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Abstract
Restriction-site associated DNA sequencing (RAD-seq) has recently become an important

method to generate genome-wide molecular data for species delimitation, phylogeography,

and population genetic studies. However, very few empirical studies have so far tested its

applicability in phylogenetic reconstruction. The alpine-arctic genusDiapensiawas selected
to study the origin of the disjunction between the Arctic and the Himalayan-HengduanMoun-

tains (HHM). However, a previous phylogenetic analysis based on one nuclear and four plas-

tid DNA regions failed to resolve the oldest divergences inDiapensia as well as the
relationship between the two HHM species. Here we reconstruct a fully resolved phylogeny of

Diapensia and address the conflict between the currently accepted taxonomy and the gene

trees in the HHM species using RAD-seq. Based on a data set containing 2,650 loci selected

to maximize the number of parsimony informative sites and allowing for a high level of missing

data (51%), the phylogeny ofDiapensiawas fully resolved and each of the four species was

reciprocally monophyletic. Whereas the arcticD. lapponicawas inferred as sister to the HHM

clade in the previous study, the RAD-seq data resolved the two arctic species as sisters to the

HHM clade. Similar relationships were inferred from a differently filtered data set with far

fewer loci (114) and less missing data (21%), but with lower support and with one of the two

HHM species as non-monophyletic. Bayesian concordance analysis and Patterson’s D-sta-

tistic tests suggested that admixture has occurred between the two HHM species.

Introduction
The selection of appropriate and sufficient molecular markers is fundamental to phylogenetic
reconstruction, and the emergence of next-generation sequencing (NGS) technologies provides
numerous possibilities for improvement. Traditional Sanger sequencing [1] of plastid DNA
(pDNA) markers and nuclear ribosomal markers such as the internal transcribed spacer (ITS)
have been widely applied to reconstruct plant phylogenies at the species and genus level. How-
ever, due to maternal inheritance of plastids, phylogenies constructed based on pDNA data are
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limited in their capacity to reflect the evolutionary history of a lineage. Multi-copy nuclear
markers such as ITS can mislead phylogenetic inference because of concerted evolution [2].
Low-copy nuclear genes have been successfully applied in interspecific phylogenetic inference
[3]. However, only a limited number of low-copy nuclear genes have been used in most empiri-
cal studies, because searching for phylogenetically informative low-copy nuclear markers with
traditional Sanger sequencing is costly and laborious work. Increasing the number of unlinked
molecular markers in phylogenetic analyses can dramatically improve the accuracy of phyloge-
netic reconstruction [4]. In this way, NGS technologies offer an efficient and cost-effective
approach to sequence millions of nucleotides for phylogenetic inference.

Restriction-site associated DNA sequencing (RAD-seq) has been recognized as an economi-
cal and efficient method for discovering genome-wide genetic markers [5–7]. This approach
uses NGS technology to sequence short DNA fragments adjacent to restriction enzyme recog-
nition sites in a genome. One of the main advantages of RAD-seq is that it does not require pre-
viously developed genomic resources, such as genome or transcriptome assemblies, making it
particularly useful in non-model species [8–11].

The RAD-seq method has been successfully applied in studies of intraspecific genetic diversity
and phylogeographic history [12–15]. Analyses of empirical and simulated RAD-seq data have
shown it to be a powerful tool for inferring phylogenetic relationships at the interspecific scale as
well [16–20]. The primary challenge in applying RAD-seq to reconstructing interspecific phylog-
enies lies in confidently identifying and assembling orthologous loci amongst the relatively short
(i.e. usually 100 to 200 bp), usually non-coding sequence fragments produced with this method
[16]. This problem stems from the fact that the number of restriction sites that are conserved
among taxa is expected to decrease with increased time since divergence, implying that RAD-seq
data may be of limited use in more ancient clades [17]. Nevertheless, empirical RAD-seq data has
been successfully used to resolve the phylogeny of American oaks, which is a 23–33 million years
old (Ma) clade [19], and simulated RAD-seq data has been used to accurately estimate the phy-
logeny of a hypothetical clade that shared a common ancestor 60 Ma [16].

