
Automated regression testing of database applications

Erik Rogstad

Thesis submitted for the degree of Ph.D.

Department of Informatics
Faculty of Mathematics and Natural Sciences

University of Oslo

October 2015



 
Series of dissertations submitted to the  
Faculty of Mathematics and Natural Sciences, University of Oslo 
No. 1714 
 



Abstract

Ensuring the functional quality of database applications is a very important problem in
software testing, yet few innovative solutions and empirical studies are reported on the
subject. Database applications are widely adopted, for example in public administrations
and banks, as they need to process large amounts of transactions efficiently for a large
population and store large amounts of data. Such applications are often highly automated
in order to efficiently cope with a large number of transactions, and are usually difficult
to maintain and change. In order to preserve system quality through frequent system
releases, a thorough, systematic, and automated regression test approach is needed for
such applications, as they tend to provide core business value to their organizations.

The objective of this thesis is to help scale functional system-level regression testing
of database applications through cost-effective automation. We propose a black-box ap-
proach that relies on classification trees to model the input domain of the system under
test. We use the classification tree models as basis for automatically selecting abstract
regression test cases, and either generate test data automatically according to the model
specifications or rely on production data (data cloned from the production environment)
that match the model specifications. Regression testing is carried out by running the
selected test cases on consecutive versions of the system under test, while automatically
capturing changes in the database state during system execution. The captured database
manipulations for each test case are automatically compared across system versions, and
test cases that deviate between two system versions are either due to anticipated changes
in the release, or regression faults. The resulting deviations from a regression test are
clustered according to their output characteristics, so that deviations resulting from the
same change or fault (ideally) are contained in the same cluster. These clusters are then
used to minimize the effort required to analyze deviations.

In order to evaluate our approach, we conducted a large-scale case study in a real
development environment at the Norwegian Tax Department. The Norwegian Tax De-
partment maintains several database applications, which are built on standard and widely
used database technology and are representative of many such applications in public ad-
ministrations. Together with the Norwegian Tax Department, we developed an industry-

i



strength tool in accordance with our proposed regression test approach. We applied the
tool to the regression testing of their tax accounting system, thus evaluating its applicabil-
ity and scalability on a large-scale database application with real changes and regression
faults.

The results of our study showed that our proposed solution to regression testing helps
mitigate risk when releasing new versions of a system, as it is more thoroughly, yet effi-
ciently tested, causing less regression faults to be released. When our tool was applied for
regression testing of eight consecutive releases of the subject system, it helped identify
60% additional faults to those found through regular testing. We regard this as a sub-
stantial contribution in terms of increased fault detection power. Furthermore, we made
a thorough assessment of various strategies for selecting test cases based on classification
tree models. When using existing production data sets as basis for regression testing,
carefully selecting test cases according to their model partition coverage, can help reduce
test effort dramatically. This is important in cases when running regression test cases
are expensive, or when test results have to be manually inspected. For example, when
selecting test cases according to our proposed selection approach, nearly 80% of the re-
gression faults were captured when selecting only 5% of the test cases for execution. This
is important in order to scale the regression test effort when the input domain, and thus
the number of possible test cases are very large. To further add on the scalability of the
regression test approach, our results show that clustering regression test deviations based
on their output characteristics can help reduce the effort spent on analyzing such devia-
tions. The clustering strategy turned out to be very accurate as it resulted in homogenous
clusters (all deviations in each cluster match one change or fault) for all regression test
campaigns assessed. This implies that testers can inspect one deviation only from each
cluster and still remain confident of finding all regression faults. Moreover, we assessed
the cost-effectiveness of various strategies for regression testing and found that combining
combinatorial test suites with test suites conforming to the operational profile of the sys-
tem under test was effective, as neither one alone is sufficient to find all kinds of regression
faults.

In conclusion, we have proposed a novel and holistic solution to functional system-
level regression testing of database applications, that automates many steps in the test
process. The system under test is tested in a structured and systematic manner as we rely
on model specifications to drive the test process. The regression test approach has been
evaluated in a real and representative development environment and proved to be both
effective in detecting regression faults and to scale for testing large database applications.



Preface

This thesis was undertaken at Simula Research Laboratory and the Department of In-
formatics, University of Oslo, with Lionel Briand as the principal supervisor. The work
has primarily been carried out at the Norwegian Tax Department (NTD), who has been
a sponsor and partner in the research project. Erik Arisholm was the principal super-
visor during the first year, then Richard Torkar for the next half a year, before Lionel
Briand, who had been subsidiary supervisor until then, became principal supervisor for
the remainder of the PhD.

Stein Grimstad, Erik Arisholm and Trond Andreassen established the research project,
partnering Simula Research Laboratory and NTD. Stein Grimstad was department head
of the software engineering group of Simula at the time, Erik Arisholm was a senior
researcher at Simula and Professor at the University of Oslo, and also in the startup-
phase of establishing his own company within software testing, and Trond Andreassen
worked as a senior engineer at NTD. Together, they shaped out the industrial research
project, later known as the ATOS project, in which this thesis was undertaken.

iii





Acknowledgement

I will do this chronologically. Sort of at least.

I will start with Erik Arisholm, who was principal supervisor during the first year of
my PhD. He was the one inspiring me to take on a PhD. After I was interviewed and later
on offered the position as a PhD-student in the project, I remember speaking to my wife
about whether to quit my job and pursue this opportunity. I told her about the inspiring
presence of that guy with all the wild-growing and slightly unkempt hair, who talked so
encouragingly about the project. He gave me great faith in the project, and I told my wife
I wanted to work with him, who was then set out to be my primary supervisor. Apart
from my own motivation in advancing my academic background, his inspiring presence
was a decisive factor in me deciding to do a PhD. And he delivered above expectations
during his period of supervision. Practical, knowledgeable and launching bright ideas,
while giving me the freedom to decide what to pursue. In short, we had a great time
during that first year, working together in the ATOS project. He is undoubtedly one of
the top, top guys in the software testing industry and I now enjoy working for him at
Testify, where he has been incredibly generous and flexible in order for me to complete
my thesis. Thank you, Erik!

Unfortunately, as Erik’s business kicked off, he decided to move on from academia and
quit PhD supervision. As much as that upset me, meeting the next principal supervisor in
line, Richard Torkar, was another great source of inspiration. We first met over a beer in
a pub, had a great talk, and staked out the course for the forthcoming period. Such great
mood on that guy. And the enthusiasm he shows. Richard is highly skilled in conducting
industry-driven research, hardworking, structured and very responsive and was there for
me, whenever and wherever. Although his period in Norway remained relatively short,
he brought a breath of fresh air into my PhD work. Thank you, Richard!

Again, unfortunately Richard decided to go back to Sweden for various reasons and
could no longer continue as my supervisor. Despite the fact that Lionel had recently
decided to move to Luxembourg and was gradually phasing out his engagements at Simula,
he was very firm regarding my future PhD supervision at that stage: “From this moment
on and until you graduate, I will be your principal supervisor. No matter what. Enough

v



changes.” As being actively involved as subsidiary supervisor during the initial period,
and then taking charge as principal supervisor for the remainder of the PhD, he has been
the steady rock guiding me safely over the finish line.

Lionel. Given his merits, no one could have blamed him for being an arrogant prick.
But he’s not. Not even the tiny little bit. He is so devoted in his students work, that you
wouldn’t believe it. He cares. And contributes. He really does. And he is so passionate
about research. A fellow PhD student of mine at Simula once injured his arm and couldn’t
write. Lionel then offered to sit down with him and type according to the oral dictation
of the student, in order for him to progress his work. That’s the kind of supervisor Lionel
is. He takes active part in the research of his students. His capacity goes beyond most
people and his knowledge about research within software testing is remarkable (and well
documented), which makes him able to reflect and contribute on nearly any topic and
give insightful feedback. While I entitled Erik as one of the top guys within the software
testing industry, Lionel is “the one” within software testing research. Thank you, Lionel!

I feel ever so fortunate to have done a PhD in software testing under the supervision
of Lionel Briand, Erik Arisholm and Richard Torkar. They all share the ability to inspire,
which is one of the core qualities of a good supervisor. After having spoken to either one
of them, I always feel wildly inspired to carry on. That’s what you want from a supervisor.
To all three of you, thank you so much for guiding me and inspiring me, and for all your
pivotal contributions in my PhD work.

Apart from my supervisors, Ronny Dalberg at NTD has had great impact on my
PhD. He is the one I have been working with on a day-to-day business while conducting
industry-driven research. He has been instrumental in the practical application and im-
plementation of research ideas at NTD. I have appreciated his company and he has been
a great discussion partner throughout. Thank you, Ronny! I would also like to thank the
administrators of the ATOS project at NTD, Hilde Lyngstad, Marianne Amundøy Vikdal
and especially Marianne Rynning for good and flexible management of the project.

Special thanks to Simula Research Laboratory, Simula School of Research and In-
novation and my colleagues there for providing an excellent work place throughout my
PhD.

I would also like to thank my family, and in particular my wife, Ida, for her loving
support throughout the PhD. Especially during the latter stages, when she has taken
care of the kids on many occasions, while I had to put in extra shifts. You have been
incredible! And thanks to my two lovely daughters, Julie and Emilie, who were both born
during the PhD period, and have brought so much joy and happiness into my life.

Erik Rogstad, September 2015



List of Publications

The following papers are included in this thesis.

1. Industrial Experiences with Automated Regression Testing of a Legacy Database
Application
E. Rogstad, E. Arisholm, L. Briand, R. Dalberg, and M. Rynning
Published in the proceedings of the 27th IEEE International Conference on Software Maintenance
(ICSM), pp. 362-371, 2011

2. Test Case Selection for Black-Box Regression Testing of Database Applications
E. Rogstad, L. Briand, and R. Torkar
Published in Information and Software Technology (Elsevier), volume 55, issue 10, pp. 1781-1795,
October 2013

3. Clustering Deviations for Black Box Regression Testing of Database Applications
E. Rogstad and L. Briand
Accepted for publication in IEEE Transactions on Reliability, 2015

4. Cost-effective Strategies for the Regression Testing of Database Applications:
Case study and Lessons Learned
E. Rogstad and L. Briand
Accepted for publication in Journal of Systems and Software (Elsevier), 2015

The above papers are self-contained and therefore some information might be repeated
among them. Some acronyms and terminology may also differ across papers.

My contributions
I was the lead author on all papers, and thereby main responsible for conducting the
research and writing the papers. My supervisors contributed in all phases of the work, in
particular in the study planning and during paper writing, whereas I executed the studies.
Ronny Dalberg at the Norwegian Tax Department (industry partner) helped transforming
research ideas into applicable tool implementations.

vii





Contents

Abstract i

Preface iii

Acknowledgement v

List of Publications vii

Part 1: Summary of Thesis

1 Introduction 3

2 Background 9
2.1 Database applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Database regression testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Classification tree modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Test case selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Similarity-based selection . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Combinatorial testing . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Automated Regression Testing of Large Database Applications 15
3.1 Regression test challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Overview of regression test solution . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Test specification and test case selection . . . . . . . . . . . . . . . 17
3.2.2 Regression test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Research Methodology 31
4.1 Understanding the practical problems . . . . . . . . . . . . . . . . . . . . . 31
4.2 Develop regression test methodology and tool . . . . . . . . . . . . . . . . 32
4.3 Empirical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



5 Summary of Results 35
5.1 Evaluation of fault detection capabilities . . . . . . . . . . . . . . . . . . . 35
5.2 Evaluation of test case selection techniques . . . . . . . . . . . . . . . . . . 37
5.3 More effective regression test analysis by clustering deviations . . . . . . . 39
5.4 Effective regression test strategies for database applications . . . . . . . . . 41

6 Directions for future work 45

7 Concluding Remarks 47

Part 2: List of Papers

1 Industrial Experiences with Automated Regression Testing of a Legacy
Database Application 57
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2 Testing requirements for the SOFIE system . . . . . . . . . . . . . . . . . 59
3 Problem definition and related work . . . . . . . . . . . . . . . . . . . . . . 59
4 DART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Running example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Test configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Domain modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Test execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Test Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Practical Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1 Pilot evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Test coverage and synthetic test data . . . . . . . . . . . . . . . . . 73
5.3 Deployment into project setting . . . . . . . . . . . . . . . . . . . . 74

6 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2 Test Case Selection for Black-Box Regression Testing of Database Ap-
plications 79
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2 Industrial setting and problem formulation . . . . . . . . . . . . . . . . . . 82
3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1 Similarity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2 Selection algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



4.1 Random partition-based test case selection . . . . . . . . . . . . . . 87
4.2 Similarity measurement for classification tree models . . . . . . . . 88
4.3 Pure similarity-based test case selection . . . . . . . . . . . . . . . . 89
4.4 Similarity partition-based test case selection . . . . . . . . . . . . . 90

5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Design and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Discussion and Further Analysis . . . . . . . . . . . . . . . . . . . . 102
5.5 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3 Clustering Deviations for Black Box Regression Testing of Database
Applications 111
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2 Context and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.2 Regression test procedure . . . . . . . . . . . . . . . . . . . . . . . 115
2.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3 Clustering regression test deviations . . . . . . . . . . . . . . . . . . . . . . 117
4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.1 Objective and research questions . . . . . . . . . . . . . . . . . . . 121
4.2 The case and data collection . . . . . . . . . . . . . . . . . . . . . . 122
4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.1 Clustering-based test case selection . . . . . . . . . . . . . . . . . . 134
5.2 Clustering-based test case prioritization . . . . . . . . . . . . . . . . 135
5.3 Clustering for failures classification . . . . . . . . . . . . . . . . . . 136

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4 Cost-effective Strategies for the Regression Testing of Database Appli-
cations: Case Study and Lessons Learned 149
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
2 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 152



2.1 Automated regression testing . . . . . . . . . . . . . . . . . . . . . 152
2.2 Observations regarding test data . . . . . . . . . . . . . . . . . . . 153

3 Proposed method to systematically control test data using classification
tree models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.1 Classification tree models . . . . . . . . . . . . . . . . . . . . . . . 155
3.2 Selecting test data based on test models . . . . . . . . . . . . . . . 157
3.3 Generating synthetic test data . . . . . . . . . . . . . . . . . . . . . 159

4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.1 Objective and research questions . . . . . . . . . . . . . . . . . . . 162
4.2 Case study context . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.3 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.4 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . . 168
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.6 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.7 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192



List of Figures

2.1 An example of a classification tree model in CTE-XL and the generated
partitions (combinations of equivalence classes) that form abstract test cases. 11

3.1 Overview of regression test approach. . . . . . . . . . . . . . . . . . . . . . 17
3.2 ER-diagram for CTE-XL models in DART. . . . . . . . . . . . . . . . . . . 18
3.3 Generated test data using an adapter layer, that interprets a model and

uses a test data API to creates executable test cases in the test database. . 21
3.4 A UML Activity Diagram of the DART regression test process. . . . . . . . 23
3.5 The example program P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 The relational entity model and initial state for program P. . . . . . . . . . 25
3.7 A classification tree model for program P. . . . . . . . . . . . . . . . . . . 25
3.8 Algorithm for trigger generation in DART. . . . . . . . . . . . . . . . . . . 27
3.9 The example program P’, which is a modified version of program P. . . . . 29

1.1 A UML Activity Diagram of the DART regression test process. . . . . . . . 62
1.2 The example program P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.3 The relational entity model and initial state for program P. . . . . . . . . . 64
1.4 A classification tree model for program P. . . . . . . . . . . . . . . . . . . 66
1.5 Algorithm for trigger generation in DART. . . . . . . . . . . . . . . . . . . 67
1.6 The example program P’, which is a modified version of program P. . . . . 69
1.7 A comparison of partition-based-, and random test case selection. . . . . . 72

2.1 Example of a classification tree model. . . . . . . . . . . . . . . . . . . . . 88
2.2 Graphs comparing different similarity functions for the greedy selection

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.3 Graphs comparing different similarity functions for the evolutionary selec-

tion algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.4 Graphs comparing the best greedy and evolutionary selection algorithm. . 99
2.5 Graphs comparing the three best approaches. . . . . . . . . . . . . . . . . 101
2.6 Graphs comparing similarity partition-based test case selection and random

selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xiii



3.1 An example of a classification tree model in CTE-XL, and the generated
partitions (combinations of equivalence classes) that form abstract test cases.116

3.2 The grouping strategy; encode available information and input to a clus-
tering algorithm to group deviations . . . . . . . . . . . . . . . . . . . . . 120

3.3 Zero cluster entropy versus zero deviation entropy. . . . . . . . . . . . . . . 125

4.1 An example of a classification tree model in CTE-XL and the generated
partitions (combinations of equivalence classes) that form abstract test cases.156

4.2 ER-diagram for CTE-XL models in DART. . . . . . . . . . . . . . . . . . . 157
4.3 Synthetic test data is generated using a test data adapter layer, that inter-

prets a model and uses a test data API to creates executable test cases in
the test database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.4 A Venn diagram showing the overlap of deviations between different test
strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.5 The number of distinct faults found relative to the number of test cases
executed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

4.6 The number of distinct faults found relative to the number of test cases
resulting in a deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182



List of Tables

3.1 Test configuration for program P. . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Example DART log table after the baseline run. . . . . . . . . . . . . . . . 28
3.3 Example DART log table after both test runs are executed. . . . . . . . . . 28
3.4 The deviations between the test runs for P and P’. . . . . . . . . . . . . . 30

1.1 Test configuration for program P. . . . . . . . . . . . . . . . . . . . . . . . 64
1.2 Example DART log table after the baseline run. . . . . . . . . . . . . . . . 68
1.3 Example DART log table after both test runs are executed. . . . . . . . . . 68
1.4 The deviations between the test runs for P and P’. . . . . . . . . . . . . . 70
1.5 Summary of test runs in the pilot evaluation. . . . . . . . . . . . . . . . . . 71
1.6 Defects detected in the past eight releases of SOFIE. . . . . . . . . . . . . 74
1.7 Reasons why defects reported from production were not found by DART. . 75

2.1 Example test cases from partition 3 (1-10) and partition 12 (11-20) in
Figure 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.2 Test case encoding example. . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.3 Mann-Whitney U-tests and Â12 effect size measurements when comparing

fault detection rate across the similarity functions Euclidian, Manhattan,
Mahalanobis and NCD for the greedy selection algorithm. . . . . . . . . . 95

2.4 Mann-Whitney U-tests and Â12 effect size measurements when comparing
fault detection rates across the similarity functions Euclidian, Manhattan,
Mahalanobis and NCD for the evolutionary selection algorithm. . . . . . . 97

2.5 Data reported from Mann-Whitney U-tests and Â12 effect size measure-
ments when comparing the greedy and evolutionary selection algorithms. . 99

2.6 Mann-Whitney U-tests and Â12 effect size measurements when comparing
fault detection rates across the similarity partition-based, random partition-
based and pure similarity-based test case selection strategies. . . . . . . . . 101

2.7 Mann-Whitney U-tests and Â12 effect size measurements when compar-
ing selection execution time across the similarity partition-based, random
partition-based and pure similarity-based test case selection strategies. . . 101

xv



2.8 Data reported from Mann-Whitney U-tests and Â12 effect size measure-
ments when comparing similarity partition-based test case selection and
random selection.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.9 The average detection rate for Fault Z and W that are contained in a large
partition. Each of the faults are present in one single test case among 340
test cases in the partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.10 Mann-Whitney U-tests and Â12 effect size measurements when comparing
detection rate for fault Z and W across the similarity partition-based and
random partition-based test case selection strategies. . . . . . . . . . . . . 105

3.1 A subset of historic data on the number of deviations produced from re-
gression tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.2 Example of the output of a regression test, i.e. the details of the deviations 118

3.3 A small, artificial example of a binary matrix used as input to clustering. . 120

3.4 The subject regression test campaigns for the case study . . . . . . . . . . 123

3.5 Entropy measurements for each combination of input values, and for each
of the four regression test campaigns. . . . . . . . . . . . . . . . . . . . . . 127

3.6 The number of deviations needed to be inspected by the tester to cover all
distinct deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.7 Mann-Whitney U-tests, and Â12 effect size measurements when comparing
inspection effort across clustered inspection, and random inspection . . . . 130

3.8 Overview of studies related to failure clustering . . . . . . . . . . . . . . . 136

3.9 Entropy details for Test 1: For each type of input the deviation entropy
is evaluated per type of deviation and the cluster entropy is evaluated per
cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.10 Entropy details for Test 2: For each type of input the deviation entropy
is evaluated per type of deviation and the cluster entropy is evaluated per
cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.11 Entropy details for Test 3: For each type of input the deviation entropy
is evaluated per type of deviation and the cluster entropy is evaluated per
cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.12 Entropy details for Test 4: For each type of input the deviation entropy
is evaluated per type of deviation and the cluster entropy is evaluated per
cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.1 Production data matched against test model A, which has 31 leaf nodes
and 49,000 possible partitions. . . . . . . . . . . . . . . . . . . . . . . . . . 170



4.2 Production data matched against test model B, which has 39 leaf nodes
and 227,000 possible partitions. . . . . . . . . . . . . . . . . . . . . . . . . 171

4.3 Production data matched against test model C, which has 48 leaf nodes
and 7,667,000 possible partitions. . . . . . . . . . . . . . . . . . . . . . . . 171

4.4 Production data matched against test model D, which has 38 leaf nodes
and 746,000 possible partitions. . . . . . . . . . . . . . . . . . . . . . . . . 172

4.5 Combinatorial test suite specifications matched against the operational pro-
file of the system under test. . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.6 The regression tests for the combinatorial test strategies. . . . . . . . . . . 176
4.7 The faults revealed by the combinatorial techniques in the subject regres-

sion test for the case study. . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.8 The regression tests for the different test strategies. . . . . . . . . . . . . . 178
4.9 The faults revealed by all test strategies in the subject regression test for

the case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.10 Descriptive statistics (minimum, median, average, maximum, and standard

deviations) for the number of faults detected per number of test cases
executed and resulting deviations. . . . . . . . . . . . . . . . . . . . . . . . 191





Part 1: Summary of the Thesis





Chapter 1

Introduction

The objective of regression testing is to improve confidence that changes behave as in-
tended and that they have not adversely affected unchanged parts of the software [19].
Regression testing plays an integral role in maintaining the quality of subsequent releases
of software, but it is also expensive, accounting for a large proportion of the costs of soft-
ware production and maintenance [2, 27, 23]. Because regression testing is important, but
expensive, the topic has been much researched in order to achieve increased effectiveness
and efficiency. In particular a great deal of work has been performed on devising and
evaluating techniques for selecting, minimizing, and prioritizing regression test cases [44].
However, as noted in a survey on regression testing by Harrold and Orso [19], technology
transfer from research to the practice of regression testing is very limited. Although there
are a number of papers on evaluation of regression testing techniques using controlled ex-
periments (e.g., [3, 13, 16, 31, 32, 37, 38]), only a few of these empirical studies (e.g. [29])
have been performed on real-world, large-scale systems or have shown benefits in prac-
tice. To reduce the gap between research and industry within regression testing, there
is a need for additional empirical studies in real development environments to address
practical regression test problems and evaluate their solutions in an industrial context.

Yoo and Harman [44] conducted an extensive survey on regression testing minimiza-
tion, selection and prioritization, capturing the main research results around regression
testing. The survey shows that the vast majority of research focuses on white-box testing
strategies, which are primarily targeted towards achieving structural and change cover-
age of an application. When the objective is to test system level functionality, testers
tend to prefer black-box approaches, based on the system specification. Also, in many
situations, white-box testing is not practical due to lack of proper tool support or their
lack of scalability to large systems. In other cases, it is not even applicable if there is
no direct access to the source code or third party components. Furthermore, if testers
have limited technical expertise regarding the system implementation, they may prefer to

3



4 Chapter 1. Introduction

verify system functionality based on the specifications rather than the source code. Under
such circumstances a black-box approach to regression testing must be adopted, which is
a challenge given the lack of such techniques proposed in the research literature.

More specifically, the functional regression testing of database applications has been
given even less attention. Yet, there exist many large database application systems with a
long, often unforeseeable life span, as they continue to provide core business value to their
organizations. Many such applications are built on old technology and are constructed
without particular considerations for testability. Their functional quality is typically as-
sured through extensive manual testing during construction, but as the size and complex-
ity of the system grow, the regression test effort exceeds what can be effectively handled
manually. Thus, finding practical ways of introducing test automation to better scale
regression testing for large database applications is important to sustain the stability of
core business systems.

In practice, it is very hard to build a full-fledged automated regression test solution
for system level testing. For example, for database applications with many highly com-
plex queries, it is difficult to build precise test oracles. Thus, we capture a set of test
case executions of the system under test, under the assumption that it currently works
correctly, and then use replay runs after modifications to identify deviations and thus
potential regression faults. With such an approach, we use the baseline execution as an
automatically generated test oracle. This is effective in terms of automatically separating
test cases with unchanged results from those deviating from the baseline results, which
is important to ensure effective regression testing. However, the manual inspection of
deviations from the baseline is still necessary in order to separate deviations that result
from correct changes from those that are due to regression faults. Finding ways to cope
with the many deviations that can be observed when running regression tests on a new
version of a system is a highly important problem in practice. Thus, further measures are
needed in order to ensure scalability of regression tests and help testers when the number
of deviations exceeds their inspection capacity.

One such measure is to reduce the size of the regression test suite by selecting a subset
of test cases in such a way as to maximize the likelihood of detecting regression faults.
This is a core problem in regression testing, which is particularly acute when the test
results must be manually checked or when running test cases is expensive. The test case
selection should aim at reducing the test suite size and consequently the test effort, while
maximizing the number of distinct regression faults in the test output.

Even with efficient test case selection, the number of regression test deviations may
still be large, depending on the scope of the system changes. However, many deviations
are likely to cover duplicate regression faults or be the result of the same changes. Another



5

measure to ensure scalability is then to group regression test deviations, such that each
group of deviations ideally cover one regression fault or change. A precise mechanism for
doing so would enable testers to focus their efforts towards covering groups of deviations
rather than individual deviations and potentially gain significant savings in inspection
effort.

Yet another challenge is to provide test data that satisfies the test specifications in
order to execute actual regression tests. A common approach when testing database
applications, at least for mature systems, is to rely on production data. In terms of test
quality there is no better option than using production data, but they may be rigid to
work with, they provide unpredictable coverage that may not fit the test requirements
at hand, and confidentiality issues have to be sorted. For test automation purposes it is
often more desirable to generate test data, as it tends to offer more flexibility regarding
what to test at a given point in time and also provides more predictable test coverage.
However, establishing procedures for generating such test data is associated with a high
initial cost. Whether to opt for production data or generated data is not clear-cut, but
either way mechanisms are needed in order to select or generate data according to a given
test specification.

So to ensure scalability of regression testing and to keep the manual effort at a mini-
mum, it is important to have a structured specification of test cases, automated procedures
for carefully selecting or prioritizing test cases, automated support for collecting a test
baseline and compare test results across system versions, automated ways of providing
test data needed to execute the regression tests, and automated support for regression
test deviation analysis.

Contributions

The work in this thesis was motivated by test challenges at The Norwegian Tax Depart-
ment and has focused on test automation in the context of functional black-box regression
testing of database applications, based on model specifications from classification tree
models. The main contributions of the thesis are:

1. A novel and practical approach to automated, system-level regression testing of
database applications, that uses classification tree models for black-box test speci-
fications.

2. An industrial case study of the proposed regression test approach, by applying a
novel tool implementation, DART ([DA]tabase [R]egression [T]esting), to the busi-
ness critical batch jobs of a large database application in a public-service setting.



6 Chapter 1. Introduction

3. A thorough investigation of strategies for selecting test cases generated from clas-
sification tree models, evaluated in the context of black-box regression testing of
database applications.

4. The definition and evaluation of a clustering strategy for grouping regression test
deviations according to their root causes in order to help scale their inspection and
analysis.

5. A practical and novel approach for matching production data against classification
tree models in order to (1) detect model coverage, and (2) reduce the level of redun-
dancy, and thus test effort, by selecting a subset of test cases for test execution.

6. A practical approach for automatic test data generation based on classification tree
models.

7. An assessment of the combination of production data and generated test data for
regression testing, following various combinatorial test strategies based on classifi-
cation tree models.

In the list above, by “practical” we mean scalable to large systems, while relying on
information that can realistically be provided by test engineers or domain experts.

Structure of the Thesis

This thesis is a collection of papers and the remainder of the thesis is organized in two
parts.

Summary (Part I): Chapter 2 gives an introduction to relevant background information
needed to understand the thesis. Chapter 3 provides an overview of the proposed regres-
sion test methodology, by tying together the various solutions from the individual papers.
Chapter 4 presents the research methodology and Chapter 5 summarizes the key results
of the thesis. Chapter 6 outlines future research directions, before providing concluding
remarks in Chapter 7.

Papers (Part II): This part includes the four papers of the thesis, either submitted
or accepted for publication in international journals and peer-reviewed conferences. Pa-
per 1 presents the regression test approach and evaluates its fault detection capabilities,
i.e. contribution 1 and 2 from above. Paper 2 covers contribution 3 and investigates var-
ious strategies for selecting test cases. Paper 3 addresses the problem of coping with the
many regression test deviations resulting from regression testing (contribution 4). Paper



7

4 presents practical approaches for selecting or generating test data needed to execute re-
gression tests and assesses their relative cost and effectiveness, thus covering contributions
5 to 7.





Chapter 2

Background

In this section, we provide background information on the main concepts involved in this
thesis, including database applications - the type of software systems our work focuses
on, regression testing in the context of database applications, classification tree modeling
- used for black-box specification of the input domain of the system under test, and test
case selection techniques.

2.1 Database applications

A database application is a computer program whose primary purpose is entering and re-
trieving information from a computerized database [40]. Early examples of database appli-
cations were accounting systems and airline reservations systems, and although database
applications are now widespread across most application areas, some of the most com-
plex database applications remain accounting systems, such as SAP [22, 6]. Database
applications are also commonly used in banking and by public administrations, who typ-
ically need to process large numbers of transactions for a large population and store large
amounts of data.

Modern database applications usually have a web interface, which is used by end users
to interact with the system. Additionally, a common characteristic of such large database
applications is the ability to process large amounts of data effectively, often through batch
processing. Batch processing is the execution of a series of programs (“jobs”) without
manual intervention [39]. Such batch processes are efficient as the program can run once
for many transactions reducing system overhead. They avoid idling computer resources
with manual interventions and the batch processes can be scheduled to time periods where
computer resources are less busy.

Oracle is the world market leader both in terms of application platforms and database
management systems [15]. In a traditional Oracle database application, the data is stored

9



10 Chapter 2. Background

in a relational database, the business logic is written using SQL and PL/SQL program-
ming, with Oracle Forms user interfaces. In recent years, after Oracle acquired Sun
Microsystems, it is getting gradually more common to have Java applications running on
top of an Oracle database, rather than using stored procedures and having a large number
PL/SQL packages in the database.

2.2 Database regression testing

Regression testing is the activity of testing software after it has been modified to gain
confidence that the newly introduced changes do not obstruct the behavior of the existing,
unchanged parts of the software [44]. There are a number of challenges related to regression
testing, such as identification of obsolete test cases, regression test selection, prioritization
and minimization and test suite augmentation [19]. Yoo and Harman [44] conducted a
survey on regression testing minimization, selection and prioritization, constituting nearly
200 papers. It encompasses the main research results around regression testing, address-
ing the problems of identifying obsolete, reusable and re-testable test cases (selection),
eliminating redundant test cases (minimization) and ordering test cases to maximize early
fault detection (prioritization). The survey shows that the bulk of existing work focuses
on white-box testing strategies, concerning relatively small stand-alone programs written
in C or Java, or for spreadsheets, GUIs and web applications. The techniques surveyed
assume an already existing, effective test suite on which to select, minimize and prioritize
test cases for the regression test. In practice, this is not always the case and more fun-
damental steps are required, namely how to collect a test baseline, and how to perform
regression testing.

In the context of database testing, Chays et al. [8] noted the lack of uniform methods
and testing tools for verifying the correct behavior of database applications, despite their
crucial role in the operation of nearly all modern organizations. Most of the literature in
the field is aimed at assessing performance of database management systems rather than
testing the database application system for functional correctness, let alone regression
testing. The authors proposed a framework for functional testing of database applications
called AGENDA [7, 9, 12]. However, the framework was not intended for regression testing
and the ideas have only been evaluated on smaller examples and seem unlikely to scale
to fit industrial needs.

The most relevant work found on the topic of regression testing for database appli-
cations was the SIKOSA project [17, 4, 18]. The authors proposed a capture-and-replay
tool for carrying out black-box regression testing of database applications, which is a sen-
sible approach because it is hard to build a precise test oracle for database applications



11

with very complex queries. The work was restricted to checking input-output relations
of database applications, as they stated that checking the state of the database after
each test run was prohibitively expensive and difficult to implement for black-box regres-
sion testing. The SIKOSA project provided some experimental performance measures for
their tool, but did not refer to any evaluations regarding fault-detection effectiveness or
cost-effectiveness, let alone in an industrial setting.

2.3 Classification tree modeling

Classification tree modeling is a category-partition-based modeling technique [30] that is
typically used for modeling configuration parameters [10, 41, 43], or the input domain
of the system under test, i.e. input parameters [34] or properties of the system under
test [11]. A classification tree model is a tree structure where all relevant distinguishing
properties of the system under test are captured at the desired granularity level. For
example, properties related to the input domain that may affect the behavior of the
system under test can be identified, and split into equivalence classes following usual
black-box testing strategies such as boundary value analysis. An artificial example of a
classification tree model, made using the tool CTE-XL [26], is given in Figure 2.1. The
model is visible in the upper right corner, where relevant properties of the input domain
are modeled as classifications (e.g. Property B: Nr of X ), and split into equivalence classes
(e.g. the ranges 1-4 and 5-10 ). As shown, it is also possible to conform to a hierarchical
tree structure, by modeling sub-properties under an equivalence class.

Figure 2.1: An example of a classification tree model in CTE-XL and the generated
partitions (combinations of equivalence classes) that form abstract test cases.



12 Chapter 2. Background

Classification tree models are used as basis for combinatorial testing, which aims at
systematically testing valid combinations of equivalence classes according to a specified
degree of coverage. Pair-wise and three-wise are examples of common coverage criteria
in combinatorial testing, which are described in more detail in Section 2.4.2. Given
a classification tree model and a coverage criterion, a set of model partitions can be
generated, as shown in the lower part of Figure 2.1. For the simple model presented here,
we have generated all possible combinations, and all resulting partitions are gathered in
a set labeled “All Combinations”. A partition is a specific combination of equivalence
classes, which is visible in the figure as a line with a mark (dot) for each equivalence class
covered by the partition. In our context, a partition corresponds to an abstract test case,
or the specification of a test case, and a collection of partitions corresponds to a test suite
specification.

2.4 Test case selection

Test case selection is the activity of selecting a subset of test cases for execution, in such
a way that the fault detection capabilities of the subset are maximized. We present below
two approaches to test case selection that are relevant for the thesis, namely similarity-
based selection and combinatorial testing.

2.4.1 Similarity-based selection

Similarity-based test case selection attempts to select test cases that are as diverse as
possible, based on similarity measures. A similarity-based selection strategy consists of
three parts:

- Encoding - how to encode your test cases for comparison

- Similarity function - how to measure similarity between test cases

- Selection algorithm - how to select test cases on the basis of their similarity

In other words, the concept of similarity-based selection is about finding a way of
representing test cases in such a way that their similarity can be measured, and then use
approximation algorithms to select test cases as diverse as possible, under the hypothesis
that increased diversity among tests leads to increased fault detection rates. Similarity-
based selection has shown promising results, both in the context of model-based testing
[21] and labeled transaction systems [14].



13

2.4.2 Combinatorial testing

Combinatorial testing is about systematically testing combinations of parameter equiva-
lence classes according to a specified degree of coverage. The aim is to reduce the number
of test cases to execute, while retaining a broad and systematic coverage that maximize
the chances of revealing faults with reduced effort. Combinatorial testing relies on the
assumption that most faults are triggered by either a single parameter value or by a
combination of a few parameters’ values [5]. For example, Kuhn et al. studied the faults
in several software projects, and found that all the known faults are caused by interac-
tions among six or fewer parameters [24, 25]. In such cases, combinatorial testing can be
very effective, with performance approaching that of exhaustive testing while significantly
reducing the number of test cases.

Combinatorial testing is based on a model of the system under test that typically
contains the parameters that may affect the system under test, the values or equivalence
classes that that are defined for each parameter, and constraints between parameter val-
ues. The constraints can be used to exclude combinations that are not meaningful from
the domain semantics. Classification trees, as described in Section 2.3, are examples of
such models. These models are then used as basis for generating a test suite specification
by selecting test cases that combine values of different parameters according to a combi-
natorial test strategy. The most common combinatorial test strategies are pair-wise and
three-wise, which can be defined as follows:

- The pair-wise generation criterion is satisfied if every possible pair of equivalence
classes is covered by at least one test case specification in the resulting test suite.
Following the example from Figure 2.1, the equivalence classes 1-4 and Yes of
Property B and Property C, respectively, should appear at least once in the test
suite specification [28, 42, 20].

- The three-wise generation criterion is satisfied if every possible triple of equivalence
classes is covered by at least one test case specification in the resulting test suite.
Following the example from Figure 2.1, each of the equivalence classes 1-4, Yes,
and >1 of Property B, Property C and Property D, respectively, should appear at
least once in the test suite specification. In the example case, there would be no
difference between three-wise and all combinations, because the model only contains
three model properties at the top level [24, 33].

Combinatorial testing can reduce the number of tests radically, while still ensuring
that every N-wise combination of equivalence classes is covered. As an example, consider
a program with 10 parameters taking two values each. The total number of test cases to



14 Chapter 2. Background

test exhaustively is then 210 = 1024. An optimal algorithm for three-wise combinatorial
testing would result in 13 test cases.

As being a specification-based testing technique, combinatorial testing requires no
knowledge about the implementation of the system under test. Also, the specification
is “lightweight” since it only requires knowledge about the basic system configuration in
order to identify the input parameters and their possible values.



