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ABSTRACT: Potential flow theory has been applied to study the 

shape and speed of an infinitely long bubble in vertical tubes. In 

particular, the combined effects of surface tension and externally 

forced liquid motion are examined. An analytical formula for the 

bubble velocity in stagnant liquid is proposed, and shown to be in 

very good agreement with experimental data for all values of sur

face tension. The predicted changes in bubble shape have to a 

large extent been confirmed through comparisons with photographic 

evidence for a wide range of parameters. 





1 • INTRODUCTION 

The motion of single, large gas bubbles through stagnant 

liquid in vertical tubes under the influence of gravity, has been 

studied theoretically by several workers, Dumitrescu (1943), and 

Davies and Taylor (1943). Goldsmith and Mason (1962) included 

viscous forces, and Zukoski (1966) investigated the effect of 

surface tension experimentally. 

The present study was initiated by the results of a more 

extensive series of experiments, Bendiksen (1983), on the motion 

of long bubbles through non-stationary liquid. It was shown that 

for all tube inclinations, 9, the bubble propagation rate is well 

represented by 

[ 1 ] 

where is the average liquid velocity at infinity. For ver-

tical or near vertical tubes c0 "'1.20 for Fr > 3.5, quite 

independent of Re-number, and v0 is close to the bubble rise 

velocity in stagnant liquid. The coefficient c0 was found to 

increase with decreasing Re-number, approaching 1.90 at Re:::100, 

Nicklin et al. (1962). Thus, the bubble appears to propagate at a 

rate slightly less than the maximum liquid velocity at infinity 

plus v0 • 

The following paper presents a theoretical investigation of 

the motion of bubbles through liquids in infinitely long vertical 

pipes of circular cross-section. The liquid is assumed to be at 

rest or obeying a parabolic velocity profile at infinity. The 

velocity field caused by the bubble motion is assumed to be axis

symmetric and irrotational. 

A particular objective has been the combined effect of exter

nally forced liquid motion and surface tension on bubble velocity 
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and shape. The theoretical results have been compared with the 

data of Nicklin et al. (1962}, and to some extent Bendiksen (1983} 

for laminar liquid flow, and Zukoski (1966} for stationary liquid 

at infinity. 

2. THEORY 

2.1 Potential flow equation 

A cylindrical coordinate system (r, <jl,z} following the bub

ble is applied, as shown in figure 1 • Assuming rotational symmetry 

around the z-axis, and steady bubble motion, the vorticity, w<P, 

may be expressed as 

w<P = 1 [o 2 <V a2 <V _.!. o<V] r oz2 + or2 r or [2 J 

where <jJ is the stream function. 

For purely inertial flow under the influence of gravity, 

only, dimensional analysis yields v0 = v;lgR, and to obtain non

dimensional equations we use 

TJ = z/R, I; = r/R, u* = u/ lgR, v* = v/ lgR, <V* = <VI /gR 5 

where the star indicates a dimensionless quantity, which will be 

subsequently dropped, whenever there is no possibility of confusion. 

and 

or 

where 

Assuming a parabolic (or zero} velocity profile at infinity, 

v = v + C( '£, v } + v0 B m m 

co 
<jJ ( I;} = -

1 -v ~;4 4 m 

vOm = vO + C('L,vm} 

the boundary condition there becomes 

1 -v ~;2 
2 Om 

v 
m [ 3 J 

[ 4 J 

and [s J 

'£= o/(pLgR2). 
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In the applied reference system the motio_n is steady, and we have 

from Bernoullis equation (with dimensional quantities): 

With w = w =0 w may be obtained from z r ' 4> 

ou oH ww - vw -- =-z · 4> ot or 

which gives in non-dimensional notation 

1 
w4> = -

v~( ~) 

w = 2v ~ 
4> m 

Then [2 ] may be written 

oH = 
0~ 

on 

1 1 0[""' ]2 - 2 CD ~ VL ( ~) 
VL ( ~) 

dimensionless 

-2v ~ m 

form as 

A solution of [9] is most easily obtained by decomposing the 

[ 6] 

[7] 

[ 8] 

[9] 

stream-function into its up-stream value and local deviation from 

this, see for instance Batchelor (1980), pp.544: 

= _ lv ~2 
v 

<V( ~, TJ) - ~~4 + ~F{ ~' TJ) 2 Om 4 
[ 10] 

Equation [9] then yields an equation ror F 

o 2F + o 2F + 1 oF F 

OTJ2 ~ 0~ 
-- = 0 

0~2 ~2 
[11 ] 

A well-known solution of [11] satisfying the boundary condition 

u=O at the tube surface and being bounded everywhere, provided 

TJ<-CD, is obtained by the method of separation of variables, and is 

given by 

F( ~, TJ) 
- ~. TJ 

~ = Ek.J 1 (~.~)e . ~ ~ 
~ 

[ 12] 
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where ~. are the i-th zeroes of the Bessel function of the 
]. 

