anisotropy as a function of the layering 

parameter ~. Dashed curve represents !;(trunc). Dashed 

and dotted lines represent asymptotes for !;(trunc), given 

by ~ = 0.120 and ~ = 8.32. 

Fig. 2 Variation of critical Rayleigh number Rc with cell width 

L for N = 2,4,6,8,10 and for an equivalent homogeneous 

Fig. 3 

anisotropic layer. (a) a = 0.9, !; = 2.294; (b) a = 0.99, 

!; = 7 • 089 ~ (c) a = 0 • 9992 , !; = 25 • 005 • 

Numerical data series for R - R(aniso) 
c c as functions 

of N. Crosses represent !; = 2.294. Circles represent 

1; = 7.089. Squares represent !; = 25.005. Triangle 

represents 

(b) L = 1 • 7 

coinciding circle and square. (a) L = L(aniso). 
c 

(anise) 
Lc . 
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