As the number of molecular markers increases, the process of inferring phylogenies also
faces new challenges. Individual loci may have different evolutionary histories due to incom-
plete lineage sorting, gene duplication or loss, and processes of admixture such as hybridization
and introgression [21]. The RAD-seq method may be a promising tool for phylogenetic infer-
ence under such circumstances. With RAD-seq data sets consisting of over 3 million base
pairs, the phylogenetic relationships among the sympatric Lake Victoria cichlid species were
successfully resolved, despite the fact that this group is characterized by recent adaptive radia-
tion, incomplete lineage sorting and ongoing hybridization [22]. RAD-seq data has also been
used to detect current or historical introgression, using the Patterson’s D-statistic test [18, 23].

Diapensia is a genus of arctic-alpine subshrubs consisting of five species. Diapensia lappo-
nica L. is broadly amphi-Atlantic and D. obovata (F.Schmidt) Nakai is broadly amphi-Berin-
gian with southwards extension into Central Asia [24, 25]. Three species, D. himalaica J.D.
Hooker & Thomson, D. purpurea Diels, and D. wardiiW.E.Evans, are endemic to the Himala-
yan-Hengduan Mountains (HHM; [26]). The origin of the Arctic and HHM disjunction (Fig
1) and the phylogeny of the genus was addressed by Hou et al. [27] using four plastid DNA
regions and ITS. Three major clades were identified and estimated to be of Late Miocene origin.
However, the relationship between the three main lineages remained uncertain, and multiple
accessions of the two HHM species were mixed.

In this study, we apply RAD-seq data to resolve the phylogenetic relationships in the dis-
junct arctic-alpine genus Diapensia. To test whether admixture has occurred between the two
HHM species previously identified as paraphyletic with respect to each other, we applied
Bayesian concordance analyses and Patterson’s D-statistic tests to the RAD-seq data matrix.
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Materials and Methods

Taxon sampling, DNA extraction, RAD-seq library preparation and
sequencing
Our data set consists of 18 samples representing four of the five extant species of Diapensia
(Fig 1; S1 Table) and the two outgroup species Shortia unifloraMaxim. and Schizocodon solda-
nelloides Siebold & Zucc. (S1 Table). Vouchers are deposited in the Herbarium of the Natural
History Museum in Oslo (O) or the Kyoto University Museum (KYO; S1 Table). Total geno-
mic DNA was extracted using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) follow-
ing the manufacturer’s standard protocol. The narrow Tibetan endemic Diapensia wardii is

Fig 1. Total geographical ranges (lines) and sampling sites (dots) ofDiapensia. HHM: Himalayan-Hengduan Mountains. Sample IDs refer to Table 1.
The ranges of D. lapponica and D. obovata are redrawn after Hultén & Fries [44]. The photo of D. lapponica was attributed by Alinja (https://commons.
wikimedia.org/wiki/File:Diapensia_lapponica_Kilpisj%C3%A4rvi_2012-07.jpg#/media/File:Diapensia_lapponica_Kilpisj%C3%A4rvi_2012-07.jpg)

doi:10.1371/journal.pone.0140175.g001
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not included in this study because we did not manage to collect this species in the field, and we
were unable to extract DNA of sufficient quality from the single available herbarium specimen
of this species despite several attempts.

RAD-seq libraries for Illumina paired-end sequencing were prepared following Etter et al.
[5] with some minor modifications (S1 Text). Briefly, genomic DNA from each sample was
digested with the high-fidelity restriction enzyme SbfI (New England Biolabs, Ipswich, MA,
USA), and Illumina sequencing adaptors containing sample-specific barcode sequences were
ligated to the fragmented DNA. The barcode sequences contain five nucleotides with at least
three nucleotide differences between each barcode sequence. The libraries were multiplexed
16× and sheared using a Bioruptor (Diagenode, Denville, NJ, USA), and fragments between
250 and 500 bp in length were selected by gel extraction using the MinElute Gel Extraction Kit
(Qiagen). Paired-end sequencing of the multiplexed libraries was conducted on an Illumina
HiSeq 2000 instrument at the Norwegian Sequencing Centre using 101 cycles.

