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1 Introduction 

This report summarises the first part of a method for obtaining the complete wave drift 
damping matrix. We consider a floating body which can perform linear oscillations in 
incoming waves, while drifting slowly horizontally in the surge, sway and yaw modes of 
motion, where the latter means a slow rotation about the vertical axis. The body may be 
moored by either tension legs or anchor lines. In this first part of the project report we 
describe how to obtain the various linear potentials, the linear forces and motions, and 
how the coupling between the waves and the slow horizontal motions is accounted for. 
The report is based on the publications in the reference list. 

We apply potential theory to describe the fluid motion (see §2 & 3), as we disregard 
viscous effects and assume that the fluid is homogenous and incompressible. Furthermore, 
we use the powerful method of integral equations to compute the fluid flow. All parts of 
the method are obtained by strict mathematical procedures. 

The derived integral equations contain unknown quantities on the wetted body surface 
only, which, among others, means that evaluation of only two coefficient matrices for linear 
systems are required, one for the wave part of the problem and one for the time-averaged 
part due to the slow motion. The set of perturbation potentials are then obtained by 
deriving a set of right hand sides of the equations which are used as input for the equation 
solver. The method requires evaluation of ordinary integrals over the mean free surface, 
which have relatively quick convergence and are relatively robust to evaluate. We employ 
a low-order panel method as numerical tool and use the midpoint rule for numerical 
integration, with exception of the singular integrals which are obtained by algoritms based 
on analytical methods. Convergence of the method is documented in several examples, 
and we have good reason to believe that the linear results and the wave drift damping 
matrix may be obtained with a relative accuracy within a few percents, depending on the 
discretization of the geometry. 

In developing a rather complex method it is desirable to develop checks. This is 
part of our philosophy when we develop integral checks like the . generalized Haskind 
relations, the generalized Timman-Newman relations (see §5) and the energy balance in 
the method. We show here numerical results for the two former relations which document 
the robustness and soundness of the method. (The energy check being second order in the 
wave amplitude is considered in a later report.) In §6 we briefly discuss the amplitudes 
and the frequencies of the linear body responses. We find among others that the different 
modes of motion in general have different frequencies, which is d·ue to the slow rotation 
of the body. Furthermore we find that the frequency of the motion may differ from the 
frequency of the exciting force in the respective modes. 

A code based on the mathematical formulation is under implementation as an exten­
sion of the WAMIT wave analysis program. The final wave drift damping (WDD) module 
contains a mixture between original WAMIT routines and new routines developed at UiO 
made adaptive to WAMIT. Roughly speaking, one third of the routines of the WDD-part 
are original from UiO; basically these are routines for the set of right hand sides due to 
the perturbation potentials, the set of auxiliary (Green) functions due to a singularity · 
with slow speed in waves, the wave forces, the motions and the wave drift damping due to 
the slow horizontal motions in waves. Another part consists of modified WAMIT-routines 
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Figure 1: Sketch of floating offshore platform and ship. Slow velocities U, V and n are 
indicated. 

(input/output, organization of panels, time-averaged problem), while a remaining part 
is original WAMIT-routines (evaluation of the coefficient matrices, equation solver, basic 
integration over a panel, zero speed Green function). The final wave drift damping pro­
gram will be organized as a set of submodules fitted to the zero-speed WAMIT-program, 
where an index marks if the submodules for the WDD-part shall be included in a run. 
Otherwise the original zero-speed WAMIT program is run. 