Chapter 3

Automated Regression Testing of Large
Database Applications

The goal of this thesis is to handle regression test challenges that are faced, in practice,
when evolving large database applications during development and maintenance. In this
section, we will first explain the challenges, and then describe our proposed solutions to
solve the problem.

3.1 Regression test challenges

As mentioned in Section 2 a common characteristic of large database applications is
the ability to process large amounts of data effectively, often through batch processing.
While batch processes enable efficient processing of large amounts of complex transactions,
performance has traditionally been a stronger non-functional driver than testability during
their construction. Thus, testing them is challenging. For example, batch processes
are hard to control and observe during testing. They can be started and then run to
completion without any further mechanisms of control. That means the input of the batch
process can be controlled, and the end result checked, but what happens in between is
difficult to observe, and even more difficult to control. Moreover, the input domain
consists of both system inputs and the state of the database, thus accounting for a high
degree of input variation leading to a wide range of test scenarios. As the batch programs
are completely automated processes, they also tend to be complex, consisting of a large
number of tightly integrated sets of operations. All of these factors make the regression
testing of database applications, and in particular batch processes, very challenging.

The Norwegian Tax Department maintains several database applications, including
SOFIE, the tax accounting system of Norway. SOFIE is an example of a large and
complex database applications that handles tax calculations and tax transactions for all

15



16 Chapter 3. Automated Regression Testing of Large Database Applications

taxpayers in Norway, while also keeping track of large amounts of data, including his-
torical tax data. The Norwegian Tax Department realized the test challenges mentioned
above, and concluded that their current manual testing practice were not deemed ade-
quate for the effective regression testing of their tax accounting system. Their database
applications provide core business value to their organization, and they had managed to
provide reasonably dependable system features through extensive internal testing and a
large user base over a long period of time. Yet, the systems are complex and hard to
test, making them error prone following the many changes forced upon by changes in
taxation laws and regular maintenance. This motivated NTD to establish a cooperation
project with Simula Research Laboratory, in order to come up with more efficient ways
to perform regression testing of database applications by introducing a higher degree of
test automation. This initiative set the frame and formulated the problem for which this
thesis was undertaken.

3.2 Overview of regression test solution

Our response to the regression test challenges mentioned above was to develop a practical
approach and tool (DART) for functional, black-box regression testing of database appli-
cations. The main reason for choosing a black-box approach to regression testing was the
fact that the testers in the project had limited technical expertise regarding the system
implementation, and preferred to verify system functionality based on the specifications
rather than the source code. Hence, we adopted a black-box approach to regression test-
ing that does not require source code analysis. However, black-box approaches also have
the advantage of being more applicable when there is a lack of proper tool support for
source code analysis in a given technology context, or when there is no direct access to
source code or third party components.

Figure 3.1 shows an overview of the approach to regression testing of database appli-
cations. The approach is twofold, namely (1) the specification and selection of test cases
along with the setup of test data needed to execute the regression tests (left part of the
figure) and (2) the execution of the regression tests (right part of the figure). The details
of the approach are described in subsequent sections below but overall, it is a capture-
and-replay approach, similar to what has been more commonly used for GUI testing, to
automatically identify differences (referred to as regression test deviations) between the
results of two identical test runs (same input and initial state) on different versions of the
system under test. Because it is hard to build a precise test oracle for database appli-
cations with very complex queries, a more practical strategy is to capture a set of test
case executions of the system under test, under the assumption that it currently works



17

correctly (the baseline), and then use the replay run after modifications (the delta) to
identify deviations and thus potential regression faults.

Figure 3.1: Overview of regression test approach.

We rely on classification tree models to model the input domain of the system under
test (SUT), in order to obtain a practical and scalable solution. The test models enable
us to systematically approach the variation in the input domain, as we model properties
of the input domain and use test case generation algorithms to ensure predictable and
complete model coverage. The abstract test specifications generated from the test models
are used to drive the generation of test data and select production data for test execution.

Although our regression test approach can be used to test any type of database appli-
cation, it is particularly suited for testing batch processes (or similar types of database
intensive programs) that process large amounts of data automatically, thus making man-
ual testing impractical.

3.2.1 Test specification and test case selection

In order to remain systematic when testing, we needed a specification-based, black-box
testing technique to help specify test input data (test cases), based on an analysis of the
input domain of the system under test, e.g. a batch process. There are many suitable
tools for this purpose, but we found that the classification tree modeling technique and
the supporting tool CTE-XL [26], was both easy to use and scaled up to the kinds of
input domains under consideration (e.g., more than 100 categories or classifications in
one model). As mentioned in Section 2.3, classification tree modeling is built on the well-
known category-partition approach [30] and is a common approach to combinatorial test
design. The input domain (i.e. input parameters or properties of the system under test)
is modeled as a classification tree, which in turn is used to generate a combinatorial test
suite specification, and thus aligned well with our needs.

To be able to use the models for anything practical, we needed to integrate them
with our regression test tool, DART. DART has its own database, where everything
related to the regression tests are stored, i.e. test configurations, test executions and
test results, as described in Section 3.2.2. We extended the database schema to also



18 Chapter 3. Automated Regression Testing of Large Database Applications

Figure 3.2: ER-diagram for CTE-XL models in DART.

include tables equipped to store classification tree models. CTE-XL stores the models as
XML-files, which we parse and store into the DART database complying with the entity-
relationship model shown in Figure 3.2. A test model (cte_testmodel) contains a set of
nodes (cte_node), i.e. the classifications and equivalence classes in the model, and one
or more test suite specifications (cte_testsuite), i.e. sets of partitions. Each test suite
specification contains several partitions (cte_partition), each containing a set of nodes
(cte_partition_node), that is the specific equivalence classes covered by the partition
(the dots on each partition line in Figure 2.1). cte_testcase and cte_testcase_node

map to cte_partition and cte_partition_node, and capture actual test cases in the
system under test, as opposed to abstract test cases in the test model. Having the CTE-
XL-models integrated into our test tool enables us to use the models for test automation
purposes.

We use these test models to (1) systematically drive test data generation (DART Data
Generator in Figure 3.1) and (2) to match production data against the model in order to
determine coverage (DART Data Matcher in Figure 3.1), either a) to select production
data for testing or (b) to analyze the operational profile of a particular functional area of
the system under test.

Selecting test data based on test models

When using production data as basis for testing, the selected test data will vary among
(regression) test campaigns. In order to remain systematic when testing, we use the test
models to drive the selection of test data based on the coverage of partitions. By matching
the test data against the classification tree models, we are able to (1) detect which model



19

partitions and model properties are covered (and not covered), and (2) reduce the level of
redundancy, and thus the test effort, by selecting a subset of test cases for test execution.
In short, our selection strategy selects, in a balanced way, test cases from all covered
partitions in the classification tree model, while attempting to select the most diverse test
cases from each partition. The full details of the test case selection approach is presented
in the second paper (Chapter 2 in Part 2)

The classification tree models tend to be relatively high-level representations of the
input domain of the system under test. Therefore, a gap exists between the abstract test
cases defined by the model and executable test cases. In other words, there is no one-to-
one relationship between the properties captured in the model and the concrete database
fields in the database. The modeling is driven from a functional point of view to capture
the variability of the input domain of the system under test, and is not concerned with
the particular details of the system database. However, the gap between the model and
the database has to be addressed somehow, to ensure that we can match actual test data
with the model, and furthermore to generate executable test cases from the abstract test
cases.

When it comes to matching test data against the model, we have chosen to solve the
mapping by extending the definition of the classification nodes in the model with an SQL
query that maps the model property with its concrete value(s) in the database. The
attribute node_sql on the cte_node entity, which is highlighted in Figure 3.2, holds this
additional mapping information. The SQL query is built up in such a way as to extract
information from the database regarding the value of the model property for a given test
case, or set of test cases.

Following the example from Figure 2.1, each of the four classification nodes (Property
B, C, D, and E) in the model, would have an attached SQL mapping query. For example,
Property B: Nr of X would have an SQL mapping query that returns the value of Nr of X
for an actual test case, and maps this value to the test case. The mapping between a test
case and its model property values is given via the cte_testcase and cte_testcase_node

entities. The set of test cases that should be examined is held by the cte_testcase

entity. For each leaf node in the model (equivalence classes at the bottom level of the
tree) corresponding to the actual value of a property, a link is established between the
test case and the model node via cte_testcase_node. For example, if a test case has
the value 3 for Property B: Nr of X, then a cte_testcase_node is created for the test
case, with a reference to the leaf node with the value range 1-4, and the actual value of
the test case (3) is stored in the attribute node_value.

Based on this strategy for matching test data with a test model, we can implement a
generic solution, independent of the specifics of each individual test model. The mapping



20 Chapter 3. Automated Regression Testing of Large Database Applications

SQL query can be seen as an extension to the modeling effort, but once established,
the matching of test data with the test models is general. After having conducted the
matching, we can bring the results back to CTE-XL (by extending the XML file of the
model), in order to get a visual representation of coverage obtained by the test suite.

The capability of matching data against a classification tree model enables us to do
the following:

• Select production data for regression testing: Given a set of data available for
a regression test, we match the data against the model to determine the model
partition coverage. Typically, many test data instances match the same partition,
and by selecting tests in a balanced way across model partitions, we are able to
reduce redundancy, and thus test effort, while maximizing model partition coverage.
The results from Paper 4 (Chapter 4 in Part 2) show that the expected level of
redundancy for tests based on production data is high, while the results from Paper
2 (Chapter 2 in Part 2) shows the increased efficiency of the regression tests when
selecting tests carefully according to partition coverage.

• Analyze operational profiles of the system under test: By matching production
data for a particular functional area of the system under test, we can learn the
distribution of data across model partitions and equivalence classes. For example,
we can determine that 30% of the data in the operation of the system fall under
a certain partition, while the value of a certain property has a 90/10 per cent
distribution across its two equivalence classes. In turn, such an analysis could be
used as input to testing, in order to perform operational profile testing.

Generating test data

Classification tree modeling offers a systematic and well-defined frame for generating test
data. It provides a clear overview of the input domain of the system under test, from
which to generate test case specifications that ensure combinatorial model coverage of a
specified degree (e.g. pair-wise, three-wise). Thus, we have also used the classification
tree models to drive the generation of test data. Using the same classification tree models,
both for analyzing coverage of production data used for testing and for the generation
of test data, enables us to consider a hybrid solution. For example, a test campaign can
primarily be based on production data, while complementing it with generated test data
when test specifications cannot be matched with production data.

However, generating executable test cases from a test case specification is a far more
complex affair than to extract the actual values of existing data. Even a “simple” test case
will most likely require a large extent of data populated in large parts of the relational



21

Generates an executable test case per partition in the 
test suites of each model. 

Figure 3.3: Generated test data using an adapter layer, that interprets a model and uses
a test data API to creates executable test cases in the test database.

database. Thus, we have chosen to solve the mapping between the abstract test cases
defined in the model and the executable test cases stored in the database, by implementing
an adapter layer for test data generation, following the architecture in Figure 3.3. The
adapter layer consists of a general test data API and one test data generator for each test
model. The test data API holds general functionality for populating the various tables
in the relational database with data, whereas each test data generator interprets a test
model and its partitions and calls on the test data API to populate each test case with
the properties and values specified by the model partitions. Additionally, we have defined
a set of variables, both at the level of a test suite specification and a partition, which the
tester can override in order to customize the test cases. These variables represent details
about the test cases, that are not regarded as important for the characterization of the
input domain, and thus are not captured in the model, but nevertheless capture values
a tester might want to tweak in a test. Examples of such values can be the taxpayers
municipality, or the year of the tax calculation, which a tester will typically change over
time.

The tester can choose to generate test cases for an entire test suite specification, or for
an individual selection of partitions, and the result of the generation is a set of test cases
stored in the test database, ready for execution. An important consideration regarding the
test data generated is that they are independent of the state of the database. In practice
this is obtained by generating the test data in a completely synthetic manner, with no



22 Chapter 3. Automated Regression Testing of Large Database Applications

relation to other data in the database. Then the test case is expected to behave the exact
same way, when executed on the same program versions, independent of the evolution
of the data in the test database. This is important in order to ensure comparable test
executions across system versions.

Being able to generate test data for any given test case specification from a classifica-
tion tree model gives the tester an enormous flexibility in terms of executing regression
tests. For every regression test, a new equivalent set of test data is generated based on a
given test specification, which makes the test executions comparable across system ver-
sions. Tests on synthetic test data are less rigid than tests on production data and thus
more suited for test automation purposes. Nevertheless, as shown in Paper 4, generated
test data does not fully replace tests based on real production data, thus both are needed
in order to ensure as complete regression tests as possible.

3.2.2 Regression test

We have proposed a partly automated regression test procedure and tool (DART) tailored
to database applications. The basic principle of the tool is straightforward: It compares
executions of a changed version of the program against the original version of the program
and identifies deviations, that is differences in the way the database is manipulated be-
tween the two executions. In each test execution, the database manipulations are logged
according to a specification by the tester indicating the tables and columns to monitor.
The database manipulations from each execution are compared across system versions to
produce a set of deviations, which indicate either correct changes or a regression faults.

The strength of this approach is that it provides the ability to verify the entire set of
test data executed by a database application automatically. As an example, let us say
we execute a batch running the tax calculation for 10.000 taxpayers, each constituting
a test case. Manually verifying 10.000 tests is far beyond what a tester can realistically
handle. Therefore, one would have to pick out a small sample to analyze based on quali-
fied guesses whereas the rest of the 10.000 tax calculations would remain unattended and
pose substantial risk to the system release. However, with the regression test procedure
suggested above for database applications, all the 10.000 tax calculations will automati-
cally be compared against a previous execution to separate the test cases that deviated
from the ones that did not.

Note that DART can be used to identify regression faults in any system or program
unit performing Create, Read, Update and Delete (CRUD) operations on a database, and
is not restricted to batch testing only. But in our industrial research context the system
under test has consisted of batch processes that perform complex CRUD operations on a
database, guided by business logic that implements sequences of taxation laws and rules.



23

Figure 3.4 shows the main steps in the testing process with DART. In the following
sections, these steps will be described in detail.

Figure 3.4: A UML Activity Diagram of the DART regression test process.

Running example

Throughout the description of DART, a running example will be used to demonstrate
the various steps of the test process. The example is intentionally kept very simple but
nevertheless illustrative. The system under test used as example is the program P shown in
Figure 3.5. We use a Java-like syntax augmented with directly executable SQL statements
in order to facilitate the understanding of readers not acquainted with PL/SQL. It is a
program that contains features for maintaining customer orders, more specifically adding
and deleting items from a customer order. As an example execution of the program, one
item is added to a customer order, while an item is removed from another customer order
in the main method.

The relational entity model of the example program is shown in Figure 3.6, along
with the initial state of the database prior to test execution. It consists of three entities
containing information about customers and their orders. A customer can have zero to
many orders with zero to many items.

Test configuration

A test with DART is set up by selecting the database tables and more specifically the table
columns to monitor during the test execution. DART obtains and presents the database
schema(s) of the system under test and a test engineer selects the ones to monitor during
the test execution. In our example the tester would be presented with the three tables
Customer, Order and Item, which all are a part of the database schema for program P.
Since the program P performs operations on the two tables Order and Item, these are the



24 Chapter 3. Automated Regression Testing of Large Database Applications

Figure 3.5: The example program P.

ones that make sense to monitor while testing P. The tester selects the two tables and
more specifically the underlying table columns to monitor.

Additionally the test engineer specifies how CRUD-operations on the selected entities
should be grouped together as “logical test cases” based on a meaningful, common test case
identifier, e.g., a social security number. The identifier is defined using table attributes
such as primary keys, foreign keys and/or SQL queries. The goal is to logically group
related rows in the tables and monitored in a test execution to facilitate the comparison
between the baseline and delta test executions. A meaningful common test case identifier
in our example would be the customer name (assumed to be unique), as all orders and
items can be traced back to its customer. In that case one customer will make out one test
case and all data manipulations that are logged during test execution will be grouped by
customer name. A test configuration for program P would then look like the one shown
in Table 3.1.

In summary a test configuration denotes the set of table columns to monitor during
test execution and the corresponding specification of the test case grouping scheme.



25

Figure 3.6: The relational entity model and initial state for program P.

Table 3.1: Test configuration for program P.

Table Table column Test case identifier
Order OrderNr, ChangedDate Customer.Name
Item ItemName Order.Customer.Name

Domain modeling

Prior to test execution, test data have to be prepared for the specific system component
to be tested. As elaborated in Section 3.2.1 we model the input domain of the system
under test as classification trees and use the models to drive the generation of test data or
select production data for testing. Whether the test data is real system data or generated,
the output of the test data preparation process is a test suite on which the system under
test can be executed. Following our example, a classification tree model for the example
program P is shown in Figure 3.7. The root node Program P, the classifications Number

of orders for customer, Item added and Item deleted, and the classes (0, 1, >1)
and (Y, N) constitute the classification tree model, whereas the bottom part represent the
partitions (abstract test specifications) with each line representing a partition.

Figure 3.7: A classification tree model for program P.



26 Chapter 3. Automated Regression Testing of Large Database Applications

From a particular test model, the tester may generate an abstract test suite specifica-
tion (a set of partitions) according to a given coverage criteria (e.g. pair-wise) and then
generate test data according to the specification in order to execute the tests. Alterna-
tively, the tester could base the regression test on existing production data and match
the data against the partitions in the model, in order to select tests in such a way as to
maximize partition coverage. In the initial state of program P shown in Figure 3.6, there
are two test cases, namely customer Andy Smith and John Johnson. DART will match
the test case Andy Smith with Partition 3 as he has one order in which an item will be
added, and the test case John Johnson with Partition 4 as he has one order in which an
item will be deleted. When the test cases have been matched to partitions, DART selects
test cases in a balanced way across partitions, and selects the most diverse ones within
each partition. In the trivial example the selection is meaningless as there are only two
test cases from two different partitions. However, this is important in realistic database
applications, as test cases can be numerous, expensive to run, and manual inspections of
deviations are time-consuming.

Test execution

During test execution DART will log all data manipulations related to the specific test
configuration. The way data manipulations are recorded and logged is through dynam-
ically generated database triggers on the tables specified in the test configuration. A
trigger is procedural code that is automatically executed in response to certain events
on a table or view in a database. Pseudo-code for generating the triggers is shown in
Figure 3.8. As the algorithm shows, a trigger is generated for each table in the test con-
figuration. Each of the generated table triggers is defined to insert a row into the DART
log table for each data manipulation on the columns specified in the test configuration for
the given table. Insert and delete operations are always done at the row level and DART
will log values for all table columns in the test configuration when an insert or delete
operation takes place. Update operations can be attribute specific, so DART will only
log the table columns in the test configuration that is actually updated. The triggers are
dynamically generated as a Data Definition Language (DDL) string, which is executed in
the end to store the actual triggers in the database.

Thus, DART dynamically instruments the database of the system under test by gen-
erating test-configuration specific database triggers when the test is started. During test
execution these triggers will fire on any insert, delete or update on the table columns in
the test configuration and store the database operations into a DART log table. One data
manipulation operation results into one row in the log table matching the format <test

case identifier, table name, column name, old value, new value>. The test case



27

×

∈
←

←

∈

 

Figure 3.8: Algorithm for trigger generation in DART.

identifier (e.g., the customer name) is what uniquely identifies the test case that causes
the operation to be executed. It is devised on the fly according to the specification in the
test configuration. Table name and column name are the names of the table and column
the operation is executed on, respectively. Old value and new value refer to the values
of the attribute prior to and after the operation execution, respectively. Old value is
given the static value “Inserted” for insert operations, while new value is given the static
value “Deleted” for delete operations. After test execution the triggers are automatically
deleted from the database of the system under test.

A test run is done once with the original version of the system (baseline) and once
with the changed version of the system (delta), which is subject to regression faults. If
the test uses production data the database is reset to the initial (baseline) state before
the delta test is run, to ensure that both runs start out with the same database state.
Various mechanisms are available to reset the database, e.g. flashback to restore point.
This is done by creating a restore point in the database after the test configuration is
defined and the test data is prepared, but before the execution of the baseline run starts.
The restore point defines the state of the database at the time it is created and will ensure
consistency between the test runs. This procedure is not needed when using generated
test data, as new sets of test data with identical characteristics are generated for each test
run, rather than reusing the same set of test data for both the baseline and delta run.

In our example, a test run on program P, with the test configuration from Table 3.1 and



28 Chapter 3. Automated Regression Testing of Large Database Applications

the initial state from Figure 3.6, would result in the DART log data shown in Table 3.2.
For the test case Andy Smith, one insert operation and one update operation are executed,
as logged in row 1 and 2 of Table 3.2, respectively. For the test case John Johnson one
delete operation and one update operation are executed, as logged in row 3 and 4 of
Table 3.2, respectively.

Table 3.2: Example DART log table after the baseline run.

Id Test run id Test case Table name Column name Old value New value
1 1 Andy Smith Item Item Name Inserted USB Stick
2 1 Andy Smith Order Changed Date 12.05.11 14.05.11
3 1 John Johnson Item Item Name Keyboard Deleted
4 1 John Johnson Order Changed Date 12.05.11 14.05.11

It turns out that program P contains a fault. The changedDate of the order should
be updated to today’s date when an order is changed but it is updated to tomorrow’s
date. The fault is corrected (underlined) and a new version of P, called P’ is shown in
Figure 3.9. For illustration purposes let us assume a regression fault in P’: the update
of the order in removeItemFromOrder method is completely removed, rather than fixed
(line struck through). After resetting the database into the same initial state as before
the first test run, the test is executed again on the changed program version P’.

After both test runs, the DART log table contains the information shown in Table 3.3.
Three additional rows are logged for the delta run: An insert and an update operation
for the test case Andy Smith in row 5 and 6, and a delete operation for the test case John
Johnson in row 7.

Table 3.3: Example DART log table after both test runs are executed.

Id Test run id Test case Table name Column name Old value New value
1 1 Andy Smith Item Item Name Inserted USB Stick
2 1 Andy Smith Order Changed Date 12.05.11 14.05.11
3 1 John Johnson Item Item Name Keyboard Deleted
4 1 John Johnson Order Changed Date 12.05.11 14.05.11
5 2 Andy Smith Item Item Name Inserted USB Stick
6 2 Andy Smith Order Changed Date 12.05.11 13.05.11
7 2 John Johnson Item Item Name Keyboard Deleted

Test Analysis

After a test is executed on two different versions of the SUT, the two test runs are com-
pared with each other. The output of the test execution is a DART log table filled with all
data manipulation operations of the respective test runs. The comparison uses the SQL
set operations minus and union to compute the difference between the two runs, as follows:



29

Figure 3.9: The example program P’, which is a modified version of program P.

<Log data from baseline> MINUS <Log data from delta>
UNION ALL
<Log data from delta> MINUS <Log data from baseline>

The comparison operation will reveal all differences between the baseline and delta runs
with respect to the test configuration. The deviations, grouped by the test case identifier,
are presented to the tester, which in turn has to determine whether the deviation is a
regression fault or not.

In our example the output of the test is the deviations between the two runs, as shown
in Table 3.4. There is one deviation due to the changed update in addItemToOrder (row 1-
2) and one deviation due to the missing update in the delta version of removeItemFromOrder
(row 3). By analyzing the deviations in Table 3.4, the test engineer can verify that the
change in test case Andy Smith is due to correct changes in P’, whereas the missing
update in the test case John Johnson is due to a regression fault.

As the baseline run essentially serves as the test oracle, DART will identify regression
faults introduced in the delta version of the system, but will not identify faults that are



30 Chapter 3. Automated Regression Testing of Large Database Applications

present in both the baseline and delta run. In practice, the same baseline is used for
testing several consecutive deltas. After each test, the deviations that are correct in the
delta are updated into the baseline. Thus, the baseline is continually improved and the
test oracle increasingly more accurate.

Table 3.4: The deviations between the test runs for P and P’.

Id Test case Table name Column name Old value New value Test run
1 Andy Smith Order Changed Date 12.05.11 14.05.11 Baseline
2 Andy Smith Order Changed Date 12.05.11 13.05.11 Delta
3 John Johnson Order Changed Date 12.05.11 14.05.11 Baseline

Even with efficient test selection, a regression test may result in numerous deviations,
which need to be analyzed to determine their cause. Further, many deviations are likely
to be the result of the same regression fault or the effect of the same change. In order for
the tester to handle the regression test deviations efficiently, DART clusters the deviations
based on their output characteristics. The goal of the deviation clustering process is to
identify groups of deviations caused by identical changes or regression faults. Then the
tester can prioritize deviations in such a way as to cover at least one deviation from each
cluster, and thus maximize fault detection if the inspection budget is limited. The full
details of deviation clustering is provided in Paper 3 (Chapter 3 in Part 2).

3.2.3 Summary

In summary, we then have an approach to regression testing of database applications that
includes the following characteristics:

- Automatically observes and compares executions of the system under test, in order
to identify regression test deviations.

- Partially automates verification of test cases and groups regression test deviations
according to their output characteristics for efficient test analysis.

- Takes a systematic approach to control the variation in the input domain by making
use of classification tree models for black-box specification of the input domain of
the system under test.

- Automatically generates test specifications from test models

- Automatically generates test data that is needed to execute test cases, or alterna-
tively selects production data, both according to the test specifications from test
models.



Chapter 4

Research Methodology

This thesis reports on practice-driven research aimed at finding applicable solutions to
test challenges derived from engineering practice. In our context, the identification of such
challenges and the evaluation of proposed solutions were performed in collaboration with
The Norwegian Tax Department [35]. The research methodology applied for this thesis
included understanding the industrial problems in context, assessing the existing literature
in terms of its match to the defined problems, proposing solutions to the test challenges
and develop a tool to deploy the solutions within the application context, conducting
empirical studies to evaluate the proposed solutions, and iteratively improving the test
methodology and tool based on the results of the empirical studies.

4.1 Understanding the practical problems

Because this is practice-driven research, we started the work by understanding the appli-
cation context in order to identify and carefully define the main problems with engineers.
To ensure a close and fruitful collaboration, I was located on-site at our partner’s premises
throughout the project and we were given access to the necessary artifacts to help us un-
derstand the context and test challenges. During initial contact, they reported that their
system had grown to a size and complexity where the current, manual testing processes
were no longer deemed to be adequate or cost-effective. They both felt the need to, and
were curious to introduce a higher degree of test automation in order for their testing
regime to scale better. Through further investigation of system documentation and dis-
cussions with project staff members at different levels, it became evident that a particular
area of concern was the vast number of regression faults, occurring as a result of unantici-
pated ripple effects from changes in the system. This indicated the need for implementing
systematic, automated regression testing in the project.

Their system portfolio mainly consisted of large database applications, which were

31



32 Chapter 4. Research Methodology

dependent on several core batch processes to carry out the centralized business logic
guided by taxation laws and rules. However, these batch processes were automated and
consisted of complex programs that process very large numbers of transactions and span
a large input data space. Consequently, testing suffered from the following challenges:
manually verifying programs with such a variety of input combinations (large number of
test cases) does not scale, they needed a way to determine which test cases to execute to
achieve satisfactory regression testing, and they needed effective ways to procure the test
data necessary to execute test cases in order to promote test automation.

After understanding the industrial context and test challenges in the context of database
applications, we assessed the existing literature in order to learn the status of related
work. In general, the literature pertaining to the testing of database applications is
sparse and there exists little research on how to test database systems in a systematic
and cost-effective manner. Most literature in the field is aimed at assessing performance
of database management systems rather than testing the database application system
for functional correctness, not to mention regression testing. Furthermore, there are few
empirical studies in industrial settings. As mentioned in Section 2.2, the two most rele-
vant initiatives were the AGENDA Framework [8, 7, 9, 12] and the SIKOSA project [17,
4, 18]. However, the AGENDA framework was not intended for regression testing and
it had only been evaluated on smaller academic examples. We found the ideas hard to
scale to the needs of our partners. Some of the ideas from the SIKOSA project aligned
with our test challenges and thoughts regarding possible solutions. However, apart from
some experimental performance measures, they did not refer to any evaluations regarding
fault-detection capabilities or cost-effectiveness, let alone in a realistic setting. Neither
did any of them refer to available tools to support testing in practice.

4.2 Develop regression test methodology and tool

As a result of the problem identification and the lack of existing solutions to address this
problem, we developed a novel and practical regression test methodology and tool. It was
important for the proposed solution to not only address the immediate test challenges of
our partner, but also ensure its applicability in a broader test context, namely regression
testing of database applications in general. The proposed regression test methodology and
tool are described in Section 3.2. The tax department contributed a system developer
to the project in order to help implement the test methodology in a tool suited for their
application context.



33

4.3 Empirical studies

A fundamental part of this thesis is the execution of empirical studies in a real and repre-
sentative database application development environment. We conducted several empirical
studies and experiments to evaluate our test solutions and iteratively improve the method-
ology and tool for regression testing. First, we evaluated the fault detection capabilities
of our regression test solution through a case study in the tax department environment.
Then we conducted a large scale experiment to evaluate different ways of conducting test
case selection based on classification tree models, before doing further experiments on
the effect of clustering regression test deviations for improved inspection efficiency. Last,
we conducted a large scale case study comparing strategies for regression testing, both
regarding the construction of test suites and the setup of test data needed to execute the
regression tests.

When comparing techniques, e.g. test case selection techniques or deviation clustering
strategies, we have used statistical tests to determine whether there exists a significant
difference. Because our data samples do not fulfill the underlying assumption of normality
and equal variance, we have used non-parametric statistical tests [1, 36]. More specifically,
we have used two-tailed Mann-Whitney U-tests (Wilcox test in R) to conduct pair-wise
algorithm comparisons. In general, we have used α = 0.05 whenever referring to statistical
significance, but have also reported the exact p-values for each comparison made, in order
for the results of the statistical tests to be transparent for the readers.

Because statistical tests only address statistical significance, we have also used the Â12

effect size measure to assess the practical significance of the differences. When comparing
sample A to sample B, an Â12 effect size measurement value of 0.5 indicates that there is
no difference between the two samples, whereas values above 0.5 indicates that sample A is
superior to sample B, and the opposite for values smaller than 0.5. The further away from
0.5, the larger the effect size. We have reported the value of the effect size measurement,
but for increased legibility we have also classified the effect size into Small, Medium and
Large categories. The categories are based on the following standard intervals: Small <
0.10, 0.10 < Medium < 0.17 and Large > 0.17, the value being the distance from the 0.5
[36].

To account for randomness in sampling we repeated the exercises between 100 and
1.000 times depending on the amount of time taken for each execution and the number of
comparisons that needed to be carried out. This was done in order to ensure robustness
of the statistical results reported.





Chapter 5

Summary of Results

In this section, the key results of the papers submitted as part of this thesis are summa-
rized.

5.1 Evaluation of fault detection capabilities

Paper 1: Industrial Experiences with Automated Regression Testing of a
Legacy Database Application

This paper presents our proposed solution for functional regression testing of database
applications and reports an evaluation of the tool implementation (DART) in a real ap-
plication setting. The approach to regression testing is elaborated in detail in Chapter 3.
Thus, this section will focus on the results from evaluating the approach and tool, when
applied for regression testing of business critical batch programs in the tax department
of Norway.

The evaluation showed that the approach and tool lead to high fault detection capa-
bilities. As an early pilot evaluation of DART, we re-tested a previous system release,
which had already undergone the regular, manual testing and QA activities. Five regres-
sion faults had been identified during the regular testing routines in the project, and five
additional regression faults had been discovered in the production environment after it
was released. The purpose of the pilot evaluation was to investigate whether we could
identify the same ten regression faults, and possibly additional, undiscovered faults, with
the DART tool.

The results showed that DART revealed eight of the ten regression faults that were
previously found during testing and operation. The two previously detected faults missed
by DART were not found due to the insufficient coverage of the test suites; none of the
test cases exercised the two faulty situations. The pilot test was based on a random

35



36 Chapter 5. Summary of Results

selection of test data, and the missing coverage suggested the need for more systematic
approaches for selecting test cases in order to ensure more complete testing. However, the
pilot evaluation showed that the tests executed with DART also discovered nine previously
undetected faults, that is nine faults that were still present in the production system and
needed to be corrected. These faults were registered as one “A defect”, seven “B defects”
and one “C defect” on a criticality scale ranging from A to C, where A is the most critical
one. In total the test with DART uncovered 17 distinct faults, which is a substantial
improvement in terms of fault detection capability.

Furthermore, DART was used to support regression testing of batch jobs in the core
functional areas of the SOFIE application for eight subsequent releases. DART was then
used as a supplement to manual testing, not as a replacement. That is, DART was
used as final verification of the releases after the acceptance test was finished and the
release was ready to ship. A total of 37 faults were detected by regular testing during
these eight releases, while an additional 22 faults were detected by DART. DART then
helped uncover more than a third of the defects found during regression testing of the
subject system during these eight releases. Put in other words DART helped identify
approximately 60% more regression faults than what would have been detected without
it. We consider this to be of substantial impact, especially since DART was only used as
a “last check”.

As part of the evaluation, we also looked at defects reported from the production
environment of the system. We learned that even when combining manual testing with
DART, some faults still slipped through to production. We found a total of 14 faults
reported within the functional areas we had been testing. We went through the defects
to understand why these faults were not detected through testing with DART prior to
being released. The detailed analysis showed that six of them had actually been found
and reported by DART, but there were not enough time to fix them prior to release. Then
they had also been reported from the production environment before they got fixed. In
addition, there were a few defects on performance issues specific to the production envi-
ronment and one fault that was missed as we did not execute that part of the functional
domain in that particular test round. Most importantly, there were three faults that were
not discovered due to insufficient coverage of the test cases executed. This suggested the
need for generating test data in order to ensure test suites with predictable and more
complete coverage, which was later on addressed and reported in paper 4.

Another thing we learned from this study was the need for a systematic approach to
test case selection in order to reduce the number of redundant test cases executed. This
is important for the regression test approach to scale to large systems by reducing the
time spent on analyzing regression test deviations. This is addressed in detail in paper 2,



37

but initial results reported in this paper already showed significant potential savings in
inspection effort when selecting test cases systematically according to partition coverage
of classification tree models.

5.2 Evaluation of test case selection techniques

Paper 2: Test Case Selection for Black-Box Regression Testing of Database
Applications

The purpose of the study undertaken in this paper was to address a core challenge in
regression testing, namely selecting test cases. This problem is particularly acute when
test results must be checked manually or execution costs are large, and observations from
initial regression tests on randomly selected test data indicated significant redundancy,
leading to large inspection costs. In order to reduce test costs and for the regression
test approach to scale properly for testing large database applications, we thus needed
a refined way of selecting regression test cases. Hence, the objective was to select test
cases in such a way as to minimize regression testing effort while retaining maximum fault
detection power.

Our black-box approach to regression testing is based on classification tree models,
which are used to model the input domain of the system under test. Therefore, this study
investigates strategies for selecting regression test cases based on classification tree models.
Such models are used to partition the input domain of the system being tested, which in
turn are used to select and generate system test cases so as to achieve certain strategies
for partition coverage. To refine regression test selection, we combined similarity-based
test case selection with such a partition-based approach, so that test cases can be selected
within partitions while maximizing diversity among them.

An experiment was conducted to evaluate various selection strategies, including a pure
similarity-based selection and partition-based selection incorporating both a random and
similarity-based selection strategy within partitions. Both fault detection rate and selec-
tion execution time were assessed. For the similarity-based approaches, several similarity
functions and selection algorithms were investigated. The study addressed the following
research questions (the details of the algorithms and the selection strategies are explained
in Section 3 and 4 in Paper 2):

RQ1 For each selection algorithm, which similarity function, i.e. Euclidian, Manhattan,
Mahalanobis and NCD, is best suited for defining similarity between test cases,
in order to obtain the best fault detection rate and selection execution time when



38 Chapter 5. Summary of Results

performing similarity-based selection of test cases generated from classification tree
models?

RQ2 When used in combination with their best similarity function (RQ1), which one of
the selection algorithms, i.e., evolutionary and greedy, provides better fault detec-
tion rates and selection execution times, when selecting test cases generated from
classification tree models?

RQ3 Which one of the selection strategies, random partition-based, similarity partition-
based and pure similarity-based (the two latter ones incorporating the best combina-
tion of similarity function —RQ1—and selection algorithm—RQ2) provides better
fault detection rates and selection execution times when selecting test cases gener-
ated from classification tree models?

RQ4 Comparing the best selection approach from RQ3 and a random approach, which one
provides better fault detection rates and selection execution times when selecting
test cases generated from classification tree models?

The results showed that applying a partition-based selection, i.e. select model parti-
tions in a balanced way, and then select test cases within each partition either at random
or by maximizing diversity between them, provided a dramatic improvement over random
test case selection. For example, by selecting 5% of the test cases in a test suite, the fault
detection rate of partition-based selection is nearly 80%, as opposed to 25% for random
selection. Finding nearly 80% of the faults at the cost of only 5% of the test suite yields
highly significant savings in practice, as it both reduces test execution time and more
importantly reduces the manual effort associated with analyzing test results.

Whether to opt for a similarity partition-based selection or a random partition-based
selection was not clear cut as their differences where marginal. The selection execution
time favored random partition-based, with significant differences for all sample sizes.
However, for smaller sample sizes, which are of main interest here, the difference is less
than a few minutes, i.e. for sample values up to 50%, execution time ranges from near 0
to up to 4 min for similarity partition-based, as opposed to less than a second for random
partition-based. These differences in selection execution time have limited consequences
in practice. In terms of the fault detection rate, similarity partition-based was better
than random partition-based for all sample sizes, though with modest improvements. A
detailed analysis concluded that the similarity partition-based selection strategy should
be applied when a large number of test cases are contained in each partition and there is
significant variability within partitions. If these conditions are not present, incorporating
similarity measures is not worthwhile, since the gain is negligible over a random selection
within each partition.