Processing and clustering RAD-seq data
Following standard Illumina processing and quality filtering, duplicate reads resulting from
PCR amplification were discarded using the program clone_filter implemented in the Stacks v.
1.20 software [28]. The resulting forward reads were de-multiplexed, quality filtered and de
novo clustered using pyRAD v. 2.12, a pipeline optimized to produce aligned orthologous
RAD-seq loci from NGS raw reads across distantly related taxa [29]. We only present the
results based on RAD-seq forward reads, which are deposited as a BioProject in the Sequence
Read Archive database with accession number SRP062066.

The de-multiplexing was performed based on the sample-specific barcode sequences, allow-
ing for one mismatch in the barcode sequence. Base calls with a Phred quality score under 20
were converted to Ns, and reads containing more than 4 Ns were discarded. Once the adapter
sequences, barcodes, and restriction site sequences were removed, the final length of the for-
ward reads was 90 bases. For within-sample clustering a minimum coverage cutoff of 2× was
employed. When clustering across samples, loci with a heterozygous site that was shared by
more than two samples were discarded as putative paralogs, and loci containing more than 10
SNPs were discarded. The same clustering threshold was used for both within- and across-sam-
ple clustering [29]. We tested a range of clustering thresholds (60–95% in 5% increments) and
minimum number of samples (m) that had to be shared by each locus in the final aligned data
matrix (i.e. m = 4 or 14). A final clustering threshold of 90% was chosen to construct data sets
for further analysis because this value provided the highest number of loci and parsimony
informative sites (Fig 2). We only present the results based on two data sets with a minimum
number of 4 or 14 samples required per locus, herein referred to as ‘m4’ and ‘m14’ data set,
respectively. Loci that did not contain any parsimony informative site were excluded from the
pyRAD output data, and the last 5 bases of each locus were trimmed because the base-call qual-
ity was found to drop precipitously in this region. The resulting RAD-seq loci were blasted
against the NCBI remote BLAST nucleotide database, using the program blastn in BLAST
+ 2.2.29 (ftp://ftp.ncbi.nih.gov/blast/executables/LATEST/) with default settings and an “E-
value” significance threshold of 1 × 10−4. Loci that had hits to any sequences that did not origi-
nate from green plants were discarded for further analysis.

Phylogenetic analyses
The above steps resulted in two aligned and concatenated RAD-seq data matrices, with hetero-
zygous sites coded using IUPAC standard ambiguity codes. Maximum likelihood trees were
inferred for the m4 and m14 data matrices using RAxML v. 7.8.3 [30] with random starting
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trees and the GTR + G nucleotide substitution model, and support was estimated by perform-
ing 1000 bootstrap replicates.

We also conducted Bayesian phylogenetic inference based on the two data matrix using
MrBayes v. 3.2.1 [31]. The software jModelTest v. 2.1.7 [32] was used to select the best-fit sub-
stitution model for each locus, and the results are presented in S2 Table. The loci sharing the
same best-fit model were defined as one partition. For each data matrix, two independent runs
were performed with random starting trees and the best-fit substitution model for each data
partition. Each run was performed with four chains (one cold chain and three hot chains) for
10 million generations and with sampling every 1000 generations. Default priors were used in
all analyses. The convergence of parameters among runs was evaluated visually using Tracer v.
1.6 [33]. The consensus trees and Bayesian posterior probability values at nodes were calculated
with a 25% burn-in removed from each run.