2 Mathematical formulation 

We consider a floating body moving with slow velocities in the three horizontal modes of 
motion while being exposed to incoming monochromatic waves. We define a fixed frame 
of reference and a relative frame of reference where the latter follows the slow motion of 
the body, and is rotated an angle a relative to the fixed frame of reference. A coordinate 
system 0- xyz is introduced in the relative frame of reference with the xy-plane being 
in the mean free surface of the fluid, and the z-axis being vertical upwards. Unit vectors 
i,j, k are introduced accordingly. The slow velocity of the body, measured in the fixed 
frame of reference, is then given by Ui + Vj + !lk, where n = o and a dot denotes time 
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derivative. We note that U, V and n are functions of time. 
Let the incoming waves be described in the relative frame of reference by the potential 

<I>1 = Re [ ( Aig I w) ¢1 eicrt], "-1 _ cosh k ( z + h) -ikR cos(/3 -8) 

'+' - cosh kh e ' (1) 

where A, k and {3 denote wave amplitude, wavenumber and wave angle, respectively, of 
the incoming waves, h the water depth, and g the acceleration due to gravity. {3 is defined 
as the angle between the positive x-axis and the wave direction. The encounter frequency 
is given by 

a= w- Ukcos{3- Vksin{3 

where w and k obey the dispersion relation 

K = ktanhkh 

(2) 

(3) 

and K = w2 I g. In the incoming wave potential ( 1) we have also introduced polar coordi­
nates by x = R cos(), y = R sin(). 

The wave angle is constant and equal to {30 in the fixed frame of reference. The 
slow rotation angle a of the body introduces effectively a slowly varying wave angle 
to an observer in the relative frame of reference. This wave angle is determined by 
{3(t) + a(t) = {30 , which means that 

d{3 = _r'l 

dt H. 

The effect of a time-dependent wave angle will appear in the subsequent description. 

(4) 

We let the rotation angle a be of arbitrary magnitude and the non-dimensional 
wavenumber kl be of order one, where l denotes the characteristic length of the body. 
We further introduce the small parameters 

r(U) = Uwlg, r(V) = Vwlg, r(O) = Olw. · (5) 

In the mathematical analysis we apply perturbation expansions in the small parameters 
retaining terms up to order (Ail)2, r(U), r(V) and r(O). 

Let v denote the fluid velocity in the relative frame of reference. This velocity may 
be decomposed by 

v = v' - Ui - Vj - Ok x :v, (6) 

where the latter three velocity components contribute to the velocity which is introduced 
to an observer which change his position from the fixed to the relative frame of reference. 
This also means that v' denotes the velocity in the fixed frame of reference. 

We assume that v' can be described by a Laplacian velocity potential <I>'. It is conve­
nient to decompose this potential by 

(7) 

Here, <I> denotes the linear wave potential being proportional to the wave amplitude and 
is due to the incoming, scattered and radiated waves, Uxu + Vxv .+ Ox0 the potential 
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due to the flow generated by the body when there are no waves, and 7j;(2) a time-averaged 
potential being proportional to the wave amplitude squared. For later use it is convenient 
to define the following set of velocities: 

where 

wu = -i + V'xu, 
wv = -j + V'xv, 

wn = - k x x + V' xn. 

(8) 

(9) 
(10) 
(11) 

The velocities in (9)-(11) satisfy the rigid wall boundary condition at the body, at the 
free surface and at the sea floor, and xu, x v, xn vanish at infinity. 

3 Boundary value problems 

The free surface boundary condition for the wave potential 4> is obtained by applying the 
individual derivative to the Bernoulli equation for the pressure at the free surface. After 
linearizing with respect to the wave amplitude, we find (see references 3, 11, 12) 

<l>tt + 2w · <l>t + <l>t Y' h • w + g<l>z = 0 at z = 0, (12) 

where V' h denotes the horizontal gradient. 
We next introduce the following decomposition of the velocity potential 

(13) 

where the first part represents the incoming and scattered waves, and the second part the 
radiation potential. ~i denotes the amplitude of oscillation in mode j (j = 1, ... , 6). As 
noted above, the motion in the relative frame of reference depend on the slowly varying 
wave angle j3(t). This means that e.g. 