39

As part of the study we investigated several similarity functions and selection algo-
rithms to identify the most effective similarity-based selection strategy in our context.
The Mahalanobis similarity function combined with the evolutionary selection algorithm
proved to be the most efficient with regards to fault detection rate. The fact that account-
ing for correlation is the main differentiating factor between the Mahalanobis similarity
function and the two simpler similarity functions (Euclidian and Manhattan) could in-
dicate that it is important to consider correlation among model properties. The NCD
similarity function fell short of the others in terms of fault detection rate. The most
plausible reason is that the test cases are represented by a fairly simple structure that
accounts for very little information distance between their compressed versions. Thus,
NCD is not able to pick up the minor differences as well as simpler geometrical func-
tions. The evolutionary selection algorithm provided better fault detection rates than the
greedy selection algorithm for all selection samples sizes except for 5%, where there was
no statistical significance. For all other sample sizes, the difference was notable (large
effect size). Evolutionary also converges to 100% fault detection much faster than the
greedy approach, i.e. it reaches 98.5% and 100% detection rates at 60% and 80% sample
sizes, respectively, whereas greedy does not reach a 100% detection rate until the sample
size is 100%.

5.3 More effective regression test analysis by clustering

deviations

Paper 3: Clustering Deviations for Black Box Regression Testing of Database
Applications

This study investigates how to cope with the many discrepancies (deviations) that can
be observed when running regression test cases on a new version of a system. In other
words, how can we help testers analyze such deviations effectively and decide whether
they are symptoms of regression faults or the logical result of changes. A problem that
is highly important in practice, but one that has not been given much attention in the
research literature so far. Our regression test approach enables effective execution and
automatic comparisons of large number of test cases and pin-points exactly which test
cases that result in deviations and thus are candidates for regression faults. Yet, manual
test effort is required in order to inspect the deviations and decide their cause. There
may be numerous deviations from an individual regression test, and although effective
test case selection reduces the number, there may occasionally still be more than a tester
can effectively handle.



40 Chapter 5. Summary of Results

As the number of deviations tend to be far greater than the number of unique changes
or regression faults, our aim was to group deviations resulting from the same change
or regression fault, in order for the tester to inspect as few deviations as possible while
still remaining confident of finding all regression faults. We chose to base our solution
for grouping deviations on clustering, that is algorithms which aim at discovering groups
and structures in data in such a way as to maximize the distance between groups, and
minimize the distance within groups.

The study addressed the following research questions:

RQ1 Can clustering serve as an automated, accurate grouping strategy for grouping re-
gression test deviations?

RQ2 What kind of input data to the clustering process yields the most accurate grouping
of the deviations?

RQ3 How much effort can the tester be expected to save in regression test and deviation
analysis, when systematically grouping test deviations prior to analysis, as opposed
to the current random inspection?

The results showed that clustering indeed can serve as an accurate strategy for group-
ing regression test deviations. We measured the level of entropy across both clusters and
groups of deviations in order to determine the accuracy of the clustering. Entropy gave
us a normalized measure of the purity of each cluster, and the spread of each type of
deviation across clusters. A perfect clustering would have as many clusters as there were
regression faults and changes, and each cluster would only contain deviations matching a
unique fault or change, thus yielding an entropy of zero. In practice, it is more important
to obtain zero cluster entropy than zero deviation entropy, as this would ensure that all
the clusters are homogenous (only matching one regression fault or change). Under such
circumstances, the tester would always conduct a complete deviation analysis when in-
specting one deviation from each group, only with the potential risk of having to analyze
a few more deviations than necessary if the deviation entropy is not perfect.

The case study, conducted in a real development setting, evaluated the proposed clus-
tering strategy across four different regression test campaigns covering three different
parts of the system under test. For three out of the four test campaigns, clustering accu-
racy was perfect for at least one type of input. Additionally, four types of input yielded
homogenous clusters for all test campaigns. In terms of inspection effort, this means
that for the four test campaigns under study, and when using a one-per-cluster sampling
strategy, it was estimated that testers would only have to analyze a very small percentage
of deviations while still covering all regression faults and changes in the regression tests.
The specific number of deviations to inspect were three out of 48, two out of 47, two out



41

of 84, and five out of 43, respectively. This is a dramatic increase in efficiency for devi-
ation analysis in regression testing, and a way to achieve much higher confidence when
analyzing deviations under time constraints. Such results are more specifically important
for scaling regression testing to large database applications.

The case study also made a thorough assessment of the kind of clustering input that
yielded the most accurate results in our context, where test cases are derived from classifi-
cation tree models. The sources of information used as clustering input per test case were
properties from the test models and various aspects of the deviation output, i.e. which
tables and table columns that deviated along with the database operation causing the
deviation (inserts, updates, or deletes). In general, nearly all clustering results based on
model properties yield poor results, indicating they are not suited to cluster deviations.
A plausible explanation is that the model describes the input domain of the regression
test rather than the output of the test. Although the two are related, the relationship is
complex, and the results suggest that the information available in the deviation output
is more relevant to clustering the deviations. Overall, the information that led to the
most accurate deviation clustering was the combination of columns and operations in
the deviation output, indicating differences in columns and operations being manipulated
across versions for a given test case. That specific combination of input resulted in perfect
accuracy for two of the test campaigns, while achieving perfectly homogeneous clusters
for the two others, with a limited degree of dispersion across more than one cluster for
common-cause deviations.

5.4 Effective regression test strategies for database ap-

plications

Paper 4: Cost-effective Strategies for the Regression Testing of Database Ap-
plications: Case study and Lessons Learned

This study was undertaken in order to assess the practice of using production data
for testing database applications and evaluate the alternative practice of using generated
test data following various strategies. The quality of the production data is indisputable,
however using production data for test automation purposes offers some challenges. They
may be rigid to procure, confidentiality issues have to be sorted, and the test coverage
of a given set of production data is unpredictable and may not satisfy test specifications.
Generated test data address all those flaws, but at a potentially high initial cost of setting
up the mechanism to generate test data. Also, which test strategy to embrace when
generating test data in order to ensure the most exhaustive regression testing possible is



42 Chapter 5. Summary of Results

not obvious.
We adopted a combinatorial testing strategy based on our classification tree models,

which is an attractive strategy for generating compact n-way test suite specifications.
During initial tests on combinatorial test suites we found quite a few faults that bore
little relevance to the practical operation of the system under test. While there is no
harm in finding faults regarded less important, as long as the more important ones are
still detected, it made us question whether combinatorial test suites were adequate to
support regression testing. Thus, we made an analysis of the operational profile of the
system under test, which was used both to check how well the combinatorial test suites
aligned with the operational profile, and as an alternative strategy to drive generation of
synthetic test data. We assessed the adequacy of these alternative strategies for generating
synthetic test data (various combinatorial test strategies and operational profile testing)
in terms of revealing important faults, along with expected coverage and fault detection
capabilities of tests on production data. The working hypothesis was that the combination
of combinatorial tests and operational profile tests on generated test data would prove to
be a good alternative to using production data and ensure more effective and complete
regression tests.

The following research questions were addressed in the study:

RQ1 Given the common practice of using production data for (regression) testing database
applications, its analysis and assessment is of high practical interest:

1. What level of partition coverage and model property coverage can you expect
from production data used for testing, when matched against a realistic clas-
sification tree model?

2. How much redundancy can you expect given the same tree, i.e. do many
instances of test data cover the same partitions?

RQ2 Given that combinatorial testing is one of the major testing approaches recom-
mended in the literature, better understanding what it could achieve in database
application testing and its drawbacks is of high practical interest. When comparing
pair-wise, three-wise, and weighed pair-wise combinatorial test suite specifications
with the test suite specifications based on the system operational profile, how well
do they align, i.e. how representative are combinatorial test suite specifications of
the system usage?

RQ3 Ultimately, we want to favor a test strategy that reveals important faults. By
important, we mean a high relative likelihood of occurrence during system operation,
e.g. the number of taxpayers potentially being harmed by the fault. Given the



43

following types of test suites: (1) synthetic pair-wise (2W), (2) synthetic three-wise
(3W), (3) synthetic pair-wise weighed according to the operational profile (W2W),
(4) synthetic and based on the operational profile only (OP), and (5) based on
production data only (PD), which test strategy does achieve higher fault detection
and best reveal important faults in the context of regression testing?

RQ4 Can combinatorial testing be effectively combined with testing based on operational
profiles or production data? Intuitively, these techniques can be expected to target
different faults. Are they complementary, and if so, what combination yields the
best fault detection rate?

The results from a case study in our application environment showed that combina-
torial testing strategies are effective, both in terms of the number of regression faults
discovered, but also in terms of the importance of these faults. This is despite the fact
that the combinatorial test suite specification shares very little with test suite specifica-
tions derived from the operational profile. In fact, the combinatorial tests detected all
the faults that were detected using operational profile tests and many more. A plausible
explanation why this is the case is that faults can be triggered by the interactions of a few
equivalence classes. So despite being unrealistic (their partitions have low probability of
occurrence), combinatorial test case specifications still seem to have the ability to detect
important faults.

The tests on production data revealed fewer faults than the combinatorial tests, but
captured faults that neither of the combinatorial nor operational profile tests on generated
test data were able to capture, and on average the faults were also more important. We
found this to be due to the fact that the test models from which the generated test
data are derived were missing important properties, which in turn shows that modeling a
large input domain is hard even with domain experts involved. Thus, the combination of
combinatorial tests and operational profile tests on generated test data are not sufficient
to adequately regression test the system as ignoring tests on production data could see
important faults slip through.

As regression testing is more effort intensive with production data, we recommend
running continual regression tests using the most cost-effective, generated combinatorial
test data (pair-wise) throughout the system release development, e.g. after each code
check-in (defect correction). Then, when reaching a stable system release, we advise to
set up and run additional regression tests based on production data (carefully selected
according to partition coverage) in order to capture additional relevant faults. This would
both ensure quick feedback for the developers after defect corrections, at relatively low
cost, but also the execution of complementary regression tests to detect faults outside the
scope of the test model, prior to system delivery. In practice, test models should also be



44 Chapter 5. Summary of Results

iteratively improved when possible, when shortcomings are being exposed by production
data testing. The generated test data would then continuously improve and, in the long
run, this would reduce the need for production data testing and decrease the cost of
regression testing.



Chapter 6

Directions for future work

Our proposed regression test approach introduces automation into several parts of the
regression test procedure, but is not fully automated. As long as there does not exist a
complete and precise test oracle, there will always be manual labour associated with the
analysis of test results. Careful measures to select or prioritize regression test cases help
reduce the test effort, as do measures taken to group regression test deviations according
to their cause. These measures are necessary in order for regression testing to scale to
large database applications, but still some manual effort is required for test verification.
In order to ensure a completely automated regression test process, further research would
be required on how to effectively build a precise test oracle that scale for industry size
applications. However, until someone walks that extra mile, more efforts could be taken
in order to further increase the scalability of regression testing and help reduce manual
work. One thing that has not been part of this work, but nevertheless would have been
very relevant is an automated way of predicting the expected changes to the result sets
based on the changes made in the new system version. A precise mechanism for doing
so would ensure that expected changes could be automatically detected and verified in a
regression test and consequently eliminate all deviations caused by these changes from the
resulting set of regression test deviations. Then, the remaining deviations would result
from regression faults.

Another relevant future addition, which is not research per se, but rather technology
transfer, would be to implement an open-source platform-independent tool variant of
the regression test approach suggested in this thesis. Our ambitions was set at doing
so, but unfortunately this process often goes beyond the scope a research project and
did, for various reasons, not materialize. The regression test tool we have developed is
sophisticated and applicable in an industry setting, but nevertheless developed in our
specific context and is neither open source, nor platform-independent.

45





Chapter 7

Concluding Remarks

Regression testing is highly important in order to maintain system quality when new
versions of a system are released. Regression testing is also expensive as it attempts to
exercise the system under test in a comprehensive manner. By nature, regression tests
are repetitive and thus well suited for test automation. However, automating regression
testing is in general not straightforward, at least not for higher level system testing. In
this thesis, we have focused on test automation in the context of functional, black-box
system level regression testing of database applications. In such a context, core challenges
regarding regression testing are (1) how to collect a test baseline and compare test results
across system versions given the fact that it is difficult to build precise test oracles for
database applications with many highly complex queries, (2) how to reduce test effort
by selecting or prioritizing test cases, (3) how to cope with the many discrepancies that
can be observed from regression tests across system versions, and (4) how to go about
regression testing in practice, namely what test strategies to opt for and how to effectively
provide test data needed for test execution.

As a first step towards addressing the above challenges, we proposed in Paper 1, a
methodology and tool prototype for regression testing of batch programs running in large
database applications and evaluated the fault detection effectiveness of the approach in
a large application with real faults. When the approach was applied to regression test a
past system release, it detected eight of the ten faults previously detected during testing
and operation, but also revealed an additional nine faults that were still present in the
operation of the system. Furthermore, when applied as a last regression test prior to eight
consecutive system releases, the approach helped identify an additional 60% regression
faults to those found during regular testing, which otherwise would have been released.
We believe this is a substantial contribution in terms of increased fault detection that
helps mitigate risk when releasing new versions of the system, as it is more thoroughly,
yet efficiently tested, causing less regression faults to be released.

47



48 Chapter 7. Concluding Remarks

The next step was to further improve the scalability of the regression test approach,
which was addressed in two dissimilar, yet complementary ways in Papers 2 and 3. First,
we addressed a core challenge in the input part of regression testing, namely selecting test
cases. Initial regression tests on randomly selected test cases indicated a lot of redundancy,
i.e. many test cases resulting in the same regression faults. In order to reduce test costs
and to improve the scalability of the regression test approach, we needed a refined way
of selecting regression test cases. We made use of classification trees to model the input
domain of the system under test, which provided a structured way of specifying test
cases. When using production data as basis for regression testing, we could then match
the data against the test case specifications, in order to learn their distribution across
model partitions. Then, we could apply a partition-based test case selection to select test
cases in a balanced way from the model partitions covered, and then either selects test
cases at random within each partition or, alternatively, based on diversity within each
partition. The latter is effective when the number of test cases in partitions is large and
the equivalence classes are defined in such a way that they contain significant variation.
Such partition-based selection proved very efficient in our context, where for example
selecting only 5% of the test cases in a test suite helped reveal nearly 80% of the faults,
thus significantly reducing test effort while still remaining confident about finding most
faults. Additionally, we have implemented a solution for automatically generating test
data according to test suite specifications from classification tree models. This enables
us to use the classification tree models to automatically generate test suite specifications
according to combinatorial selection criteria, e.g. pair-wise and three-wise, and in turn
automatically generate test data needed to execute the test cases. Thus, we have effective
test selection methods for both situations here we use production data and generated data
for regression testing, both based on classification tree models.

The second attempt to help scale regression testing to large database applications
was taken in paper 3. Here, we aim at addressing another core challenge in regression
testing, namely how to effectively handle the many discrepancies that can be observed
when running regression test cases on a new version of a system. In other words, how can
we help testers analyze such deviations, which can be due to either changes or regression
faults, and decide what are their actual causes. We made use of clustering to help group
regression test deviations based on patterns in their output characteristics. The goal was
to identify groups of deviations caused by the same changes or regression faults. Our
clustering approach to regression test deviations showed encouraging results. Among the
four test campaigns assessed, deviations were clustered perfectly for two of them, while for
the other two, the clusters were all homogenous, i.e. all deviations in a cluster are results
of the same change(s) or fault(s). Because, we always achieved homogenous clusters, the



49

testers would be certain to cover all groups of regression faults by inspecting one deviation
from each cluster, which could yield significant savings in inspection effort. For example,
in our test campaigns that resulted in inspecting three out of 48, two out of 47, two out
of 84, and five out of 43 regression test deviations, respectively.

Then we conducted a case study assessing, comparing, and combining various strate-
gies for regression testing. Our observations of regression testing in a real development
environment suggested that combinatorial testing alone was not sufficient to capture all
kinds of regression faults, and should therefore be supplemented with regression tests
better aligned with the operational profile of the system under test, as intuitively they
target different faults. One way to go about operational profile testing is to rely on
production data, as by nature production data will in general be representative of the
system operation. However, as production data is not optimal when trying to automate
regression testing, a more attractive strategy would be to use operational profiles to drive
the generation of operational profile test suites from our classification tree models, and
then automatically generate test data according to the operational profile test suite spec-
ifications. The case study showed some interesting results, though. First of all, the
combinatorial tests proved to be very efficient in terms of detecting faults and pair-wise
was the most cost-effective strategy among them in our context. Second, the operational
profile tests on generated data derived from the classification tree models did not offer
any improvement in terms of capturing additional faults to those revealed by the combi-
natorial test strategies. Third, what did yield improvements was regression tests based
on production data. Thus, the combination of pair-wise combinatorial testing and tests
relying on production data, selected in a systematic manner according to model partition
coverage, turned out to be a convincing test strategy in terms of covering a broad range
of regression faults at a reasonable cost.





References for the Summary

[1] Andrea Arcuri and Lionel Briand. “A practical guide for using statistical tests to
assess randomized algorithms in software engineering.” In: Software Engineering
(ICSE), 2011 33rd International Conference on. 2011, pp. 1–10.

[2] Boris Beizer. Software Testing Techniques (2Nd Ed.) New York, NY, USA: Van
Nostrand Reinhold Co., 1990.

[3] John Bible, Gregg Rothermel, and David S. Rosenblum. “A Comparative Study
of Coarse- and Fine-grained Safe Regression Test-selection Techniques.” In: ACM
Trans. Softw. Eng. Methodol. 10.2 (Apr. 2001), pp. 149–183.

[4] Carsten Binnig, Donald Kossmann, and Eric Lo. “Testing Database Applications.”
In: Proceedings of the 2006 ACM SIGMOD International Conference on Manage-
ment of Data. SIGMOD ’06. Chicago, IL, USA: ACM, 2006, pp. 739–741.

[5] Rex Black. Pragmatic Software Testing: Becoming an Effective and Efficient Test
Professional. New York, NY, USA: John Wiley & Sons, Inc., 2007. isbn: 0470127902.

[6] Donald K. Burleson. Oracle SAP Administration. Ed. by Gigi Estabrook. 1st. Se-
bastopol, CA, USA: O’Reilly & Associates, Inc., 1999. isbn: 156592696X.

[7] David Chays and Yuetang Deng. “Demonstration of AGENDA tool set for testing
relational database applications.” In: Software Engineering, 2003. Proceedings. 25th
International Conference on. 2003, pp. 802–803.

[8] David Chays et al. “A Framework for Testing Database Applications.” In: SIGSOFT
Softw. Eng. Notes 25.5 (Aug. 2000), pp. 147–157.

[9] David Chays et al. “An AGENDA for Testing Relational Database Applications: Re-
search Articles.” In: Software Testing, Verification and Reliability 14.1 (Mar. 2004),
pp. 17–44.

[10] David M. Cohen et al. “The AETG system: an approach to testing based on com-
binatorial design.” In: Software Engineering, IEEE Transactions on 23.7 (1997),
pp. 437–444.

51



52 References for the Summary

[11] Myra B. Cohen et al. “Constructing Test Suites for Interaction Testing.” In: Pro-
ceedings of the 25th International Conference on Software Engineering. ICSE ’03.
Portland, Oregon: IEEE Computer Society, 2003, pp. 38–48.

[12] Yuetang Deng, Phyllis Frankl, and David Chays. “Testing database transactions
with AGENDA.” In: Software Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on. 2005, pp. 78–87.

[13] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. “Test Case Pri-
oritization: A Family of Empirical Studies.” In: IEEE Trans. Softw. Eng. 28.2 (Feb.
2002), pp. 159–182.

[14] Francisco G. Oliveira Neto Emanuela G. Cartaxo Patrícia D. L. Machado. “On the
use of a similarity function for test case selection in the context of model-based
testing.” In: Software Testing, Verification and Reliability 21 (2 2011), pp. 75–100.

[15] Colleen Graham et al. Market Share: All Software Markets, Worldwide, 2013. 2014.
url: https://www.gartner.com/doc/2695617 (visited on 06/15/2014).

[16] Todd L. Graves et al. “An Empirical Study of Regression Test Selection Techniques.”
In: ACM Trans. Softw. Eng. Methodol. 10.2 (Apr. 2001), pp. 184–208.

[17] Florian Haftmann, Donald Kossmann, and Er Kreutz. “Efficient regression tests
for database applications.” In: In Conference on Innovative Data Systems Research
(CIDR. 2005, pp. 95–106.

[18] Florian Haftmann, Donald Kossmann, and Eric Lo. “A Framework for Efficient
Regression Tests on Database Applications.” In: The VLDB Journal 16.1 (Jan.
2007), pp. 145–164.

[19] Mary Jean Harrold and Alessandro Orso. “Retesting software during development
and maintenance.” In: Frontiers of Software Maintenance, 2008. FoSM 2008. 2008,
pp. 99–108.

[20] A. S. Hedayat, N. J. A. Sloane, and John Stufken. Orthogonal Arrays: Theory and
Applications. 1st. New York: Springer, 1999.

[21] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. “Achieving Scalable Model-based
Testing Through Test Case Diversity.” In: ACM Transactions on Software Engineer-
ing and Methodology (TOSEM) 22.1 (Mar. 2013), 6:1–6:42.

[22] Michael Hoding et al. SAP Database Administration with Oracle. SAP PRESS, 2008.
isbn: 1592291201, 9781592291205.

[23] Bogdan Korel, Luay H. Tahat, and Mark Harman. “Test prioritization using system
models.” In: Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE
International Conference on. 2005, pp. 559–568.



53

[24] D. Richard Kuhn and Michael J. Reilly. “An investigation of the applicability of de-
sign of experiments to software testing.” In: Software Engineering Workshop, 2002.
Proceedings. 27th Annual NASA Goddard/IEEE. 2002, pp. 91–95.

[25] D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo Jr. “Software Fault
Interactions and Implications for Software Testing.” In: IEEE Trans. Softw. Eng.
30.6 (June 2004), pp. 418–421.

[26] Eckard Lehmann and Joachim Wegener. “Test Case Design by Means of the CTE-
XL.” In: Proceedings of the 8th European International Conference on Software Test-
ing, Analysis & Review (EuroSTAR 2000). 2000.

[27] Hareton K.N. Leung and Lee White. “Insights into regression testing [software test-
ing].” In: Software Maintenance, 1989., Proceedings., Conference on. 1989, pp. 60–
69.

[28] Robert Mandl. “Orthogonal Latin Squares: An Application of Experiment Design
to Compiler Testing.” In: Commun. ACM 28.10 (Oct. 1985), pp. 1054–1058.

[29] Daniel Di Nardo et al. “Coverage-based regression test case selection, minimiza-
tion and prioritization: a case study on an industrial system.” In: Software Testing,
Verification and Reliability 25.4 (2015), pp. 371–396.

[30] Thomas Joseph Ostrand and Marc J. Balcer. “The category-partition method for
specifying and generating fuctional tests.” In: Communications of the ACM 31.6
(1988), pp. 676–686.

[31] David S. Rosenblum and Elaine J. Weyuker. “Lessons Learned from a Regression
Testing Case Study.” In: Empirical Softw. Engg. 2.2 (Feb. 1997), pp. 188–191.

[32] Gregg Rothermel et al. “An empirical study of the effects of minimization on the
fault detection capabilities of test suites.” In: Software Maintenance, 1998. Proceed-
ings., International Conference on. 1998, pp. 34–43.

[33] Patrick J. Schroeder, Pankaj Bolaki, and Vijayram Gopu. “Comparing the fault
detection effectiveness of n-way and random test suites.” In: Empirical Software
Engineering, 2004. ISESE ’04. Proceedings. 2004 International Symposium on. 2004,
pp. 49–59.

[34] Patrick J. Schroeder and Bogdan Korel. “Black-box Test Reduction Using Input-
output Analysis.” In: SIGSOFT Softw. Eng. Notes 25.5 (Aug. 2000), pp. 173–177.

[35] Skatteetaten. 2015. url: http://www.skatteetaten.no.

[36] András Vargha and Harold D. Delaney. “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong.” In: Journal of Edu-
cational and Behavioral Statistics 25.2 (2000), pp. 101–132.



54 References for the Summary

[37] Filippos I. Vokolos and Phyllis G. Frankl. “Empirical Evaluation of the Textual Dif-
ferencing Regression Testing Technique.” In: Proceedings of the International Con-
ference on Software Maintenance. ICSM ’98. Washington, DC, USA: IEEE Com-
puter Society, 1998, pp. 44–.

[38] Lee White et al. “Extended firewall for regression testing: an experience report.” In:
Journal of Software Maintenance and Evolution: Research and Practice 20.6 (2008),
pp. 419–433.

[39] Wikipedia. Batch Processing. 2015. url: https://en.wikipedia.org/wiki/

Batch_processing (visited on 07/25/2015).

[40] Wikipedia. Database Application. 2015. url: https://en.wikipedia.org/wiki/
Database_application (visited on 07/25/2015).

[41] Alan W. Williams. “Determination of Test Configurations for Pair-Wise Interaction
Coverage.” In: Proceedings of the IFIP TC6/WG6.1 13th International Conference
on Testing Communicating Systems: Tools and Techniques. TestCom ’00. Deventer,
The Netherlands, The Netherlands: Kluwer, B.V., 2000, pp. 59–74.

[42] Alan W. Williams and Robert L. Probert. “A practical strategy for testing pair-
wise coverage of network interfaces.” In: Software Reliability Engineering, 1996.
Proceedings., Seventh International Symposium on. 1996, pp. 246–254.

[43] Lei Xu et al. “A Browser Compatibility Testing Method Based on Combinatorial
Testing.” In: Proceedings of the 2003 International Conference on Web Engineering.
ICWE’03. Oviedo, Spain: Springer-Verlag, 2003, pp. 310–313.

[44] Shin Yoo and Mark Harman. “Regression Testing Minimisation, Selection and Pri-
oritisation: A Survey.” In: Software Testing, Verification and Reliability 22.2 (2012),
pp. 67–120.



Part 2: List of Papers





Paper 1

Industrial Experiences with Automated Regression

Testing of a Legacy Database Application

Authors: Erik Rogstad, Erik Arisholm, Lionel Briand, Ronny Dalberg, and Marianne
Rynning

Abstract

This paper presents a practical approach and tool (DART) for functional black-box regression

testing of complex legacy database applications. Such applications are important to many or-

ganizations, but are often difficult to change and consequently prone to regression faults during

maintenance. They also tend to be built without particular considerations for testability and

can be hard to control and observe. We have therefore devised a practical solution for functional

regression testing that captures the changes in database state (due to data manipulations) dur-

ing the execution of a system under test. The differences in changed database states between

consecutive executions of the system under test, on different system versions, can help identify

potential regression faults. In order to make the regression test approach scalable for large, com-

plex database applications, classification tree models are used to prioritize test cases. The test

case prioritization can be applied to reduce test execution costs and analysis effort. We report

on how DART was applied and evaluated on business critical batch jobs in a legacy database

application in an industrial setting, namely the Norwegian Tax Accounting System (SOFIE) at

the Norwegian Tax Department (NTD). DART has shown promising fault detection capabilities

and cost-effectiveness and has contributed to identify many critical regression faults for the past

eight releases of SOFIE.

Keywords – Regression Testing, Legacy Database Applications, Industrial Context

57



58

1 Introduction

There exist many large legacy systems with a long, often unforeseeable life span as they
continue to provide core business value to their organization. A commonality of these
systems is that they are difficult to change and consequently prone to regression faults.
They were built on old technology and usually not constructed with consideration for
testability.

For example, SOFIE is a legacy system in the Norwegian Tax Department (NTD) that
has been maintained for several years. As a result of extensive internal testing and a large
user base over a long period of time, the core system features are reasonably dependable.
However, changes will always take place due to changed taxation laws, changed user
requirements, fault corrections, and refactoring. Furthermore the release cycle of the
project is rather ambitious with continuous production fixes, monthly releases for less
critical fixes along with overlapping releases for new features. This continuous change
process combined with the growing size and complexity of the system has increased the
need for systematic regression testing over and above what the current manual testing
processes can handle.

Unfortunately, existing tools and large parts of the research in the area of regression
test automation focus on solutions for systems that are designed to be highly testable. This
motivated NTD to establish a cooperation project with Simula Research Laboratory, in
order to investigate the possibilities for more cost-effective solutions for regression testing
of large legacy database applications. Through this cooperation project we have developed
a novel tool, that addresses the particular needs for regression testing in NTD and, we
believe, those of many legacy database applications. The tool is called DART, which is
an acronym for [DA]tabase [R]egression [T]esting.

The main contributions of this paper are:

• A practical approach and tool (DART) for regression testing of database applica-
tions, with a focus on generating and prioritizing black-box test cases, automatically
identifying potential regression faults and then prioritizing their inspections for early
fault detection.

• Application and evaluation of DART for business critical batch jobs in a legacy
database application in an industrial setting.

The remainder of this paper is organized as follows. Section 2 describes the SOFIE
system and what we consider to be the major testing needs of the system. Section 3
elaborates on the testing requirements and how they are related to existing work. Section 4
describes our proposed solution, the DART tool, whereas Section 5 presents practical
experiences. Finally, Section 6 concludes and describes future work.



59

2 Testing requirements for the SOFIE system

SOFIE is the tax accounting system in Norway, handling yearly tax revenues of approx-
imately 500 Billion NOK. It has evolved over the past 10 years to provide dependable,
automated, efficient and integrated services to all 430 tax municipalities and more than
3,000 end users (e.g., taxation officers). The system is still evolving and the maintenance
project currently staffs more than 100 employees and consultants.

The system was mainly designed to handle large amounts of data, which requires high
throughput and a continuous focus on performance related aspects. The system has to
keep historical data for all taxpayers in Norway for at least ten years, and some of the
system tables currently hold more than 500,000,000 rows of data. To handle the enormous
amounts of data, the system was built as a database application on the Oracle platform.
To ensure efficient data processing the business logic of the system was organized into
batch jobs, along with graphical user interfaces to drive the work processes of the end
users. Both system components are tightly coupled with the underlying database.

SOFIE has approximately 380 batch jobs constituting 1.7 million lines of PL/SQL
code. There are four categories of batch jobs:

• Interface jobs, which read and write files and transform data between SOFIE and
external systems.

• Document production jobs, which produce documents to taxpayers.

• Report jobs, which produce reports for end users.

• Core business jobs, which carry out the core business logic of the system and drives
the work processes of the end users.

The batch jobs are continuously changing, and in general they are very complex, hard
to test, and prone to regression faults. It is vital for NTD to avoid releasing defects in the
core of the system. As the system serves all taxpayers in Norway, even “minor” defects can
potentially harm Norwegian society and cause nationwide, bad press. Hence, one main
testing requirement of SOFIE is the need for efficient, cost effective and reliable regression
testing of the batch jobs in the system.

3 Problem definition and related work

In our context, a regression test solution must handle the following properties of the
system under test:



60

• A batch job consists of a large number of tightly integrated set of operations, which
makes it hard to control the job during test. A batch job can only be started,
without further mechanisms of control. Then it runs to completion, typically in
multiple, parallel job streams. Thus, you can control the input of the batch, and
check the end result of it, but what happens in between is difficult to observe, and
even more difficult to control.

• For the very same reasons it is very hard to build an automated test oracle (pre-
dicting the “expected result”) for the system under test.

• Given the amount of batch jobs in the system, it is unrealistic to refactor them for
improved testability. It would simply not be cost effective. Hence, they must be
tested as they are.

Yoo and Harman [12] recently conducted a survey on regression testing minimization,
selection and prioritization, constituting nearly 200 papers. It encompasses the main re-
search results around regression testing, addressing the problems of identifying obsolete,
reusable and re-testable test cases (selection), eliminate redundant test cases (minimiza-
tion) and order test cases to maximize early fault detection (prioritization). The survey
shows that the majority of the works focuses on white-box testing strategies, concerning
relatively small stand-alone programs written in C or Java, or for spreadsheets, GUIs and
web applications. The techniques surveyed presuppose an already existing, effective test
suite on which to select, minimize and prioritize test cases for the regression test. Before
addressing these issues, we needed to take one step back to figure out how we should
collect a test baseline, and how to perform regression testing.

Chays et al. [4] noted the lack of uniform methods and testing tools for verifying the
correct behavior of database applications, despite their crucial role in the operation of
nearly all modern organizations. Most literature in the field was aimed at assessing per-
formance of database management systems rather than testing the database application
system for functional correctness, let alone regression testing. The authors proposed a
framework for functional testing of database applications called AGENDA [3, 5, 6]. How-
ever, the framework was not intended for regression testing and we found some of the
ideas hard to scale, which had only been evaluated for smaller examples.

The most relevant work we found targeting regression testing for database applications
was the SIKOSA project [7, 2, 8]. The authors proposed a capture-and-replay tool for
carrying out black-box regression testing of database applications. This aligned well
with our objectives regarding database regression testing, namely a capture-and-replay
approach, similar to what has been more commonly used for GUI testing, to automatically
identify differences between the results of two identical test runs (referred to as deviations).



61

Because it is hard to build a precise test oracle for database applications with very complex
queries, a more practical strategy is to capture a set of test case executions of the system
under test, under the assumption that it currently works correctly (the baseline), and then
use the replay run after modifications (the delta) to identify deviations and thus potential
regression faults. Note that because such deviations only indicate potential faults, as they
may also be due to valid changes, a technique is also needed to identify actual faults in a
cost-effective manner.

The SIKOSA project restricted their work to checking input-output relations of database
applications, as they stated that checking the state of the database after each test run
was prohibitively expensive and difficult to implement for black-box regression testing. In
our context, however, the outputs of the batch jobs are reflected directly in the database
state and must therefore be monitored. The SIKOSA project provided some experimen-
tal performance measures for their tool, but did not refer to any evaluations regarding
fault-detection effectiveness or cost-effectiveness, let alone in an industrial setting. Fur-
thermore, neither of the proposed tools from the AGENDA framework or the SIKOSA
project are publically available.

We also needed a specification-based, black-box testing technique to help specify test
input data (test cases) with adequate coverage, based on an analysis of the input domain
for a given batch job. There are many suitable tools for this purpose, but we found that
the classification tree modeling technique and the supporting tool CTE-XL [9], which is
built on the well-known category-partition approach [11], was both easy to use and scaled
up to the kinds of input domains under consideration (e.g., more than 100 categories or
classifications in one model).

We also investigated Oracles Real Application Testing (RAT) [10], but found that it
was mainly targeted towards performance testing and not easily adaptable for functional
testing.

In summary, the research literature provided us with a useful starting point, but none
of the related works fully and directly addressed our needs, and except for CTE-XL, we
could find no accessible tools to apply directly into our project context.

4 DART

The above discussions motivated the development of the DART tool, which is a tool
for regression testing of database applications, and mainly targeted towards database
intensive batch jobs.

The basic principle of the tool is straightforward: Execute the system under test twice
on the exact same input data and initial database state, once with the original version of



62

Figure 1.1: A UML Activity Diagram of the DART regression test process.

the system (baseline), and once with the changed version of the system (delta). Compute
the difference in database state between the two runs. A difference is either due to a valid
change, or a regression fault.

Note that DART can be used to identify regression faults in any system or program
unit performing Create, Read, Update and Delete (CRUD) operations on a database, and
is not restricted to batch testing only. But in our context the system under test consist
of batch jobs that perform complex CRUD operations on a database, guided by business
logic that implements sequences of the taxation laws and rules. There are two properties
of these batch jobs that make the DART approach suitable:

• Batch jobs are built to run to completion without any manual intervention. This
eases the test execution and ensures consistency between the baseline and delta run
of the test.

• Batch jobs operate on a limited set of database entities. This simplifies the test
setup, as the tables to monitor can be easily identified prior to the test execution.

Figure 1.1 shows the main steps in the testing process with DART. In the following
sections, these steps will be described in detail.

4.1 Running example

Throughout the description of DART, a running example will be used to demonstrate
the various steps of the test process. The example is intentionally kept very simple to
fit size constraints. The system under test used as example is the program P shown in
Figure 1.2. We use a Java-like syntax augmented with directly executable SQL statements
in order to make it easier to understand for readers not acquainted with PL/SQL. It is a
program that contains features for maintaining customer orders, more specifically adding



63

Figure 1.2: The example program P.

and deleting items from a customer order. As an example execution of the program, one
item is added to a customer order, while an item is removed from another customer order
in the main method.

The relational entity model of the example program is shown in Figure 1.3, along
with the initial state of the database prior to test execution. It consists of three entities
containing information about customers and their orders. A customer can have zero to
many orders with zero to many items.

4.2 Test configuration

A test with DART is set up by selecting the database tables and more specifically the table
columns to monitor during the test execution. DART obtains and presents the database
schema(s) of the system under test and a test engineer selects the ones to monitor during
the test execution. In our example the tester would be presented with the three tables
Customer, Order and Item, which all are a part of the database schema for program P.
Since the program P performs operations on the two tables Order and Item, these are the
ones that make sense to monitor while testing P. The tester selects the two tables and



64

Figure 1.3: The relational entity model and initial state for program P.

more specifically the underlying table columns to monitor.
Additionally the test engineer specifies how CRUD-operations on the selected entities

should be grouped together as “logical test cases” based on a meaningful, common test case
identifier, e.g., a social security number. Such identifier is defined using table attributes
such as primary keys, foreign keys and/or SQL queries. The goal is to logically group
related rows in the tables monitored in a test execution to facilitate the comparison
between the baseline and delta test executions. A meaningful common test case identifier
in our example would be the customer name (assumed to be unique), as all orders and
items can be traced back to its customer. In that case one customer will make out one test
case and all data manipulations that are logged during test execution will be grouped by
customer name. A test configuration for program P would then look like the one shown
in Table 1.1.

Table 1.1: Test configuration for program P.

Table Table column Test case identifier
Order OrderNr, ChangedDate Customer.Name
Item ItemName Order.Customer.Name

It is also possible to give aliases to the tables and table columns in the test configuration
as some tables might come from external parties and have non-intuitive names. The
aliases defined in the test configuration will later on be used in the presentation of the
test results. In summary a test configuration denotes the set of table columns (and their
aliases) to monitor during test execution and the corresponding specification of the test
case grouping scheme.

4.3 Domain modeling

Prior to test execution, test data have to be prepared for the specific system component
to be tested. Whether the test data is real system data, or generated synthetically, the



65

output of the test data preparation process is a test suite on which the system under
test can be executed. A test suite can potentially contain a large number of test cases,
and there may not be enough resources available to execute all of them, or to analyze all
the resulting deviations during regression testing. In particular, test suites based on real
system data tend to contain large amounts of redundant test cases (as will be elaborated
in Section 5.2), which will result in duplicate deviations causing unnecessary inspections.
Hence, to alleviate this problem, we would like to prioritize the test cases in a test suite
to ensure that we execute first test cases that are most likely to reveal distinct regression
faults.