1. kind and order. The complete stream-function is then 

and the velocities are given by 

u = 

v = 

-~. T) 

+ Ek.~.J 1 (~.~)e 1 . ]. ]. ]. 
]. 

. - ~. T) 

-v0 - v ~ 2 + r:k.~.J0 (~.~)e 1 
m m .1.1. 1. 

]. 

2.2 Boundary conditions 

[ 1 3] 

[ 14] 

The conditions already satisfied in equations [13,14] are 

those at TJ=+= [3,4], and at the tube surface, ~=1, where 

u( 1, TJ)=O for all Tl• 

The boundary condition at the bubble surface is more compli-

cated, due to the bubble shape being unknown. If the pressure in 

the bubble is assumed to be constant (pG<<pL), pg, the pressure 

in the liquid at the interface may be approximated as 

[ 15] 

where R1 ,R2 are the effective local radii of curvature in and 

perpendicular to the rz-plane. In the applied coordinate system, 

z=r=O is a stagnation point, and assuming that the bubble surface 

is also a stream-line, Bernoullis equation yields 

pL(z) 
+ leu 2+v2) - glzl = 

pL(O) 

PL 2 PL 
[16] 

Substituting the liquid pressure, pL, from [ 15] we get 

[17] 
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or on non-dimensional form 

u 2+v 2 = 2 I Til - 2 • E • [ ( R1 ~ 0 ) + ~ ~ 0 ) ) - ( R1 ( T1 ) + R2 ~ T1 ) ) ] 

where 1:= a/ ( pLgR 2). 

The radii of curvature are rather complicated function~ which 

will be derived from [13]. First, observe that [14] at the stagna

tion point (~=Tl=O) yields 

[ 18] 

which determines v0 as a function of the constants k.,~ .• m ~ ~ 

An equation for the bubble shape is then obtained from [13] and 

[18]: 

1 v -~·Tl 
-2 ~Ek.~. + -4m~ 3 - Ek.J 1 (~.l;)e ~ = 0 . ~ ~ . ~ ~ 

~ ~ 

on the bubble surface (~=0). 

The other boundary condition [17], using [14] and [18], 

yields 

[ 19] 

[ -~iT1]2 [ 2 -~iT1]2 
- Ek . ~ . J 1 ( ~ . l;) + Ek . ~ . +v l; - Ek . ~ . J 0 ( ~ . l; ) e . ~ ~ ~ . ~ ~ m . ~ ~ ~ 
~ ~ ~ 

[20] 

where 1 1 
= R1 (T!) + R2(T!)" 

Except for the surface tension terms Dumitrescu (1943) ob-

tained an equivalent set of equations for the special case of no 

motion at Tl=+= (v =0). In order to solve equations [18-20], howm 
ever, keeping three terms in the series expansion, he had to 

impose an additional boundary condition in Tl=-=. This replaces 

one of the equations, and reduces the complexity of the problem 

considerably, but it does lead to an overdetermined solution. 

Furthermore, he assumed a spherical bubble shape at origo, and 

this actually leads to a double solution. 
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In the following, equations [18-20] are therefore solved 

directly, making no apriori assumptions on bubble shape. Provided 

an explicit equation for the bubble surface on the form ~~(!;) 

may be found, the principal radii of curvature are easily shown to 

be given by 

[21 ] 

where the second term has to be replaced by its limit as l; + 0. 

2.3 Power series solution 

The problem is now to determine the coefficients 

!;,~ satisfies equations [19,20] simultaneously. 

k. 
l. 

so that 

Retaining N terms in [19,20], there are three obvious 

angles of attack in solving the resulting 2N equations. The 

first is a purely numerical one: choosing different !;.: i=l,N 
l. 

get 2N unknowns (k1 ,k2 , ••• ,kN'~l'~2 , ••• ,~N). Another approach 

we 

is to utilize the orthogonality properties of the Bessel functions 

to get an explicit expression ~=~(!;). This method was investiga-

ted, and will work, provided the velocity profile in the film at 

~-m may be assumed known. This, however, seems a rather severe 

assumption, of the same nature as that of Dumitrescu (1943). 