!!:_ (C ·eiat) = (iuC. - n O~j )eiut 
dt <,J <,J 8;3 ' j = 1, ... ,6, (14) 

a ("" iat) (. "" n o¢j) iat at 'Pie = UI"<pj - H oj3 e , j=1, ... ,6,D, (15) 

where we have used that dj3 / dt = -0. We now introduce the expansions 

~j = ~J + T(~)~}U + T(V)~}V + T(fl)~}n, j = 1, ... , 6, 

cPD = ¢~ + T(U)¢_g' + T(V)¢}f + 7(0)¢bn, 

~icPi = ~J¢J + T(U)(~icPi)lU + T(V)(~i¢) 1v + T(fl)(~icPi)w, 
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(16) 

(17) 

j=1, ... ,6, (18) 



where 

(19) 

(20) 

(21) 

Here, ¢Cjy, ¢&, ~J are the usual linear zero-speed potentials and motions. The quantities 
¢}f, ¢]u, ~J are required to account for couplings between the waves and the slow speed 
U, likewise, ¢}j, ¢]v, ~Jv are required to account for the speed V, and finally, ¢W, 'I/J]0 , 

¢}10 , ~Jn, a~J 1 of3 are required to include the effect of a slow rotation. 
The zero-speed potentials satisfy the following set of boundary value problems 

aq;o 
-K¢~+-i =0 at z=O, 

J oz 
8¢J = { ni, _j = 1, ... , 6, 
on 0, J = D, 

"'~ - "'I 6. = R-1/2 H~(fJ) cosh k(z +h) -ikR + 0(1IR) 
'+'J '+' JD 1 cosh kh e ' R ---t oo, 

(22) 

(23) 

(24) 

where 6jD denotes the Kroenecker delta, (n1, n2, n3) = n the unit normal at the floating 
body pointing out of the fluid, (n4 , n5 , n6 ) = :z: x nand HJ(B) the far-field amplitude of 
the respective potential. We also have that 8¢J I oz = 0 at z = -h. 

3.1 The perturbation potentials 

We next consider the perturbation potentials. At the free surface (z = 0) they satisfy 
(see references 3, 11, 12, 13) 

K "'w 8¢]u k f3"'o . 8¢J .L ("'o U) D 
- '+'i + 8z = -2 cos '+'j + 2't ox - 't h '+'i' X , j = 1, ... , 6, , 

K "'1 v 8¢} v 2k . f3"'o 2. 8¢J .L ("'o v) 
- '+'j + 8z =- sm '+'j + "'oy -"' h '+'j, x . , } = 1, ... , 6, n, 

- K "'10 + o¢bn = 2iK o¢Cjy + 2iK o¢Cjy - iK L ("'0 x0 ) 
'+'D OZ 8(3 [)f) h '+'D, ' 

K n,,m 8'1/J}n .Ko¢J ·xL ("'o n) 1 6 
- '+'j + 8z = 22 [)f) - 't h '+'i' X , j = ' ... , ' 

aq;nn 
-K"'~10 + _i_ = 2,;K"'~ J. 1 6 '+'] oz ~ '+'J' = , ... , ' 

where Lh(¢, X)= 2'\h¢ · 'VhX + ¢'V~X· 
Furthermore, the kinematic boundary condition at the body gives 

aq;~s { _J_= 
on 

-imjl K, j = 1, ... , 6, 8 = U, V, 
0, j = D, 8 = U, V, 
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(25) 

(26) 

(27) 

(28) 

(29) 

(30) 



where 

fJ·f·~n { -imr:z 
_'P_J_ = J' 

an 0, 

aq;~m 
_J_=O 

8n ' 

j = 1, ... ,6, 
j=D, 

(m1, m2, m3) 8 = -n · "'Vw8 , 8 = U, V, 
(m4, m5, m6) 8 = -n · "'V(x x W 8 ), 8 = U, V, 
(m1, m2, m3) 0 = -n · "'Vw0 - 2k x n, 

(m4, m5, m6) 0 = -n · "'V(x x w 0 )- 2x x (k x n). 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

We note that mf include some new terms introduced due to the slow rotation of the body, 
given by 

-2k x n, 

-2x x (k x n). 