In order to prioritize the test cases in the test suite, a model of the domain under test
is made using the tool CTE-XL. The model is a classification tree (defining equivalence
classes), which is used to generate domain partitions (also called test case specifications or
abstract test cases) according to a coverage criterion of your choice, for example pairwise
coverage of the equivalence classes. A domain model for the example program P can look
like the one shown in Figure 1.4. The root node Program P, the classifications Number
of orders for customer, Item added and Item deleted, and the classes (0, 1, >1) and (Y,
N) constitute the classification tree model, whereas the bottom six lines each represent
partitions. In this case the pairwise coverage criterion was used to generate the partitions,
which ensures that each pair of classes are represented in at least one partition. The test
model emphasize the following aspects regarding the program P:

• The number of orders for a particular customer matters. If a customer has zero
orders an error should be reported, otherwise the item should be added or deleted.
It is also interesting to differentiate the case of a customer having more than one
order, to make sure items are removed and added to the right order and only that.

• It is also interesting to test different variations of adding and deleting items for
different numbers of customer orders.

Given a test suite and a domain model of the system, DART provides the capability of
matching the data in the test suite with the partitions in the domain model. In the initial
state of program P shown in Figure 1.3, there are two test cases, namely customer Andy
Smith and John Johnson. DART will match the test case Andy Smith with Partition
3 as he has one order in which an item will be added, and the test case John Johnson
with Partition 4 as he has one order in which an item will be deleted. When the test
cases have been matched to partitions, DART prioritizes the test cases as follows: Among
the partitions containing test cases, select a random partition, and a random test case
within the partition. Next, select again a random partition among the remaining ones,
and again a random test case within the partition. Continue until all partitions have been



66

Figure 1.4: A classification tree model for program P.

selected. Then start the process again and select test cases among the ones that have not
been selected yet. Stop the process when all test cases have been selected. The resulting
ordering of the test case selection determines the priority of the test cases. The rationale
is to ensure that all partitions be covered as quickly as possible during test execution
and that, for cases where there is a deviation, the inspection of such deviations are more
likely to uncover dissimilar regression faults as quickly as possible. This strategy should
be considered as a first step to be improved upon, as further described in the conclusion.

In the trivial running example the prioritization is meaningless as there are only two
test cases from two different partitions. However, this is important in realistic database
applications, as test cases can be numerous, expensive to run, and manual inspections of
deviations are time-consuming, as reported in Section 5.1. We refer to this process as a
partition-based approach for test case prioritization.

4.4 Test execution

During test execution DART will log all data manipulations related to the specific test
configuration. The way data manipulations are recorded and logged is through dynam-
ically generated database triggers on the tables specified in the test configuration. A
trigger is procedural code that is automatically executed in response to certain events
on a table or view in a database. Pseudo-code for generating the triggers is shown in
Figure 1.5. As the algorithm shows, a trigger is generated for each table in the test con-
figuration. Each of the generated table triggers is defined to insert a row into the DART
log table for each data manipulation on the columns specified in the test configuration for
the given table. Insert and delete operations are always done at the row level and DART
will log values for all table columns in the test configuration when an insert or delete
operation takes place. Update operations can be attribute specific, so DART will only



67

×

∈
←

←

∈

 

Figure 1.5: Algorithm for trigger generation in DART.

log the table columns in the test configuration that is actually updated. The triggers are
dynamically generated as a Data Definition Language (DDL) string, which is executed in
the end to store the actual triggers in the database.

Thus, DART dynamically instruments the database of the system under test by gen-
erating test-configuration specific database triggers when the test is started. During test
execution these triggers will fire on any insert, delete or update on the table columns in
the test configuration and store the database operations into a DART log table. One
data manipulation operation results into one row in the log table matching the format
<test case identifier, table name, column name, old value, new value>. The test case
identifier (e.g., the customer name) is what uniquely identifies the test case that causes
the operation to be executed. It is devised on the fly according to the specification in the
test configuration. Table name and column name are the names of the table and column
the operation is executed on, respectively. Old value and new value refer to the values of
the attribute prior to and after the operation execution, respectively. Old value is given
the static value “Inserted” for insert operations, while new value is given the static value
“Deleted” for delete operations. After test execution the triggers are deleted from the
database of the system under test.

A test run is done once with the original version of the system (baseline) and once
with the changed version of the system (delta), which is subject to regression faults.
Before the delta test run the database is reset to the initial (baseline) state to ensure that



68

both runs start out with the same database state. Various mechanisms are available to
reset the database. We have used the flashback to restore point feature of Oracle in the
particular case of SOFIE. This is done by creating a restore point in the database after
the test configuration is defined and the test data is prepared, but before the execution
of the baseline run starts. The restore point defines the state of the database at the time
it is created and will ensure consistency between the test runs. In our example, a test
run on program P, with the test configuration from Table 1.1 and the initial state from
Figure 1.3, would result in the DART log data shown in Table 1.2. For the test case Andy
Smith, one insert operation and one update operation is executed, as logged in row 1 and
2 of Table 1.2, respectively. For the test case John Johnson one delete operation and one
update operation is executed, as logged in row 3 and 4 of Table 1.2, respectively.

Table 1.2: Example DART log table after the baseline run.

Id Test run id Test case Table name Column name Old value New value
1 1 Andy Smith Item Item Name Inserted USB Stick
2 1 Andy Smith Order Changed Date 12.05.11 14.05.11
3 1 John Johnson Item Item Name Keyboard Deleted
4 1 John Johnson Order Changed Date 12.05.11 14.05.11

It turns out that program P contains a fault. The changedDate of the order should be
updated to today’s date when an order is changed. Currently it is updated to tomorrow’s
date. The fault is corrected (underlined) and a new version of P, called P’ is shown in
Figure 1.6. For illustration purposes let us assume a regression fault in P’: the update
of the order in removeItemFromOrder method is completely removed, rather than fixed
(line struck through). After resetting the database into the same initial state as before
the first test run, the test is executed again on the changed program version P’.

After both test runs, the DART log table contains the information shown in Table 1.3.
Three additional rows are logged for the delta run. An insert and an update operation
for the test case Andy Smith in row 5 and 6, and a delete operation for the test case John
Johnson in row 7.

Table 1.3: Example DART log table after both test runs are executed.

Id Test run id Test case Table name Column name Old value New value
1 1 Andy Smith Item Item Name Inserted USB Stick
2 1 Andy Smith Order Changed Date 12.05.11 14.05.11
3 1 John Johnson Item Item Name Keyboard Deleted
4 1 John Johnson Order Changed Date 12.05.11 14.05.11
5 2 Andy Smith Item Item Name Inserted USB Stick
6 2 Andy Smith Order Changed Date 12.05.11 13.05.11
7 2 John Johnson Item Item Name Keyboard Deleted



69

Figure 1.6: The example program P’, which is a modified version of program P.

4.5 Test Analysis

After a test is executed on two different versions of the system under test, the two test
runs are compared with each other. The output of the test execution is a DART log table
filled with all data manipulation operations of the respective test runs. The comparison
uses the SQL set operations minus and union to compute the difference between the two
runs, as follows:

<Log data from baseline> MINUS <Log data from delta>
UNION ALL
<Log data from delta> MINUS <Log data from baseline>

The comparison operation will reveal all differences between the baseline and delta runs
with regards to the test configuration. The deviations, grouped by the test case identifier,
are presented to the tester, which in turn has to determine whether the deviation is a
regression fault or not.

In our example the output of the test is the deviations between the two runs as shown in



70

Table 3.1. There is one deviation due to the changed update in addItemToOrder (row 1-2)
and one deviation due to the missing update in the delta version of removeItemFromOrder
(row 3). By analyzing the deviations in Table 3.1, the test engineer can verify that the
change in test case Andy Smith is due to correct changes in P’, whereas the missing
update in the test case John Johnson is due to a regression fault.

As the baseline run essentially serves as the test oracle, DART will identify regression
faults introduced in the delta version of the system, but will not identify faults that are
present in both the baseline and delta run. In practice, the same baseline is used for
testing several consecutive deltas. After each test, the deviations that are correct in the
delta are updated into the baseline. Thus, the baseline is continually improved and the
test oracle increasingly more accurate.

Table 1.4: The deviations between the test runs for P and P’.

Id Test case Table name Column name Old value New value Test run
1 Andy Smith Order Changed Date 12.05.11 14.05.11 Baseline
2 Andy Smith Order Changed Date 12.05.11 13.05.11 Delta
3 John Johnson Order Changed Date 12.05.11 14.05.11 Baseline

5 Practical Experiences

5.1 Pilot evaluation

During the development of DART we conducted a pilot evaluation of the tool to investigate
its regression fault detection capabilities. In our pilot study we chose to focus on one
particular functional area of the system, the most complex and business critical one. Due
to its complexity this is an area that has been prone to regression faults in the past. Since
all taxpayers in Norway could be affected, it is of great importance to avoid faults. This
particular functional area consists of 19 different batch jobs.

For the pilot we chose to test a previous system release, which had already undergone
the regular, manual testing and QA activities. One part of the selected functional domain
had been refactored in that release. As a result, five regression faults had been identified
during the regular testing routines in the project. Additionally five regression faults had
been discovered in the production environment after it was released. As a pilot evaluation,
we were interested to see if we could identify the same ten regression faults, and possibly
additional, undiscovered faults, with the DART tool. We compared the last version of
the system prior to the refactoring with the version that was delivered to the system test
in that particular release.



71

For the pilot we had three sets of real system test data available. The test suites were of
different sizes and for evaluation purposes we chose to run the regression test for all three
of them. The test data in the three test suites consisted of non-overlapping test cases,
where each test case represented one taxpayer. Table 1.5 summarizes the three test runs.
Column two shows the number of test cases contained in the test suites, column three
shows how many of the test cases deviated between the baseline and delta run, column
four shows how many of the deviations were due to valid changes, column five shows how
many of the deviations were due to regression faults, column six shows the number of
distinct functional faults among the faulty deviations, column seven shows the number
of faults that had been detected during testing and operation, which were rediscovered
with DART, column eight shows the new regression faults detected by DART and column
nine shows the inspection effort spent determining whether the deviations were correct or
faulty.

Table 1.5: Summary of test runs in the pilot evaluation.

Test
#

Test
cases

#
Deviations

# Correct
deviations

# Faulty
deviations

# Distinct
faults

# Previous
faults found

# New
faults found

Inspection
time

1 711 33 19 14 7 5 2 7 hours
2 3144 182 136 46 11 7 4 35 hours
3 5670 522 386 136 15 6 9 105 hours

DART revealed eight of the ten faults that were previously found during testing and
operation, but also helped identify nine undiscovered faults, that is, nine faults that were
still present in the production system and needed to be corrected. In total, the three test
runs uncovered 17 distinct faults. The two previously detected faults missed by DART
were not found due to the insufficient coverage of the test suites; none of the test cases in
the three test suites exercised the two faulty situations.

As expected, the largest number of faults was found in the largest test suite, but its
set of detected faults did not subsume those of the smaller test suites; two of the faults
discovered in the smaller test suites were not present in the largest one. This suggested
that we needed a more systematic way to specify the regression test cases, as elaborated
in the next section (5.2). Nevertheless, as a result of the pilot we registered nine new
defects in the defect tracking system. One of them was registered as a “A defect”, seven
as “B defects” and one as a “C defect” on a criticality scale ranging from A to C, where
A is the most critical one. Broadly speaking, A defects are critical, B defects are serious,
while C defects are less important.

For the purpose of the evaluation, we analyzed all deviations in the three test runs to
ensure that we found as many defects as possible. However, this required a considerable
amount of manual effort, as shown in Table 1.5 (Inspection time); on average we used



72

about 12 minutes per deviation. This suggests that, in order to use DART for large-
scale regression testing in a system release, we would need a way to prioritize test cases
to increase the likelihood of early fault detection and reduce the number of redundant
deviations to analyze. The same functional fault was present in several deviations, and
ideally we would only like to inspect one deviation for each unique functional fault. Thus,
a classification tree model of the input domain was developed and applied to prioritize
test cases, as described in Section 4.3.

We applied the prioritization to the test cases in test suite 3 as it was the largest.
Figure 1.7 shows the results of using the partition-based approach for prioritizing test
cases to execute n test cases and analyze the resulting deviations in their given priority
order for various values of n. The results are then compared to the average resulting from
the random selection of test cases. To obtain the results in Figure 7, we repeated the
prioritization procedure 100 times and averaged the percentage of faults detected (the
Y-axis) for a given percentage of test cases in the test suite (the X-axis). Though the
results are very clear just by looking at Figure 7, to check the statistical significance of the
difference between the partition-based approach over the random approach, we conducted
non-parametric Mann-Whitney U-Tests [1] to test the difference in fault detection for each
test suite size value. We computed p-values for all sizes that were sampled and all of them
were below α= 0.05, showing that the two approaches are significantly different. More
precisely the p-value was less than 0.0000002 from 1 to 90 percent of the test cases, and
0.01381 for 95 percent. We tested the entire set of sample data from the two approaches,
which yielded a p-value of 0.00019.

Figure 1.7: A comparison of partition-based-, and random test case selection.

In practice this means that for example by only executing eight percent of the test
cases and analyze the resulting deviations, the test engineer would on average find more
than 80 percent of the faults. This corresponds to executing approximately 450 test cases,
which on average resulted in 80 deviations uncovering 12 out of 15 faults that could be
uncovered by the test suite. In terms of effort that is 16 hours of inspection time for
revealing 12 out of 15 faults. In comparison, with a random selection strategy, we would



73

on average have found less than 35 percent of the faults for a similarly sized test suite.
We consider this to be a substantial, practically important cost saving.

To summarize, the pilot evaluation showed that DART could help detect significantly
more regression faults and that the test case prioritization using DART could yield signifi-
cant savings in terms of number of test case executions and the effort involved in analyzing
deviations.

5.2 Test coverage and synthetic test data

As mentioned in the previous section, the test suites in the pilot evaluation uncovered a
total of 17 faults. These test suites were based on live data input files provided by the
operation environment. It turned out that none of the three test suites were, in isolation,
adequate to reveal all the 17 faults. Neither did they uncover all the ten faults previously
identified during test and operation, indicating that not even combining the three test
suites yields satisfactory coverage. Considering the complexity of the domain model for
the system under test, this is not surprising when the test data were not derived in a
systematic manner.

By applying the all combination coverage criterion on the domain model for that
particular functional area, as many as 17,100 partitions were generated. To assess how
well live test data would cover those partitions, we selected a large, representative test
suite consisting of 211,837 “live” test cases (actual tax payers), provided by the production
environment, and compared it with the partitions. We found that the test suite covered
only 226 out of 17,100 partitions, a model coverage of only 1.32 percent! The two largest
partitions of the test suite contained 86,743 and 36,296 test cases, respectively, showing
huge numbers of redundant test cases while showing serious shortcomings in covering
exceptional cases (rare patterns of taxpayers). Live test data also entail practical concerns.
Confidentiality issues must be addressed. They are not always available, as one may
depend on third parties to deliver them and they are hard to reuse, as they are dependent
on a given database state.

The lack of model coverage achieved with live test data along with their associated
practical concerns motivated the generation of synthetic test data. To drive the generation
of synthetic test data, we use the same domain model as we use for partition-based test
case prioritization. Adapter code is written to map the abstract values of the leaf classes
in the classification tree model to actual parameter values of the real test cases for the
system under test. Using the adapter code, test cases can be automatically generated
according to the model. This makes it easy to generate different test suites, providing
different levels of model coverage, e.g., two-wise, three-wise, or all combinations. The
usage of synthetically generated test data with DART is still in its initial phase. A few



74

system faults were identified while developing the adapter code, as rare system scenarios
got executed. We are confident that the generation of synthetic test data will allow us
to increase test coverage and make testing more efficient and predictable when applied in
DART.

5.3 Deployment into project setting

DART has been used to support regression testing of batch jobs in the core functional
areas of the SOFIE application for the past eight releases. So far we have used DART
as a supplement to manual testing, not as a replacement. We thus had the opportunity
to compare the fault detection effectiveness of DART with the regular (manual) system
testing routines in the project. Table 1.6 shows the faults detected in the eight releases
during regular system testing and the additional faults detected by DART, within the par-
ticular functional area of interest. It also shows the number of faults that slipped through
both testing activities, but were later on detected during operation in the production
environment.

Table 1.6: Defects detected in the past eight releases of SOFIE.

Releases # Faults detected
by regular testing

# Additional faults
detected by DART

# Faults
discovered in
production

1 6 9 6
2 3 1 1
3 1 1 1
4 6 2 3
5 0 0 0
6 19 3 2
7 1 5 1
8 1 1 0

Total 37 22 14

The figures in Table 1.6 are meant to give a rough picture of the impact of DART
during its initial lifetime in the SOFIE project. Unfortunately, we do not have exact infor-
mation about the effort spent for uncovering the faults by the different testing approaches,
as we faced organizational challenges in the project while trying to get the time reported
at a satisfactory level for evaluation. However, the faults uncovered by regular testing
are typically the result of weeks of testing, while the faults uncovered by DART result
from days of testing. It is also worth stressing that we had no regression test environment
in place in the first six releases shown in Table 1.6. Consequently, DART was not used
during the test period, but rather as a final verification of the releases after the acceptance



75

test was finished and the release was ready to ship. Therefore, the figures provided in
Table 1.6 should not be used to strictly compare the fault detection capabilities of DART
with those of the regular testing routines, as DART could only detect the leftover faults
in the first six releases. Table 1.6 shows that DART has helped uncover more than a
third of the defects found during regression testing (22 out of 59), within the batches of
the core functional domain. Put in other words DART has helped identify approximately
60% more regression faults than what would have been detected without it. We consider
this to be of substantial impact, especially since DART was only used as a “last check”
in the first six releases. Such results combined with the savings discussed in Section 5.1,
make us confident that the test team can now rely on DART for regression testing of the
batch jobs in SOFIE, while reassigning some of their resources on other types of testing.
For example, faults in the graphical user interfaces, documents and reports within the
same functional domain were discovered by regular testing routines, but would not have
been found by DART. The same applies to the extensive testing required to verify the cor-
rectness of new functionality. An example of the latter is release six in Table 1.6, where
substantial new functionality was introduced, and thoroughly tested, revealing several
faults in the regular testing routines.

Even when combining manual testing with DART, some faults still slipped through
into production, as shown in Table 1.6. As an evaluation of the DART tool, we went
through the defects reported from the production environment to understand why they
were not discovered prior to being released. Table 1.7 lists the findings.

Table 1.7: Reasons why defects reported from production were not found by DART.

# Defects Cause of not being detected by DART prior to release

3 Insufficient test partition coverage to reveal the fault; no test cases
that executed the faulty situations.

1 Did not execute that part of the functional domain in that partic-
ular test.

2
Found and reported by DART, but there were not enough time
to fix them prior to release. Also reported from the production
environment before they got fixed.

2 Performance issue specific to the production environment.

4 Found and reported by DART, but the test was executed after the
release (pilot evaluation).

2 Currently unknown due to lacking information regarding the faults.

Six of the defects were actually discovered by DART. One was not found as we ran
the test on a limited scope in the beginning, before broadening our horizon the whole
batch process of the functional domain in the later releases. Two of the faults were
performance-related issues only present in the production environment (due to different



76

settings). Besides the two currently unknown defects, that leaves us with three defects
that should have been detected, but were not due to insufficient partition coverage. We
hope to address this issue in the future by synthetically generating test data, as discussed
in the previous section.

For the sake of the evaluation we also investigated the criticality distribution of the
defects reported from manual testing, DART, and production. No conclusion could be
drawn regarding the relationship between the criticality of defects and how they were
detected.

Another important contribution of DART in practice is that it has impacted the
prioritization of defects in the project. Since DART enables more thorough and cost-
effective regression testing, less defect corrections are postponed due to their high risk of
generating regression faults. In practice that means that more faults are corrected more
quickly, while still remaining confident that they do not introduce new regression faults.

6 Conclusion and future work

We have reported our experience with a practical approach and tool (DART) for functional
black-box regression testing of legacy database applications. The tool uses dynamically
generated database triggers to capture the data manipulations in the database during
execution of the system under test. The difference between consecutive executions on
different versions of the system under test is used to identify regression faults. The tool
makes use of CTE-XL classification tree models to prioritize test cases and minimize their
redundancy, so as to make our approach scalable to real system releases. The prioritization
mechanism increases the likelihood of early fault detection and can be used to both reduce
execution time and the effort involved in analyzing differences.

In this paper, our approach was applied on batch jobs in the Norwegian Tax Accounting
System SOFIE, a very large database application. However, we believe our results are
applicable outside this context, and for any program performing CRUD operations on a
database. DART has shown good fault detection capabilities on multiple SOFIE releases.
In the pilot evaluation, where DART was applied to a system release that had already been
tested and released, DART found eight of the ten regression faults that were uncovered
during regular testing and system operation, but also detected nine additional regression
faults. For the past eight releases of SOFIE, DART has been used as a support tool
for regression testing, and has helped identified 60% additional faults, that would have
been released otherwise. Thanks to DART, the business critical batch jobs in SOFIE are
more thoroughly, yet efficiently tested, causing less regression faults to be released. This
enables NTD to take more risks by correcting more bugs in shorter periods of time.



77

Current work in progress is to fully integrate DART with the daily test operation of
the project, and ideally as a continuous part of the development process, as a means for
early fault detection. We will continue to work on generation of synthetic test data and
use them for test execution with DART to ensure better test coverage and more efficient
and predictable testing.

We have applied a relatively simple, yet efficient method for test case prioritization.
More work is required to determine the optimal way for test case prioritization based on
a classification tree model. For example, similarity measurement between partitions and
test cases could be used to refine the prioritization of test cases.

Finally our ambition is to replace the current Oracle specific version of DART with a
fully implemented open source Java version, to address the lack of good tool support for
regression testing of database applications.

7 Acknowledgement

We are grateful to Hilde Lyngstad, Trond Andreassen, Thor-Otto Thuresson and Bjørn-
Erik Godøy for their contributions in the project.

8 References

[1] Andrea Arcuri and Lionel Briand. “A practical guide for using statistical tests to
assess randomized algorithms in software engineering.” In: Software Engineering
(ICSE), 2011 33rd International Conference on. 2011, pp. 1–10.

[2] Carsten Binnig, Donald Kossmann, and Eric Lo. “Testing Database Applications.”
In: Proceedings of the 2006 ACM SIGMOD International Conference on Manage-
ment of Data. SIGMOD ’06. Chicago, IL, USA: ACM, 2006, pp. 739–741.

[3] David Chays and Yuetang Deng. “Demonstration of AGENDA tool set for testing
relational database applications.” In: Software Engineering, 2003. Proceedings. 25th
International Conference on. 2003, pp. 802–803.

[4] David Chays et al. “A Framework for Testing Database Applications.” In: SIGSOFT
Softw. Eng. Notes 25.5 (Aug. 2000), pp. 147–157.

[5] David Chays et al. “An AGENDA for Testing Relational Database Applications: Re-
search Articles.” In: Software Testing, Verification and Reliability 14.1 (Mar. 2004),
pp. 17–44.



78

[6] Yuetang Deng, Phyllis Frankl, and David Chays. “Testing database transactions
with AGENDA.” In: Software Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on. 2005, pp. 78–87.

[7] Florian Haftmann, Donald Kossmann, and Er Kreutz. “Efficient regression tests
for database applications.” In: In Conference on Innovative Data Systems Research
(CIDR. 2005, pp. 95–106.

[8] Florian Haftmann, Donald Kossmann, and Eric Lo. “A Framework for Efficient
Regression Tests on Database Applications.” In: The VLDB Journal 16.1 (Jan.
2007), pp. 145–164.

[9] Berner & Matter. CTE-XL and CTE-XL Professional - Overview. May 2011. url:
http://www.berner-mattner.com/en/berner-mattner-home/products/cte-x

l/.

[10] Oracle. Oracle Real Application Testing. May 2011. url: http://www.oracle.co
m/us/products/database/options/real-application-testing/overview/ind

ex.html.

[11] Thomas Joseph Ostrand and Marc J. Balcer. “The category-partition method for
specifying and generating fuctional tests.” In: Communications of the ACM 31.6
(1988), pp. 676–686.

[12] Shin Yoo and Mark Harman. “Regression Testing Minimisation, Selection and Pri-
oritisation: A Survey.” In: Software Testing, Verification and Reliability 22.2 (2012),
pp. 67–120.



Paper 2

Test Case Selection for Black-Box Regression Testing

of Database Applications

Authors: Erik Rogstad, Lionel Briand, and Richard Torkar

Abstract

Context: This paper presents an approach for selecting regression test cases in the context of
large-scale database applications. We focus on a black-box (specification-based) approach, rely-
ing on classification tree models to model the input domain of the system under test (SUT), in
order to obtain a more practical and scalable solution. We perform an experiment in an indus-
trial setting where the SUT is a large database application in Norway’s tax department.

Objective: We investigate the use of similarity-based test case selection for supporting black
box regression testing of database applications. We have developed a practical approach and
tool (DART) for functional black-box regression testing of database applications. In order to
make the regression test approach scalable for large database applications, we needed a test case
selection strategy that reduces the test execution costs and analysis effort. We used classification
tree models to partition the input domain of the SUT in order to then select test cases. Rather
than selecting test cases at random from each partition, we incorporated a similarity-based test
case selection, hypothesizing that it would yield a higher fault detection rate.

Method: An experiment was conducted to determine which similarity-based selection algorithm
was the most suitable in selecting test cases in large regression test suites, and whether similarity-
based selection was a worthwhile and practical alternative to simpler solutions.

Results: The results show that combining similarity measurement with partition-based test case
selection, by using similarity-based test case selection within each partition, can provide im-
proved fault detection rates over simpler solutions when specific conditions are met regarding
the partitions.

79



80

Conclusions: Under the conditions present in the experiment the improvements were marginal.

However, a detailed analysis concludes that the similarity-based selection strategy should be

applied when a large number of test cases are contained in each partition and there is significant

variability within partitions. If these conditions are not present, incorporating similarity mea-

sures is not worthwhile, since the gain is negligible over a random selection within each partition.

Keywords – Test case selection, Regression testing, Database applications, Similarity mea-

sures



81

1 Introduction

Regression testing is known to be a very expensive activity as, in most cases, regression test
suites are large since they attempt to exercise the system under test in a comprehensive
manner. This problem is more particularly acute when test results must be manually
checked, running test cases is expensive, or when access to a test infrastructure is required.
As a result, as reported in a very abundant research literature [20], regression test cases
must be carefully selected or prioritized. Most selection strategies are based on the static
analysis of source code structure and changes. However, in many situations, this is not
practical (lack of proper tool support) or applicable (no direct access to the source code
or third party components) and a black-box approach, based on the system specifications,
must be adopted.

In this paper, we investigate strategies for selecting regression test cases based on
classification tree models. Such models have been traditionally used to partition the
input domain of the system being tested [13], which in turn is used to select and generate
system test cases so as to achieve certain strategies for partition coverage. Such models
are widely applied for black-box system testing for database applications and is therefore
a natural and practical choice in our context. In other words, the goal is to minimize
regression testing effort while retaining maximum fault detection power, and do so by
relying on a specific model of the input domain.

More specifically, we combine similarity-based test case selection with such a partition-
based approach to refine regression test selection. Similarity-based test case selection is
a strategy that has shown itself to be cost-effective in other contexts [9, 8]. At a high
level, our strategy consists in selecting regression test cases within partitions in order
to maximize their diversity. A large scale experiment was conducted in the context of
an industrial database application. The main goal was to investigate the impact of our
proposed selection strategy in terms of fault detection rates, and the conditions under
which it is beneficial. The contribution of this paper lies in defining a practical strategy for
applying similarity measurements when selecting test cases generated from classification
tree models, and in evaluating the approach to support regression testing in an industrial
setting. This setting, further described below, is a large and business critical database
application developed by the tax department of Norway.

Given the results presented in this paper, we recommend the use of similarity partition-
based test case selection when the classification tree model is defined in such a way as to
contain significant variability within the partitions, and the partitions generally contain
many test cases. Under these conditions, it can be highly beneficial to use similarity
measures as a means of selecting test cases within each partition of the classification tree
model, as it leads to significant increases in fault detection rates.



82

The remainder of the paper is organized as follows: Section 2 describes the industrial
context and the challenge addressed in the study. Section 3 provides background infor-
mation regarding similarity-based test case selection and elaborates on similarity func-
tions applicable for our context. Our proposed solution for selecting test cases generated
from classification tree models, by incorporating similarity measurements, is presented in
Section 4, whereas the results of the experiment are shown in Section 5, along with a
discussion of the implications of the outcomes. Conclusions are provided in Section 6.

2 Industrial setting and problem formulation

SOFIE is the tax accounting system of Norway, handling yearly tax revenues of ap-
proximately $90 billion. It has evolved over the past 10 years to provide dependable,
automated, efficient and integrated services to all 430 tax municipalities and more than
3,000 end users (e.g., taxation officers). SOFIE is still evolving to accommodate changes
in the tax laws, and its maintenance currently involves more than 50 employees.

The system was mainly designed to handle large amounts of data, thus requiring high
throughput and a continuous focus on performance-related aspects. Historical data for all
taxpayers in Norway has to be kept for at least ten years, and some of the system tables
currently hold more than 500 million rows of data. To ensure efficient data processing,
the business logic of the system was organized into batch jobs, along with graphical user
interfaces to drive the work-processes of the end users. Both system components are
tightly coupled with the API of the underlying database management system. SOFIE
has approximately 380 batch jobs constituting 1.7 million lines of PL/SQL code. The
batch jobs are continuously changing during maintenance and in general they are very
complex, hard to test, and prone to regression faults. Since the system serves all taxpayers
in Norway, it is vital for the Norwegian Tax Department to avoid releasing defects in the
core of the system.

In [18], we proposed an approach and tool (DART) for the regression testing of large
database applications like SOFIE, with an emphasis on proving efficient mechanisms for
testing oracles, which is the comparison of test results across releases. We presented an
evaluation of DART in eight consecutive releases of SOFIE, showing promising fault detec-
tion capabilities. In this paper, we will build on this work and devise more sophisticated
regression test selection strategies based on black-box models of the input domain.

In a system like SOFIE, vast amounts of data are available from the production envi-
ronment. Consequently, the testing of SOFIE relies heavily on the use of real input data,
leading to a test strategy based on usage profiles. Generating and maintaining such large
amounts of synthetic test data would be a tedious and expensive process and it is there-



83

fore beneficial to rely on actual tax payer data for regression testing as well. In practice
the test data is made available by making a copy of the production database for testing
purposes and then reusing input files from the production environment. Thus, the set of
test data will vary over time depending on the operations in the production environment.
Since we do not rely on exactly the same set of test data over time, we need a cost-effective
and automated strategy for selecting a subset of it that will maximize the likelihood of
detecting faults. Several motivating factors exist for doing so. For one thing, the test
environments are less sophisticated than the production environment regarding computer
resources, thus leading to limitations in terms of the number of test cases that can be
run during regression testing. Second, the set of production test data available is likely
to contain large numbers of similar test cases, which are thus likely to reveal the same
faults. Third, DART produces a set of deviations as regression testing outputs. Testers
need to inspect them in order to identify potential regression faults as it is impossible to
automatically decide whether such a deviation should be expected given changes made
in the last system version. Since such inspections are costly, we would like to reduce
the number of deviations to inspect in the regression test. By selecting test cases in an
effective manner, the number of deviations resulting from the same fault would hopefully
be limited.

Our priority in this paper is therefore to devise and evaluate cost-effective strategies to
select regression test cases. Our approach to selection is black-box (specification-based),
which is based on a model of the input domain. Choosing a black-box approach for a
regression testing of the batch jobs in SOFIE was primarily motivated by the fact that
the testers in the project have limited technical expertise regarding the system implemen-
tation, and prefer to verify system functionality based on the specifications rather than
the source code. Hence, we adopted a black-box approach to regression testing that does
not require source code analysis [18].

3 Background

The literature within the area of regression test case selection has primarily been fo-
cused on white-box techniques, and coverage-based selection has been the most common
practice for years [20]. However, these techniques are not directly applicable within the
context of black-box testing. Hemmati et al. (2010) [9] conducted a detailed study on
similarity-based test case selection for model-based testing. Given a scenario in which you
have to select a subset of test cases to execute, similarity-based test case selection aims
to select the most diverse ones in order to increase the fault detection rate. Hemmati’s
approach includes three components: an encoding (representation) of test cases, a simi-



84

larity function, and a selection algorithm. The study showed very good results for using
diversity as a means of selecting test cases. Hemmati also investigated different encoding
strategies, similarity functions and selection algorithms in two industrial settings and in
the context of model-based testing. Overall, results suggested that the Gower Legendre
similarity function and the (1+1) Evolutionary selection algorithm was best suited for
a similarity-based test case selection on test cases generated from UML state machine
models [11, 10]. Cartaxo et al (2011) [8] also reported on the success of using similarity
functions as a means of selecting test cases for labeled transition systems.

3.1 Similarity measures

Whereas Hemmati et al. focus on selecting a subset of test cases generated from UML
state machines, we will select test cases from classification tree models for black box
regression testing of database applications. Hence, it is necessary to introduce similarity
measures more closely adapted to our context. As further elaborated in Section 4, the
abstract test cases generated from the classification tree models are represented as series
of model property types as integers, strings or Boolean values. Given the nature of these
test cases, the family of geometrical similarity functions seems to be the most reasonable
choice for defining similarity, since each model property could span out a dimension in
the N -dimensional space. There are various such functions available, but the ones we
selected for our study are Euclidian distance, Manhattan distance, Mahalanobis distance
and Normalized Compression Distance (NCD). The rationale behind this selection was
to assess functions of varying complexity and assess the trade-off between complexity
and selection effectiveness. Euclidian and Manhattan are simple distance measures, while
Mahalanobis is a bit more sophisticated, taking the correlation between model properties
into account. Despite being a different domain of application, Liparas et al. (2011) [14]
recently reported good results when using Mahalanobis for defect diagnosis. NCD uses
a general compression format (e.g. gzip) to group various types of objects based on their
similarity. Since NCD bases its similarity measurements on a general compression format,
the method is general and can be used to compare any two objects, regardless of their
nature. For example, NCD has been successfully applied to cluster music files based on
genres and even by composer within the specific genre of classical music [4]. A more formal
presentation of each similarity measure is given below.

The Euclidian distance between two points �x and �y is the length of the line segment
connecting them [6], given by the following formula:

Euc(�x, �y) =

n∑

i=1

√
(yi − xi)2 (2.1)



85

The Manhattan distance between two points �x and �y is the sum of the absolute
differences of their coordinates [12], given by the following formula:

Man(�x, �y) =
n∑

i=1

|xi − yi| (2.2)

The Mahalanobis distance between two points �x and �y is given by the following formula
[15]:

Mah(�x, �y) =
√

(�x− �y)TS−1(�x− �y) (2.3)

where S is the covariance matrix. A simplistic approach to estimating the probability
that a test point in an N -dimensional space belongs to a set, is to average the center of
the sample points and use the standard deviation to determine the probability. While
this approach assumes a spherical distribution, Mahalanobis accounts for non-spherical
distribution (i.e. ellipsoidal) by incorporating the covariance matrix. Thus it does not
only take the distance from the center into account, but also the direction.

Bennett et al. have introduced a universal cognitive similarity distance called Infor-
mation Distance [3]. Information Distance, which is based on Kolmogorov complexity, is,
however, uncomputable. The uncomputability of the Information Distance metric can be
overcome by using data compressors to approximate Kolmogorov complexity, i.e. com-
pressors like gzip and bzip2. In [5], Cilibrasi introduced the Normalized Compression
Distance, NCD, which uses compressors to approximate Kolmogorov complexity and,
thus, also provides practitioners a way to indirectly use the Information Distance metric:

NCD(x, y) =
C(x, y)−min{C(x), C(y)}

max{C(x), C(y)} (2.4)

where C(x) is the length of the binary string x after compression by the compressor
C and C(x, y) is the length of the concatenated binary string xy after compression by
the compressor C. In practice, NCD is a non-negative number 0 <= r <= 1 + ε, where
ε is small and depends on how good an approximation of Kolmogorov complexity the
compressor (C) is. For modern compressors like gzip and bzip2, ε is typically 0.1 and
more recent compressors can even come close to 0, i.e. being excellent approximations of
Kolmogorov complexity.

3.2 Selection algorithms

The best selection algorithm, as reported in the study of Hemmati et al. was the (1+1)
evolutionary algorithm (EA) [9]. Evolutionary algorithms imitate evolution as it is ob-
served in nature, where the repeated process of recombination, mutation, and selection



86

leads to individuals that are increasingly adapted to their environment [7]. In evolutionary
algorithms, possible solutions to the optimization task are called individuals, and a set
of individuals is called a population. For example, in our context, an individual is a set
of test cases. (1+1) EA is a simple variant of evolutionary algorithms that restricts the
population size to just one individual. Thus, the evolution starts from a single individual,
generally chosen at random, which evolves through generations. At each generation (it-
eration) a single offspring is generated by mutating the parent, but the offspring will not
replace their parents if they have a worse fitness value. In practice this means that each
test case is mutated with a probability of 1/n, where n is the number of test cases in the
individual. A mutated test case is replaced by a randomly chosen test case among the ones
that are not already included. After each mutation process, the fitness value of the new
population is evaluated. The fitness value is the sum of all pairwise similarities between
test cases, given by the similarity function. The new generation only replace the current
population if the fitness value indicates a higher degree of diversity. The evolution stops
when a stop criterion is met, expressed by either a time constraint or a maximum number
of iterations. Throughout the paper, we will refer to (1+1) evolutionary algorithm as the
evolutionary selection algorithm.

Since our area of application is similar to that of Hemmati et al. (i.e., test case se-
lection), we will also rely on (1+1) EA. We also chose to include in our study a simpler,
more commonly used algorithm, namely greedy-based minimization, using it as a base-
line of comparison to assess whether an evolutionary algorithm is indeed needed given its
additional complexity. When selecting n test cases out of a test suite of N test cases,
greedy-based minimization will remove the N − n test cases with the largest pairwise
similarity value. It will do so at each step of the algorithm by selecting the two test
cases that have the largest similarity value. If more than one pair of test cases evaluates
to the same maximum similarity value, a random one is chosen. The greedy approach
continuously selects the two most similar test cases, but does not necessarily maximize
the combined similarity of the N − n test cases removed. Throughout the paper, we will
refer to greedy-based minimization as the greedy selection algorithm.