Therefore, the expansion of the Bessel and exponential functions 

in power series, also applied by him, was finally chosen. 

A power series expansion of the Bessel and exponential 

functions in [19] to 0(!; 6 ) is shown in the Appendix to yield 

an explicit equation for the bubble surface [A6] on the form 

[A6) 

Similarly, the boundary condition [20] reduced to 
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B2~2 + (B3v-B2B4)~4 + (*Bl + tB2B6- ~B3vB5)~6 

+ {2B 2vm~ 2-[2B 3B4-2B4vm-B2s5 ]~ 4 }~ + {4B~-(2B3vm+4B2B4 ) }~ 2 

1 1 1 1 [ ] = 2l ~~ - 2r(Ra - RrTi}) A9 

where B, m=2, ••• ,N+1, is given by [A2], ~ by [A6], the radii of 
m 

curvature by [A11 ], and the other coefficients are defined in the 

appendix. 

The applied method of solution consists of collecting terms 

of order and determine the coefficients B , m=2,3,4 m 

form the three resulting equations. To avoid the last, and most 

complicated equation, Dumitrescu (1943) introduced the boundary 

condition in ~=-m, as remarked in the past section. 

After some algebra the equations become, from [A13] 

[22a] 

B3 
[B2Biv+2B3v(B3+vm)+2B2BS)B4 + B3Bl 

vm B3 3 2 1 
+[-(~(s-) 2 + 2s 5 )s3v-3s3s 5 ]s3v + 3s 2s 3s 6+2B 2 (1-vm)a2 - 2a3 [22c] 

2 

-r·[64B3 (b4+30bib 2-1ob{-12b 1 b~-9bfb3 )-36B5 (b3-4bfb2+2bi> ]=o 

These three equations yield the unknown coefficients s 2_4 , from 

which the k. 's are obtained by solving the linear set [A2]: 
]. 

N ~· 
't' k i ( 2 1 ) m = Bm 2 N+ 1 '-' m= , ••• , 
i 

[23] 
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Actually, the set [22] has to be solved iteratively, as the coef

ficients. Bm, m>S also are given by [23]. This in not a closure 

problem, but rather a consequence of introducing the short-hand 

notation B: the real unknowns are the coefficients k. i=1,3, m ~ 

for which we do have three equations. Incidentally, there is a 

closure problem associated with the surface tension terms, as 

stated in the appendix. If the interface condition [20] is sought 

to 0(~ 6 ), because of the presence of 1. and 2. order derivatives 

of the bubble surface equation [19] it has to be of 0(~ 8 ) for 

the sixth order term in [20] to be accurate. 

2.4 Analytical expression for the bubble velocity 

Due to the surface tension terms equations [22] has to be 

solved numerically. Based on the physical features of the problem, 

however, a very simple analytical expression for the bubble veloc-

ity may be obtained as follows. The basic idea is to reformulate 

[22a,b] in terms of the mean radius of curvature at the nose (p), 

and replace [22c] by a known relation 

P = p( r) [24] 

Then, from [All ) we get, with p=R. (0), 
~ 

i=1,2 

1 2B3 2B2 
p = 

2bl 
= = 

83v a1 
[25] 

Rearranging [22a] yields: 

[26] 

Equation [25] then yields 
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and [27] 

] 1 
B2 = 2 p(1+E•f(p)) 

where f(p) depends on N: 

f( p) [28] 

For N=1, using [23] the computation is straightforward and yields 

and for N=2 it becomes 

For N<2 the closed expressions for the bubble velocity then 

follow from [23] and [18]. If N)3 additional equations 

[29] 

[22b,c ••• ] for the coefficients B4 ,a5 ••• are required, and these 

soon become prohibitively complicated. With N=l, however, the 

calculation again is staightforward and yields 

[30] 

where from [25] 

p = 4/~1 = 1.0439 

For N=2 equations [23] with B m from [27] reduces, after some 

more algebra, to a surprisingly simple expression 

[31 ] 
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It is immediately obvious from [30] that keeping the first term, 

only, although giving a rather accurate bubble velocity for E=O, 

leads to an incorrect dependence on surface tension. If the radii 

of curvature [24] are known, for instance by the method of the 

past section, the velocities [30-31 ] should agree with those of 

the last section for N=1 ,2. A comparison with experiment to be 

presented in the next chapter shows very good agreement with [31 ] 

for all values of E. 