These terms are absent in the translatory modes of motion. 

(37) 
(38) 

There is also a radiation concl.i~ion for the flow when the incoming wave-field is sub­
tracted. The radiation condition requires that all disturbances due to the presence of the 
body in the far-field behave as outgoing waves only. This is equivalent to requiring that 
there are no energy sources as R -+ oo, except the incoming waves. For the potentials 
due to U and V we find (see references 3, 9) 

q;o-¢Ib·v+r(U)¢1U =R-li2Hfi(B)coshklU(z+h)e_ikwR+0(1/R), R-+oo, (39) 
J J J cosh klUh 

¢~- q;I b ·v + r(V)¢1V = R-1/2 HY (B) cosh klV (z +h) e-iklv R + 0(1/ R), R-+ oo, (40) 
J J J coshk1vh 

where 

1u ( 2r(U) ( )) k = k 1 + Cg(kh) cos()- cos/3 , (41) 

IV ( 2r(V) ( . . )) 
k = k 1 + Cg(kh) smB- sm/3 , (42) 

kh 
C9 (kh) =tanh kh + 2 

cosh kh 
(43) 

and Hf.V denote far-field amplitudes of the potentials. 
In the slow yaw-problem we obtain the potentials as follows, see references 11-13, 

"'In 2 .K fJ2¢fjy 2 .K fJ2¢fjy "'130. 
'PD = 2 8K8{3 + 2 8K8() + 'PD ' 

(44) 

82¢0 
• 1·~0 = 2iK--J_· + "'~30 J. 1 6 
'PJ 8K8() 'PJ ' = ' ... , ' ( 45) 

"'110 2 "K fJ¢J . 1 6 
'Pj = 2 8K' J = ' ... , ' (46) 
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where ¢J3n satisfy 

¢J~3n = R-1/2 HJ~3n(O) cosh k(z +h) e-ikR + 0(1/ R), R--+ oo, j= 1, ... , 6, D (47) 
coshkh 

and Hj3n denotes the far-field amplitude of ¢J3n. 
In addition, the perturbation potentials satisfy the rigid wall boundary condition at 

the sea floor. 
The various potentials are determined numerically by means of integral equations. 

First we find the zero speed potentials ¢J at the body surface and the free surface. Next 
we determine the potentials xu, xv and xn by applying source distributions. We then 
determine the potentials ¢JU, ¢] v, ¢bn, '1/J]n, ¢J1rl on the wetted body surface. The integral 
equations for the latter potentials are obtained by application of Green's theorem to the 
respective potentials, the zero speed Green function and certain derivatives of the zero 
speed Green function. Formal derivations of the integral equations for ¢J, ¢JU, ¢] v, are 
given in the references 3, 9, and for ¢}f, '1/J]n, ¢]In, in the references 11, 12, 13. The 
results are 

,~,q. 
'PJ" 

"'W· 'PJ • 

{ ("'w G0 - "'0 Gw + "'0 2k cos (3G0 )dS JsB 'f/D n 'f/D n 'f/D Kn 

-i { ,~,o L (Go Xu)dS = { -27r¢}f(x) 
lsF 'f/D h ' -47r¢}f(x), 

{ ("'~u G0 - ..!:._wu . \l G0n. - "'~Gw + "'~2k cos (3G0 + Gw n ·)dS JsB 'PJ n K J 'PJ n 'PJ Kn . J 

-i { ¢~L (Go Xu)dS= { ·-27r¢;u(x) 
lsF J h ' -47!"¢/(x), 

(48) 

(49) 

(50) 

(51) 

where s B denotes the wetted body surface, sF the free surface and ( )n = a I an. The 
equations for ¢] v are similar . 

• t.~n. 
. 'PJ • 
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{ (~'·~nco - iwn. "VGon. - A..~ Gin+ Ginn ·)dS iss '1-'J n J '1-'J n J 

-iK { ¢>~L (G0 xn)dS = { - 21r'lj;;n(x) (53) 
lsF 3 h ' -47r'lj;in(x). 