4 Proposed solution

In order to define the test specifications for the system being tested, we relied on clas-
sification tree models, which is a well-known black-box specification technique [13]. The
Norwegian tax department chose to use CTE-XL for their classification tree modeling.
CTE-XL is a commercial tool partly built on the ideas of the category-partition method
by Ostrand and Balcer [17], and is used to partition a test domain and generate a test



87

specification (consisting of a set of abstract test cases). In CTE-XL, we model the input
domain of the system being tested as a classification tree (step 1), where all relevant
distinguishing properties are captured at the desired granularity level. More specifically,
properties related to the input domain that may affect the behavior of SOFIE are iden-
tified, and equivalence classes are defined for each property following the usual black-box
testing strategies, such as boundary value analysis for example. Next, we generate ab-
stract test case specifications from the model (step 2), which are valid combinations of
equivalence classes in the model. Once the model is established and the abstract test
cases are generated, we locate the test data available (production data in our industry
context) in the system for a particular test, and match this data with the abstract test
cases (partitions) from the model specification (step 3).

Let us examine an illustrative example. The upper right corner of Figure 2.1 shows
a classification tree model for the functional domain A. It is a simple model containing
three properties, (1) property A (number of X), with two equivalence classes: 1–4 and 5–
10, (2) property B (has Z), with two equivalence classes: Y es and No, and (3) property
C (number of Y ), with three equivalence classes: 0, 1 and > 1. The lower part of
Figure 2.1 shows the abstract test cases (partitions), which are all valid combinations of
the equivalence classes in the model. The model and the corresponding partitions are the
outcome of Steps 1 and 2, as described in the previous section. Table 2.1 contains an
example set of available test data from a particular test. When matching the available
test data with the partitions in the model, test case 1–10 will be contained in partition 3,
as the value of property A is within the range of 1–4, the value of property B is Y es and
the value of property C is > 1. Similarly, test case 11–20 will be contained in partition
12. With the domain model, the abstract test cases, and the set of available test data at
hand, the next step is to select the test cases to execute in the regression test.

4.1 Random partition-based test case selection

In our previous study [18], we applied the following simple strategy for selecting test
cases for regression testing, called random partition-based test case selection: Among
the partitions containing test cases, we selected a random partition, and then a random
test case within the partition. Next, we again selected a random partition among the
remaining ones, and again a random test case within the partition. This process continued
until all the partitions were selected. The process was then started again and test cases
were selected from among the ones that had not yet been selected. The selection process
stopped when the desired number of test cases were selected.

Despite being more efficient than random selection, this test case selection strategy
is likely to be sub-optimal, since it selects test cases at random within each partition.



88

Figure 2.1: Example of a classification tree model.

Referring to the example test cases in Table 2.1, a random partition-based selection strat-
egy would have the same likelihood of selecting test cases 1 and 2 from partition 3 as
test cases 1 and 10, although intuitively it seems more likely that test case 1 and 10 will
reveal different faults than test cases 1 and 2, because their property values are more
diverse. Therefore, we are curious to see whether the notion of similarity measurements
could improve the test case selection process, and hypothesize an improvement in the
fault detection rate.

4.2 Similarity measurement for classification tree models

In order to apply similarity based test case selection, the test cases need to be encoded
(1), a similarity function is needed to quantify the similarity between test cases (2), and
a selection algorithm is needed to select the most diverse test cases (3).

There are two ways to encode a test case based on a classification tree model. The
test case could either be encoded with its actual value for a given property, or it can be
encoded as a Boolean matrix where for each equivalence class in each property, a true or
false value is assigned. For example test case 1 from the example in Section 4 could either
be encoded as having the values (1, Y es, 2) for property A, B, and C, respectively, or
it could be encoded as (T, F, T, F, F, F, T), assigning true (T) or false (F) for all the
equivalence classes in the model. The two variants of encoding are shown in Table 2.2. In
order to introduce similarity-based selection within each partition, the only meaningful
way to go is to use an encoding based on actual values. The Boolean encoding does
not capture enough information to differentiate the various test cases within the same
partition, as it is just a direct reflection of the model.



89

Table 2.1: Example test cases from partition 3 (1-10) and partition 12 (11-20) in
Figure 2.1.

Testcase Property B: Nr of X Property C: Has Z Property D: Nr of Y
Testcase 1 1 Yes 2
Testcase 2 1 Yes 2
Testcase 3 1 Yes 3
Testcase 4 2 Yes 2
Testcase 5 2 Yes 2
Testcase 6 2 Yes 4
Testcase 7 4 Yes 2
Testcase 8 4 Yes 2
Testcase 9 4 Yes 3
Testcase 10 4 Yes 4
Testcase 11 5 No 2
Testcase 12 5 No 2
Testcase 13 5 No 3
Testcase 14 7 No 2
Testcase 15 7 No 2
Testcase 16 7 No 3
Testcase 17 7 No 4
Testcase 18 8 No 2
Testcase 19 9 No 2
Testcase 20 10 No 3

Table 2.2: Test case encoding example.

(a) Example of value-based encoding of test cases.

Testcase Property A: Nr of X Property B: Has Z Property C: Nr of Y
Testcase 1 1 Yes 2

(b) Example of binary encoding of test cases.
Testcase A: 1-4 A: 5-10 B: Yes B: No C: 0 C: 1 C: � 1
Testcase 1 1 0 1 0 0 0 1

Given the value-based encoded test cases, a method for defining similarities between
test cases is needed. Regardless of the similarity function, we have to make some choices
about how to apply it for the purposes of selection. The subject model in this study
does not contain any string values, but is limited to integers and boolean values. Thus,
we can apply the similarity functions directly. (Further elaboration of different strategies
for string matching can be found in [1].) If the property values in the model vary to a
great extent, they should be normalized to prevent the small values from being obfuscated
by much larger values. The output of the similarity measurement is a similarity matrix
expressing the pair-wise similarity between all test cases. Having decided on how to encode
the test cases and how to apply the similarity functions, we investigated two approaches
of similarity-based test case selection, which will now be presented.

4.3 Pure similarity-based test case selection

One alternative is to solely rely on similarity-based test case selection strategy. By that,
we mean selecting test cases from the test suite without accounting for the partitions given



90

from the domain model. We take the entire test suite as an input, encode the test cases,
define pair-wise similarity between all the test cases in a similarity matrix, and then focus
on selecting the most diverse ones. That is, given a test suite of N test cases, generate
an N ×N symmetric similarity matrix and select the n most diverse test cases. The set
of ‘most diverse’ test cases will vary depending on the selection algorithm, whereas the
values of the similarity matrix will vary with the similarity function. When using a pure
similarity-based test case selection strategy it is not necessary to carry out steps 2 and
3 described in section 4, namely to generate the partitions and match the test data with
the partitions. So rather than selecting test cases from partitions defined using human
expertise, the test cases are selected purely based on similarity measures (diversity).

4.4 Similarity partition-based test case selection

Another alternative is to combine similarity measurements with partition-based selection,
denoted as similarity partition-based test case selection. Rather than selecting test cases
within each partition in a completely random manner, we could incorporate a similarity-
based test case selection strategy within each partition. Incorporating similarity measure-
ments within the partitions would ensure that we select as diverse test cases as possible
from each partition, thus benefiting from both the model partitions and the notion of
diversity within each partition. A similarity partition-based strategy generates one simi-
larity matrix per partition containing test cases, rather than generating one for the whole
test suite, and uses it to select the most diverse test cases within each partition. Applying
the concept of similarity measures within each partition therefore has the advantage of
keeping the similarity matrices smaller and less resource intensive.

To exemplify, when selecting four test cases from the available example test cases in
Table 2.1, random partition-based would select two random test cases from each partition,
pure similarity-based would select the four most diverse test cases of the entire test suite,
while similarity partition-based would select the two most diverse test cases from each
partition.

5 Experiment

This section presents an experiment aiming at investigating the use of similarity-based
test case selection for the black-box regression testing of database applications. We will
elaborate on the design and analysis of the experiment, report the results, and discuss
the outcome.



91

5.1 Research questions

Our goal is to determine which similarity-based selection algorithm fares best and then
assess whether and under which conditions similarity-based selection is a worthwhile and
practical alternative to simpler solutions. The latter include random selection as this is
by far the easiest and least expensive selection technique to apply and any alternative
must be justified by significant improvements. The research questions for this study are
as follows:

RQ1 For each selection algorithm, which similarity function, i.e. Euclidian, Manhattan,
Mahalanobis and NCD, is best suited for defining similarity between test cases,
in order to obtain the best fault detection rate and selection execution time when
performing similarity-based selection of test cases generated from classification tree
models?

RQ2 When used in combination with their best similarity function (RQ1), which one of
the selection algorithms, i.e., evolutionary and greedy, provides better fault detec-
tion rates and selection execution times, when selecting test cases generated from
classification tree models?

RQ3 Which one of the selection strategies, random partition-based, similarity partition-
based and pure similarity-based (the two latter ones incorporating the best combina-
tion of similarity function —RQ1—and selection algorithm—RQ2) provides better
fault detection rates and selection execution times when selecting test cases gener-
ated from classification tree models?

RQ4 Comparing the best selection approach from RQ3 and a random approach, which one
provides better fault detection rates and selection execution times when selecting
test cases generated from classification tree models?

5.2 Design and analysis

The subject test suite for the experiment contains 5,670 test cases, split across 130 par-
titions in the particular model for the domain under test. The test suite is based on
actual data from the production environment in the SOFIE project, and was the only
available input file for the particular regression test under consideration. For evaluation
purposes we ran the regression test on the entire test suite. The regression test compares
two runs of a baseline and delta version of the system under test, resulting in a set of
deviations that indicate a change (regression fault or a correct change). More information
on the specifics of the regression test is available in [18]. The subject test suite in this



92

study resulted in 522 deviations and of these, 136 deviations were faulty, capturing 15
distinct faults. All the faults are real faults (no seeded faults), emerging from a test suite
in industry.

In order to determine the best similarity function and selection algorithm, we ran all
combinations of similarity functions and selection algorithms for the entire test suite. We
applied the similarity functions Euclidian, Manhattan, Mahalanobis and NCD to generate
a similarity matrix for the entire test suite, and in turn used each of them as inputs for
both the evolutionary and greedy selection algorithms. Each combination of similarity
function and selection algorithm was used to select subsets of test cases, ranging from 5%
to 95% of the entire test suite, with 5% intervals. For each subset we logged the exact
test cases selected, and reported the number of distinct faults revealed, along with the
selection execution time. We repeated the exercise 175 times in order to gain satisfactory
statistical power when comparing similarity functions and selection algorithms for RQ1
and RQ2. Specifically, we scheduled the experiment to run in parallel on a cluster and
the maximum number of nodes available was 175. With one parallel run on each node,
this led to 175 repetitions, which was deemed sufficient to detect differences large enough
to be of practical interest.

Once the outcome of RQ1 and RQ2 was concluded, the pure similarity-based approach
was given directly, and constituted of the best combination of similarity function and selec-
tion algorithm. The similarity partition-based approach was composed by incorporating
the best combination of similarity function and selection algorithm with the partition-
based approach. Again we selected a subset of test cases ranging from 5% to 95% of the
entire test suite, with 5% intervals, logged the same data points and repeated the exercise
175 times for random partition-based, similarity partition-based, pure similarity-based
and random in order to address RQ3 and RQ4.

As suggested in [2] and [19], we selected a non-parametric statistical test since we
could not fulfill the underlying assumption of normality and equal variance between our
data samples. More specifically, we used a two-tailed Mann-Whitney U-tests (Wilcox
test in R) to conduct pair-wise algorithm comparisons for all sample values, ranging
from 5% to 95%. The p-values for each comparison is reported, and α = 0.05 is used
whenever referring to statistical significance. However, a Mann-Whitney U-test reports
only whether there is a statistically significant difference between two algorithms, but
does not clarify the magnitude of the difference. Thus, we use the Â12 effect size measure
to assess the practical significance of differences. An Â12 effect size measurement value
of 0.5 indicates that there is no difference between the two samples compared, whereas
values above 0.5 indicates that sample A is superior to sample B, and opposite for values
smaller than 0.5. The further away from 0.5, the larger the effect size. The value of the



93

effect size measurement is reported, but for increased visibility we have also categorized
the effect size into Small, Medium and Large. The categories resolves to the following
interpretation: Small < 0.10, 0.10 < Medium < 0.17 and Large > 0.17, the value being
the distance from the 0.5 value [19].

5.3 Results

This section will report the results from testing the experimental hypotheses that can be
derived from the research questions in Section 5.1.

Throughout this section the results will be reported as follows:

• A graph showing the average percentage of faults found (y-axis) per percentage of
selected test cases (x-axis).

• A graph showing the average selection execution time (y-axis) in minutes per per-
centage of selected test cases (x-axis).

• A table showing the results of the statistical tests and effect size measurement for
each algorithm comparison. The table will adhere to the following structure: Col-
umn one indicates the sample size in percentage. Then each algorithm comparison
will be represented in one column, which is split into three sub-columns. The first
sub-column reports the p-value from the Mann-Whitney U-test, the second sub-
column reports the superior algorithm of the two, and the third column reports
the Â12 effect size measurement, both the actual value and on a three-point scale
for helping the visualization of trends, i.e. Small, Medium or Large. The same ta-
ble structure will be used to report comparisons of both fault detection rate and
selection execution time.

Research question 1—Similarity functions

The results for each of the similarity functions combined with the greedy selection algo-
rithm are depicted in Figure 2.2, Table 2.3. By looking at the graphs in Figure 2.2(a)
and Figure 2.2(b), it seems evident that Mahalanobis is the best similarity function for
the greedy selection algorithm, since it has the highest fault detection rate and the lowest
selection execution time. This observation is confirmed by the conducted statistical tests
and the measured effect size (only the results regarding fault detection rate are reported),
shown in Table 2.3. In terms of fault detection rate reported in Table 2.3, Mahalanobis
is significantly higher than Euclidian and Manhattan for all sample sizes up to 70% and
higher, than NCD for all sample sizes. The effect size is large for smaller sample sizes,
medium for medium-sized sample sizes and small for larger sample sizes, all in favor of



94

0 20 40 60 80 100

0
20

40
60

80
10

0

Sample size (%)

Fa
ul

t d
et

ec
tio

n 
ra

te
 (%

)

Mahalanobis
Euclidian
Manhattan
NCD

(a) Average number of faults found (y-axis) per num-
ber of test cases selected (x-axis) for the greedy selec-
tion algorithm.

20 40 60 80

5
10

15
20

25
Sample size (%)

Se
le

ct
io

n 
ex

ec
ut

io
n 

tim
e 

(m
in

ut
es

)

Mahalanobis
Euclidian
Manhattan
NCD

(b) Average selection execution time (y-axis) per num-
ber of test cases selected (x-axis) for the greedy selec-
tion algorithm.

Figure 2.2: Graphs comparing different similarity functions for the greedy selection
algorithm.

Mahalanobis, except for one sample value at 95%. The results also indicate that there is
no significant difference in the fault detection rate between the Euclidian and Manhattan
similarity functions, and there is no consistency in the effect size reported. NCD is worse
than the three others for all sample sizes.

In terms of selection execution time, Mahalanobis and NCD is significantly quicker
than both Euclidian and Manhattan for all sample sizes, and the effect size is large.
Mahalanobis is quicker than NCD for the lower sample sizes, whereas NCD is faster for the
large sample sizes. Between Euclidian and Manhattan, Euclidian shows a better selection
execution time, but with varying significance and effect sizes. A general note regarding
the selection execution time is that the greedy selection algorithm performs increasingly
better the closer it gets to 100% of the sample size. This is because the greedy algorithm
excludes the most similar test cases rather than selecting the most diverse ones, i.e. when
selecting n test cases from a sample of N test cases, the greedy algorithm would exclude
N − n test cases rather than select n test cases.

Given the results discussed above, it is important to use the Mahalanobis similarity
function in combination with the greedy selection algorithm in order to obtain the best
fault detection rates and selection execution time.

Figure 2.3 and Table 2.4 depict and report the results for each of the similarity func-
tions combined with the evolutionary selection algorithm. As the graph in Figure 2.3(b)



95

Table 2.3: Mann-Whitney U-tests and Â12 effect size measurements when comparing
fault detection rate across the similarity functions Euclidian, Manhattan, Mahalanobis

and NCD for the greedy selection algorithm.
�������������������Sample size (%)

Comparison
Mahalanobis (A), Euclidian (B) Mahalanobis (A), Manhattan (C) Euclidian (B), Manhattan (C)

p-value Superior Effect size p-value Superior Effect size p-value Superior Effect size
5 < 0.0001 A Large (0.9207) < 0.0001 A Large (0.9392) 0.7158 B Small (0.4894)
10 < 0.0001 A Large (0.8803) < 0.0001 A Large (0.9037) 0.1466 B Small (0.4572)
15 < 0.0001 A Large (0.8528) < 0.0001 A Large (0.8423) 0.4149 C Small (0.5241)
20 < 0.0001 A Large (0.7840) < 0.0001 A Large (0.8284) 0.1388 B Small (0.4561)
25 < 0.0001 A Large (0.7645) < 0.0001 A Large (0.7931) 0.1459 B Small (0.4568)
30 < 0.0001 A Large (0.7557) < 0.0001 A Large (0.7117) 0.1953 C Small (0.5389)
35 < 0.0001 A Large (0.6969) < 0.0001 A Large (0.7109) 0.7047 B Small (0.4886)
40 < 0.0001 A Large (0.7142) < 0.0001 A Large (0.7271) 0.4939 B Small (0.4795)
45 < 0.0001 A Large (0.6871) < 0.0001 A Medium (0.6551) 0.2968 C Small (0.5315)
50 < 0.0001 A Medium (0.6444) < 0.0001 A Medium (0.6343) 0.8441 C Small (0.5059)
55 < 0.0001 A Medium (0.6243) 0.0003 A Medium (0.6088) 0.5831 C Small (0.5165)
60 0.0033 A Small (0.5879) 0.0001 A Medium (0.6137) 0.6210 B Small (0.4852)
65 0.0011 A Small (0.5974) 0.0147 A Small (0.5732) 0.4950 C Small (0.5205)
70 0.0053 A Small (0.5829) 0.0459 A Small (0.5593) 0.5272 C Small (0.5190)
75 0.0020 A Small (0.5920) 0.0030 A Small (0.5878) 0.7378 C Small (0.5099)
80 0.1215 A Small (0.5457) 0.1228 A Small (0.5456) 0.9727 B Small (0.4990)
85 0.0356 A Small (0.5602) 0.1770 A Small (0.5385) 0.4723 C Small (0.5207)
90 0.3730 A Small (0.5244) 0.0550 A Small (0.5532) 0.3218 B Small (0.4723)
95 0.5088 B Small (0.4845) 0.3755 A Small (0.5218) 0.1308 B Small (0.4636)

Mahalanobis (A), NCD (D) Euclidian (B), NCD (D) Manhattan (C), NCD (D)

p-value Superior Effect size p-value Superior Effect size p-value Superior Effect size
5 < 0.0001 A Large (1) < 0.0001 B Large (0.9970) < 0.0001 C Large (0.9967)
10 < 0.0001 A Large (0.9991) < 0.0001 B Large (0.9515) < 0.0001 C Large (0.9440)
15 < 0.0001 A Large (0.9879) < 0.0001 B Large (0.8509) < 0.0001 C Large (0.8655)
20 < 0.0001 A Large (0.9509) < 0.0001 B Large (0.8227) < 0.0001 C Large (0.7952)
25 < 0.0001 A Large (0.9038) < 0.0001 B Large (0.7647) < 0.0001 C Large (0.7282)
30 < 0.0001 A Large (0.8831) < 0.0001 B Large (0.7001) < 0.0001 C Large (0.7297)
35 < 0.0001 A Large (0.8564) < 0.0001 B Large (0.6922) < 0.0001 C Large (0.6967)
40 < 0.0001 A Large (0.8318) < 0.0001 B Medium (0.6651) < 0.0001 C Medium (0.6402)
45 < 0.0001 A Large (0.8114) < 0.0001 B Medium (0.6543) < 0.0001 C Large (0.6821)
50 < 0.0001 A Large (0.7460) < 0.0001 B Medium (0.6342) < 0.0001 C Medium (0.6379)
55 < 0.0001 A Large (0.6879) 0.0366 B Small (0.5650) 0.0145 C Small (0.5760)
60 < 0.0001 A Large (0.7245) 0.0003 B Medium (0.6116) 0.0002 C Medium (0.6125)
65 < 0.0001 A Medium (0.6306) 0.2085 B Small (0.5390) 0.0912 C Small (0.5524)
70 < 0.0001 A Medium (0.6389) 0.1165 B Small (0.5483) 0.0275 C Small (0.5682)
75 < 0.0001 A Medium (0.6355) 0.2853 B Small (0.5330) 0.1071 C Small (0.5494)
80 0.0014 A Small (0.5978) 0.0357 B Small (0.5644) 0.0621 C Small (0.5573)
85 0.0058 A Small (0.5823) 0.4329 B Small (0.5235) 0.0813 C Small (0.5521)
90 0.0101 A Small (0.5740) 0.1434 B Small (0.5425) 0.5825 C Small (0.5160)
95 0.0357 A Small (0.5547) 0.0040 B Small (0.5734) 0.2820 C Small (0.5286)



96

0 20 40 60 80 100

0
20

40
60

80
10

0

Sample size (%)

Fa
ul

t d
et

ec
tio

n 
ra

te
 (%

)

Mahalanobis
Euclidian
Manhattan
NCD

(a) Average number of faults found (y-axis) per num-
ber of test cases selected (x-axis) for the evolutionary
selection algorithm

20 40 60 80

0
50

10
0

15
0

Sample size (%)

Se
le

ct
io

n 
ex

ec
ut

io
n 

tim
e 

(m
in

ut
es

)

Mahalanobis
Euclidian
Manhattan
NCD

(b) Average selection execution time (y-axis) per num-
ber of test cases selected (x-axis) for the evolutionary
selection algorithm

Figure 2.3: Graphs comparing different similarity functions for the evolutionary
selection algorithm.

show, there is no practical difference between the similarity functions regarding selection
execution time (the lines are virtually on top of each other). The same accounts for the
fault detection rate between Euclidian, Manhattan and Mahalanobis, while NCD falls
short of the others, as shown in Figure 2.3(a). The statistical tests (only the results
regarding fault detection rate are reported) confirm that Euclidian, Manhattan and Ma-
halanobis are better than NCD for all sample sizes and the effect size is large. Between
the former three, the null-hypothesis stating that there is no difference in fault detection
rates between the algorithms cannot be rejected other than for the sample sizes 5% to
15% in the Mahalanobis vs. Euclidian comparison and for the sample sizes 5%, 10%, 25%,
35%, 60%, 75% and 80% in the Mahalanobis vs. Manhattan comparison, all in favor of
Mahalanobis. Regarding selection execution time, there is no notable difference among
algorithms. The results for the evolutionary selection algorithm do not show clear dif-
ferences as for the greedy approach, except for the poor results of NCD, but if we have
to choose one, Mahalanobis is again the preferred similarity function. Despite not being
superior for all sample sizes, Mahalanobis is significantly better for smaller sample sizes,
which are the most important ones, and it is not inferior to the others for any other sample
sizes.

In summary, we can address RQ1 by stating that Mahalanobis should be the pre-
ferred similarity function for both the greedy and evolutionary selection algorithms. This



97

Table 2.4: Mann-Whitney U-tests and Â12 effect size measurements when comparing
fault detection rates across the similarity functions Euclidian, Manhattan, Mahalanobis

and NCD for the evolutionary selection algorithm.
�������������������Sample size (%)

Comparison
Mahalanobis (A), Euclidian (B) Mahalanobis (A), Manhattan (C) Euclidian (B), Manhattan (C)

p-value Superior Effect size p-value Superior Effect size p-value Superior Effect size
5 < 0.0001 A Large (0.6797) 0.0134 A Small (0.5740) 0.0001 C Medium (0.6158)
10 0.0033 A Small (0.5885) 0.0003 A Medium (0.6103) 0.3552 B Small (0.4721)
15 0.0042 A Small (0.5863) 0.0515 A Small (0.5586) 0.3309 C Small (0.5293)
20 0.2229 A ( Small (0.5366) 0.0526 A Small (0.5579) 0.5269 B Small (0.4810)
25 0.1251 A Small (0.5459) 0.0253 A Small (0.5668) 0.5279 B Small (0.4811)
30 0.5644 A Small (0.5171) 0.1176 A Small (0.5467) 0.2847 B Small (0.4682)
35 0.9075 B Small (0.4966) 0.0349 A Small (0.5626) 0.0184 B Small (0.4307)
40 0.6634 A Small (0.5126) 0.4593 A Small (0.5215) 0.7691 B Small (0.4914)
45 0.7801 B Small (0.4920) 0.4388 C Small (0.4778) 0.6201 C Small (0.5142)
50 0.1646 B Small (0.4612) 0.6034 C Small (0.4854) 0.3979 B Small (0.4766)
55 0.2499 B Small (0.4705) 0.8279 A Small (0.5057) 0.1829 B Small (0.4658)
60 1 None NO effect (0.5) 0.0039 A Small (0.5689) 0.0039 B Small (0.4311)
65 0.7087 A Small (0.5075) 0.5046 A Small (0.5136) 0.7657 B Small (0.4938)
70 0.8927 A Small (0.5022) 0.7486 A Small (0.5054) 0.8516 B Small (0.4968)
75 0.2006 A Small (0.5114) 0.0106 A Small (0.5286) 0.1681 B Small (0.4829)
80 0.1579 A Small (0.5057) 0.0247 A Small (0.5143) 0.2536 B Small (0.4914)
85 NaN None NO effect (0.5) 0.0830 A Small (0.5086) 0.0830 B Small (0.4914)
90 NaN None NO effect (0.5) NaN None NO effect (0.5) NaN None NO effect (0.5)
95 NaN None NO effect (0.5) NaN None NO effect (0.5) NaN None NO effect (0.5)

Mahalanobis (A), NCD (D) Euclidian (B), NCD (D) Manhattan (C), NCD (D)

p-value Superior Effect size p-value Superior Effect size p-value Superior Effect size
5 < 0.0001 A Large (0.9997) < 0.0001 B Large (0.9994) < 0.0001 C Large (0.9998)
10 < 0.0001 A Large (0.9994) < 0.0001 B Large (0.9995) < 0.0001 C Large (0.9991)
15 < 0.0001 A Large (0.9997) < 0.0001 B Large (0.9979) < 0.0001 C Large (0.9990)
20 < 0.0001 A Large (0.9990) < 0.0001 B Large (0.9965) < 0.0001 C Large (0.9995)
25 < 0.0001 A Large (0.9983) < 0.0001 B Large (0.9956) < 0.0001 C Large (0.9956)
30 < 0.0001 A Large (0.9980) < 0.0001 B Large (0.9964) < 0.0001 C Large (0.9961)
35 < 0.0001 A Large (0.9957) < 0.0001 B Large (0.9964) < 0.0001 C Large (0.9899)
40 < 0.0001 A Large (0.9986) < 0.0001 B Large (0.9991) < 0.0001 C Large (0.9991)
45 < 0.0001 A Large (0.9967) < 0.0001 B Large (0.9978) < 0.0001 C Large (0.9968)
50 < 0.0001 A Large (0.9890) < 0.0001 B Large (0.9937) < 0.0001 C Large (0.9887)
55 < 0.0001 A Large (0.9977) < 0.0001 B Large (0.9988) < 0.0001 C Large (0.9937)
60 < 0.0001 A Large (0.9964) < 0.0001 B Large (0.9964) < 0.0001 C Large (0.9937)
65 < 0.0001 A Large (0.9909) < 0.0001 B Large (0.9916) < 0.0001 C Large (0.9906)
70 < 0.0001 A Large (0.9898) < 0.0001 B Large (0.9918) < 0.0001 C Large (0.9902)
75 < 0.0001 A Large (0.9985) < 0.0001 B Large (0.9965) < 0.0001 C Large (0.9936)
80 < 0.0001 A Large (0.9885) < 0.0001 B Large (0.9870) < 0.0001 C Large (0.9846)
85 < 0.0001 A Large (0.9454) < 0.0001 B Large (0.9454) < 0.0001 C Large (0.9425)
90 < 0.0001 A Large (0.9310) < 0.0001 B Large (0.9310) < 0.0001 C Large (0.9310)
95 < 0.0001 A Large (0.8218) < 0.0001 B Large (0.8218) < 0.0001 C Large (0.8218)



98

could indicate that it is important to consider correlation among model properties, since
incorporation of correlation is the main differentiating factor between the Mahalanobis
similarity function and the two simpler similarity functions Euclidian and Manhattan.
NCD falls short of the others in terms of the fault detection rate. The most plausible
reason is that the test cases are represented by a fairly simple structure that accounts
for very little information distance between their compressed versions. Thus, NCD is not
able to pick up the minor differences as well as simpler geometrical functions.

Research question 2—Selection algorithms

Figure 2.4 and Table 2.5 depict and report the results for the greedy and evolutionary
selection algorithms, each combined with their best similarity function (Mahalanobis). By
looking at the graphs, it seems obvious that evolutionary is better than greedy in terms of
fault detection rate, whereas their selection execution time follow different patterns. The
selection execution time decreases for the greedy approach as the sample size increases (for
the reasons mentioned in Section 5.3), whereas it increases for the evolutionary approach.
The cross-over point is between sample size 25% and 30%. Regarding fault detection
rates, the results reported from the statistical tests and effect size measures show that
evolutionary is better than greedy for all sample sizes except 5%, where there is no
statistical significance. The effect size is large for all sample sizes except 5% (small)
and 95% (medium), still in favor of the evolutionary approach. Also important is the
result that evolutionary converges to 100% fault detection much faster than the greedy
approach, i.e. it reaches 98.5% and 100% detection rate at 60% and 80% sample sizes,
respectively. In terms of selection execution time there is a significant difference for all
sample values, in favor of the evolutionary approach for 5% to 25% sample sizes, and
in favor of the greedy approach for 30% to 95% sample sizes. Given the superiority of
the evolutionary approach in terms of fault detection rate, along with the fact that it
performs better for smaller sample sizes, the outcome of RQ2 is that the evolutionary
selection algorithm in combination with the Mahalanobis similarity function is the best
similarity-based combination for selecting test cases generated from classification tree
models in our experiment.

Research question 3—Selection strategies

For RQ3, we are interested in comparing random partition-based with similarity partition-
based and pure similarity-based, the latter two incorporating the best combination of
similarity function and selection algorithms from RQ2, namely the evolutionary selection
algorithm and the Mahalanobis similarity function. Figures 2.5(a) and 2.5(b), and Ta-
bles 2.6 and 2.7 depict and report the results for the similarity partition-based, random



99

0 20 40 60 80 100

0
20

40
60

80
10

0

Sample size (%)

Fa
ul

t d
et

ec
tio

n 
ra

te
 (%

)

Greedy
Evolutionary

(a) Average number of faults found (y-axis) per num-
ber of test cases selected (x-axis) for the best greedy
and best evolutionary selection algorithm.

20 40 60 80

0
50

10
0

15
0

Sample size (%)
Se

le
ct

io
n 

ex
ec

ut
io

n 
tim

e 
(m

in
ut

es
)

Greedy
Evolutionary

(b) Average selection execution time (y-axis) per num-
ber of test cases selected (x-axis) for the best greedy
and best evolutionary selection algorithm.

Figure 2.4: Graphs comparing the best greedy and evolutionary selection algorithm.

Table 2.5: Data reported from Mann-Whitney U-tests and Â12 effect size measurements
when comparing the greedy and evolutionary selection algorithms.

(a) Mann-Whitney U-tests and Â12 effect size mea-
surements when comparing fault detection rate across
the selection algorithms greedy and evolutionary, each
combined with their best similarity function.

�������������������Sample size (%)
Comparison

Evolutionary (A), Greedy (B)

p-value Superior Effect size
5 0.9308 A Small (0.5026)
10 < 0.0001 A Large (0.7650)
15 < 0.0001 A Large (0.8191)
20 < 0.0001 A Large (0.8561)
25 < 0.0001 A Large (0.8677)
30 < 0.0001 A Large (0.9240)
35 < 0.0001 A Large (0.9049)
40 < 0.0001 A Large (0.8962)
45 < 0.0001 A Large (0.9085)
50 < 0.0001 A Large (0.9027)
55 < 0.0001 A Large (0.9180)
60 < 0.0001 A Large (0.9431)
65 < 0.0001 A Large (0.9164)
70 < 0.0001 A Large (0.9007)
75 < 0.0001 A Large (0.8720)
80 < 0.0001 A Large (0.8457)
85 < 0.0001 A Large (0.7886)
90 < 0.0001 A Large (0.7057)
95 < 0.0001 A Medium (0.6371)

(b) Mann-Whitney U-tests and Â12 effect size mea-
surements when comparing selection execution times
across the selection algorithms greedy and evolution-
ary, each combined with their best similarity function.

�������������������Sample size (%)
Comparison

Evolutionary (A), Greedy (B)

p-value Superior Effect size
5 < 0.0001 A Large (0)
10 < 0.0001 A Large (0)
15 < 0.0001 A Large (0)
20 < 0.0001 A Large (0)
25 < 0.0001 A Large (0.0020)
30 < 0.0001 B Large (0.9974)
35 < 0.0001 B Large (1)
40 < 0.0001 B Large (1)
45 < 0.0001 B Large (1)
50 < 0.0001 B Large (1)
55 < 0.0001 B Large (1)
60 < 0.0001 B Large (1)
65 < 0.0001 B Large (1)
70 < 0.0001 B Large (1)
75 < 0.0001 B Large (1)
80 < 0.0001 B Large (1)
85 < 0.0001 B Large (1)
90 < 0.0001 B Large (1)
95 < 0.0001 B Large (1)



100

partition-based and pure similarity-based approaches. It is clear from the graph that
combining similarity measurements with a partition-based approach offers improved se-
lection execution times when compared with a pure similarity-based approach. By using a
partition-based strategy, the selection problem is divided into smaller sub-problems. Con-
sequently, the similarity matrices are smaller and easier to work with, e.g. for the 30%
sample size, the similarity partition-based approach uses less than one minute, whereas
pure similarity-based uses 22 minutes, which is a substantial improvement in practice. In
terms of the fault detection rate, the similarity partition-based curve is steeper than pure
similarity-based at the beginning, thus reaching a higher fault detection rate at an earlier
stage (for smaller sample sizes). Additionally, it converges even faster to 100% fault de-
tection (at a 75% sample size) and is more reliable since it shows lower variance around
the mean (not reported explicitly in the graph). The fault detection rate of the similarity
partition-based approach is significantly better than the pure similarity-based approach
for smaller sample sizes up to 25%, with a large effect size for 5% to 20%. However, the
pure similarity-based approach is significantly better than the similarity partition-based
approach for a 60% sample size with a medium effect size. The selection execution time is
significantly different for all sample sizes, with a large effect size in favor of the similarity
partition-based approach.

The difference between the similarity partition-based and random partition-based is
more marginal. The selection execution time is in favor of random partition-based, with
significant differences for all sample sizes. However, for sample values up to 50%, execution
time ranges from near 0 to up to 4 minutes for similarity partition-based, as opposed to
less than a second for random partition-based, a difference which is not of great practical
significance. In terms of the fault detection rate, similarity partition-based is significantly
better than random partition-based for sample sizes of 15%, between 25% and 55% and
for 65%, and is superior for all other sample sizes, though with modest improvements.

To address RQ3, when selecting test cases generated from classification tree models,
similarity partition-based provides overall the best fault detection rates, whereas random
partition-based shows the lowest selection execution time. It is, however, worth pointing
out that the practical significance, which in the end is what decides the usefulness of the
approach, is clearly in favor of the prior candidate solution since the selection execution
time only comes into play with extremely large test suites.

Research question 4—Compared with a random approach

Figure 2.6 and Table 2.8 depict and report the results we obtained when comparing
similarity partition-based and random test case selection approaches. In terms of fault
detection, the improvements when adopting a more sophisticated test case selection strat-



101

0 20 40 60 80 100

0
20

40
60

80
10

0

Sample size (%)

Fa
ul

t d
et

ec
tio

n 
ra

te
 (%

)

Similarity_Partition_Based
Random_Partition_Based
Pure_Similarity_Based

(a) Average number of faults found (y-axis) per num-
ber of test cases selected (x-axis) for the three best
approaches.

20 40 60 80

0
50

10
0

15
0

Sample size (%)
Se

le
ct

io
n 

ex
ec

ut
io

n 
tim

e 
(m

in
ut

es
)

Similarity_Partition_Based
Random_Partition_Based
Pure_Similarity_Based

(b) Average selection execution time (y-axis) per num-
ber of test cases selected (x-axis) for the three best
approaches.

Figure 2.5: Graphs comparing the three best approaches.