2.5 Numerical method 

Equations [22], [23) and [18] have been solved numerically 

for different values of surface tension parameter, l:, and liquid 

velocity in ~=~, v • Keeping in mind that the coefficients 
m 

b.=b. (B.): j=2,8, an iterative procedure is required for the 
~ ~ J 

solution of B2_4 from [22] with s5_8 from [23]. The outer loop 

yields s 3 from [22b]. For a given s 3 the inner iteration then 

consists of solving [22a,c] for B2 and B4 , simultaneously. For 

E<<1 the B2-calculation may be decoupled from that of s4 , which 

is a very significant simplification. It is also numerically ad-

1 1/3 
vantageous to start the B2 calculation with B2 = 2B3v +6(p), 

where 6<<B3 • If the resulting changes in s 5_8 are greater than, 

say 1%, the outer iteration is repeated with the same s 3-values, 

but with 
old new 

Bn=(Bn +Bn )/2~ n=5, ••• 8. For l: « 1 this proved un-

necessary, if the initial values were properly selected, for exam-

ple from the analytical expressions [30] or [31 ] • For E>. 20 with 
"' 

N=3 i:.he method fails, as might be expected, due to the large 

deformation of the bubble requiring increasingly higher order 

terms in [19], [20]. However, as will be shown, in this region 

the analytical formulas still yield surprisingly good results. 
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With our choice of coordinate system, v 0 >0, and a 1/4B3 >0 require 

B2 ,B3 >0. With this assumption we always found a unique solution, 

if it existed at all. As is most easily seen from [22a,b], for 

l:=vm=O, there is a "mirror" solution B2 ,B3 <0, corresponding to 

the boundary condition being given at ~=-~ instead of ~=+~. 

3. RESULTS 

3.1 Bubble motion 

The influence of surface tension on bubble velocity is shown 

in figure 2 for v =0. The theoretical values are presented for 
m 

N=1-3, and the measurements are from Zukoski (1966) and Bendiksen 

(1983). For l:=O v 0=.511, .487 and .495, respectively, and the 

latter compares very well with that of Durnitrescu (1943) of .496 

based on asymptotic matching, Keeping the first term of the series 

[19,20], only, yields a somewhat too high value of .511, in con-

trast to that reported by Davies and Taylor (1949) of .464. The 

latter, however, was obtained for ~=1/2, and this, obviously, is 

inconsistent with the assumption ~<<1, permitting the higher 

order terms to be neglected. For ~ + 0, the result of Davies and 

Taylor would be in accordance with ours. 

The analytical expression [31] is applied for l:>.20 with 

radii of curvatures at the nose from the theoretical calculation. 

For l:~.2 the predictions agree to within 5% for N>2, whereas 

keeping the first term, only, is clearly insufficient to reproduce 

the observed dependence on surface tension. Although higher order 

term:::: in [19,20] (N>3) are needed for l:~.2, the analytical 

expression [31] with p extrapolated from figure 5, [32], is 

surprisingly accurate. 
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A convenient way of representing-the effect of a liquid 

velocity profile at infinity is through the distribution slip

ratio, c0 , defined by [1 ] • 

It is seen from figure 3 that for E=O, c0 ~ 2.29 and the 

bubble actually moves faster than the center liquid at infinity, 

plus v0 . This is in accordance with earlier results for purely 

viscous flow with v0 =0, where the acknowledged value is c0 ~ 

2.27 for E=O, Taylor (1962). For vL<<E, c0 decreases, but for 

vL<<.01 the accuracy also decreases sharply, due to numerical 

difficulties. 

The predicted values of c0 are in reasonable agreement with 

the experimentally observed ones of from 1.80 to 1.95 of Nicklin 

et al. (1962). Furthermore, the predicted fall in c0 with E 

indicates that the slight, but significant difference between the 

experimentally observed value of c0 ~ 1 .20 in turbulent flow and 

the corresponding maximum to average liquid velocity ratio of 1 .22 

for all inclinations and D=.025m, Bendiksen (1983), may be due to 

surface tension effects. 

3.2 Bubble shape 

The predicted radii of curvature [All], presented in figure 

4, show only a slight change in bubble shape for low values of 

surface tension. Both decrease with E near origo (N=3), which 

implies a more pointed nose: but R1 decreases far more with ~ 

than R2 , the latter being practically constant. For E>>.lO the 

power series approximation in [All] breaks down, and both radii of 

curvature near origo start to increase for rather low values of 

~. This implies a flattening of the bubble cap and there may 
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ultimately form a "break point" near the tube wall, where R1 

becomes very small. 