In the first cases of ( 48 )-(53), x E S B, which determines the respective potentials at S B. 

For the latter cases, x is in the fluid volume, which determines the potentials in the fluid. 
¢}In may be obtained by differentiating ( 49) with respect to K. 

The Green function G0, being a source at X= e' = (~', 1]1, ('),is given by (see reference 
14, eq. 13.18) 

where 
r 1 = j(x _ ~')2 + (y -1]')2 + (z _ (')2, 

r2 = j(x- ~')2 + (y -17')2 + (z + (' + 2h)2, 

1 121!" 1oo 2e-vh(K + v) ' 
w(x, e)=- h h( h h K) cosh v(( +h) cosh v(z +h) 

21r o o cos v v tan v -

(54) 

(55) 

(56) 

X eiv((x-e') cos a+(y-77') sin a) dvda (57) 

and the integration is above the pole at v tanh vh - K = 0. The auxillary functions are 

and()'= tan-1(r/ /~'). 

1U . 82QO 
G = 2~8~'8K' 
GlV = 2' 82GO 

~ 817'8K' 

Gin= 2"K 82Go 
~ 8B'8K 

4 The pressure. Free surface elevation 

(58) 

(59) 

(60) 

The linear pressure in the fluid is given by the Bernoulli equation and may be written 

(61) 

where p and p denote pressure and density of the fluid, respectively. 
The free surface elevation ((x, y, t) is determined from (61) by setting the pressure 

equal to zero at z = (, giving for the linear part 

8if! u v n) g( = --- (Uw + Vw +Ow ·'\lit! 
8t 

at z = 0 (62) 
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5 The linear forces 

5.1 The exciting force 

The exciting force and moment are obtained by pressure integration over the body. By 
setting ~i = 0 we obtain 

j = 1, ... ,6. (63) 

It is appropriate to expand the components of Xi by 

(64) 

The exciting force and moment are then found by integrating the diffraction potential 
and the product between the velocity w and the gradient of the zero speed diffraction 
potential over the body surface. This results in a simple procedure once the diffraction 
potential and the source distributions for w and ¢9J are determined (we also find ¢J by 
source distributions in order to evaluate V¢J). 

As an alternative to pressure integration we develop generalized Haskind relations 
for the components of the exciting force. This means that we are expressing component 
number j of the exciting force by the far-field amplitude of the radiation potential in 
mode number j. These relations constitute quite remarkable connections between the 
diffraction and the radiation problems. The relations for zero speed are well known and 
may be written as 

XJ = {2; C9 (kh)H3~(/3 + 1r)ei1r/4 , j = 1, ... , 6, 
pg VT 

where HJ(/3 + 1r) denotes the far-field amplitude of the potential ¢J, see eq. (24). 

(65) 

Extensions of the Haskind relations to also include slow horizontal speeds are non~ 
trivial and require a set of mathematical manipulations. In short, we apply Green's 
theorem and the boundary conditions for the potentials involved, and in addition some 
mathematical tricks, see references 3, 9, 13. The final results are (j = 1, ... , 6) 

(66) 

(67) 

(68) 

where 
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Figure 2: Geometry of a TPS. 

4trH}3v (9) =- { [(t/l}v- 2ksin9<PJK)h~- Ki Vh0 • wv n;JdS +i { <t>JL~a(h0 , Xv)dS, (70) iss is, 
4trHj30 (9)=- { (w}0h~-2iK<PJKh~-iVh0 ·-wfln;)dS+iK { <t>JL~a(h0,x0)dS, (71) iss is, 

ho = ..ffik (tanh kh + 1) (elt;(' + e-lt:(('+2h>)elt:(i( ad+irf mal)-i11'/4 (72) 
c,(kh) 

and L~a(h, x) is given after equation (29). Furthermore, t/J}v = <P}v + 2kcosf3¢>JK, t/J}v = 
<P}v + 2ksint3¢>JK· 

Examples for the exciting force due to a body in translatory motion (U, V) is obtained 
earlier, see references 3, 4, 9, and confirm the generalized Haskind relations for translation. 
Here we show one example for X}u from reference 3, where the geometry is a half­
immersed sphere, see figure 3. 