Table 2.6: Mann-Whitney U-tests and Â12 effect size measurements when comparing
fault detection rates across the similarity partition-based, random partition-based and

pure similarity-based test case selection strategies.
�������������������Sample size (%)

Comparison
Similarity Partition-Based (A), Random Partition-Based (B) Similarity Partition-Based (A), Pure Similarity-Based (C) Random Partition-Based (B), Pure Similarity-Based (C)

p-value Superior Effect size p-value Superior Effect size p-value Superior Effect size
5 0.4677 A Small (0.5199) < 0.0001 A Large (0.9169) < 0.0001 B Large (0.9159)
10 0.4594 A Small (0.5199) < 0.0001 A Large (0.8310) < 0.0001 B Large (0.8225)
15 0.0428 A Small (0.5345) < 0.0001 A Large (0.8110) < 0.0001 B Large (0.7992)
20 0.0984 A Small (0.5367) < 0.0001 A Large (0.6716) < 0.0001 B Medium (0.6537)
25 0.0023 A Small (0.5776) 0.0019 A Small (0.5895) 0.1624 B Small (0.5395)
30 0.0017 A Small (0.5852) 0.3066 A Small (0.5296) 0.3330 C Small (0.4722)
35 < 0.0001 A Medium (0.6141) 0.7949 C Small (0.4925) 0.0019 C Small (0.4104)
40 < 0.0001 A Medium (0.6624) 0.6126 A Small (0.5138) < 0.0001 C Medium (0.3827)
45 < 0.0001 A Large (0.6715) 0.9072 C Small (0.4968) < 0.0001 C Medium (0.3641)
50 < 0.0001 A Medium (0.6600) 0.5342 C Small (0.4829) < 0.0001 C Medium (0.3539)
55 0.0109 A Small (0.5697) 0.0067 C Small (0.4269) < 0.0001 C Medium (0.3700)
60 0.2574 A Small (0.5306) < 0.0001 C Medium (0.3863) < 0.0001 C Medium (0.3650)
65 0.0058 A Small (0.5651) 0.3748 C Small (0.4817) 0.0004 C Small (0.4181)
70 0.2287 A Small (0.5175) 0.1681 A Small (0.5204) 0.8613 B Small (0.5028)
75 NaN None NO effect (0.5) 0.0830 A Small (0.5086) 0.0830 B Small (0.5085)
80 NaN None NO effect (0.5) NaN None NO effect (0.5) NaN None NO effect (0.5)
85 NaN None NO effect (0.5) NaN None NO effect (0.5) NaN None NO effect (0.5)
90 NaN None NO effect (0.5) NaN None NO effect (0.5) NaN None NO effect (0.5)
95 NaN None NO effect (0.5) NaN None NO effect (0.5) NaN None NO effect (0.5)

Table 2.7: Mann-Whitney U-tests and Â12 effect size measurements when comparing
selection execution time across the similarity partition-based, random partition-based

and pure similarity-based test case selection strategies.
�������������������Sample size (%)

Comparison
Similarity Partition-Based (A), Random Partition-Based (B) Similarity Partition-Based (A), Pure Similarity-Based (C) Random Partition-Based (B), Pure Similarity-Based (C)

p-value Superior Effect size p-value Superior Effect size p-value Superior Effect size
5-95 < 0.0001 B Large (1) < 0.0001 A Large (0) < 0.0001 B Large (0)



102

0 20 40 60 80 100

0
20

40
60

80
10

0

Sample size (%)

Fa
ul

t d
et

ec
tio

n 
ra

te
 (%

)

Similarity_Partition_Based
Random

(a) Average number of faults found (y-axis) per num-
ber of test cases selected (x-axis) for the similarity
partition-based test case selection approach and a ran-
dom selection.

20 40 60 80

0
20

40
60

80
10

0
Sample size (%)

Se
le

ct
io

n 
ex

ec
ut

io
n 

tim
e 

(m
in

ut
es

)

Similarity_Partition_Based
Random

(b) Average selection execution time (y-axis) per num-
ber of test cases selected (x-axis) for the similarity
partition-based test case selection approach and a ran-
dom selection.

Figure 2.6: Graphs comparing similarity partition-based test case selection and random
selection.

egy such as similarity partition-based are highly significant compared to using a random
test selection strategy. As the graph shows, at a sample size of 5%, random selection
would on average identify 25% of the faults, whereas similarity partition-based selections
would reveal nearly 80% of the faults. This is a considerable efficiency gain in terms of
early fault detection. The results show that similarity partition-based has a significantly
better fault detection rate than the random approach for all sample sizes, with a large
effect size, whereas the opposite is true for selection execution time. However, as long as
the selection execution time is within a satisfactory range, the fault detection rate is ob-
viously the most important criterion of the two. We can reasonably consider the selection
execution time for similarity partition-based to be acceptable, particularly since we target
smaller sample sizes of selection, in which the execution takes less than four minutes for a
quite large original test suite. So, in order to address RQ4, similarity partition-based of-
fers very strong advantages over the random approach when selecting test cases generated
from classification tree models.

5.4 Discussion and Further Analysis

Although the idea of incorporating similarity-based test case selections within each par-
tition seems intuitive and promising, especially given some of the recent results of its



103

Table 2.8: Data reported from Mann-Whitney U-tests and Â12 effect size measurements
when comparing similarity partition-based test case selection and random selection.]

(a) Mann-Whitney U-tests and Â12 effect size mea-
surements when comparing fault detection rate across
the similarity partition-based test case selection ap-
proach and a random selection.

�������������������Sample size (%)
Comparison

Evolutionary (A), Random (B)

P-value Superior Effect size
5% - 80% < 0.0001 A Large (> 0.9200)
85% - 90% < 0.0001 A Large (> 0.7800)

95% < 0.0001 A Medium (0.6371)

(b) Mann-Whitney U-tests and Â12 effect size mea-
surements when comparing selection execution time
across the similarity partition-based test case selection
approach and a random selection.

�������������������Sample size (%)
Comparison

Evolutionary (A), Random (B)

p-value Superior Effect size
5% - 95% < 0.0001 B Large (1)
85% - 90% < 0.0001 B Large (1)

95% < 0.0001 B Large (1)

application in other contexts [9], the overall results we obtained are only marginally bet-
ter when compared to a random selection within each partition. We analyzed the data
more carefully to find plausible explanations for this unexpected result. It turns out that
many of the faults are located in partitions containing relatively few test cases. Hence,
they would surface quickly with a partition-based approach, regardless of whether the
selection was random or similarity-based within each partition. Such situations are ex-
pected to occur when testing is driven by an operational or usage profile, and faults are
uncovered when executing unusual scenarios for which relatively few test cases are de-
fined [16]. Though we have not used an operational profile, our original test suite is based
on real taxpayer data, and consequently we have more test cases representing common
scenarios that are well understood and less faulty, whereas we have fewer test cases ac-
counting for more unusual situations where faults are more likely to hide. In situations
when faults are only contained in small partitions, the impact of similarity-based selection
within partitions becomes negligible and should not be applied, especially on very large
test suites where selection execution time matters.

In our context, some of the faults were located in partitions containing many test cases.
To be specific, 73% of the faults were located in small partitions only containing up to
three test cases, whereas 27% of the faults were located in larger partitions of up to 340 test
cases. As expected, the fault detection rate for the faults from the small partitions do not
differ between similarity partition-based and random partition-based. So the main source
of differences between random partition-based and similarity partition-based lies in the
detection rate of the faults from the larger partitions. A detailed analysis shows that for
all the larger partitions containing faults, the fault detection rate was significantly higher
for similarity partition-based than random partition-based. And the larger the partition,
the larger the impact of similarity measurement. As an example, fault X is contained in
a partition with five test cases. In this case, similarity partition-based selection detected
the fault in 112 out of 175 runs for the 5% selection sample, while the results for random
partition-based was 111/175. For all other sample sizes, both selection strategies showed a



104

�����������������������Selection strategy

Sample size (%)
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75-100

Similarity Partition-Based 2% 5% 8% 13% 23% 29% 39% 53% 62% 68% 73% 78% 90% 97% 100%

Random Partition-Based 1% 3% 4% 10% 14% 17% 25% 33% 41% 47% 63% 73% 83% 95% 100%

Table 2.9: The average detection rate for Fault Z and W that are contained in a large
partition. Each of the faults are present in one single test case among 340 test cases in

the partition.

100% detection for this fault. This is a marginal improvement, which can be explained by
the fact that the partition still contains few test cases. Fault Y is contained in a partition
with 18 test cases. The partition is a bit larger than the previous one, and so is the fault
detection improvement of similarity partition-based over random partition-based. For the
5% and 10% selection samples, the detection rate of fault Y is 31/175 vs. 23/175 and 99/
175 vs. 98/175, both in favor of similarity partition-based, respectively. It is 100% for all
other sample sizes. For the 5% sample, the difference is of practical significance. Faults Z
and W are contained in the same partition constituting a total of 340 test cases. The fault
detection rate for these faults combined are shown in Table 2.9. As the table shows, the
similarity partition-based selection yields a better detection rate for all sample sizes, and
the difference is practically significant for most sample sizes. By practically significant we
mean that the relative increase in fault detection rate is considerable, i.e. 30% to 100%
improvement up to 50% sample size. Table 2.10 also shows that the results are statistically
significant (p-values are below our significance threshold) for most sample sizes with the
effect size varying from small to large. The above results suggests that similarity partition-
based should be preferred when faults are located in partitions containing a large number
of test cases. This is often the case, for example, in safety critical systems where the most
critical or complex scenarios and components tend to be more exercised by testing.

Another important point to highlight regarding the overall marginal improvement of
similarity partition-based over random partition-based test case selection in this study,
is the lack of variability in the subject model. To benefit significantly from similarity
measurements when selecting test cases within partitions, the equivalence classes must be
defined in such a way that they contain significant variation. If all model properties are
defined as either having constant values (i.e. green, red or blue) or boolean values, there
is little room left for test case diversity within each partition. In such cases all test cases
within a partition would have the same encoding, and subsequently be equal, unless the
distance function is expanded to define the distance between constants as well, e.g. blue is
closer to green than red. Thus, an important prerequisite for using a similarity partition-
based test case selection for classification tree models is to have at least one equivalence
class for a property defined as a numerical range (i.e. 1–100 and > 100) or a string.



105

Table 2.10: Mann-Whitney U-tests and Â12 effect size measurements when comparing
detection rate for fault Z and W across the similarity partition-based and random

partition-based test case selection strategies.
�������������������Sample size (%)

Comparison
Evolutionary (A), Greedy (B)

p-value Superior Effect size
5 0.5586 A Small (0.5057)
10 0.1757 A Small (0.52)
15 0.0428 A Small (0.5345)
20 0.0984 A Small (0.5367)
25 0.0023 A Small (0.5776)
30 < 0.0001 A Medium (0.6059)
35 < 0.0001 A Medium (0.6141)
40 < 0.0001 A Medium (0.6624)
45 < 0.0001 A Large (0.6715)
50 < 0.0001 A Medium (0.66)
55 0.0068 A Small (0.5736)
60 0.2573 A Small (0.5306)
65 0.0058 A Small (0.5651)
70 0.2287 A Small (0.5175)
75 NaN None NO effect (0.5)
80 NaN None NO effect (0.5)
85 NaN None NO effect (0.5)
90 NaN None NO effect (0.5)
95 NaN None NO effect (0.5)

The more diversity within partitions, the more likely our approach is to benefit from
similarity partition-based test case selection. The subject model in our study contained
11 properties at the bottom level, split up into 26 equivalence classes, 21 of them being
constants, whereas 5 were defined as integer ranges. The magnitude of the ranges in
equivalence classes were limited, i.e. 2–3, 2–5 and 2–9. Despite the limited variation
enabled within the partitions, the results show that the fault detection rate improved
(though to a limited extent) for all sample sizes when using similarity partition-based test
case selections. The results were not significant for all sample sizes, nor was the effect size
constantly large, but still the average fault detection rate was better for all sample values
until a 100% detection rate was reached. Though more studies are required, our results
suggest that a classification tree model accounting for even more variability than in our
experiment, would be likely to yield further benefits from a similarity partition-based test
case selection.

To summarize the discussion, the level of variability and number of test cases within
partitions are two important factors affecting the extent of the benefit that can be ex-
pected from similarity partition-based test case selection. In general, when modeling large
complex systems in an industrial setting, it is likely that the equivalence classes defined
in the model capture a variety of possible system values, as the model is a high level
representation of the system. Consequently, many equivalence classes in the model will



106

represent a range of possible system values and induce a great deal of variability within
each partition. When executing test cases based on live system data, the distribution
of test cases across partitions will vary, but many partitions are likely to contain large
numbers of test cases. We recommend similarity partition-based test case selection under
these conditions, while simpler solutions, such as random partition-based, are sufficient
otherwise. One could also combine the two by defining a threshold value on the number
of test cases per partition, and only use similarity based selection above this threshold.

5.5 Threats to validity

The fact that the study only includes one test suite derived from one classification tree
model is a threat to the external validity of the study. Ideally, we should have included
one or more additional test suites in the experiment, while varying model complexity and
variability. But running and evaluating large test suites in real industry projects is a
comprehensive and costly operation and the one test suite used in our study is large and
based on operational data. It also triggers failures based on real faults detected in an
operational system.

Throughout the experiment we compared several algorithms, by conducting multiple
pairwise comparisons. This inflates the probability of a Type I error (reject the null
hypothesis when it is true), which is a threat to conclusion validity. This could be adjusted
by using, for example, Bonferroni adjustment. However, as reported by Arcuri and Briand
(2011) [2], the Bonferroni adjustment has been repeatedly criticized in the literature.
For example a serious problem associated with the standard Bonferroni procedure is a
substantial reduction in the statistical power of rejecting an incorrect null hypothesis. So
rather than performing adjustments, we have instead chosen to report all p-values from
all the statistical tests. The results are thus transparent and the readers have all the data
at hand to form an opinion for themselves and to verify the conclusions we drew from our
tests.

6 Conclusion and future work

Within the context of regression testing, we proposed a new strategy for selecting test
cases generated from classification tree models, a well-known test generation strategy for
black-box testing. Such an approach is a particularly useful alternative in an environment
where source code analysis is either not convenient, scalable, or even possible. In short, our
selection strategy selects, in a balanced way, test cases from all input partitions defined
by the classification tree, while attempting to select the most diverse test cases from
each partition. We conducted an experiment in an industrial setting–a large and critical



107

database application developed by the Norwegian tax department–to determine which
similarity-based selection algorithm, i.e., similarity function and selection algorithm, fared
best for selecting test cases in a large regression test suite. We also compared our approach
(coined similarity partition-based selection) against pure random selection and random
selection within partitions. We compared both fault detection rate and selection execution
time. In general random selection is superior to similarity-based selection in terms of
selection execution time. However, the difference for smaller sample sizes in the range of
interest is less than a few minutes (i.e., 39 seconds when selecting 30% of the test suite
when comparing similarity partition-based with random selection). Given the limited
practical consequences of the difference in selection execution time, we have used fault
detection rate as the main criterion for comparison.

Among all alternatives, combining the Mahalanobis similarity function and the 1+1
EA algorithm proved to be the most efficient with regards to fault detection rate. The
experiment also assessed whether similarity-based selection is a worthwhile and practical
alternative to simpler solutions. Similarity partition-based test case selection offers far
better fault detection rates compared to a random selection of test cases. For example, by
selecting 5% of the test cases in a test suite, the fault detection rate of similarity partition-
based is nearly 80%, as opposed to 25% for random selection. Despite a dramatical im-
provement over random, applying similarity-based selection within each partition only
marginally improves, on average, the fault detection rate over random selection within
each partition. Though similarity partition-based selection has better average fault detec-
tion rates for all sample sizes compared to random partition-based selection, the results
are overall not statistically significant for all sample size values, and the measured effect
size is in general low (i.e., low practical significance). The two most plausible explana-
tions for these results are that (1) many of the faults in our study are located in partitions
containing few test cases, along with the fact that (2) the subject classification tree model
is such that diversity is often low within partitions, thus limiting the potential benefit
of similarity-based test case selection. The results thus clearly suggest conditions under
which similarity-based test selection is worth combining with a partition-based strategy.
Consistent with such explanations, a more detailed analysis clearly shows that, for faults
within large partitions, fault detection rates are significantly higher when using similarity
over random within partition-based selection. This suggests that it would be beneficial
to use similarity-based selection within partitions when these conditions are present, even
when the increase in fault detection rate is obtained at the expense of higher execution
time.

A possible future addition to this study could be to incorporate impact analysis to ac-
count for changes in the classification tree models when selecting a test case for regression



108

testing. In our context this means identifying which partitions are affected by the change,
and limit the testing to those partitions exclusively, or give them higher priority. Such
an extension would not change the results reported in this study, since we would still use
the same techniques within each partition. It is, however, an activity that would come
with an additional cost, and whether the cost of performing an impact analysis would be
worth the gain in improving regression test selection remains to be investigated. On the
other hand, it would most likely improve scalability since it would allow us to focus on a
subset of partitions.

7 References

[1] Jun-ichi Aoe. Computer algorithms: String pattern matching strategies. Practitioners
Series. IEEE Computer Society Press, 1994.

[2] Andrea Arcuri and Lionel Briand. “A practical guide for using statistical tests to
assess randomized algorithms in software engineering.” In: Software Engineering
(ICSE), 2011 33rd International Conference on. 2011, pp. 1–10.

[3] Charles H. Bennett et al. “Information Distance.” In: IEEE Transactions on Infor-
mation Theory 44.4 (1998), pp. 1407–1423.

[4] Rudi Cilibrasi, Paul Vitányi, and Ronald Wolf. “Algorithmic clustering of music.”
In: Computer Music Journal 28 (2004), pp. 49–67.

[5] Rudi Langston Cilibrasi. “Statistical Inference Through Data Compression.” PhD
thesis. Plantage Muidergracht 24, 1018 TV, Amsterdam Holland: Institute for Logic,
Language and Computation, Universiteit van Amsterdam, 2007.

[6] Michel M. Deza and Elena Deza. Encyclopedia of Distances. Springer, Aug. 2009.

[7] Stefan Droste, Thomas Jansen, and Ingo Wegener. “On the analysis of the (1+ 1)
evolutionary algorithm.” In: Theoretical Computer Science 276.1-2 (2002), pp. 51–
81.

[8] Francisco G. Oliveira Neto Emanuela G. Cartaxo Patrícia D. L. Machado. “On the
use of a similarity function for test case selection in the context of model-based
testing.” In: Software Testing, Verification and Reliability 21 (2 2011), pp. 75–100.

[9] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. “Achieving Scalable Model-based
Testing Through Test Case Diversity.” In: ACM Transactions on Software Engineer-
ing and Methodology (TOSEM) 22.1 (Mar. 2013), 6:1–6:42.



109

[10] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. “Empirical Investigation of the
Effects of Test Suite Properties on Similarity-Based Test Case Selection.” In: Pro-
ceedings of the 2011 Fourth IEEE International Conference on Software Testing,
Verification and Validation. ICST ’11. Washington, DC, USA: IEEE Computer So-
ciety, 2011, pp. 327–336.

[11] Hadi Hemmati and Lionel Briand. “An Industrial Investigation of Similarity Mea-
sures for Model-Based Test Case Selection.” In: Proceedings of the 2010 IEEE 21st
International Symposium on Software Reliability Engineering. ISSRE ’10. Washing-
ton, DC, USA: IEEE Computer Society, 2010, pp. 141–150.

[12] Eugene F. Krause. Taxicab geometry: An adventure in non-Euclidean geometry.
Dover Publications Inc., 1988.

[13] Eckard Lehmann and Joachim Wegener. “Test Case Design by Means of the CTE-
XL.” In: Proceedings of the 8th European International Conference on Software Test-
ing, Analysis & Review (EuroSTAR 2000). 2000.

[14] Dimitris Liparas, Lefteris Angelis, and Robert Feldt. “Applying the Mahalanobis-
Taguchi strategy for software defect diagnosis.” In: Automated Software Engineering
Journal 19 (2 2012), pp. 141–165.

[15] Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L. Massart. “The Maha-
lanobis distance.” In: Chemometrics and Intelligent Laboratory Systems 50.1 (2000),
pp. 1–18.

[16] John D. Musa. Software reliability engineering. 2nd ed. AuthorHouse, 2004.

[17] Thomas Joseph Ostrand and Marc J. Balcer. “The category-partition method for
specifying and generating fuctional tests.” In: Communications of the ACM 31.6
(1988), pp. 676–686.

[18] Erik Rogstad et al. “Industrial Experiences with Automated Regression Testing of a
Legacy Database Application.” In: 27th IEEE International Conference on Software
Maintenance (ICSM). 2011, pp. 362–371.

[19] András Vargha and Harold D. Delaney. “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong.” In: Journal of Edu-
cational and Behavioral Statistics 25.2 (2000), pp. 101–132.

[20] Shin Yoo and Mark Harman. “Regression Testing Minimisation, Selection and Pri-
oritisation: A Survey.” In: Software Testing, Verification and Reliability 22.2 (2012),
pp. 67–120.





Paper 3

Clustering Deviations for Black Box Regression Testing

of Database Applications

Author: Erik Rogstad and Lionel Briand

Abstract

Regression tests often result in many deviations (differences between two system versions), either
due to changes or regression faults. For the tester to analyze such deviations efficiently, it would
be helpful to accurately group them, such that each group contains deviations representing one
unique change or regression fault.

Because it is unlikely that a general solution to the above problem can be found, we focus
our work on a common type of software system: database applications. We investigate the use of
clustering, based on database manipulations and test specifications (from test models), to group
regression test deviations according to the faults or changes causing them. We also propose
assessment criteria based on the concept of entropy to compare alternative clustering strategies.

To validate our approach, we ran a large scale industrial case study, and our results show

that our clustering approach can indeed serve as an accurate strategy for grouping regression

test deviations. Among the four test campaigns assessed, deviations were clustered perfectly for

two of them, while for the other two, the clusters were all homogenous. Our analysis suggests

that this approach can significantly reduce the effort spent by testers in analyzing regression test

deviations, increase their level of confidence, and therefore make regression testing more scalable.

Keywords – Software regression testing, test analysis, clustering, regression test deviations.

111



112

Abbreviations and Acronyms

SOFIE The Norwegian Tax Accounting System, the case study system
DART DAtabase Regression Testing, a tool developed for regression testing of

database applications
CTE-XL Classification Tree Editor - eXtended Logics, a commercial tool for classifica-

tion tree modeling.
SQL Structured Query Language
PL/SQL Procedural Language or Structured Query Language
DML Data Manipulation Language
EM Expectation Maximization, an algorithm used for clustering in our case
LSA Latent Semantic Analysis
SIR Software-artifact Infrastructure Repository

Notations

D The set of deviations
C The set of clusters
cj A cluster j in C
di Deviation type i in D
dij Deviation type i in cluster j
ED Deviation entropy
EC Cluster entropy

1 Introduction

Regression testing is a highly important but time consuming activity [12]. A great deal of
work has been performed on devising and evaluating techniques for selecting, minimizing,
and prioritizing regression test cases [35]. Such techniques are necessary, but unfortunately
not sufficient to help scale regression testing to large, complex systems. Indeed, in practice,
even with efficient prioritization or selection, numerous regression test deviations may need
to be analyzed to determine if they are due to a regression fault or simply the effect of a
change. A problem that has been largely ignored so far, but which is highly important in
practice, is how to cope with the many discrepancies (deviations) that can be observed
when running regression test cases on a new version of a system. In other words, how can
we help testers analyze such deviations, which can be due to either changes or regression
faults, and decide what are their actual causes. While this is an important problem for
regression testing of all types of systems, the types of output from regression tests and



113

their deviations are logically dependent on the type of system being tested. Thus, we do
not believe there is a general solution to assist in the analysis of regression test deviations
for all types of systems. In this case study, we focus on database applications, where the
regression test output consists of deviations in database manipulations. Although our
proposed solution may not be limited to database applications, this is the context where
we have evaluated it, and where the reported results are most likely to generalize and be
accurate.

In the context of regression testing of database applications, we have proposed a black-
box regression test methodology and tool [24]. We model the input domain of the system
under test as classification trees, using the tool Classification Tree Editor - eXtended
Logics (CTE-XL). Our goal is to identify patterns among deviations by making use of
clustering algorithms, the ultimate objective being to identify groups of deviations caused
by identical changes or regression faults. As elaborated in Section 5 when investigating the
research literature within the context of testing, clustering has most widely been adopted
in test case optimization techniques, such as test case selection and prioritization, while the
problem we address has been little explored. We perform a thorough assessment of which
type of data leads to the most accurate clustering results, using information collected
about database manipulations and test case properties. One important contribution of
this paper is to assess the accuracy of clustering for grouping regression test deviations in
an industrial context, with real changes and regression faults, and evaluate the practical
impact for the tester. Our regression test approach targets database applications in
general, because it is based on information that should be easy to collect for most systems
falling into that category.

The results show that clustering indeed can serve as an accurate strategy for grouping
regression test deviations according to their cause, being changes or regression faults. For
two out of the four test campaigns evaluated in the study, we achieved perfect clustering
results with the clustering strategy that fared best, meaning that there were as many
clusters as distinct changes and regression faults, and each cluster only contained one
type of deviation (homogenous). For the other two test campaigns, all clusters were
still homogenous, but the numbers of clusters were slightly larger than the numbers of
distinct deviations, i.e. deviations caused by the same fault or change were spread across
more than one homogeneous cluster. That level of accuracy, when grouping deviations, is
expected to significantly reduce the test analysis effort, and thus improves the scalability
of any regression testing strategy.

The remainder of the paper is organized as follows. Section 2 describes the challenges
addressed by this paper, and the industrial context of our study, which in many ways
are representative of environments where large database applications are being devel-



114

oped. Section 3 outlines our proposed solution and the specifics of the clustering strategy,
whereas Section 4 describes the industrial case study and reports empirical results. Re-
lated works are presented in Section 5, and the paper is concluded in Section 6.

2 Context and background

The main purpose of this section is to provide information about the context in which
the problem was identified and defined. This problem, however, is of a general nature,
and likely to be present in most database applications. Providing a concrete description
of the background of our industrial case study will help the reader understand the scope,
importance, and generality of the problem.

Petersen and Wohlin [19] proposed a checklist for context documentation in indus-
trial software engineering. We cover elements of the product facet, the process facet, and
the practices and tools and techniques facet in this section. As the subject system is a
customized application for the Norwegian Tax Department, we do not regard the organi-
zation and market facet relevant in this case, and will not elaborate on that any further.
The details of how the case study was performed and the people involved is described in
Section 4.2.

2.1 Setting

The Norwegian Tax Department maintains the Norwegian tax accounting system (SOFIE),
a system whose main purpose is to collect tax from all taxpayers in Norway. The system
was developed as a customized application for the Norwegian Tax Department during the
late 2000s, and entered its maintenance phase in 2011. SOFIE serves the daily operation
of more than 3,000 end users (i.e. taxation officers), and handles annual tax revenues
of approximately 600 billion Norwegian Kroner. It is therefore important to preserve
system quality upon changes and new releases, to avoid additional effort to end users
and expensive mistakes both for the taxpayers and administration. The system is a very
large database application, built on Oracle database technology, developed with standard
SQL and PL/SQL programming, along with Oracle Forms user interfaces. In terms of
size, the system has more than 1,000 tables in its main database schema, and contains
more than 700 PL/SQL packages, and a variety of other database application artifacts
(triggers, functions, procedures, views, etc.), in total constituting more than 2.5 million
lines of code. The core of the system is batch driven, with periodically scheduled batch
jobs processing centralized tasks for all Norwegian taxpayers, whereas the end users access
the application through a web interface. The batch jobs process large amounts of data,
and their complexity stems from the wide range and diversity of possible input data to



115

process. Though it is vital for the tax department to avoid releasing defects into the core
of the system, the system is complex and difficult to evolve to respond to changes in the
tax laws, and is thus prone to regression faults. Therefore, an appropriate regression test
procedure is required to guarantee the quality of SOFIE. The releases of SOFIE follow a
typical waterfall development process, and the regression testing referred to here is mainly
targeted towards system level testing.

2.2 Regression test procedure

Because manual regression testing is not deemed to scale for large database applications,
we proposed a partially automated regression test procedure tailored to database applica-
tions [24]. It compares executions of a changed version of the program against the original
version of the program, and identifies deviations, which are differences in the way the
database is manipulated between the two executions. In each test execution, the database
manipulations are logged according to a specification by the tester indicating the tables
and columns to monitor (hereby called test configuration). More specifically, we log Data
Manipulation Language (DML) statements, namely inserts, updates, and deletes (whether
they are prepared or parameterized statements or not) per test case. These database ma-
nipulations are captured using dynamically generated database triggers, based on the
test configuration, during the execution of the test. As detailed in Rogstad et al. [24],
the database manipulations from each execution are logged in a structured way, and are
compared across system versions to produce a set of deviations, indicating either a cor-
rect change or a regression fault. The comparison is performed using SQL set operations
(minus and union) to capture the differences in database manipulations between two test
runs, grouped per test case. In the context of SOFIE and any tax system in general, a
test case matches a taxpayer, and all logged data are grouped per taxpayer. The output
of regression testing will therefore indicate whether or not there was a deviation between
two system versions in the tax calculation for a particular taxpayer. Additionally, to make
test selection more systematic and cost effective, following common industry practice, we
model the input domain as a classification tree, like the example shown in Fig. 3.1. All
relevant properties of the system are modeled as classifications (e.g., Property B: Nr of
X), and split into equivalence classes (e.g., 1 through 4, and 5 through 10) representing
the range of possibilities in the inputs of the system. For the sake of generality, as other
input modeling techniques could have been used, we hereby refer to the classifications in
the model as model properties, and the values of the equivalence classes (leaf classes in
the model) as model property values. Based on the model, we generate input partitions
(combinations of equivalence classes) according to a given coverage criteria (i.e. pair-wise,
three-wise, and all combinations), and each partition represents an abstract test case.



116

Figure 3.1: An example of a classification tree model in CTE-XL, and the generated
partitions (combinations of equivalence classes) that form abstract test cases.

Such a test procedure has the benefit of pinpointing exactly which test case results
have changed between system versions. As an example, let us consider a batch processing
10,000 tax calculations from which 100 deviations are identified. We can conclude that no
regression faults were visible in the 9,900 test cases with no deviations, while our attention
can be directed towards the 100 tax calculations with deviations. Though automated
deviation analysis helps a great deal, the tester still has to inspect deviations to determine
their cause, and this is a manual, time consuming activity. The number of deviations
typically varies with the size of the test suite and the scope of the changes in the particular
release under test. But in most cases, the number of deviations is expected to be large, and
will require prioritization given the usual project time constraints. Throughout previous
SOFIE releases, we have experienced a varying number of deviations across regression test
campaigns. This experience is shown in Table 3.1, which shows the number of test cases,
the total number of deviations, and the number of distinct groups of deviations with the
same cause for various test campaigns.

2.3 Problem formulation

The number of deviations vary from 8 to 522, and though eight deviations are clearly
manageable for a tester to manually inspect, in most campaigns there are many more.
Imagine spending 15 minutes on average inspecting each deviation, which is a very conser-
vative number in our experience; then analyzing 522 deviations would require 130 hours.
Though available time for a tester to carry out a test campaign is a function of its size
and importance, spending 130 hours on inspecting deviations is rarely a possibility. We



117

need a solution to dramatically reduce the time spent in such inspections. By introducing
systematic methods for selecting test cases for execution [23], we have been able to reduce
the size of the test suites while retaining a good coverage of test scenarios. However, the
number of deviations resulting from regression test campaigns is still, in most cases, much
larger than what a tester can realistically handle. A trade-off is therefore required, and
the tester needs assistance to determine which subset of deviations to focus on to identify
as many different regression faults as possible.

Any deviation between the original system output or observable behavior and that
of the modified version is seen as a potential regression fault. When presented with the
list of deviations, the tester needs support to systematically process them, as relying on
experience alone is rather uncertain in such a context where a large number of deviations,
mostly different from what was observed in previous versions, have to be analyzed. With-
out any automated decision support, what we observed is that the current practice for a
tester is basically to start at the top of the arbitrary ordered list of deviations and work
through as far as time budget permits. But if there is not enough time to inspect all
of them, the tester is then left with great uncertainty. Our experience shows that there
always is redundancy among the deviations in the sense that several of them are caused
by the same change or fault. As shown in Table 3.1, the number of deviations is always
larger than the number of distinct deviations, that is the number of groups of deviations
related to distinct changes or faults. For a tester to avoid spending unnecessary effort on
analysis, we need a systematic way to group the deviations, so that ideally each group
matches one distinct deviation only. Then the tester would only have to inspect one de-
viation from each group to complete the analysis. Given a perfect grouping strategy, the
tester would be left inspecting 15 deviations as opposed to 522, or 2 as opposed to 84, to
take a couple of examples from the data shown in Table 3.1. The potential savings are
therefore highly significant.

Thus, the problem we try to address is to find a strategy to accurately group deviations
resulting from the same change or regression fault, in order for the tester to inspect as
few deviations as possible while still remaining confident of finding all regression faults.

3 Clustering regression test deviations

Recall that, in our context, a deviation points out a difference between the original pro-
gram and the changed version of the program for a particular test case. For each test case
resulting in a deviation, a detailed list of the specifics of the deviation is provided by our
tool. That is, a deviation for a particular test case will indicate the concrete database
fields that deviate between the two system versions. Table 3.2 gives a concrete example



118

Table 3.1: A subset of historic data on the number of deviations produced from
regression tests

Test campaign # Test cases # Deviations # Distinct deviations
1 711 33 7
2 3144 182 11
3 5670 522 15
4 1570 8 2
5 94 48 2
6 560 47 2
7 560 84 2
8 151 43 3

Table 3.2: Example of the output of a regression test, i.e. the details of the deviations

Test case Table Column Old value New value Program version
1 A X 5,000 0 Baseline
1 A X 5,000 4,000 Delta
2 A X Inserted 2,500 Baseline
2 A Y Inserted TAX Baseline
3 A X 350 Deleted Delta
3 A Y INTEREST Deleted Delta

of how the details of the deviations may look like in a trivial case. In this case, three test
cases (1, 2, and 3) resulted in a deviation. In test case 1, column X in database table A
was updated from 5,000 to 0 in the baseline run of the program, whereas it was updated
to 4,000 in the delta run. For test case 2, a record was inserted in database table A with
the values 2,500 for column X, and TAX for column Y in the baseline run, but not in the
delta run. For test case 3, a record was deleted containing the values 350 in column X,
and INTEREST in column Y in the delta run, but not in the baseline run. Given a large
number of deviations, each composed of a great deal of detailed information, the amount
of information to process is large. In a typical regression test, there may be thousands of
rows of deviation details. As a result, recognizing patterns across test cases, indicating
similarities among deviations, is a highly difficult task.

We have chosen to base our solution for grouping deviations on clustering, that is
algorithms which aim at discovering groups and structures in data in such a way as to
maximize the distance between groups, and minimize the distance within groups [32]. In
our specific context, we would like to identify a clustering approach that could help us
cluster the deviations as accurately as possible, the goals being to have 1) all deviations
resulting from the same regression fault or change within the same cluster, and even more
importantly, 2) homogenous clusters containing only deviations related to the same fault
or change. In other words, the ideal output would have as many clusters as there are



119

regression faults and changes, and each cluster would only contain deviations matching a
unique fault or change.

The most important decision to make is to decide what data to feed into the clustering
algorithm. As mentioned in Section 2, we model the input domain of the system under
test as a classification tree, from which we generate abstract test cases. In addition,
during the execution of the system under test, the regression test tool automatically
captures all database manipulations executed by each test case in the format <table,
column, operation, old value, new value>. Thus, the information available as input for
clustering is twofold: 1) which model property values each test case covers; and 2) the
deviation output describing the specifics of the deviation at a table, column, operation,
and value level. It is difficult to tell, a priori, which type of input data will lead to the most
accurate grouping. Assessing different input sources and their combinations is therefore
an objective of our empirical investigation in the next section.

The input data used for clustering is encoded in a binary matrix, as shown in the
upper part of Fig. 3.2. The matrix contains one row per deviation, and for each deviation
we indicate with a Boolean value whether a particular table, column, operation, or model
property value characterizes the deviation. For example, table1..a denotes each potential
table in the deviation output (retrieved from the test configuration), which will be marked
1 (true) or 0 (false) depending on whether or not the table is present in the deviation
output for a particular deviation. Similarly, column1..b denotes all monitored database
table columns, and Operation1..c denotes the type of database operation that caused the
deviation, which is either an insert, update, or delete. This structure is applied at a table
level, stating whether the deviation was due to an insert, update, or delete applied to a
table. Model property value1..d denotes whether or not the test case causing the deviation
covers a certain model property value or not, where a model property value is a leaf class
from the classification tree model (e.g., 1 through 4 for Property B in Fig. 3.1).

To exemplify, let us generate an input matrix to the clustering based on the example
model shown in Fig. 3.1, and the deviation output shown in Table 3.2. Let Partition
1 from the example model be the test case specification of Test case 1 in the deviation
output. Similarly, Partition 2 specifies Test case 2, and Partition 3 specifies Test case
3. In this small example, the only entries in the test configuration (tables and columns
to monitor) is column X and Y in database table A. Based on the deviation output
given in Table 3.2, and the model property values given by Fig. 3.1, the encoded binary
matrix would then look like the one shown in Table 3.3. The data from the binary matrix,
either representing one single input source (tables, columns, database operations, or model
property values) or their combinations, will be used as input to the clustering algorithm.

Once test cases are executed, and deviations are clustered based on the data presented



120

… … 

Figure 3.2: The grouping strategy; encode available information and input to a
clustering algorithm to group deviations

Table 3.3: A small, artificial example of a binary matrix used as input to clustering.

Deviation Table Column Operation Model Property Values
A A.X A.Y A.INSERT A.UPDATE A.DELETE B.1-4 B.5-10 C.YES C.NO D.0 D.1 D.>1

1 1 1 0 0 1 0 1 0 1 0 1 0 0
2 1 1 1 1 0 0 1 0 1 0 0 1 0
3 1 1 1 0 0 1 1 0 1 0 0 0 1

above, we rely on a deviation analysis strategy that is aimed at minimizing the number of
deviations to analyze, while covering all regression faults or changes. It is assumed that
the regression test analyst will analyze, in turn, at least one deviation from each deviation
cluster, in a random order. If each cluster captures deviations corresponding to a unique
cause, i.e. change or regression fault, this result will satisfy our objectives. Specific
accuracy measures for our clustering algorithm will be discussed in the next section.

Many clustering techniques require the number of clusters to be determined before-
hand. However, in our case, we do not know the target number of clusters up front, as the
number of distinct deviations will vary across regression test campaigns. Thus, an impor-
tant requirement when choosing a cluster algorithm to serve our purpose is to select one
that does not require a predefined number of clusters as input. However, we would like to
limit the maximum number of clusters, as historical data show that the number of distinct
deviations, i.e. groups of deviations corresponding to distinct causes, typically represent
2% to 7% of the total number of deviations. Being able to set an upper bound for the
number of clusters to approximately 10% of the number of deviations would prevent us
from having an unrealistically large number of clusters. Because a part of the deviation
analysis strategy is to inspect at least one deviation from each cluster, we target as few
clusters as possible. Clustering, as we defined it, can be applied to any type of test case.
But of course, if we were doing a white-box approach, we might use coverage information
as well for doing clustering.

