Derivatlon of the equatlions for
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In this note the equations valid for thermal convection
are derived, assuming that the (particle) Reynolds number is
small, The note 1s an extension of the hydrodynamical con-

siderations leading to Darcy's law.



Vle shall consider a porous material which, for simplicity,
is assumed to consist of uniform,spherical grains, the space
hetween the grains belng filled with a fluid., The present con-
siderations are an extension of the hydrodynamical considera-

tions leading to Darcy's law as given by Rumer and Drinker

(1966).

Applying the Boussinesq approximation the equations
governing the motion of the fluld may be written

po(%% + VeUV) = - yp + pf + uviv (1)
VeV = 0 (2)
%9 + Yove = xv?e (3)
p = po(l““(@’eo)) (4)

Here (1) and (2) are the equations of motlon and continuity,
respectively. (3) denotes the equation for conduction of heat
and (4) the equation of state. Furthermore, p 1s the density,
p, & standerd density, v the veloeity, t the time, p the
pressure, g the acceleration of gravity, u the viscosilty,

8 the temperature, « the thermal diffusivity, o the

coefficient of expansion and 60 a standard temperature.

Consider the porous materlal contalned within a cube of
length L' where L' 1s much larger than the diameter d of

the grains and much smaller than the characteristic length scale
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of the "macroscepic' motion (which for moderate values of the
Raylelgh number equals the distance between the two boundaries),

Integrating (1) over this cube, the first term may be written

9V a-’_\?
pOI-&- dr = PR 5T T (5)
T

where a bar denotes the mean, and n 1s the volume porosity
(the ratio of the fluid volume to the volume of the porous
material).

Applying (2) and the Gausslan theorem, the second term in

(1) leads to
[tovtar = [Fab = nGi- 83, + [Friread (6)
T a g

where 0 denotes the surface of the cube and prime denotes
deviation from the mean, It is assumed that, owing to the
homogeneity of the porous material, the mecan defined by an area
integration 1s equal to the mean defined by volume integration,
Strictly speaking, n 1is here the area poroslity which, however,
for spheres is equal to the volume porosity. It seems reascnable
that the last term in (6) is small, and this will therefore be
cancelled, Utilizing that the scale of motion is assumed large

compared to L',(6) may then be written
[3-v$af - n vevit (7)

Applying (4) and disregarding an insignificant constant,
right hand side of (1) may be written



T
_nTpanE + nTPv%y - ntvp - E%s - EES (8)

Here
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where 1 denotes the total surface of the spherlcal grahss
within the cube. Thus 8?8 are the total viscous drag and

zﬁs the total pressure drag acting on the grains.

The terms -+E?S + Eﬁg give rise to Darcy's law. In the
case of one single sphere the viscous and pressure drag may

be written (Stoke's law)
5+T=Aﬂd-{>" (9)

vhere X equals 37, Assuming that the form (9) of the
drag also 1s true in the presence of a number of uniform spheres,

we get

>

Tpg * z%s = N(F+D) (10)
where N 1s the number of grains within the cube, Since

1~
N = S%E%%I (11)



(10) takes the form

ggs + 37 = Ad-npt o (12)
8 l'Hd2
E3
or,
> + iy ¥
Ip, + If, =~ V (13)

where k 1is the permecability and here given by

1 252
+ T n“d

ko= Ty )

ZFS is proportional t¢ the velocity gradients which, obviously,
are much larger in the case of closely packed spheres than for
one single sphere. ) 1s therefore for a porous material much
larger than the value 31 valid for one sphere, For a
characteristic value of n (n = 0,37) Rumer and Drinker (19066)

find from a set of experimental dates that

k = 6,54.10""q? (15)

The equations for conduction of heat for the fluld and the

grains are, respectively,

0
-8 4+ 3. - 2
JENC veve ) = k Vo (16)
90,
Pi1C1 w5 = I, v?e, (17)

where subscript o refers to the fluild and subscript t to the

grains, c¢ 1s the specific heat and k the thermal conductivity




Integrating these equations over the volume considered, adding
them, applying that the heat flux 1is the same on both sides
of the fluld-graln boundary, we get

1) = 1) —
np ¢ (me=> + Vv sVB J(1l-n)p ¢ ~t4np c v'evVe ' =
o 03¢ 0 p1 19 00 0

= 25 + - 25
nkOV 0, (1 n)klv 81 (18)

As above, neglecting the term due to dewlations from the mean
and, furthermore, assuming that the temperature in the fluild

and the grains are approximately equal, we obtailn
(np e, +{(1l-n)p c )3€+ np_c VoUT = (nk,.+(1l-n)k_)Vv?% (19)
0“0 171730 00 0 1

dropping unnecessary subscripts. This is the same form of the

heat equation as derived by Katto and Masuoka (1967).
If the motion is steady, (19) reduces to

Ve 8=k, 927 (20)

where Kin 1s the thermal diffusivity for the porous material,

given by

nko+(1—n)kl
K, = (21)
m np ¢,

A formuls of the form (20) is usually assumed fo be valid in

porous convection, The value (21) for however, is to be

Koo
considered as a rough estimate only,valid when ko and k1
are nearly egual. On the other side, when ko and k1 are of
different order of magnitude, (21) highly exaggerates the Kn

value,
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The equations (1) - (4) may for small (particle) Reynolds

number now be written

= —_ — — —
o (L 4+ Fov¥) = = VD - p B + uviy - LA T (22)
0 3t 0
VeV = 0 _ (23)
(1 + E20)1eny BT 4 Fovp = i 07T (21)

0 O

It should be noted that in the formulas above V 1s the
velocity, and not the specific discharge Ekg = n%). For
larger Reynolds number, larger than one, say, the pressure terms
ﬁ%s become important, and Darcy's law must be replaced by a

resistance law proportional to the square of the velocity.

It is easily seen that the convective term and viscous term

in (22) are much less the resistance term (- %? 3).

Let I denote the length scale of the mean motion. We then

have

- - >
o231 ~ Ll <o nlvl (25)

=

utilizing that k/d? is according to (15) very small,

Correspondingly,
_ e > > >
= o3 lvld | vl wn|v
[Veyv| 5 13- << Re =% (26)

where v 1s the kinematic viscosity and Re is the Reynolds
number, By a similar argument also the local acceleration term

may be cancelled such that the time derivative only enters in (24).



We then end up with the following set of equatlons

Vp + p abg *+ fr V = 0 (27)
ye¥ = 0 (28)
(1 + -(-%-%—)-g—’-‘f-‘—) %—6— + Veye = Kmvze (29)

0 0
where we have omitted the bar and
k! = k/n,

These equatlons wilill be wutllized in a forfthcoming paper on

nonlinear porous convection.
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