In the next example we show the exciting force on a ship in slow rotation. As ship 
geometry we choose a vessel oriented along the x-aJCis.with section given by a half-circle 
and beam 

B(x) = Bo[1- (2x/l) 4], lxl < l/2, (73) 

where l denotes the ship length and the ratio l/ B0 is 5.6. We hereafter refer to this 
geometry as ship 1. The dimensions of ship 1 correspond to the dimensions of a Turret 
Production Ship (TPS) which is considered in some examples later (see figure 2). Working 
with the geometry (73) is advantagous, since refinement of the discretization and thereby 
convergence tests are relatively easy to perform. In figure 4 we show XJ0 in heave and 
pitch for ship 1 for two different wave angles, viz. {3 = 135° (quartering seas) and {3 = 157°. 
XJ0 is obtained by both pressure integration and the generalized Haskind relation, with 
good agreement between the two different methods. 

For comparison we also show in figure 4 the corresponding components of the exciting 
force for u = v = n = 0, illustrating that IX}0 1 >> IXJI in these examples. 
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Figure 3: Exciting force IX}ul in heave (a) and surge (b) for a half-immersed sphere with 
radius a. h = oo. ;3 = 180°. Solid line: Pressure integration. Dotted line: Generalized 
Haskind relation. 400 panels on S8 , 880 panels on Sp. 
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Figure 4: Exciting force jXJ0 j in heave and pitch for ship 1. Solid line: Generalized 
Ha.skind relations. Dashed line: Pressure integration. (a)-(b): {3 = 135°. (c)-(d): {3 = 
157°. (e)-(f): jXJj. h = oo. 1568 panels on S8 , 6272 panels on SF. 
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5.2 Added mass and damping 

By next setting the wave amplitude equal to zero (A = 0) we obtain the pressure force 
and moment in the radiation problem 

where the coefficients fik contain the added mass and damping forces. These forces are 
found by integrating the pressure due to the radiation potentials over the body surface, 
which is a quite simple procedure once the radiation potentials are determined. Due to the 
slow motion of the body we also get a coupling between the velocity w and the gradient 
of the zero speed radiation potentials. 

It is convenient to expand eifik by 

ejfik = eJJJk 

+r(U)(eJJ}!/- 2kcosf3eJ 8~(!Jk) +e]u fj0k) 

+r(V)(eJJ}[- 2ksinf3eJ 8~(!Jk) + e]v JJk) 

(0)(cOfH1 .8eJ 8 (Kfo) cHlfO) +r r..j jk + 2~ 8{3 8K jk + r..j jk . (75) 

For unidirectional forward speed, neglecting the xu -field, Timman and Newman showed 
for a slender ship that 

!}!/=-iff. (76) 

The Timman-Newman relations may be extended to the slow drift case for geometries of 
arbitrary shape, and with the xu, xv, xn-fields included. The extended results are proved 
by using Green's theorem and the boundary conditions for the potentials involved, see 
references 3, 9, 13. We find 

(77) 

In figure 5 is shown an example from reference 3 for the added mass and damping in 
translation, illustrating quite well the antisymmetry of fi}u. 

In the next examples we consider fi}n due to slow rotation of ship 1 and the TPS (model 
shown in figure 2), more precisely the cross-coupling coefficients between sway and pitch, 
fif:, - !Jf}, and between heave and yaw, JJf!, - !Jf', see figure 6. The numerical results 
illustrate that fi}n ~ - f]P, in agreement with the theory. The results for fif:, JJf} are 
quite similar for the two ships, in spite of their quite different geometries. 