For practical reasons, we chose to consider cluster algorithms provided by Weka [32],



121

as it is well documented, has an active wiki and discussion forum, and provides an open
source programmable API which is easy to integrate into our existing solution. Among the
clustering algorithms provided by Weka, the probabilistic algorithm Expectation Maxi-
mization (EM) is the only one that does not require the number of clusters to be predefined
(it determines the number of clusters to create based on cross-validation of the input data),
and that does provide the ability to set an upper bound for the number of clusters. Con-
sequently, the EM clustering algorithm was our preferred choice for conducting deviation
grouping. Inputs to the algorithm include the data set to cluster, the acceptable error
to converge, the maximum number of iterations, and optionally the maximum number
of clusters. In the case of this study, we have used 1.0E-6 as the minimum allowable
standard deviation for convergence, while the maximum number of iterations is set to 100
[32]. Additionally, as stated above, based on historical data, we set the maximum number
of clusters to 10% of the number of deviations. If the maximum number of clusters is not
given a priori, EM will resort to cross-validation on the input data to set the number of
clusters.

In our context, we have a set of vectors representing the deviations, and a set of clusters
capturing groups of deviations with common causes. EM will start with an initial guess
for clustering, based on the cross-validation of the input data. Then, it estimates an initial
distribution of deviations across clusters, i.e. the probability distribution for each devi-
ation, indicating its probability of belonging to each of the clusters. Through iterations,
the algorithm will try new parameters based on the outcome of the previous iteration to
maximize the log-likelihood of the deviations across the clusters. The algorithm finishes
when the distribution parameters converge, or when reaching the maximum number of
iterations. The Weka implementation of EM clustering does not use a distance function,
but rather estimates a mixture model for clustering, by taking a naive Bayes approach
which models each attribute s-independent of the others given the cluster. We refer to
McLachlan and Krishnan [16] for further details about the EM clustering algorithm.

4 Case study

This section outlines the case study according to the guidelines given by Runeson and
Höst [26], and presents the results of the study.

4.1 Objective and research questions

The objective of the case study is to group regression test deviations in such a way that
deviations resulting from the same regression fault or change are likely to be contained
within the same group, and so that groups only contain deviations related to the same



122

fault or change. This grouping is expected to increase the efficiency of the tester when
performing regression test analysis as, if the above objectives are reached, only one devi-
ation from each group needs to be inspected, rather than picking deviations at random
within a limited time frame or inspecting all of them.

The following research questions have been derived from the overall objective of the
case study.

RQ1 Can clustering serve as an automated, accurate grouping strategy for grouping re-
gression test deviations?

RQ2 What kind of input data to the clustering process yields the most accurate grouping
of the deviations?

RQ3 How much effort can the tester be expected to save in regression test and deviation
analysis, when systematically grouping test deviations prior to analysis, as opposed
to the current random inspection?

4.2 The case and data collection

We investigated test deviations from the regression tests of SOFIE, the tax accounting
system of the Norwegian Tax Department. Most of the context documentation is given
in Section 2, whereas we detail the specifics of how the case study was conducted here.

The test team of SOFIE ran four regression test campaigns using the regression test
tool DART [24] on consecutive releases of SOFIE. One of their testers was responsible for
the test execution, while one tester (having the necessary domain knowledge) conducted
the analysis of the test results. As expected, the specifics of the tests varied across
releases, as different parts of the system were affected by the scope of the release. Once
the deviations were classified as either regression faults or changes to be verified, we
applied our clustering strategy, and evaluated its accuracy and potential efficiency gains
for the testers. Details about the particular test campaigns used in the study are provided
in Table 3.4, showing the number of test cases executed, the number of deviations resulting
from the test, and the number of distinct deviations with the frequency of each distinct
deviation in brackets. As for the number of tables and columns monitored during the
regression test execution, the order of magnitude for the test campaigns in our case study
was 10-12 tables, spanning 63-83 table columns, whereas the size of the classification tree
models varied from 26 to 127 model property values.

For the purpose of the case study, we collected data about actual regression tests
across various releases of SOFIE. More specifically, information was collected about the
test configuration, the model of the test domain, and the list of deviations produced, which



123

Table 3.4: The subject regression test campaigns for the case study

Test Campaign # Test cases # Deviations # Distinct deviations [Frequency]
1 94 48 2 [41 (fault), 7 (fault)]
2 560 47 2 [19 (fault), 28 (change)]
3 560 84 2 [56 (change), 28 (fault)]
4 151 43 3 [3 (fault), 10 (change), 30 (change)]

were manually analyzed and categorized by the test team as regression faults or changes.
According to the definitions given by Runeson and Höst [26], this process corresponds to
second degree data collection, as we are directly in control of the collection of our raw
data through observations of the regression tests on the subject system.

The SOFIE project was selected as it is large, complex, and representative of database
applications developed by the tax department and other public administrations. Further-
more, and it is important when studying regression testing, SOFIE undergoes frequent
changes due to general maintenance and changes in taxation laws.

4.3 Evaluation

The accuracy of the clustering algorithm, which is in question in both RQ1 and RQ2, is
measured in terms of its entropy. Entropy is a measure of unpredictability [10], and we
apply it to evaluate two distinct dimensions: deviation, and cluster.

• Deviation entropy is the measure of the spread across clusters of deviations matching
the same fault or change. Ideally all related deviations should only be contained in
one cluster.

• Cluster entropy is the measure of the purity of a cluster. Ideally a cluster should
only contain deviations matching one specific fault or change.

Entropy gives us a normalized measure of the purity of each cluster, and the spread
of each type of deviation across clusters, while additionally giving an overall measure
for a set of clusters, enabling us to compare the overall clustering accuracy for different
kinds of inputs. A perfect clustering would have as many clusters as there are regression
faults and changes, and each cluster would only contain deviations matching a unique
fault or change, thus yielding an entropy of zero. The worse the grouping, the higher the
entropy level, with the worst case occurring when deviations matching specific faults or
changes are equally spread across the clusters. In the remainder of the text, we will use
deviation group to mean an actual group of deviations matching a specific fault or change.
The formula for measuring deviation entropy (ED) [10], more specifically the spread of a
particular deviation group di in D across the m clusters (C), is given by (3.1). For each



124

of the m clusters c in C, we compute the number of deviations of type i that belong to
cluster cj (dij) divided by the total number of deviations in group i (|di|). This ratio is
then employed in the usual information theory entropy formula for all clusters and groups.
In general, in all our entropy calculations, we have used the natural logarithm (loge(p)),
and taken 0log(0) to be 0, to be consistent with the limit limp→0+ plog(p) = 0, stating
that when p converges sufficiently close to zero, plog(p) evaluates to zero.

ED(di, C) = −
m∑

j=1

(
dij
|di|)log(

dij
|di|) (3.1)

The formula for measuring cluster entropy (EC), namely the purity of a cluster cj, is
given by (3.2). For each of the n deviation groups, we compute the number of occurrences
of di in cj (dij) divided by the total number of deviations in cj. This ratio is then employed
again using the information theory entropy formula for all clusters and groups.

EC(D, cj) = −
n∑

i=1

(
dij
|cj|)log(

dij
|cj|) (3.2)

The formula for total deviation entropy (ED_TOT ), and total cluster entropy (EC_TOT )
are given in (3.3), and (3.4), respectively. They are basically the sum of (3.1) and (3.2),
across all deviation groups, and clusters, respectively.

To demonstrate the calculations in practice, we will calculate the entropy for one
deviation and one cluster from the examples given in Fig. 3.3. The calculation of deviation
entropy for deviation d1 in Fig. 3.3(a) is illustrated in (3.5). In total, there are 5 deviations
of type d1, meaning the cardinality of deviation d1 (|d1|) is 5. The deviation group d1 is
spread across two clusters, c1 and c4, containing 2 and 3 deviations of type d1, respectively.
The other two clusters do not contain any deviations from group d1, so those parts of the
equation evaluate to zero. The calculation of cluster entropy for cluster c2 in Fig. 3.3(b)
is illustrated in (3.6). The cardinality of cluster c2 (|c2|) is 8, and it contains 6 deviations
of type d2, and 2 deviations of type d3. As cluster c2 does not contain any deviations from
deviation group d1, the first part of the equation evaluates to zero. All other deviation
and cluster entropy calculations for the examples given in Fig. 3.3 would evaluate to zero.

ED_TOT(D,C) = −
n∑

i=1

ED(di, C) (3.3)

EC_TOT(D,C) = −
m∑

j=1

EC(D, cj) (3.4)



125

d1 

d2 

d3 

dd1 d1 

d1 d1 d1 

d2 d2 
d2 

d2 d2 

d3 

dd2 

ddd2 dd2 
d2 dd2
dd

d22 
d2

dd2 dd

d33
d33

d d1dd1 dd1 
dd

(a) Clustering with zero cluster entropy (all
clusters are pure). 13 deviations of three dif-
ferent types d1, d2, and d3 spread across four
clusters.

d1 

d1 

d1 

d1 

d1 

d2 

d2 

d2 

d2 

d2 

d2 

d3 

d3 

dd2

dd2 

dd2 

dd2

dd

dd2 

dd2 

d3 3 

d33

dd1

dd1

dd1

dd1

dd1 

(b) Clustering with zero deviation entropy (all devia-
tions of the same type are contained within the same
cluster). 13 deviations of three different types d1, d2,
and d3 spread across two clusters.

Figure 3.3: Zero cluster entropy versus zero deviation entropy.

ED(d1, C) = −
4∑

j=1

(
d1j
|d1|)log(

d1j
|d1|) = (

2

5
)log(

2

5
) + (

0

5
)log(

0

5
) + (

0

5
)log(

0

5
) + (

3

5
)log(

3

5
) ≈ 0.6730

(3.5)

EC(D, c2) = −
3∑

i=1

(
di2
|c2|)log(

di2
|c2|) = (

0

8
)log(

0

8
) + (

6

8
)log(

6

8
) + (

2

8
)log(

2

8
) ≈ 0.5623 (3.6)

From a practical viewpoint, it is more important to obtain zero cluster entropy than
zero deviation entropy. If the cluster entropy evaluates to zero, we are certain that each
cluster only matches one regression fault or change. Under such circumstances, the tester
would always conduct a complete deviation analysis when inspecting one deviation from
each group, only with the potential risk of having to analyze a few more deviations than
necessary if the deviation entropy is not perfect. On the contrary, if the cluster entropy
significantly differs from zero, then inspecting only one deviation from each group would
represent a significant risk. The ideal target is a total entropy level of zero; but if we have
to compromise, a zero cluster entropy is preferred over a zero deviation entropy. That is,
the situation in Fig. 3.3(a) is preferred over the situation in Fig. 3.3(b).

To evaluate the effort spent by the tester in analyzing regression test deviations for
RQ3, we measure the expected number of deviations to be inspected to identify all devi-
ation groups. This approach relies on an assumption regarding how the clustering results
are used, and in our context we assume a round robin random selection of deviations from
the clusters. That is, the tester would randomly select clusters in a round robin manner,



126

and within each cluster select a random deviation (under the assumption that they all
match the same regression fault or change). For each test campaign, we count the number
of deviations to inspect until all deviation groups are covered. We repeat the exercise 1000
times to account for randomness in sampling, and report basic statistic measures such as
minimum, median, maximum, average, and standard deviation regarding the number of
deviations. Additionally, we conduct non-parametric, two-tailed Mann-Whitney U-Tests
[2] to check the statistical significance of the difference in inspection effort when the
cluster-based approach was compared against the random inspection currently in use.
We also report Â12 effect size measurements to assess the practical significance of the dif-
ferences. An Â12 effect size measurement value of 0.5 indicates that there is no difference
between the two samples compared, while the further away from 0.5, the larger the effect
size between the samples. We have categorized the effect size into the standard Small,
Medium, and Large categories, which are usually defined as Small < 0.10, 0.10 < Medium
< 0.17, and Large > 0.17, the value being the distance from the 0.5 threshold [30].

4.4 Results

This section reports our case study results when clustering is applied to group regression
test deviations. During the course of the study, four regression test campaigns were
executed, from which data were collected. Only a subset of the eight test campaigns
given as examples in Table 3.1 were included in the current study as, due to changes
in the project environment, not all required data were available for some past releases.
Relevant data for the different regression test suites are shown in Table 3.4. For each of
them, we went through the following activities.

1. Preparing input data: For each type of input data (tables, columns, database op-
erations, and model property values), we generated an input matrix (as shown in
Fig. 3.2) for the clustering algorithm. In addition, we generated matrices combining
all combinations of the input types.

2. Measuring entropy: For each of the various input matrices provided, we carried out
the clustering, as described in Section 3, and measured the entropy level for each
deviation group, and each generated cluster, to assess clustering accuracy. It should
be mentioned that the execution time of the clustering is negligible (0 to 2 seconds),
and is therefore not given any further attention in the study.

3. Assessing expected inspection effort: Based on the most accurate clustering ap-
proach overall, we estimated the expected number of deviations that must be in-
spected by the tester to inspect all distinct deviations. This estimate is compared



127

Table 3.5: Entropy measurements for each combination of input values, and for each of
the four regression test campaigns.

Entropy
Test 1 Test 2 Test 3 Test 4

Deviation Cluster Deviation Cluster Deviation Cluster Deviation Cluster

C
lu

st
er

in
pu

t

Si
ng

le

Tables 0.827 0.000 1.129 0.000 0.000 0.000 0.000 0.000
Columns 0.920 1.310 0.616 0.474 0.458 0.000 1.295 0.540
Operations 0.720 0.690 0.410 0.462 0.000 0.000 0.563 0.000
Model Property Values 0.526 0.685 1.385 0.679 0.000 0.637 1.619 0.855

P
ai

r

Tables and columns 0.826 0.410 0.693 0.000 0.458 0.000 1.089 0.000
Tables and operations 0.416 0.000 1.428 0.000 0.000 0.000 0.943 0.000
Tables and model property values 1.722 0.410 2.277 1.235 0.000 0.000 0.000 0.540
Columns and operations 0.416 0.000 0.000 0.000 0.000 0.000 1.089 0.000
Columns and model property values 0.979 0.690 0.683 0.000 1.040 0.000 1.074 0.540
Operations and model property values 1.242 1.140 1.779 0.637 0.693 0.000 0.000 0.540

T
hr

ee

Tables and columns and operations 0.813 0.000 1.428 0.000 0.000 0.000 1.089 0.000
Tables and columns and model property values 1.062 0.000 1.684 0.000 0.000 0.000 0.673 0.540
Tables and operations and model property values 0.494 0.000 0.598 0.000 1.974 0.271 0.991 0.540
Columns and operations and model property values 1.015 0.689 1.684 0.000 1.890 0.000 0.000 0.540

A
ll

Tables and columns and operations and model property values 0.416 0.000 1.747 0.683 0.693 0.000 1.089 0.540

against an inspection strategy where deviations are selected at random, because this
is the current practice when inspecting the regression test deviations for our subject
system, and probably in many other test environments.

Accuracy of clustering

Table 3.5 shows a summary of the deviation entropy and the cluster entropy per cluster
input for each of the subject regression test campaigns. The full list of details, regarding
entropy per deviation and cluster, along with the actual distribution of deviations across
clusters per input type, and per test, is made available in the Appendix.

The first noteworthy result is that for three of the test campaigns (two, three, and
four), a perfect clustering was achieved for at least one type of cluster input, i.e. each
row in Table 3.5. By perfect, we mean a total entropy level of zero per test campaign,
indicating that there are as many clusters as the number of distinct regression faults and
changes, and all clusters are homogenous. A concrete example is the input pair columns
and operations for test campaign number two. Another interesting point is that four types
of inputs result in a zero cluster entropy for all test campaigns, which is our priority. The
input types are tables, tables and operations, columns and operations, and tables and
columns and operations. As stated in Section 4.4, achieving a zero cluster entropy is
most important from a practical point of view, as it ensures that all cluster groups are
homogeneous, containing instances of one deviation group only. Such a situation allows
the tester, in all confidence, to conduct the deviation analysis by only inspecting one
deviation from each group. The fact that a total entropy level of zero was obtained
for three out of four test campaigns, along with the fact that zero cluster entropy was
achieved for all test campaigns for certain input types, shows that we are able to cluster



128

regression test deviations with a high level of accuracy. Thus, regarding RQ1, we conclude
that clustering can serve as an automated, accurate strategy for grouping regression test
deviations.

Preferred input data

The best cluster input overall is the combination of columns and operations. This strat-
egy resulted in perfect clustering for two of the test campaigns, while also ensuring zero
cluster entropy for the other two test campaigns. Using only tables as input yielded
similar results, but the overall entropy is nevertheless lower when using the combination
of columns and operations. Relying only on tables when clustering would also be more
sensitive to the number of tables monitored during the test. If very few tables were moni-
tored, the approach would most likely be too coarse and inaccurate. Thus, relying on the
combination of columns and operations seems to be at an appropriate level of granularity.
In general, using one source of input seems too limited for the clustering algorithm to
yield the best results. For example, using only columns or operations separately provides
unsatisfactory results, while combining them leads to very accurate clustering. On the
other hand, using all input type combinations or even triples seems unnecessary. With
regards to RQ2, we conclude that the combination of columns and operations is the input
combination yielding the most accurate grouping of the regression test deviations.

Please recall from Section 3 that in our approach we have used a binary representation
of our regression test database manipulations and test case properties. Alternatively, it
would also have been possible to count the number of occurrences of each table, column,
and operation in the deviation output. If we were to venture into even more details,
one could also account for the order of operations; however, that would be slightly more
intricate to encode into meaningful cluster inputs. Nevertheless, because the results using
only the presence of each database element are already so accurate, there was not much
room for improvement in our case study. Such alternatives may, however, be worth
investigating in other contexts.

One last thing to note is that nearly all clustering results based on model properties
yield poor results, indicating they are not suited to cluster deviations. A plausible ex-
planation is that the model describes the input domain of the regression test rather than
the output of the test. Although the two are related, the relationship is complex, and the
results suggest that the information available in the deviation output is more relevant to
clustering the deviations.



129

Table 3.6: The number of deviations needed to be inspected by the tester to cover all
distinct deviations

Test Inspection strategy Minimum Median Maximum Average Std.-dev.

Test Campaign 1 Deviations: 48 Clustered Round Robin 2 2 3 2.324 0.468
Distinct deviations: 2 Random Inspection 2 5 24 6.564 4.745

Test Campaign 2 Deviations: 47 Clustered Round Robin 2 2 2 2 0.000
Distinct deviations: 2 Random Inspection 2 3 12 3.111 1.568

Test Campaign 3 Deviations: 84 Clustered Round Robin 2 2 2 2 0.000
Distinct deviations: 2 Random Inspection 2 3 13 3.337 1.828

Test Campaign 4 Deviations: 43 Clustered Round Robin 3 4 5 4.097 0.831
Distinct deviations: 3 Random Inspection 3 10 38 12.063 7.451

Inspection effort

Given accurate deviation clusters, we assume here an inspection strategy which involves
picking a random cluster in a round robin manner, and then, within each cluster, picking
a random deviation. This procedure is continued until all faults and changes are covered,
and we measure, as a surrogate measure for effort, the expected number of deviations a
tester would need to inspect to cover all deviation groups. This procedure is repeated 1000
times to account for randomness in sampling. The results are shown in Table 3.6, where
Clustered Round Robin is compared against the Random Inspection strategy currently in
use in the SOFIE project.

Compared to inspecting all deviations, the effort of the tester is dramatically reduced
when clustering deviations and inspecting test results following the round robin procedure
stated above. In three out of four regression test campaigns, the median number of
deviations to inspect to cover all faults and changes corresponds to the actual number of
different faults and changes. In other words, we obtain perfect results. In the worst case,
we need to inspect a few more deviations, but never more than the number of formed
clusters. And recall from Section 3 that, as part of the clustering strategy, we impose an
upper bound for the number of clusters to 10% of the number of deviations. Thus, the
number of clusters remains manageable, and the number of deviations to inspect remains
very reasonable.

The statistical tests and the Â12 effect size measurements are provided in Table 3.7,
where the p-value from the statistical tests are reported, along with the categorized Â12

measures with the actual value given in parentheses. The results of the tests show that
the cluster-based inspection is significantly better than random inspection for all test
campaigns, and the difference in effect size is large for all campaigns, according to standard
evaluation scales. This result is also clearly visible from the differences in median and
average values in Table 3.6. Between the cluster-based and random inspections, the
relative increase in the number of deviations to inspect is between approximately 50%
(test campaigns 2, and 3 with 2 vs. 3 deviations) and 150% (test campaigns 1, and 4
with 2 vs. 5, and 4 vs. 10 deviations, respectively). When addressing RQ3, because we



130

Table 3.7: Mann-Whitney U-tests, and Â12 effect size measurements when comparing
inspection effort across clustered inspection, and random inspection

Test campaign Cluster-based (A), Random (B)
P-value Superior Effect size

1 < 0.0001 A Large (0.817)
2 < 0.0001 A Large (0.754)
3 < 0.0001 A Large (0.772)
4 < 0.0001 A Large (0.888)

expect the difference in effort spent on analyzing deviations to be proportional to these
differences, our results suggest significant savings when using clustering.

Nevertheless, random inspection yielded better results than we expected (the median
number of inspections is 5, 3, 3, and 10). This result stems from a limited number of
deviation groups (distinct deviations) present in our subject regression test campaigns. In
test campaigns 2 and 3, both deviation groups present are represented by a large number
of deviations, which favor a random strategy. For test campaigns 1 and 4, where there
exist deviation groups containing relatively few deviations, and in the latter case also
more deviation groups, the random approach shows a significant increase in the average
number of deviations to inspect and its standard deviation. Therefore, good results for a
random inspection strategy are less likely in releases with a larger number of regression
faults and changes, especially in the presence of an uneven distribution of corresponding
deviations. A detailed analysis shows that the results from the random approach are
always worse than those of the clustering approach, and show a significantly higher stan-
dard deviation (ranging from 1.568 to 7.451 as opposed to 0.000 to 0.831), thus resulting
in more uncertainty in terms of the number of inspections one may have to go through.
The worst maximum number for random inspections is 38, which is a significant portion
of the 43 deviations present in the test campaign. In contrast, the cluster-based inspec-
tion approach provides far more predictable results, which is important in our context
to prevent regression faults from slipping though. From our results, which are of course
to be confirmed in other studies, this systematic approach guarantees that at least one
deviation is analyzed for each fault or change by inspecting only one deviation from each
cluster.

To summarize, in practice when conducting a cluster-based inspection, the tester would
analyze one deviation from each cluster (one-per-cluster sampling). And most impor-
tantly, given the results we obtained, the tester would do that analysis while remaining
confident he or she will cover all deviation groups, which are distinct faults and changes.
In our case study, that approach would correspond to the following results for the four
test campaigns. The tester would inspect 3 out of 48, 2 out of 47, 2 out of 84, and 5
out of 43 deviations for the four test campaigns, respectively. This inspection would defi-



131

nitely entail highly significant savings. In contrast, when inspecting an arbitrarily ordered
list of deviations, the tester would have to inspect all of them, or as many of them as
possible given time constraints, to gain sufficient confidence in the test results. In the
latter case, the tester would have no guarantee that he has covered all or most faults and
changes. Thus, a cluster-based inspection strategy is in practice far better than a random
inspection, and yields significant savings, especially in the context of large regression test
suites.

4.5 Threats to Validity

In this section, we discuss the generality and potential threats to validity of the research,
following the classification scheme of Yin [34], as further described for software engineering
in the guidelines by Runeson and Höst [26].

Construct validity

We needed to measure the accuracy of clustering when applied for grouping regression
test deviations. By measuring entropy across two dimensions, namely deviation entropy
and cluster entropy, we capture two complementary aspects of accuracy required to in-
vestigate RQ1 and RQ2. Other accuracy measures, such as standard recall and precision
for classifiers, were also considered to assess our clustering results. But unlike classifica-
tion, clustering results are not compared to a ground truth, telling us what should be the
correct classification. We could of course have measured precision and recall based on
the majority of changes and faults in each cluster, but that would have yielded specific
values for each cluster, and not overall measurement values for all clusters. That is why
we chose to rely on entropy, which gives us, for a clustering algorithm and a set of inputs,
a normalized measure of the purity of the clusters, and the spread of the deviation groups
across clusters.

The inspection effort, addressed in RQ3, is expected to vary across test campaigns
and deviations. Thus, we have used the expected number of deviations to inspect as a
surrogate measure of inspection effort, and reported standard descriptive statistics, such
as median, average, and standard deviation. Inspection effort, on average and over many
deviations, is expected to be proportional to the number of inspected deviations.

Internal validity

To assess the accuracy of deviation clustering, we relied on the manual inspection and
categorization of the regression test deviations performed by software engineers. The
resulting categories of regression test deviations served as a baseline against which we



132

compared deviation clusters. Ideally, more than one person should have taken part in
this process to avoid mistakes. However, because of the cost associated with the task of
inspecting all the deviations from each test campaign in a real development environment,
this task was performed by one engineer only.

The use of classification trees to specify and automate test cases is not a limitation of
the applicability of our approach as clustering results clearly show that model property
values, the only information specific to classification trees, are not a useful clustering
input. Second, the use of classification trees for black-box testing is widespread and
similar to other black-box test specification techniques.

External validity

The fact that the study only involves one system is a potential threat to the external
validity of the study. However, the focus on a representative database application, us-
ing standard and widely used database technology, combined with real regression test
campaigns and faults, helps mitigate this threat. Ideally, one would always want to run
multiple studies to better ensure the generalizability of the results. However, to repli-
cate the study, we need actual regression test suites, for actual versions of the system,
with known and actual regression faults diagnosed by engineers. Then we need, for each
version, to re-run all test cases, and monitor the manipulations on the database, the lat-
ter being properly populated with data. That type of data is just not available for open
source systems, and to replicate our study on another real world, large scale system would
be a major undertaking requiring the collaboration of another development organization.

Regarding the representativeness of our subject system, recall from Section 2 that
the subject system is built on standard Oracle database technology. As Oracle is the
world market leader both in terms of applications platforms and database management
systems [9], the subject system is built on technology that is widespread across the world.
Moreover, the chosen subject system is very similar to many other such database applica-
tions developed by the Norwegian government and other administrations, with a typically
long lifespan. These systems process large amounts of data, leading to a wide variety
of possible test scenarios, which makes testing challenging, and the need for assistance
crucial in the analysis and diagnosis of regression tests. We have also evaluated several
test campaigns, spanning different test models and different functional domains of the
system under test, to ensure a certain variety within our case study. The information
used as input to clustering should also generalize in the context of database applications,
as this kind of information should be easy to collect from any system falling into that
category. The database information is also captured through a mechanism separate from
the code running on top of the database, i.e. whether the manipulations are performed by



133

a batch, a procedure, or a graphical user interface does not matter. Captured will be all
manipulations performed by any code executed by a test case in the executed test suite
on the table columns monitored during test execution.

Borg and Runeson [3] showed a significant dependency between the results obtained
and the data characteristics of the studied case in the context of information retrieval
in software engineering. Transferred to our case, this could mean that the calibration
of the clustering method, that is selecting which input data provides the best clustering
output, may depend on the context. If so, it would require a full deviation analysis to
calibrate the method in a new context. Then, the gain in inspection effort would not
materialize until the method is satisfactorily calibrated, which would be at best after
the first test run. Note, however, that the best clustering approach in our case study
showed stable, consistent results across the test campaigns. Nevertheless, over time, the
need to recalibrate the method at certain intervals may arise. But given a system with a
long lifespan, numerous regression tests would be required throughout its existence, thus
making the benefits of clustering deviations significant across many releases.

Conclusion Validity

In Section 4.4, we executed the deviation sampling 1000 times per test campaign and per
sampling strategy to account for randomness. We used a non-parametric statistical test
to compare statistically independent samples, corresponding to different strategies, that
make no assumption about data distributions. Thus, we have sufficient statistical power,
and use appropriate tests to draw statistical conclusions.

5 Related work

This case study is about supporting the analysis of regression test discrepancies by clus-
tering them to guide their inspection. Thus, we have chosen to place our work in the
context of clustering related to testing and fault categorization. We refer to Rogstad et
al. [24] for works related to regression testing of database applications, which are not
directly relevant to what is presented in this paper as we do not make any assumption
about how test cases are selected.

In the context of testing, clustering has been most widely used for test optimization
purposes, such as test case selection and test case prioritization. Test case selection aims at
selecting a subset of all test cases in a test suite for execution, while test case prioritization
allocates a priority to each test case resulting in a test suite of ordered test cases. Both
techniques usually try to maximize fault detection, either in the selected subset or in the
high priority test cases. Early clustering work in relation to these topics emerged in the



134

last 20 years, but most particularly surged in the last 4 to 5 years. Although most of the
papers are focused on test cases, there are also a few papers applying clustering to fault
classification. The following subsections summarize the main contributions of clustering
in each application area. We will remain brief on the papers related to test optimization
techniques, while going more in depth for the ones on failure clustering, as those are more
closely related to our work.

5.1 Clustering-based test case selection

Dickinson et al. [7] evaluated the effectiveness of cluster analysis for finding failures, by
building on the work of Podgurski et al. [20, 22] on what was labeled as Cluster Filtering.
Cluster filtering is the combination of a clustering metric and a sample strategy used to
filter executions (test cases) to select those exhibiting unusual behavior, hypothesizing
this approach would lead to early fault detection. They combine varying inputs to the
cluster algorithm with different sampling strategies to conclude that cluster filtering is
more effective (detects more faults) than simple random sampling, the best approach
being adaptive sampling combined with input data giving extra weight to unusual profile
features.

To select a subset of test cases for regression testing, Parsa et al. [18] cluster test cases
based on their execution profile, and then sample test cases until the code coverage level
of the original test suite is satisfied. Compared to the well known H-algorithm [11], their
approach leads to improved fault detection rates for similar sized test suites, or greater
test suite reduction for similar fault detection rates.

Focusing on the elimination of duplicate test cases, Vangala et al. [29] address test
case minimization in their clustering-based selection approach. They use the program
profile, including code coverage, the number of times a block or arc was executed, and
static analysis of the source code as a basis for clustering, using thresholds for redundancy
detection. On average, they identified 10-20% redundant test cases with a 70% accuracy.

Zhang et al. [37] proposed a regression test selection technique by clustering execution
profiles of modification-traversing test cases. Compared to the safe selection technique
proposed by Rothermel et al. [25], their approach produced smaller test suites, retaining
most fault-revealing test cases. Chen et al. [6] extended the work by Zhang et al., and
introduced semi-supervised clustering into their regression test selection approach. They
used two pair-wise constraints between test cases, namely must-be-in-same-cluster, and
cannot-be-in-same-cluster, to guide the clustering process. The constraints are derived
from the previous test results, and used to state whether pairs of test cases must be in
the same cluster, or not. The results showed improved fault detection rates up to 30%
when compared to unsupervised clustering.



135

As opposed to the above-mentioned works, which all are white-box clustering ap-
proaches based on execution profiles at the source code level, Sapna et al. [27] applied
clustering for specification-based testing. To achieve effective test case selection, they
clustered test scenarios from UML activity diagrams to select dissimilar test cases. While
the results showed improved fault detection rates over random selection, results did not
lead to the desired property of being able to detect most faults with small numbers of
test cases.

In the context of Web Applications, Liu et al. [15] collected user-sessions from the
application, which in turn were used as test cases. They clustered user-sessions to select
them for testing. With the reduced set of test cases, they achieved nearly the same fault
detection rate and code coverage level as with the entire test suite.

Wang et al. [31] investigated test case selection in observation-based testing. They
also clustered test cases based on their execution profile, but then assigned weights to the
clustered test cases based on a ranking metric. They calculated a score for every function
covered by the test case based on complexity, where functions receiving high scores are
considered more likely to contain bugs. Compared to an execution-spectra-based sampling
strategy [33], the weighted approach showed improved fault detection rates with reduced
test suite sizes.

To summarize the cluster-based approaches to selection, most of them 1) take a white-
box approach by using information from execution profiles at a source code level as a basis
for the clustering, Sapna et al. being the exception with a black-box strategy based on
activity diagrams; 2) use Agglomerative Hierarchical Clustering or k-means clustering;
and 3) are evaluated on one or more open source programs.

5.2 Clustering-based test case prioritization

To benefit from human expert knowledge in test case prioritization, Yoo et al. [36] em-
ploy clustering to scale the use of manual pair-wise comparisons of test cases to large test
suites. By clustering the test cases hierarchically, the workload of pair-wise comparisons
is divided into smaller, more manageable tasks, called intra-cluster and inter-cluster prior-
itization. Compared to classic statement-coverage based ordering, their clustering-based
prioritization fared better for 9 out of 16 test suites, with an average improvement in the
fault detection rate of 6.5%.

Simons et al. [28] used clustering for the purpose of regression test case prioritization.
Test cases are clustered based on characteristics from the test profiles and execution
behavior, followed by an initial random one-per-cluster sampling. If they come across a
failed test case (based on information from the previous test), the k nearest neighbors
from that test case are selected from within the cluster. Their approach labeled adaptive



136

Table 3.8: Overview of studies related to failure clustering

Reference Task Input information Context Subject programs
[21] Cluster failure reports Automatically generated failure reports White-box testing 3 open source programs (compilers)
[13] Cluster failed test cases Test case execution trace White-box GUI testing A messenger application
[8] Cluster failed test cases Terms from the executed source code White-box testing 1 open source program from SIR

failure pursuit sampling was compared to original failure pursuit sampling, yielding a
significant increase in the average fault detection rate.

Contrasting with most existing works, Carlson et al. [5] conducted an industrial case
study on the use of clustering to improve test case prioritization. They cluster test cases
based on code coverage and test case information from the version control system, and
then prioritize test cases within and between clusters by using software metrics such as
code complexity, fault history, and code coverage. Prioritization incorporating clustering
did on average provide a 40% improvement in the fault detection rate over prioritization
without clustering.

Arafeen et al. [1] investigate whether requirements information, when added to tra-
ditional code analysis information, would improve cluster-based test case prioritization.
They use text mining to cluster test cases based on requirement similarities and code com-
plexity information, combined with different sampling strategies. Their results indicate
that the use of requirement information during test case prioritization can be benefi-
cial, showing an average improvement in the fault detection rate of approximately 30%
compared to code metric prioritization.

To summarize, the clustered-based approaches to prioritization all 1) take a white-box
approach by using information from execution profiles at the source code level as a basis
for the clustering, 2) use Agglomerative Hierarchical Clustering or k-means clustering,
and 3) are evaluated on one or more open source programs from SIR, Carlson et al. being
the exception reporting on an industrial case study.

5.3 Clustering for failures classification

Whereas the works mentioned in the previous sections focus on test case clustering, the
works presented in this section address the classification of failures using clustering to
work through them more efficiently. Therefore, the work presented in this section is the
most similar to our work, as the focus is to find out which failures to investigate.

Many software products today have the ability to detect some of their own runtime
failures, and automatically generate failure reports to facilitate debugging. Whereas au-
tomated failure reporting is a significant asset, it is likely to produce more reports than
the developers can effectively handle. Podgurski et al. [21] use clustering to group failure
reports which exhibit similar execution profiles with respect to a set of selected features.



137

They used the Clara clustering algorithm from S-PLUS based on the k-medoids clustering
criterion [14], while utilizing the Calinski-Harabasz index [4] to determine the number of
clusters. When evaluated on three open source subjects (all compilers), they found that,
in most of the clusters created, a majority of the failures were due to the same cause.
Overall, groups of failures with the same cause tended to form fairly cohesive clusters.
However, a few large, non-homogeneous clusters were created containing sub-clusters con-
sisting of failures with the same cause.

When a large number of failed test cases are reported from a test automation system,
recommending some representative test cases as a starting point for debugging can be
helpful to developers. In the context of graphical user interface testing, Chien-Hsin et
al. [13] proposed clustering as a solution to provide such help. More concretely, they
collected test case execution traces through instrumented code, calculated a similarity
matrix according to an adapted version of the Needleman-Wunsch Algorithm [17], and
clustered the failed test cases with Agglomerative Hierarchical Clustering. The developer
was then expected to fix failed test cases following a one-per-cluster sampling strategy. A
case study on a messenger application (55,000 lines of code) with seeded faults indicated
reduced bug fixing effort when following the proposed strategy.

While many of the clustering-based approaches in testing rely on control-flow analysis,
mostly considering the execution profiles of the test cases, DiGiuseppe et al. [8] suggest
utilizing latent-semantic analysis (LSA) to capture the semantic intent of an execution.
They use LSA in a concept-based execution clustering technique to categorize executions
that fail due to the same fault, similar to what Arafeen et al. [1] subsequently proposed.
The main difference with the latter is that it is applied at a code execution level rather
than based on requirements information. They instrument and execute the program,
parse the source code to identify words, compute the weighted term frequency and inverse
document frequency for each term, and then cluster the test cases using agglomerative
hierarchical clustering. When evaluated on one open source program from the Software-
artifact Infrastructure Repository (SIR), concept-based clustering was able to achieve
similar cluster purity (94%), but substantially reduced the number of clusters (by 70%)
when compared to pure control-flow-based clustering. Indeed, this technique was able to
detect similar executions despite differing control paths being executed.

A summary of the works most closely related to ours is provided in Table 3.8. To
summarize, in contrast to those works, the current paper is an industrial case study
focusing on clustering regression test deviations based on test case specifications and
runtime database changes in the context of database applications. No existing work has
addressed that important problem. In other words, our work differs with respect to the
task supported, the type of information used as a basis for clustering, the types of test



138

cases, and the application context.