Bayesian concordance analysis
Phylogenetic hypotheses based on concatenated datasets derived from multiple loci may
include a mixture of discordant gene trees due to the presence of conflicting genealogical histo-
ries [34, 35]. To identify and quantify such phylogenetic discordance in our data set, we per-
formed a Bayesian concordance analysis with loci from the m4 data set using the BUCKy
v. 1.4.3 software package [36, 37]. BUCKy takes as input the posterior distribution of trees esti-
mated by a Bayesian phylogenetic analysis of each individual locus, and based on these

Fig 2. Correlation between three important statistics in RAD-seq data sets and clustering similarity
thresholds. Square: number of parsimony informative sites; triangle: total number of loci; and dots: number
of loci that contain at least one parsimony informative site.

doi:10.1371/journal.pone.0140175.g002
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estimates a primary concordance tree and a concordance factor (CF), which measures the pro-
portion of the loci supporting a given clade [37]. Loci containing at least two parsimony infor-
mative sites were extracted from the m4 data set. For each locus, two independent runs were
executed in MrBayes v. 3.2.1 with the best-fit nucleotide substitution model selected by jMo-
delTest, each run with four chains for 11.1 million generations sampling every 1000 genera-
tions. The posterior distribution of trees from each individual locus was summarized by the
program ‘mbsum’ implemented BUCKy with 10% burn-in for each tree file. The summarized
tree files of each locus were used as input for BUCKy, in which two independent runs were exe-
cuted with four chains for 500,000 generations. The α parameter represents the a priori level of
discordance expected among loci, and we tested two different values for this parameter (0.1
and 100). Since BUCky requires complete data matrices (i.e. no missing data), we had to sacri-
fice the number of samples to increase the number of loci for the BUCKy analysis and thus
only one individual from D. lapponica and D. obovata and all individuals from D. purpurea
and D. himalaica were retained in the BUCKy analysis.

Testing for admixture using Patterson’s D-statistic test
The four-taxon D-statistic test is based on the assumption of a true four-taxon species tree
(((P1, P2) P3,) O). Alleles sampled from these four species will at times suggest phylogenetic
patterns that are incongruent with the species tree. Assuming a bi-allelic site composed of
alleles ‘A’ and ‘B’, there are two incongruent patterns possible: ABBA and BABA [38, 39]. If
stochastic processes such as incomplete lineage sorting are responsible for this incongruence,
the two patterns are expected to have equal frequencies, whereas if the incongruence is caused
by, for example, introgression between P3 and either P1 or P2, the frequencies ABBA and
BABA are expected to be significantly different, and the D-statistic is used to test the signifi-
cance of this imbalance [39]. In our study, we were interested in testing whether introgression
had occurred between D. purpurea and D. himalaica, because sequences from those two species
were mixed in gene trees based on ITS and plastid DNA presented by Hou et al. [27].

All loci from the m4 data set were used in the D-statistic tests, and heterozygous sites were
included in the analyses. We had multiple individuals of each species, and thus D-statistic tests
were performed using all possible combinations between individuals from the two HHM spe-
cies. All individuals from D. lapponica and D. obovata were used as outgroup (O). In total, 18
tests were conducted, and for each test 1000 bootstrap replicates were performed to measure
the standard deviation of the D-statistic. Significance was evaluated by converting the Z-
score (which represents the number of standard deviations from zero for D statistic) into a
two-tailed P-value, and using α = 0.01 as a conservative cutoff for significance. A significant Z-
score (i.e.> 2.55) suggests that gene flow might have occurred between P3 and either P1 or P2.

To visualize the potential admixture betweenD. purpurea and D. himalaica, a network based
on the m4 data set excluding the outgroup was constructed using the NeighborNet algorithm
implemented in SplitsTree v. 4.13 [40], and a bootstrap analysis was performed with 1,000
replicates.

Results

RAD-seq data matrices
After de-multiplexing and quality filtering using pyRAD, the number of reads per sample var-
ied from 0.18 × 106 to 3.11 × 106 with a median value of 0.69 × 106 (Table 1). In a preliminary
analysis, the 90% clustering similarity threshold generated the highest number of loci and par-
simony informative sites (Fig 2) and was therefore used to construct data sets for further analy-
sis. When clustering reads using the 90% similarity threshold and 2× minimum coverage, the
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total number of clusters obtained from each sample varied from 1,921 to 17,934 with a median
value of 7,650, and the average cluster coverage in each sample varied from 35 to 142 (Table 1).
Consensus sequences were called for each cluster in each sample and possible paralogs were fil-
tered out, resulting in 1,787 to 17,392 consensus loci with a median value of 6,815 (Table 1).
After blast filtering for contaminants and discarding loci that did not contain parsimony
informative sites, the aligned and concatenated m4 data matrix contained 2,650 loci with 51%
missing data and a total of 229,949 sites, of which 5,291 (2.30%) were parsimony informative.
The aligned and concatenated m14 data matrix contained 114 loci with 21% missing data and
a total of 9,870 sites, of which 230 (2.33%) were parsimony informative. BLAST filtering
removed 1.38% of the loci from the m4 data set as potential contaminant sequences frommeta-
zoa, bacteria or fungi. No potential contaminant sequences were found in the m14 data matrix.