This rather complicated influence of surface tension on 

bubble shape provides an explanation of the apparent contradicting 

experimental evidence of Dumitrescu (1943) that R1 decreases with 

increasing E(~.30) near origo, and of Zukoski (1965) that the 

bubble shape is approximately constant up to E ~ .10, with the 

radii of curvature near origo increasing with E from then on. 

The data of Dumitrescu also confirm the predicted trend in the 

dependence of R1 on ~(~.40) of figure 4. 

Note that the bubble shape becomes increasingly non-spherical 

for ~~.20, invalidating the assumption of Dumitrescu of spherical 

shape up to ~=.60. 

The principal radius of curvature at origo with N terms in 

[19,20], p, is shown in figure 5 for N=1 , ••• ,3. It is believed 

that the predicted fall in p with E for N=3 is slightly too 

large. The extrapolated values to be applied in the analytical 

velocity formula [31] are very well represented, for E < 1, by 

p( E) [32] 

where p0=.795, c 1=.5173, and c 2=.0661. Obviously, at least three 

terms are required to yield a correct shape, although the analyt

ical expression for the bubble velocity with p(E) from [32] is 

surprisingly accurate (figure 2). For large E increasingly 

higher order terms are required, as well as the incorporation of 

the exact bubble surface equation [A3] in the calculation of R1 , 

R2, to represent the break-point near the wall. 

The substantial increase in complexity, however, makes it an 

extremely doubtful procedure, particularly in view of the methodi-
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cal limitations, and the only marginal potential improvements with 

respect to the velocity formula [31 ]. 

Finally, a last important effect is the predicted increase in 

curvature near origo caused by liquid motion at infinity, figure 

6. This has been qualitatively confirmed by photographic evidence, 

figure 7, from a series of experiments, Bendiksen (1983). Actually 

this effect was observed for other inclinations as well, even in 

horizontal tubes. 

5. ACKNOWLEDGEMENTS 

I am grateful to Dr. A. Bertelsen for his very constructive 

advice. 



- 15 -

APPENDIX: Coefficients of the power series expansion 

Consider the following power series expansion of the Bessel 

and exponential functions to the sixth order in ~ and fourth 

order in n: 

1 ~. 1 ~. 
Jo( al.. ~=')=1 - -(.2;) 2!='2 + ( l.) 41='4 

t-' ., 1 2 ., (2!)2 2 ., 

Define the constants B by 
m 

m=2, ••• ,N+1 

1 (~i)6 6 ( 8) 
( 3 ! } 2 2 ~ +0 ~ ••• 

(A1] 

(A2] 

The bubble surface equation [19] is then to the order 0(~ 6 } and 

o ( 11 3 ) for ~ * 0 : 

Applying the expansions [A1 ] yields 

From Dumitrescu (1943), Davies and Taylor (1949), and others, 

we know that for small L, at least, the bubble shape is nearly 

spherical at its nose, and 11 is at least of order 2 in ~. Thus 

to 0(~ 6 ) we have 

(A3] 
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A natural next ste~ would be to represent n by a power 

series function of ~ 2 , possibly spherical near origo, as assumed 

by Durnitrescu (1943). With surface tension effects present, how-

ever, the bubble shape near origo will be quite deformed, and the 

above approximation becomes too crude. Instead we solve for n 

from [A3], considering it a second order equation in n 

With the actual choice of coordinate system, the bubble surface is 

completely below origo, and the negative sign must be retained. 

Expanding the square root in powers of ~2 we get to 0(~6): 

[A4) 

where 

a = 

[AS] 

Rearranging [A4] in increasing order of ~ we finally get 

[A6) 

where 
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a1 
B3 

=- B s 2 3v 

B (b - la2 1 86 (A7) a2 = - -) 2 4 6 B2 

1 3 + la 3) a = 3B2( 3c - -ab 3 2 8 

Equation [A6] is an explicit one for n, i.e. if the coefficients 

Bm are known, the bubble shape near origo may be obtained. With 

N=3 in [19,20] three of the coefficients Bm' m=2,4 may be 

obtained from [20] as follows. 