6 Conclusion

One main challenge in large scale regression testing is to analyze observed deviations on
new software versions to decide whether they are symptoms of regression faults or the
logical result of changes. In a specific context, we have investigated the use of clustering to
group regression test deviations to assist and prioritize their analysis. Our focus is on the
functional, black-box regression testing of database applications, which are widespread
in many application domains, and usually require substantial regression testing over a
long lifespan. We compare runtime database manipulations between executions of the
original and changed versions of the system under test. We collect information such as
the tables and columns subject to manipulation, along with the old and new values of the
fields. Note that such information should be general, and easy to collect for any database
application. The output of the regression test is the set of test case deviations, along
with the specific details of the deviations. The analysis of past regression test campaigns
shows that many deviations are caused by the same regression fault or change. Our study
is about determining whether clustering could serve as an accurate strategy for grouping
regression test deviations according to the faults or changes that caused them. We based
our clustering strategy on the EM clustering algorithm because it does not require the
number of clusters to be determined beforehand, but provides the opportunity to set an
upper limit for it. Such an algorithm is fed with information regarding various aspects
of the database elements being manipulated, and properties of the test cases exhibiting
deviations, which is then used to compute distances between deviations.

We conducted a case study, in a real development setting, based on a large, criti-
cal database application developed by the Norwegian Tax Department. Four concrete
regression test campaigns, covering three different parts of the system under test, were
executed and analyzed by the test engineers in the project. That is, they executed the
regression tests, and inspected all deviations from the test campaigns, while categorizing
them into regression faults or changes. We then applied our proposed clustering strat-
egy on different combinations of input data, and evaluated the accuracy of the deviation
grouping for each type of input combination to determine what information was relevant
for our objective. The results show that, for three out of the four test campaigns, clus-
tering accuracy was perfect for at least one type of input. Additionally, four types of
input yielded homogenous clusters (containing only one type of deviations) for all test
campaigns. Homogenous clusters are our main priority as they imply that a tester in-
specting one deviation from each cluster (one-per-cluster sampling) is certain to cover



139

all regression faults and changes causing deviations. Overall, the information that led to
the most accurate deviation clustering was the combination of columns and operations in
the deviation output, indicating differences in columns and operations being manipulated
across versions for a given test case. That specific combination of input resulted in perfect
accuracy for two of the test campaigns, while achieving perfectly homogeneous clusters
for the two others, with a limited degree of dispersion across more than one cluster for
common-cause deviations. In terms of inspection effort, for the four test campaigns under
study, and when using a one-per-cluster sampling strategy, it was estimated that testers
would only have to analyze a very small percentage of deviations, specifically three out
of 48, two out of 47, two out of 84, and five out of 43, respectively, while still covering
all regression faults and changes. This change is a dramatic increase in efficiency for de-
viation analysis in regression testing, and a way to achieve much higher confidence when
analyzing deviations under time constraints. Such results are more specifically important
for scaling regression testing to large database applications.

A possible future addition could be to help the tester understand the relation between
model properties and the clusters. For instance, we could investigate whether it is possible
to infer relations such as that all deviations in Cluster A relate to the same equivalence
class for one or more model properties, and are the only ones in the test suites to do
so. That would strongly indicate the types of properties that cause different types of
deviations, which would further help the tester or developer when looking for the cause
of regression test failure.

Acknowledgment

Lionel Briand was supported by the National Research Fund, Luxembourg (FNR/P10/03),
while Erik Rogstad was supported by the ATOS project, a joint project of The Norwegian
Tax Department and Simula Research Laboratory. The authors would also like to thank
Cu Nguyen and Claudia Thür for their feedback on the paper.

Appendix - Entropy measurement details

This appendix contains the details of the clustering process per regression test, namely
how the deviations are distributed across clusters, the deviation entropy per deviation
type, and the cluster entropy per cluster.

• Table 3.9 shows entropy details for test campaign 1.

• Table 3.10 shows entropy details for test campaign 2.



140

• Table 3.11 shows entropy details for test campaign 3.

• Table 3.12 shows entropy details for test campaign 4.



141

Ta
bl

e
3.

9:
E

nt
ro

py
de

ta
ils

fo
r

Te
st

1:
Fo

r
ea

ch
ty

pe
of

in
pu

t
th

e
de

vi
at

io
n

en
tr

op
y

is
ev

al
ua

te
d

pe
r

ty
pe

of
de

vi
at

io
n

an
d

th
e

cl
us

te
r

en
tr

op
y

is
ev

al
ua

te
d

pe
r

cl
us

te
r

D
ev

ia
ti

on
E
nt

ro
py

C
lu

st
er

E
nt

ro
py

T
ot

al
E
nt

ro
py

Te
st

1
N

um
be

r
of

cl
us

te
rs

Fa
ul

t
49

16
6

Fa
ul

t
49

16
7

C
lu

st
er

0
C

lu
st

er
1

C
lu

st
er

2
C

lu
st

er
3

C
lu

st
er

4
To

ta
lF

au
lt

E
nt

ro
py

To
ta

lC
lu

st
er

E
nt

ro
py

To
ta

lE
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py

Clusterinput

Independent

Ta
bl

es
5

(3
0,

6,
0,

4,
1)

-0
,8

27
(0

,0
,7

,0
,0

)
0,

00
0

(3
0,

0)
0,

00
0

(6
,0

)
0,

00
0

(0
,7

)
0,

00
0

(4
,0

)
0,

00
0

(1
,0

)
0,

00
0

-0
,8

27
0,

00
0

-0
,8

27
C

ol
um

ns
3

(4
,3

5,
2)

-0
,5

09
(6

,0
,1

)
-0

,4
10

(4
,6

)
-0

,6
73

(3
5,

0)
0,

00
0

(2
,1

)
-0

,6
37

-0
,9

20
-1

,3
10

-2
,2

29
O

pe
ra

ti
on

s
3

(4
,6

,3
1)

-0
,7

20
(0

,7
,0

)
0,

00
0

(4
,0

)
0,

00
0

(6
,7

)
-0

,6
90

(3
1,

0)
0,

00
0

-0
,7

20
-0

,6
90

-1
,4

10
M

od
el

P
ro

pe
rt

y
V

al
ue

s
2

(9
,3

2)
-0

,5
26

(7
,0

)
0,

00
0

(9
,7

)
-0

,6
85

(3
2,

0)
0,

00
0

-0
,5

26
-0

,6
85

-1
,2

12

Pair

Ta
bl

es
an

d
C

ol
um

ns
3

(3
5,

6,
0)

-0
,4

16
(0

,1
,6

)
-0

,4
1

(3
5,

0)
0,

00
0

(6
,1

)
-0

,4
1

(0
,6

)
0

-0
,8

26
-0

,4
10

-1
,2

37
Ta

bl
es

an
d

O
pe

ra
ti

on
s

3
(3

5,
6,

0)
-0

,4
16

(0
,0

,7
)

0
(3

5,
0)

0,
00

0
(6

,0
)

0
(0

,7
)

0
-0

,4
16

0,
00

0
-0

,4
16

Ta
bl

es
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
5

(6
,9

,9
,0

,1
7)

-1
,3

12
(1

,0
,0

,6
,0

)
-0

,4
10

(6
,1

)
-0

,4
10

(9
,0

)
0,

00
0

(9
,0

)
0,

00
0

(0
,6

)
0,

00
0

(1
7,

0)
0,

00
0

-1
,7

22
-0

,4
10

-2
,1

32
C

ol
um

ns
an

d
O

pe
ra

ti
on

s
3

(3
5,

6,
0)

-0
,4

16
(0

,0
,7

)
0,

00
0

(3
5,

0)
0,

00
0

(6
,0

)
0,

00
0

(0
,7

)
0,

00
0

-0
,4

16
0,

00
0

-0
,4

16
C

ol
um

ns
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
3

(6
,1

3,
22

)
-0

,9
79

(7
,0

,0
)

0,
00

0
(6

,7
)

-0
,6

90
(1

3,
0)

0,
00

0
(2

2,
0)

0,
00

0
-0

,9
79

-0
,6

90
-1

,6
70

O
pe

ra
ti

on
s

an
d

M
od

el
P

ro
pe

rt
y

V
al

ue
s

4
(5

,1
,3

0,
5)

-0
,8

32
(1

,0
,0

,6
)

-0
,4

10
(5

,1
)

-0
,4

51
(1

,0
)

0,
00

0
(3

0,
0)

0,
00

0
(5

,6
)

-0
,6

89
-1

,2
42

-1
,1

40
-2

,3
82

Triple

Ta
bl

es
,C

ol
um

ns
an

d
O

pe
ra

ti
on

s
5

(3
1,

4,
0,

4,
2)

-0
,8

13
(0

,0
,7

,0
,0

)
0,

00
0

(3
1,

0)
0,

00
0

(4
,0

)
0,

00
0

(0
,7

)
0,

00
0

(4
,0

)
0,

00
0

(2
,0

)
0,

00
0

-0
,8

13
0,

00
0

-0
,8

13
Ta

bl
es

,C
ol

um
ns

an
d

M
od

el
P

ro
pe

rt
y

V
al

ue
s

5
(2

,5
,1

0,
0,

24
)

-1
,0

62
(0

,0
,0

,7
,0

)
0,

00
0

(2
,0

)
0,

00
0

(5
,0

)
0,

00
0

(1
0,

0)
0,

00
0

(0
,7

)
0,

00
0

(2
4,

0)
0,

00
0

-1
,0

62
0,

00
0

-1
,0

62
Ta

bl
es

,O
pe

ra
ti

on
s

an
d

M
od

el
P

ro
pe

rt
y

V
al

ue
s

3
(3

3,
0,

8)
-0

,4
94

(0
,7

,0
)

0
(3

3,
0)

0,
00

0
(0

,7
)

0
(8

,0
)

0
-0

,4
94

0,
00

0
-0

,4
94

C
ol

um
ns

,O
pe

ra
ti

on
s

an
d

M
od

el
P

ro
pe

rt
y

V
al

ue
s

3
(3

5,
0,

6)
-0

,4
16

(0
,2

,5
)

-0
,5

98
(3

5,
0)

0,
00

0
(0

,2
)

0,
00

0
(6

,5
)

-0
,6

89
-1

,0
15

-0
,6

89
-1

,7
04

All

Ta
bl

es
,C

ol
um

ns
,O

pe
ra

ti
on

s
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
3

(6
,3

5,
0)

-0
,4

16
(0

,0
,7

)
0,

00
0

(6
,0

)
0,

00
0

(3
5,

0)
0,

00
0

(0
,7

)
0,

00
0

-0
,4

16
0,

00
0

-0
,4

16



142

Ta
bl

e
3.

10
:

E
nt

ro
py

de
ta

ils
fo

r
Te

st
2:

Fo
r

ea
ch

ty
pe

of
in

pu
t

th
e

de
vi

at
io

n
en

tr
op

y
is

ev
al

ua
te

d
pe

r
ty

pe
of

de
vi

at
io

n
an

d
th

e
cl

us
te

r
en

tr
op

y
is

ev
al

ua
te

d
pe

r
cl

us
te

r

Te
st

2
N

um
be

r
of

cl
us

te
rs

Fa
ul

t
49

45
1

C
ha

ng
e

49
44

6
C

lu
st

er
0

C
lu

st
er

1
C

lu
st

er
2

C
lu

st
er

3
C

lu
st

er
4

To
ta

lD
ev

ia
ti

on
E

nt
ro

py
To

ta
lC

lu
st

er
E

nt
ro

py
To

ta
lE

nt
ro

py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py

Clusterinput

Independent

Ta
bl

es
4

(0
,1

6,
0,

3)
-0

,4
36

(1
4,

0,
14

,0
)

-0
,6

93
(0

,1
4)

0,
00

0
(1

6,
0)

0,
00

0
(0

,1
4)

0,
00

0
(3

,0
)

0,
00

0
-1

,1
29

0,
00

0
-1

,1
29

C
ol

um
ns

3
(0

,1
8,

1)
-0

,2
06

(2
4,

4,
0)

-0
,4

10
(0

,2
4)

0,
00

0
(1

8,
4)

-0
,4

74
(1

,0
)

0,
00

0
-0

,6
16

-0
,4

74
-1

,0
90

O
pe

ra
ti

on
s

2
(0

,1
9)

0,
00

0
(2

4,
4)

-0
,4

10
(0

,2
4)

0,
00

0
(1

9,
4)

-0
,4

62
-0

,4
10

-0
,4

62
-0

,8
72

M
od

el
P

ro
pe

rt
y

V
al

ue
s

3
(0

,9
,1

0)
-0

,6
92

(1
4,

0,
14

)
-0

,6
93

(0
,1

4)
0,

00
0

(9
,0

)
0,

00
0

(1
0,

14
)

-0
,6

79
-1

,3
85

-0
,6

79
-2

,0
64

Pair

Ta
bl

es
an

d
C

ol
um

ns
3

(0
,1

9,
0)

0,
00

0
(1

4,
0,

14
)

-0
,6

93
(0

,1
4)

0
(1

9,
0)

0
(0

,1
4)

0,
00

0
-0

,6
93

0,
00

0
-0

,6
93

Ta
bl

es
an

d
O

pe
ra

ti
on

s
5

(0
,0

,1
6,

0,
3)

-0
,4

36
(1

0,
4,

0,
14

,0
)

-0
,9

92
(0

,1
0)

0,
00

0
(0

,4
)

0
(1

6,
0)

0
(0

,1
4)

0
(3

,0
)

0
-1

,4
28

0,
00

0
-1

,4
28

Ta
bl

es
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
5

(4
,2

,6
,0

,7
)

-1
,2

97
(6

,6
,0

,1
6,

0)
-0

,9
80

(4
,6

)
-0

,6
73

(2
,6

)
-0

,5
62

(6
,0

)
0,

00
0

(0
,1

6)
0,

00
0

(7
,0

)
0,

00
0

-2
,2

77
-1

,2
35

-3
,5

12
C

ol
um

ns
an

d
O

pe
ra

ti
on

s
2

(1
9,

0)
0,

00
0

(0
,2

8)
0,

00
0

(1
9,

0)
0,

00
0

(0
,2

8)
0,

00
0

0,
00

0
0,

00
0

0,
00

0
C

ol
um

ns
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
3

(1
9,

0,
0)

0,
00

0
(0

,1
6,

12
)

-0
,6

83
(1

9,
0)

0,
00

0
(0

,1
6)

0,
00

0
(0

,1
2)

0,
00

0
-0

,6
83

0,
00

0
-0

,6
83

O
pe

ra
ti

on
s

an
d

M
od

el
P

ro
pe

rt
y

V
al

ue
s

4
(6

,6
,0

,7
)

-1
,0

96
(1

2,
0,

16
,0

)
-0

,6
83

(6
,1

2)
-0

,6
37

(6
,0

)
0,

00
0

(0
,1

6)
0,

00
0

(7
,0

)
0,

00
0

-1
,7

79
-0

,6
37

-2
,4

15

Triple

Ta
bl

es
,C

ol
um

ns
an

d
O

pe
ra

ti
on

s
5

(0
,0

,1
6,

0,
3)

-0
,4

36
(1

0,
4,

0,
14

,0
)

-0
,9

92
(0

,1
0)

0,
00

0
(0

,4
)

0,
00

0
(1

6,
0)

0,
00

0
(0

,1
4)

0,
00

0
(3

,0
)

0,
00

0
-1

,4
28

0,
00

0
-1

,4
28

Ta
bl

es
,C

ol
um

ns
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
5

(0
,0

,1
0,

0,
9)

-0
,6

92
(1

0,
4,

0,
14

,0
)

-0
,9

92
(0

,1
0)

0,
00

0
(0

,4
)

0,
00

0
(1

0,
0)

0,
00

0
(0

,1
4)

0,
00

0
(9

,0
)

0,
00

0
-1

,6
84

0,
00

0
-1

,6
84

Ta
bl

es
,O

pe
ra

ti
on

s
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
3

(1
9,

0,
0)

0,
00

0
(0

,2
0,

8)
-0

,5
98

(1
9,

0)
0,

00
0

(0
,2

0)
0,

00
0

(0
,8

)
0,

00
0

-0
,5

98
0,

00
0

-0
,5

98
C

ol
um

ns
,O

pe
ra

ti
on

s
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
5

(0
,0

,1
0,

0,
9)

-0
,6

92
(1

0,
4,

0,
14

,0
)

-0
,9

92
(0

,1
0)

0,
00

0
(0

,4
)

0,
00

0
(1

0,
0)

0,
00

0
(0

,1
4)

0,
00

0
(9

,0
)

0,
00

0
-1

,6
84

0,
00

0
-1

,6
84

All

Ta
bl

es
,C

ol
um

ns
,O

pe
ra

ti
on

s
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
5

(0
,0

,1
6,

0,
3)

-0
,4

36
(1

1,
5,

0,
8,

4)
-1

,3
11

(0
,1

1)
0,

00
0

(0
,5

)
0,

00
0

(1
6,

0)
0,

00
0

(0
,8

)
0

(3
,4

)
-0

,6
83

-1
,7

47
-0

,6
83

-2
,4

30



143

Ta
bl

e
3.

11
:

E
nt

ro
py

de
ta

ils
fo

r
Te

st
3:

Fo
r

ea
ch

ty
pe

of
in

pu
t

th
e

de
vi

at
io

n
en

tr
op

y
is

ev
al

ua
te

d
pe

r
ty

pe
of

de
vi

at
io

n
an

d
th

e
cl

us
te

r
en

tr
op

y
is

ev
al

ua
te

d
pe

r
cl

us
te

r

Te
st

3
N

um
be

r
of

cl
us

te
rs

C
ha

ng
e

45
02

4
Fa

ul
t

50
00

0
C

lu
st

er
0

C
lu

st
er

1
C

lu
st

er
2

C
lu

st
er

3
C

lu
st

er
4

C
lu

st
er

5
To

ta
lD

ev
ia

ti
on

E
nt

ro
py

To
ta

lC
lu

st
er

E
nt

ro
py

To
ta

lE
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

Clusterinput

Independent

Ta
bl

es
2

(5
6,

0)
0,

00
0

(0
,2

8)
0,

00
0

(5
6,

0)
0,

00
0

(0
,2

8)
0,

00
0

0,
00

0
0,

00
0

0,
00

0
C

ol
um

ns
5

(5
0,

0,
2,

2,
2)

-0
,4

58
(0

,2
8,

0,
0,

0)
0,

00
0

(5
0,

0)
0,

00
0

(0
,2

8)
0,

00
0

(2
,0

)
0,

00
0

(2
,0

)
0,

00
0

(2
,0

)
0,

00
0

-0
,4

58
0,

00
0

-0
,4

58
O

pe
ra

ti
on

s
2

(5
6,

0)
0,

00
0

(0
,2

8)
0,

00
0

(5
6,

0)
0,

00
0

(0
,2

8)
0,

00
0

0,
00

0
0,

00
0

0,
00

0
M

od
el

P
ro

pe
rt

y
V

al
ue

s
1

(5
6)

0,
00

0
(2

8)
0,

00
0

(5
6,

28
)

-0
,6

37
0,

00
0

-0
,6

37
-0

,6
37

Pair

Ta
bl

es
an

d
C

ol
um

ns
5

(5
0,

0,
2,

2,
2)

-0
,4

58
(0

,2
8,

0,
0,

0)
0,

00
0

(5
0,

0)
0,

00
0

(0
,2

8)
0,

00
0

(2
,0

)
0,

00
0

(2
,0

)
0,

00
0

(2
,0

)
0,

00
0

-0
,4

58
0,

00
0

-0
,4

58
Ta

bl
es

an
d

O
pe

ra
ti

on
s

2
(5

6,
0)

0,
00

0
(0

,2
8)

0,
00

0
(5

6,
0)

0,
00

0
(0

,2
8)

0
0,

00
0

0,
00

0
0,

00
0

Ta
bl

es
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
2

(5
6,

0)
0,

00
0

(0
,2

8)
0,

00
0

(5
6,

0)
0,

00
0

(0
,2

8)
0,

00
0

0,
00

0
0,

00
0

0,
00

0
C

ol
um

ns
an

d
O

pe
ra

ti
on

s
2

(5
6,

0)
0,

00
0

(0
,2

8)
0,

00
0

(5
6,

0)
0,

00
0

(0
,2

8)
0,

00
0

0,
00

0
0,

00
0

0,
00

0
C

ol
um

ns
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
4

(1
4,

28
,1

4,
0)

-1
,0

40
(0

,0
,0

,2
8)

0,
00

0
(1

4,
0)

0,
00

0
(2

8,
0)

0,
00

0
(1

4,
0)

0,
00

0
(0

,2
8)

0,
00

0
-1

,0
40

0,
00

0
-1

,0
40

O
pe

ra
ti

on
s

an
d

M
od

el
P

ro
pe

rt
y

V
al

ue
s

3
(2

8,
0,

28
)

-0
,6

93
(0

,2
8,

0)
0,

00
0

(2
8,

0)
0,

00
0

(0
,2

8)
0,

00
0

(2
8,

0)
0,

00
0

-0
,6

93
0,

00
0

-0
,6

93

Triple

Ta
bl

es
,C

ol
um

ns
an

d
O

pe
ra

ti
on

s
2

(0
,5

6)
0,

00
0

(2
8,

0)
0,

00
0

(0
,2

8)
0,

00
0

(5
6,

0)
0,

00
0

0,
00

0
0,

00
0

0,
00

0
Ta

bl
es

,C
ol

um
ns

an
d

M
od

el
P

ro
pe

rt
y

V
al

ue
s

2
(5

6,
0)

0,
00

0
(0

,2
8)

0,
00

0
(5

6,
0)

0,
00

0
(0

,2
8)

0,
00

0
0,

00
0

0,
00

0
0,

00
0

Ta
bl

es
,O

pe
ra

ti
on

s
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
6

(1
,1

6,
3,

23
,0

,1
3)

-1
,2

91
(1

2,
0,

0,
0,

16
,0

)
-0

,6
83

(1
,1

2)
-0

,2
71

(1
6,

0)
0

(3
,0

)
0

(2
3,

0)
0

(0
,1

6)
0

(1
3,

0)
0

-1
,9

74
-0

,2
71

-2
,2

45
C

ol
um

ns
,O

pe
ra

ti
on

s
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
6

(4
,2

0,
0,

0,
24

,8
)

-1
,1

97
(0

,0
,1

4,
14

,0
,0

)
-0

,6
93

(4
,0

)
0,

00
0

(2
0,

0)
0,

00
0

(0
,1

4)
0,

00
0

(0
,1

4)
0,

00
0

(2
4,

0)
0,

00
0

(8
,0

)
0,

00
0

-1
,8

90
0,

00
0

-1
,8

90

All

Ta
bl

es
,C

ol
um

ns
,O

pe
ra

ti
on

s
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
3

(2
8,

0,
28

)
-0

,6
93

(0
,2

8,
0)

0,
00

0
(2

8,
0)

0,
00

0
(0

,2
8)

0,
00

0
(2

8,
0)

0,
00

0
-0

,6
93

0,
00

0
-0

,6
93



144

Ta
bl

e
3.

12
:

E
nt

ro
py

de
ta

ils
fo

r
Te

st
4:

Fo
r

ea
ch

ty
pe

of
in

pu
t

th
e

de
vi

at
io

n
en

tr
op

y
is

ev
al

ua
te

d
pe

r
ty

pe
of

de
vi

at
io

n
an

d
th

e
cl

us
te

r
en

tr
op

y
is

ev
al

ua
te

d
pe

r
cl

us
te

r

Te
st

4
N

um
be

r
of

cl
us

te
rs

Fa
ul

t
50

03
0

C
ha

ng
e

50
03

1
C

ha
ng

e
48

58
0

C
lu

st
er

0
C

lu
st

er
1

C
lu

st
er

2
C

lu
st

er
3

C
lu

st
er

4
To

ta
lD

ev
ia

ti
on

E
nt

ro
py

To
ta

lC
lu

st
er

E
nt

ro
py

To
ta

lE
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

D
is

tr
ib

ut
io

n
E

nt
ro

py
D

is
tr

ib
ut

io
n

E
nt

ro
py

Clusterinput

Independent

Ta
bl

es
3

(0
,0

,3
)

0,
00

0
(0

,1
0,

0)
0,

00
0

(3
0,

0,
0)

0,
00

0
(0

,0
,3

0)
0,

00
0

(0
,1

0,
0)

0,
00

0
(3

,0
,0

)
0,

00
0

0,
00

0
0,

00
0

0,
00

0
C

ol
um

ns
5

(0
,0

,3
,0

,0
)

0,
00

0
(0

,0
,1

0,
0,

0)
0,

00
0

(5
,9

,0
,1

2,
4)

-1
,2

95
(0

,0
,5

)
0,

00
0

(0
,0

,9
)

0,
00

0
(3

,1
0,

0)
-0

,5
40

(0
,0

,1
2)

0,
00

0
(0

,0
,4

)
0,

00
0

-1
,2

95
-0

,5
40

-1
,8

35
O

pe
ra

ti
on

s
5

(0
,0

,0
,0

,3
)

0,
00

0
(0

,1
0,

0,
0,

0)
0,

00
0

(2
5,

0,
3,

2,
0)

-0
,5

63
(0

,0
,2

5)
0,

00
0

(0
,1

0,
0)

0,
00

0
(0

,0
,3

)
0,

00
0

(0
,0

,2
)

0,
00

0
(3

,0
,0

)
0,

00
0

-0
,5

63
0,

00
0

-0
,5

63
M

od
el

P
ro

pe
rt

y
V

al
ue

s
3

(1
,0

,2
)

-0
,6

37
(1

,0
,9

)
-0

,3
25

(1
9,

11
,0

)
-0

,6
57

(1
,1

,1
9)

-0
,3

81
(0

,0
,1

1)
0,

00
0

(2
,9

,0
)

-0
,4

74
-1

,6
19

-0
,8

55
-2

,4
73

Pair

Ta
bl

es
an

d
C

ol
um

ns
5

(0
,0

,0
,0

,3
)

0,
00

0
(0

,0
,1

0,
0,

0)
0,

00
0

(1
2,

9,
0,

9,
0)

-1
,0

89
(0

,0
,1

2)
0,

00
0

(0
,0

,9
)

0
(0

,1
0,

0)
0,

00
0

(0
,0

,9
)

0
(3

,0
,0

)
0

-1
,0

89
0,

00
0

-1
,0

89
Ta

bl
es

an
d

O
pe

ra
ti

on
s

5
(0

,0
,0

,0
,3

)
0,

00
0

(0
,1

0,
0,

0,
0)

0,
00

0
(1

2,
0,

3,
15

,0
)

-0
,9

43
(0

,0
,1

2)
0,

00
0

(0
,1

0,
0)

0
(0

,0
,3

)
0

(0
,0

,1
5)

0
(3

,0
,0

)
0

-0
,9

43
0,

00
0

-0
,9

43
Ta

bl
es

an
d

M
od

el
P

ro
pe

rt
y

V
al

ue
s

2
(3

,0
)

0,
00

0
(1

0,
0)

0,
00

0
(0

,3
0)

0,
00

0
(3

,1
0,

0)
-0

,5
40

(0
,0

,3
0)

0,
00

0
0,

00
0

-0
,5

40
-0

,5
40

C
ol

um
ns

an
d

O
pe

ra
ti

on
s

5
(0

,0
,0

,0
,3

)
0,

00
0

(0
,0

,1
0,

0,
0)

0,
00

0
(1

2,
9,

0,
9,

0)
-1

,0
89

(0
,0

,1
2)

0,
00

0
(0

,0
,9

)
0,

00
0

(0
,1

0,
0)

0,
00

0
(0

,0
,9

)
0,

00
0

(3
,0

,0
)

0,
00

0
-1

,0
89

0,
00

0
-1

,0
89

C
ol

um
ns

an
d

M
od

el
P

ro
pe

rt
y

V
al

ue
s

4
(0

,0
,3

,0
)

0,
00

0
(0

,0
,1

0,
0)

0,
00

0
(1

2,
11

,0
,7

)
-1

,0
74

(0
,0

,1
2)

0,
00

0
(0

,0
,1

1)
0,

00
0

(3
,1

0,
0)

-0
,5

40
(0

,0
,7

)
0,

00
0

-1
,0

74
-0

,5
40

-1
,6

14
O

pe
ra

ti
on

s
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
2

(0
,3

)
0,

00
0

(0
,1

0)
0,

00
0

(3
0,

0)
0,

00
0

(0
,0

,3
0)

0,
00

0
(3

,1
0,

0)
-0

,5
40

0,
00

0
-0

,5
40

-0
,5

40

Triple

Ta
bl

es
,C

ol
um

ns
an

d
O

pe
ra

ti
on

s
5

(0
,0

,0
,0

,3
)

0,
00

0
(0

,0
,1

0,
0,

0)
0,

00
0

(1
2,

9,
0,

9,
0)

-1
,0

89
(0

,0
,1

2)
0,

00
0

(0
,0

,9
)

0,
00

0
(0

,1
0,

0)
0,

00
0

(0
,0

,9
)

0,
00

0
(3

,0
,0

)
0,

00
0

-1
,0

89
0,

00
0

-1
,0

89
Ta

bl
es

,C
ol

um
ns

an
d

M
od

el
P

ro
pe

rt
y

V
al

ue
s

3
(3

,0
,0

)
0,

00
0

(1
0,

0,
0)

0,
00

0
(0

,1
8,

12
)

-0
,6

73
(3

,1
0,

0)
-0

,5
40

(0
,0

,1
8)

0,
00

0
(0

,0
,1

2)
0,

00
0

-0
,6

73
-0

,5
40

-1
,2

13
Ta

bl
es

,O
pe

ra
ti

on
s

an
d

M
od

el
P

ro
pe

rt
y

V
al

ue
s

4
(0

,0
,3

,0
)

0,
00

0
(0

,0
,1

0,
0)

0,
00

0
(1

2,
4,

0,
14

)
-0

,9
91

(0
,0

,1
2)

0,
00

0
(0

,0
,4

)
0

(3
,1

0,
0)

-0
,5

4
(0

,0
,1

4)
0

-0
,9

91
-0

,5
40

-1
,5

31
C

ol
um

ns
,O

pe
ra

ti
on

s
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
2

(3
,0

)
0,

00
0

(1
0,

0)
0,

00
0

(0
,3

0)
0,

00
0

(3
,1

0,
0)

-0
,5

40
(0

,0
,3

0)
0,

00
0

0,
00

0
-0

,5
40

-0
,5

40

All

Ta
bl

es
,C

ol
um

ns
,O

pe
ra

ti
on

s
an

d
M

od
el

P
ro

pe
rt

y
V

al
ue

s
4

(0
,0

,0
,3

)
0,

00
0

(0
,0

,0
,1

0)
0,

00
0

(9
,1

2,
9,

0)
-1

,0
89

(0
,0

,9
)

0,
00

0
(0

,0
,1

2)
0,

00
0

(0
,0

,9
)

0,
00

0
(3

,1
0,

0)
-0

,5
40

-1
,0

89
-0

,5
40

-1
,6

29



145

7 References

[1] Md. Junaid Arafeen and Hyunsook Do. “Test Case Prioritization Using Requirements-
Based Clustering.” In: Software Testing, Verification and Validation (ICST), 2013
IEEE Sixth International Conference on. 2013, pp. 312–321.

[2] Andrea Arcuri and Lionel Briand. “A practical guide for using statistical tests to
assess randomized algorithms in software engineering.” In: Software Engineering
(ICSE), 2011 33rd International Conference on. 2011, pp. 1–10.

[3] Markus Borg and Per Runeson. “IR in Software Traceability: From a Bird’s Eye
View.” In: Empirical Software Engineering and Measurement, 2013 ACM / IEEE
International Symposium on. 2013, pp. 243–246.

[4] T. Calinski and J. Harabasz. “A dendrite method for cluster analysis.” In: Commu-
nications in Statistics 3.1 (1974), pp. 1–27.

[5] Ryan Carlson, Hyunsook Do, and Anne Denton. “A clustering approach to improv-
ing test case prioritization: An industrial case study.” In: Software Maintenance
(ICSM), 2011 27th IEEE International Conference on. 2011, pp. 382–391.

[6] Songyu Chen et al. “Using semi-supervised clustering to improve regression test se-
lection techniques.” In: Software Testing, Verification and Validation (ICST), 2011
IEEE Fourth International Conference on. 2011, pp. 1–10.

[7] William Dickinson, David Leon, and Andy Podgurski. “Finding failures by cluster
analysis of execution profiles.” In: Software Engineering, 2001. ICSE 2001. Proceed-
ings of the 23rd International Conference on. 2001, pp. 339–348.

[8] Nicholas DiGiuseppe and James A. Jones. “Concept-based failure clustering.” In:
Proceedings of the ACM SIGSOFT 20th International Symposium on the Founda-
tions of Software Engineering. FSE ’12. Cary, North Carolina: ACM, 2012, 29:1–
29:4.

[9] Colleen Graham et al. Market Share: All Software Markets, Worldwide, 2013. 2014.
url: https://www.gartner.com/doc/2695617 (visited on 06/15/2014).

[10] Robert M. Gray. Entropy and Information Theory. 2nd. New York: Springer, 2011.

[11] Mary Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. “A methodology for con-
trolling the size of a test suite.” In: ACM Trans. Softw. Eng. Methodol. 2.3 (July
1993), pp. 270–285.

[12] Mary Jean Harrold and Alessandro Orso. “Retesting software during development
and maintenance.” In: Frontiers of Software Maintenance, 2008. FoSM 2008. 2008,
pp. 99–108.



146

[13] Chien-Hsin Hsueh, Yung-Pin Cheng, and Wei-Cheng Pan. “Intrusive Test Automa-
tion with Failed Test Case Clustering.” In: Software Engineering Conference (APSEC),
2011 18th Asia Pacific. 2011, pp. 89–96.

[14] Leonard Kaufman and Peter J. Rousseeuw. Finding groups in data - An introduction
to cluster analysis. United States: John Wiley and Sons Inc., 2005.

[15] Yue Liu et al. “User-Session-Based Test Cases Optimization Method Based on Ag-
glutinate Hierarchy Clustering.” In: Proceedings of the 2011 International Confer-
ence on Internet of Things and 4th International Conference on Cyber, Physical and
Social Computing. ITHINGSCPSCOM ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 413–418.

[16] Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM algorithm and ex-
tensions. 2nd. Hoboken, NJ: Wiley, 2008. XXVII, 359.

[17] Saul B. Needleman and Christian D. Wunsch. “A general method applicable to the
search for similarities in the amino acid sequence of two proteins.” In: Journal of
Molecular Biology 48.3 (1970), pp. 443 –453.

[18] Saeed Parsa, Alireza Khalilian, and Yalda Fazlalizadeh. “A new algorithm to Test
Suite Reduction based on cluster analysis.” In: Computer Science and Informa-
tion Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on. 2009,
pp. 189–193.

[19] Kai Petersen and Claes Wohlin. “Context in industrial software engineering re-
search.” In: Empirical Software Engineering and Measurement, 2009. ESEM 2009.
3rd International Symposium on. 2009, pp. 401–404.

[20] Andy Podgurski and Charles Yang. “Partition testing, stratified sampling, and clus-
ter analysis.” In: SIGSOFT Softw. Eng. Notes 18.5 (Dec. 1993), pp. 169–181.

[21] Andy Podgurski et al. “Automated support for classifying software failure reports.”
In: Software Engineering, 2003. Proceedings. 25th International Conference on. 2003,
pp. 465–475.

[22] Andy Podgurski et al. “Estimation of software reliability by stratified sampling.” In:
ACM Trans. Softw. Eng. Methodol. 8.3 (July 1999), pp. 263–283.

[23] Erik Rogstad, Lionel Briand, and Richard Torkar. “Test Case Selection for Black-
Box Regression Testing of Database Applications.” In: Information and Software
Technology (IST) 31.6 (2013), pp. 676–686.

[24] Erik Rogstad et al. “Industrial Experiences with Automated Regression Testing of a
Legacy Database Application.” In: 27th IEEE International Conference on Software
Maintenance (ICSM). 2011, pp. 362–371.



147

[25] Gregg Rothermel and Mary Jean Harrold. “A safe, efficient regression test selection
technique.” In: ACM Trans. Softw. Eng. Methodol. 6.2 (Apr. 1997), pp. 173–210.

[26] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case study
research in software engineering.” In: Empirical Softw. Engg. 14.2 (2009), pp. 131–
164.

[27] P. G. Sapna and Hrushikesha Mohanty. “Clustering test cases to achieve effective
test selection.” In: Proceedings of the 1st Amrita ACM-W Celebration on Women
in Computing in India. A2CWiC ’10. Coimbatore, India: ACM, 2010, 15:1–15:8.

[28] Cristian Simons and Emerson Cabrera Paraiso. “Regression test cases prioritization
using Failure Pursuit Sampling.” In: Intelligent Systems Design and Applications
(ISDA), 2010 10th International Conference on. 2010, pp. 923–928.

[29] Vipindeep Vangala, Jacek Czerwonka, and Phani Talluri. “Test case comparison and
clustering using program profiles and static execution.” In: Proceedings of the the
7th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering. ESEC/FSE ’09.
Amsterdam, The Netherlands: ACM, 2009, pp. 293–294.

[30] András Vargha and Harold D. Delaney. “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong.” In: Journal of Edu-
cational and Behavioral Statistics 25.2 (2000), pp. 101–132.

[31] Yabin Wang et al. “Using Weighted Attributes to Improve Cluster Test Selection.”
In: Software Security and Reliability (SERE), 2012 IEEE Sixth International Con-
ference on. 2012, pp. 138–146.

[32] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and
Techniques. 2nd. San Francisco: Morgan Kaufmann, 2005.

[33] Shali Yan et al. “A Dynamic Test Cluster Sampling Strategy by Leveraging Execu-
tion Spectra Information.” In: Software Testing, Verification and Validation (ICST),
2010 Third International Conference on. 2010, pp. 147–154.

[34] Robert K. Yin. Case study research: Design and methods. 3rd. London: Sage, 2003.

[35] Shin Yoo and Mark Harman. “Regression Testing Minimisation, Selection and Pri-
oritisation: A Survey.” In: Software Testing, Verification and Reliability 22.2 (2012),
pp. 67–120.

[36] Shin Yoo et al. “Clustering test cases to achieve effective and scalable prioritisa-
tion incorporating expert knowledge.” In: Proceedings of the eighteenth international
symposium on Software testing and analysis. ISSTA ’09. Chicago, IL, USA: ACM,
2009, pp. 201–212.



148

[37] Chen Zhang et al. “An Improved Regression Test Selection Technique by Clustering
Execution Profiles.” In: Quality Software (QSIC), 2010 10th International Confer-
ence on. 2010, pp. 171–179.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
    /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