Phylogenetic reconstruction
In the Maximum Likelihood (ML) and Bayesian Inference (BI) analyses based on the m4 data
set, Diapensia was inferred as monophyletic with the allopatric arctic D. lapponica and D. obo-
vata as sisters to the HHM species D. purpurea and D. himalaica (Fig 3A and 3B). All species
and interspecfic relationships were fully supported both by ML bootstrapping (BS) and Bayes-
ian posterior probabilities (PP). The trees based on the m14 data set were similar except for
lower branch support and that D. himalaica was non-monophyletic (Fig 3C) or very poorly
supported as monophyletic (Fig 3D).

Table 1. Results after filtering and clustering RAD-seq data from 14 samples ofDiapensia and 4 samples of the outgroup using pyRAD.

Species Sample
ID

No. reads
(× 106)a

Clusters at
90%b

Mean
depth

No. consensus
loci

No. locic No. of pisc

m4 m14 m4 m14

D. himalaica J.D.Hooker & Thomson 55962 0.85 16075 46.91 15579 1853 110 4265 251

55969 1.14 7954 123.14 6717 1292 103 3035 222

55976 0.75 7964 84.27 7691 1826 109 4254 244

D. lapponica L. 43266 0.54 5704 77.77 5529 1647 110 3860 248

47250 0.63 9966 53.88 9635 1650 109 3864 246

47410 0.57 11688 41.72 10870 1456 106 3477 242

55956 1.03 17934 53.68 17392 1936 113 4529 257

D. obovata (F. Schmidt) Nakai 53658 0.77 7262 92.17 6913 1787 113 4104 257

55953 1.23 7345 132.56 6568 1496 106 3512 234

55954 0.38 3589 93.37 3311 650 72 1536 150

6378 0.61 4957 103.87 4854 1571 109 3601 242

D. purpurea Diels 56014 1.94 10328 142.37 8632 1699 112 3989 254

56025 3.11 15991 139.85 13594 2021 114 4645 258

56031 1.12 11446 88.98 11176 1884 113 4239 254

Schizocodon soldanelloides Siebold &
Zucc.

56079 0.20 4400 35.46 4124 82 13 199 30

56080 0.42 4820 80.66 4653 107 12 264 28

Shortia uniflora Maxim. 56090 0.36 2865 96.75 2711 257 54 638 136

56091 0.18 1921 84.10 1787 261 53 626 141

m4/m14: data matrix clustering RAD-seq reads at 90% similarity threshold and consisting of loci that shared by at least 4 (‘m4’) or 14 (‘m14’) samples.
aNumber of reads after quality filtering.
bClusters that passed filtering for 2× minimum coverage.
cAfter descarding all loci without parsimony informative sites (pis), blast filtering and trimming the last 5 bases from all loci.

doi:10.1371/journal.pone.0140175.t001
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Bayesian concordance analysis
In the m4 data set, 1,635 loci contained at least two parsimony informative sites. However,
because BUCKy requires loci to be shared across all samples we removed several samples to
retain more loci for the BUCKy analysis. We kept all D. purpurea/D. himalaica samples but
chose only one sample each of D. lapponica and D. obovata because the two arctic species were
fully supported as reciprocally monophyletic in all phylogenetic trees (Fig 3) and have previ-
ously been shown to contain very little within species diversity [27]. After excluding loci not
shared by all eight Diapensia samples (S2 Text), 246 loci were retained for Bayesian concor-
dance analysis. In total, 10,395 different tree topologies and 119 distinct splits were found