Firstly, the expansion [A1] is substituted in [20]: yielding 

to 0( 1; 6) 

{4(B~1;2-B2B41;4 + *Bl1;6) + 1B2B61;6-16B2B31;2n+8(B3B4+B2B5)1;4n 

+16B B 1; 2n2+16B21;2n2} + {4(B2 1;4- ls B 1;6] 
2 4 3 3v . 2 5 3v 

-16(-B 1; 2 + ls 1; 4 )•((B -B 1; 2)n-B n2) 3v 4 5 2 4 3 

+ 16 [ B 2- 2B B 1; 2 ] n 2 } = 2 I n I - 2 • E [ .L - b] [AS ] 
2 2 4 Rc, R\ n 1 

Rearranging this equation, we get 

B~1;2 + (B~v-B2B4)1;4 + (tBl + !s2B6 - ~B3vB5)1;6 

+ {2B 2vm1; 2-(2B3B4+2B4vm-B2B5 )~; 4 }n + {-(2B 3vm+4B 2B4 )1; 2+4B~}n 2 

(A9) 

To proceed expressions for the radii of curvature are needed. 

Approximating the surface equation, [A3]"with a power series in 

2 N I I 2i [ ] s , n=-Ei=1 bi 1; in 21 , differentiating with respect to 1;, 

yields 

o N+1 2. 1 n = - E 2 ib. 1; J.-

~ i=1 l. 

and [A1 0] 

~ = -N~1 2i(2i-1)b.1;2 (i- 1 ) 
o~;2 i=1 l. 
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b] = a 1 /4B3 

b2 (-2B3bf+B4b 1 
1 = - T2Bs)/2B2 

b3 (-4B3b1b2+Bsbf+ij4b2 - iB6b2 
1 

- ~B4ai]/2B2 = + 144B7 

b4 = (-2B3 (b~+2b 1 b 3 )+2B 5b 1b 2+B4b3 - iB6b 2 4B4bfb2 

-(_!__- ~)B - lB b2 + 1B b3]/2B 
4!51 3141 8 6 7 1 3 6 1 2 

2 
-- = 2b + 2bl = 4bl R0 1 

Obviously, including all surface tension terms of order six, 

requires the bubble surface equation [A6] to be of order 0(~8), 

and this was done in order to obtain b 4 • Then, from [21] after 

some algebra, we get 

R1 ~n) = 2b1 + 12[b2 -bf]~ 2 + 30[b3 -4bfb2+2b{J~4 

+ 28[b4-12blb~-9bfb3+30bib2-10bj]~6 

and [All] 

~ln> = 2b1 + 4[b2-bf]~ 2 + 6[b3-4bfb2+2bf]~ 4 

+ 4[b4-12blb~-9bfb3+30bib2-10bj]~6 

It is now easily ascertained that for a spherical bubble surface 

the expressions in the brackets are zero to 0(~ 6 ): thus the 

curvatures are constant and equal for all ~. as they should. 

From [All] the surface tension term in [A9] becomes 

(A12] 
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Inserting [A6] for ~ and [A12] in [A9] finally yields 

{4B3B~- ~al - 8E{b2-bf)4B3 }~2 

+{SB3 B~v-4B2B 3B4-2B~B 5-2B 3B 3vvm- ~a2-E•(18{b3-4bfb2+2bf)4B3 
- 16a5 {b2-bf> ]}~4 

(A13] 
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FIGURE CAPTIONS 

Figure 1 • The applied coordinate system. 

Figure 2. The influence of surface tension (~) on bubble velocity 

in stagnant liquid (Theoretical: --- 3 terms, -·- 2 terms 

[31 J, --- 1 term [30]. Experimental: Zukoski (1966): 

o Air /Water, !J. Alcohol/Water. Bendiksen ( 1983): Air/Water). 

Figure 3. The dependence of c0 [1] on liquid velocity at 

infinity (v ) with surface tension as parameter (o~=O., 
m 

\7~=.0026, !J.~=.013). 

Figure 4. Predicted non-dimensional radii of curvature (R1 ,R2 ) 

vs in stagnant liquid (v =0) with surface tension as m 

parameter (-- R1 , ~) • 

Figure 5. Predicted radius of curvature at origo, p , vs surface 

tension for v =0 (--- N=3, -•- N=2, --- N=1). m 

Figure 6. Predicted effects of liquid motion at infinity and 

surface tension on bubble shape at origo (p) (!J. v =0, 
m 

0 V = o 05 1 \7 V = o 1 0 ) o 
m m 

Figure 7. Measured effect of liquid motion at infinity on bubble 

shape (p) for ~=.042: (a) v =0, (b) v =.07, (c) v =.94, 
m m m 

(d) v =1 .00, (e) v =1 .40, (f) v =1 .93). m m m 



- 22 -

z, 11 ,v 

•• w 

r, ~. u 

R 

Figure 1. 
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Figure 3. 
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Figure 7. 




