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In this note the equations valid for thermal convection 

arederived• assuming that the (particle) Reynolds number is 

small. The note is an extension of the hydrodynamical con­

siderations leading to Darcy's law. 
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We shall consider a porous material which, for simplicity, 

is assumed to consist of uniform,spherical grains, the space 

between the grains being filled with a fluid, The present con-

siderations are an extension of the hydrodynamical considera­

tions leading to Darcy's law as given by Rumer and Drinker 

(1966). 

Applying the Boussinesq approximation the equations 

governing the motion of the fluid may be ~lritten 

a~ + + + + 
P (hr + V•"v) = - "P + pg· + ,n2v o dv v v ,..v 

+ 'V•V = 0 

p = p (1-a(S-6 )) 
0 0 

(1) 

(2) 

(3) 

(4) 

Here (1) and (2) are the equations of motion and continuity, 

respectively. (3) denotes the equation for conduction of heat 

and (4) the equation of state. Furthermore, p is the density, 

p
0 

a standard density, + v the velocity, t the time, p the 

pressure, g the acceleration of gravity, ll the viscosity, 

6 the temperature, K the thermal diffusivity, a the 

coefficient of expansion and 6
0 

a standard temperature. 

Consider the porous material contained within a cube of 

length 1 1 where 1 1 is much larger than the diameter d of 

the grains and much smaller than the characteristic length scale 
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of the "macroscopic" motion (which for moderate values of the 

Rayleigh number equals the distance between the t~1o boundaries), 

Integrating (1) over this cube, the first term may be written 

(5) 

where a bar denotes the mean, and n is the volume porosity 

(the ratio of the fluid volume to the volume of the porous 

material). 

Applying (2) and the Gaussian theorem, the second term in 

(1) leads to 

--f~ ~ f++ ~ ~~ ... t ... ~ (6) v•llvd-r = vv•'dcr = n(vv• C1) + v' v' • dcr 
C1 

'r C1 C1 

where C1 denotes the surface of the cube and prime denotes 

deviation from the mean. It is assumed that, owing to the 

homogeneity of the porous material, the mean defined by an area 

integration is equal to the mean defined by volume integration. 

Strictly speaking, n is here the area porosity vlhich, ho~1ever, 

for spheres is equal to the volume porosity. It seems reasonable 

that the last term in (6) is small, and this will therefore be 

cancelled, Utilizing that the scale of motion is assumed large 

compared to 1',(6) may then be written 

+ + n v•llv-r (7) 

Applying (4) and disregarding an insignificant constant, 

right hand side of (1) may be written 
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(8) 

Here 

+ I 
+ 

I ... .... lY dcr Efs = dcr•l7v = an 
i 

and 

+ 

- I 
.... 

EPs = pdcr 

where i denotes the total surface of the spherical gramas 

11ithin the cube • Thus Efs are the total viscous drag and 
.... EPs the total pressure drag acting on the grains. 

.... .... 
The terms ;. Efs + Eps give rise to Darcy's la11. In the 

case of one single sphere the viscous and pressure drag may 

be ~1ritten (Stoke's law) 

(9) 

where >. equals 371, Assuming that the form (9) of the 

drag also is true in the presence of a number of uniform spheres, 

we get 

where N is the number of grains within the cube. Since 

N = (1-n)-r 
'7fd3 
6 

(10) 

(11) 
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(10) takes the form 

-)- ... >..(1-n)l!T + (12) Eps + H = v 
6 i-7Td2 

or, 

+ + Tn 211 :;: (13) E· + Efs Ps = --v 
k 

l'lhere !{ is the permeability and here given by 

k (14) 

+ 
Ef is proportional to the velocity gradients which, obviously, s 

are much larger in the case of closely packed spheres than for 

one single sphere. \ is therefore for a porous material much 

larger than the value 31T valid for one sphere. For a 

characteristic value of n (n = 0.37) Rumer and Drinker (1966) 

find from a set of experimental dates that 

(15) 

The equations for conduction of heat for the fluid and the 

grains are, respectively, 

(16) 

== klv2el (17) 

where subscript o refers to the fluid and subscript 1 to the 

grains. c is the specific heat and k the thermal conductivity 
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Integrating these equations over the volume considered, adding 

them, applying that the heat flux is the same on both sides 

of the fluid-grain boundary, we get 

... ae :;:_,.---
v •\76 )+(1-n)p c -t~ +np c v'•\78 ' = o , ,a o o o 

As above, neglecting the term due to deviations from the mean 

and, furthermore, assuming that the temperature in the fluid 

and the grains are approximately equal, we obtain 

(19) 

dropping unnecessary subscripts. This is the same form of the 

heat equation as derived by Katto and Masuoka (1967). 

If the motion is steady, (19) reduces to 

(20) 

where Km is the thermal diffusivity for the porous material, 

given by 

nk +(1-n)k 
K = 0 I 

m np
0

c
0 

(21) 

A formula of the form ( 20) is usually assumed to be valid in 

porous convection. The value (21) for Km' however, is to be 

considered as a rough estimate only,valid when k and k 
0 I 

are nearly equal. On the other side, when k and k are 
0 I 

different order of magnitude, (21) highly exaggerates the K m 
value. 

of 
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The equations (1) - (4) may for small (particle) Reynolds 

number now be written 

+ +) + v•'iJv 

+ 'iJ•v = o 

(1 + 

P N~g + ,.n2v+ _ ~ ~ 
0 ~I} ,. v k 

+ -+ v•'i/8 = 

(22) 

(23) 

(24) 

It should be noted that in the formulas above + v is the 

velocity, and not the specific discharge + :; -+ 
q ( q = nv) • For 

larger Reynolds number, larger than one, say, the pressure terms 
+ Ep become important, and Darcy'u law must be replaced by a s 

resistance law proportional to the square of the velocity. 

It is easily seen that the convective term and viscous term 

in ( 22) are much less the resistance term (- ~n ~). 

Let L denote the length scale of the mean motion. VIe then 

have 

(25) 

utilizing that k/d 2 is according to ( 15) very small. 

Correspondingly, 

lvld • 
v 

vlvl « Re vnlvl 
Ld It 

(26) 

where v is the kinematic viscosity and Re is the Reynolds 

number. By a similar argument also the local acceleration term 

may be cancelled such that the time derivative only enters in (24). 
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We then end up with the following set of equations 

:: 0 (27) 

:: 0 (28) 

(29) 

where we have omitted the bar and 

k' :: k/n. 

These equations will be utilized in a forthcoming paper on 

nonlinear porous convection. 
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