Fig 3. Phylogeny ofDiapensia inferred from two RAD-seq data sets (a to d). (a) and (b) are based on the m4 data set, in which all loci were shared by at
least 4 samples; and (c) and (d) are based on the m14 data set, in which all loci were shared by at least 14 samples. Sample IDs refer to Table 1. Maximum
likelihood trees were estimated using RAxML; numbers above branches are bootstrap (BS) values generated from 1,000 replicates. Bayesian consensus
trees were inferred using MrBayes; numbers above branches are posterior probabilities (PP). Asterisks on branches indicate BS = 100 or PP = 1.

doi:10.1371/journal.pone.0140175.g003
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using BUCKy. The sample-wide mean concordance factors (CFs) and their 95% confidence
intervals (CI) are presented on the primary concordance trees (Fig 4). For both primary con-
cordance trees based on different values of the α prior (100 and 0.1), each split was compared
with splits that were not present in the primary concordance tree but with estimated CF value
above 0.05 (S2 Text). If no conflicting splits were found, or the CI of the conflicting splits did
not overlap with the CI of the clade in the primary concordance tree, this clade was considered
significantly supported.

The primary concordance trees constructed using different values of the α prior (100 and
0.1) presented the same topology but with different CF supports (Fig 4). For example, the tree
using α = 100 significantly supported the D. purpurea clade (Fig 4A) whereas the tree with α =
0.1 did not (Fig 4B). Whereas the ML and BI analyses based on the m4 data set resolved D.
himalaica as monophyletic (Fig 3A and 3B), the primary concordance trees and the ML and BI
analyses based on the m14 data set did not (Figs 4, 3C and 3D).

Four-taxon D-statistic test for admixture
The ML and BI analyses based on the m14 data set as well as the concordance analysis rejected
monophyly for D. himalaica (Fig 3C and 3D), suggesting conflicting phylogenetic signals. To
explore the source of this conflict, we tested for a signal of admixture between D. purpurea and
D. himalaica using the four-taxon D-statistic test based on the m4 data set (test 1–18 in

Fig 4. Primary concordance trees inferred at the α of 100 (a) and 0.1 (b) using BUCKy. The α parameter
represents the a priori level of discordance expected among loci, where a high α assumes a high level of
discordance among the gene trees and a low α assumes a low level of discordance. 246 loci with at least two
parsimony informative sites covering eight Diapensia samples were used in the BUCKy analyses. Sample
IDs refer to Table 1. The concordance factors (CFs) and their 95% confidence intervals are shown on the
branches; those in bold did not overlap with any conflicting CF, and those in bold and with an asterisk had no
conflicting splits.

doi:10.1371/journal.pone.0140175.g004
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Table 2). The D-statistics test is reciprocal, and first test if any D. purpurea sample share more
derived alleles with one D. himalaica sample compared to the other D. himalaica sample, and
then test if any D. himalaica sample share more derived alleles with one D. purpurea sample
compared to the other D. purpurea sample. The number of loci available for each test varied
from 670 to 1,283, and the percentage of discordant sites ranged from 0.03 to 0.19 (Table 2).
Nine out of the 18 tests detected a significant signal of admixture between D. purpurea and D.
himalaica (test 1–2, 4–8, 11–12; Table 2).

We also found evidence for admixture between D. purpurea and D. himalaica in the net-
work (S1 Fig), showing complicated reticulations between the two species.

Discussion

Resolving the deep and shallow histories in Diapensia
All our analyses of the RAD-seq data support three main lineages in Diapensia, congruent with
our previous results from plastid and ITS data [27]. However, whereas the arctic D. lapponica
somewhat surprisingly was resolved as sister to the HHM taxa in the plastid and ITS analysis
(see Fig 2 in [27]), our analyses of the RAD-seq data strongly supported D. lapponica as sister
to the arctic D. obovata (Fig 3). The primary concordance tree, too, supports an arctic and an
HHM clade (Fig 4). Where do the conflicting results come from? The age of the Diapensia
crown group was estimated to Late Miocene and the splits leading to D. lapponica, D. obovata,
and the HHM clade consisting of D. purpurea and D. himalaica were inferred to have occurred
approximately at the same time [27]. Although four plastid regions were analyzed by Hou et al.

Table 2. Four-taxon D-statistic test for introgression betweenDiapensia purpurea andD. himalaica.

No. test P1 P2 P3 O D Std(D) Z ABBA BABA No. loci pdisc

1 him1 him2 pur1 A -0.58 0.10 5.60* 18.50 69.75 670.00 0.14

2 him1 him3 pur1 A -0.72 0.08 9.39* 18.75 113.50 980.00 0.15

3 him2 him3 pur1 A 0.17 0.21 0.84 16.00 11.25 690.00 0.04

4 him1 him2 pur2 A -0.80 0.07 12.25* 11.25 99.25 784.00 0.15

5 him1 him3 pur2 A -0.76 0.06 13.27* 19.75 142.00 1176.00 0.15

6 him2 him3 pur2 A 0.52 0.19 2.80* 20.50 6.50 814.00 0.03

7 him1 him2 pur3 A -0.89 0.04 24.38* 7.25 126.00 790.00 0.19

8 him1 him3 pur3 A -0.88 0.04 24.11* 12.25 187.25 1182.00 0.19

9 him2 him3 pur3 A 0.38 0.22 1.69 13.75 6.25 806.00 0.03

10 pur1 pur2 him1 A 0.01 0.21 0.04 15.50 15.25 1096.00 0.04

11 pur1 pur3 him1 A 0.50 0.08 6.08* 75.00 24.75 1074.00 0.12

12 pur2 pur3 him1 A 0.50 0.08 6.23* 84.50 28.00 1283.00 0.11

13 pur1 pur2 him2 A -0.16 0.31 0.50 10.25 14.00 771.00 0.03

14 pur1 pur3 him2 A -0.27 0.24 1.14 9.50 16.50 709.00 0.04

15 pur2 pur3 him2 A -0.03 0.21 0.16 14.00 15.00 832.00 0.04

16 pur1 pur2 him3 A -0.14 0.16 0.85 10.25 13.50 1075.00 0.03

17 pur1 pur3 him3 A 0.07 0.21 0.34 17.25 15.00 1034.00 0.03

18 pur2 pur3 him3 A -0.01 0.17 0.04 20.75 21.00 1242.00 0.04

P1, P2 and P3: him1: D. himalaica 55962, him2: D. himalaica 55969, him3: D. himalaica 55976, pur1: D. purpurea 56014, pur2: D. purpurea 56025, pur3:

D. purpurea 56031 (sample IDs refer to Table 1); O: outgroup ‘A’ consists of all individuals from the two arctic species D. lapponica and D. obovata. D-

statistic values (D) and their standard deviation (Std(D)) are given for each test. ABBA, BABA: the number of alleles that support each pattern (the

fractions are due to heterozygosity). No. loci: the number of loci analyzed in each test; pdisc: the percentage of discordance.

*Z-scores that are statistically significant after conversion to a two-tailed P-value and using α = 0.01 as a conservative cutoff for significance.

doi:10.1371/journal.pone.0140175.t002
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[27], they are inherited as a single linkage group and therefore only two loci, one plastid and
one nuclear (ITS), were in practice analyzed. Given the small number of loci investigated and
the relatively short time separating the two divergences, we suggest that ancient incomplete
lineage sorting (ILS) may have played a major role in the discrepancy between the plastid/ITS
and RAD-seq phylogenies. We also noticed that a fraction of the RAD-seq loci contained a
phylogenetic signal different from the primary concordance tree loci in our concordance analy-
sis (Fig 4), likely caused by ILS. The large number of loci, however, seems to overwhelm the dis-
cordant phylogenetic signals in the data. This effect is also clear when comparing the
phylogenetic analyses conducted using the two differently sized RAD-seq data matrices, m4
and m14, in which the large data set (m4, 2650 loci) resulted in more strongly supported
branches (BS = 100, PP = 1) compared to the small data set (m14, 114 loci; Fig 3).

A similar pattern of “swamping” was seen in the relationships between the HHM species D.
himalaica and D. purpurea. Both species were supported as monophyletic in the analysis of the
large m4 data set (Fig 3A and 3B), but D. himalaica was non-monophyletic (Fig 3C) or very
poorly supported as monophyletic (Fig 3D) in the analysis of the smaller, but more complete
m14 data set (Fig 3). Interestingly, the primary concordance tree, based on the m4 data set also
rejected monophyly for D. himalaica (Fig 4). Disregarding technical problems associated with
the RAD-seq library preparation procedure, one must invoke biological processes such as
admixture (e.g., hybridization and introgression), ILS, and “hidden paralogy” due to gene
duplications and losses, to explain these patterns of phylogenetic conflict [41]. Although paral-
ogy due to gene duplications and losses may pose a significant problem [42, 43], it is unlikely
that it would be frequent enough to be a major source of incongruence in a recently [27]
diverged group such as D. himalaica and D. purpurea. Thus, the two remaining plausible
causes of the conflicting signals are admixture and ILS. The D-statistic test detected nine
instances of significant gene flow between D. purpurea and D. himalaica (test 1–2, 4–8, 11–12;
Table 2), seven of which showed admixture between D. himalaica sample 55962 and any sam-
ple of D. purpurea. One test detected a significant signal for admixture between D. himalaica
sample 55976 and D. purpurea sample 56025, relative to the D. himalaica sample 55969 (test 6;
Table 2). Interestingly, these two D. himalaica samples are from the same locality, approxi-
mately 300 km from the D. purpurea sample 56025 (Fig 1).

Given that D. purpurea was supported as monophyletic in all analyses (Fig 3), and the D-
statistic tests only suggested admixture between one sample of D. himalaica and D. purpurea,
the direction of the gene flow is likely from D. purpurea to this particular sample of D. hima-
laica. However, we speculate that more samples of D. himalaica and D. purpurea were involved
and that the gene flow may be reciprocal as the ITS gene tree rejected monophyly for both D.
himalaica and D. purpurea as multiple accessions of the two species were intermixed [27]. A
more extensive sampling of D. purpurea and D. himalaica, particularly in regions of sympatry,
will be key to future studies of the dynamic history of these two species.

Performance of RAD-seq for interspecific phylogenetic reconstructions
In this study, we used the pyRAD pipeline to construct two RAD-seq data matrices that vary in
the amount of missing data but with otherwise identical parameter settings: the larger and thus
less complete m4 data matrix, and the smaller and thus more complete m14 data matrix. The
m14 data set contained significantly less missing data (21% missing data compared to 51%)
and fewer parsimony informative sites (230 sites compared to 5,291) compared to the m4 data
set. Nevertheless, the tree topologies based on the two data sets are very similar (Fig 3). This
result is consistent with the study by Rubin et al. [16] where they reconstructed phylogenies
using simulated RAD-seq data matrices with missing data ranging from 6% to 67%, and
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concluded that large amounts of missing data in RAD-seq data matrices did not adversely
affect the accuracy of phylogenetic inference. Although our two analyses resulted in similar
tree topologies, full support and monophyly of all species was obtained only for the m4 data set
(Fig 3), which contained many more parsimony informative sites. Similar results have been
obtained in studies of Pedicularis [18] and cichlid fishes [22], which are clades well known for
hybridization and introgression. In both of these studies data sets that varied in their degree of
“missingness” also resulted in similar tree topologies but the largest, and thus most informative,
data matrices resulted in the highest phylogenetic support.

The analysis of the m4 data matrix consisting of 229,949 sites and 51% missing data, fully
resolved two deep divergences that are nearly temporally coincident in the Late Miocene [27],
as well as a more recent Pleistocene divergence, which may be obscured by some signal of
admixture (Fig 3A and 3B). Our results add to the growing number of studies suggesting that
RAD-seq is a simple and cost-effective way of generating large amounts of genome-wide phylo-
genetic markers suitable for inferring interspecific phylogenies without previous assembly of
genomic resources.
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