While the zero speed cross-coupling coefficients Jf5 , !~3 are different from zero for the 
TPS, the cross-coupling coefficients !Jf:, !Jf' in rotation are zero for this ship. For ship 
1, being symmetric also with respect to x = 0, we have jf5 = f~3 = JJJ: = !Jf' = 0 in all 
the computations. 
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··········································· .. 
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pa'(zfa)1 

Figure 5: (a) (Total) added mass a13 (solid line) and -a31 (dotted line) and {b) (total) 
damping b13 (solid line) and -b31 (dotted line) for small translatory speed U / yga = 0.04. 
D.ii + bii/iu = Iii· Half-immersed sphere with radius a. Same discretization as 1n figure 
2. h = 00. 
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6 The body responses 

The body responses are found from the equation of motion, where the usual hydrostatic 
forces are accounted for in addition to the added mass, damping and exciting forces. 
Accounting for the slow translatory modes we obtain rather simple extensions of the 
equation of motion at zero speed. When we allow the body to perform a slow rotation, 
we must also account for the non-Newtonian Coriolis force. We then find that the equation 
of motion for ~Jn reads (note that we may use w instead of u since there is no coupling 
between u' v and n to leading order) 

( -w2(Mii + Jg) +Cii)~}n = A(Xln +iXf13 ) +w2 [(!bn- 2iMij)~J +2i(Mii + (KJg),K)~J13], (78) 

see derivation in reference 13. Here, Mii is the usual body matrix, and the term involving 
Mij is due to the Coriolis force. Mij is determined by 

0 -M 0 MZc 0 -MXc 
M 0 0 0 MZc -MYc 

Mij = 
0 0 0 0 0 0 (79) 

-MZc 0 0 0 -Ixy Dyz 

0 -MZc 0 Ixy 0 .,....flxz 

MXc MYc 0 -Dyz Dxz 0 

where M denotes the mass of the body, (Xc, Yc, Zc) the center of gravity, and 

(80) 

We note that Mij is antisymmetric and corresponds to a rotation of the velocity vector 
about the vertical axis, an expected result due to the form of the Coriolis force. 

6.1 The frequency of oscillation of mode number j 

While the frequency of encounter determines the frequency of oscillation of a body (ship) 
with translatory motion in waves, the frequency of oscillation of a rotating ship is not so 
straightforward to determine, at first glance. For example, with the exceptions of head 
waves and following waves, the encounter frequency of the incoming waves observed at 
the bow and the aft of a rotating ship is different, and one expects the frequency of 
oscillation of the different modes of motion to occur at some frequency in-between these 
two extremes. Turning to mathematical formulae we have for the incoming waves in the 
frame of reference of the ship 

<I>I = Re[(Aig/w)¢/eiot-ikRcos(/3-8)], z = O. (81) 

The phase of the motion is then determined by 

ut- kRcos(/3- B). (82) 

From this we find the frequency of oscillation by 
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d 
dt ( rJt- kR cos(f3- B)) 

= rJ + kRsin(f3- B) d{3 
dt 

= (J - OkR sin {3 cos B + OkR cos {3 sin B 
= rJ - Okx sin {3 + Oky cos {3 (83) 

where we have used that d{3 / dt = -n. Thus, the frequency of the waves observed at the 
bow of the ship is (x = l/2, y = 0) 

rJ- Okl sin {3 /2 (84) 

while at the aft (x = -l/2, y = 0) 

rJ + Okl sin {3 /2. (85) 

Now, the frequency of the oscillatory motions of the body may be determined in a 
similar way. For the motion in mode number j we have 

The phase of the motion is then determined by 

giving for the local frequency 

d 88· 
dt ( rJt + 8j) = (J - n a~ . 

The phase angle 8i is found by first taking the logaritm of (86), i.e. 

ln~j + irJt = ln l~jl + irJt + i8j, 

and then taking the imaginary part, i.e. 

giving 
a8j = 1 (.!:.. a~j) 
8{3 m ~i 8{3 · 

Provided that I~JI >> lr(O)~J0 1 we may replace ~i by ~J in (91), i.e. 
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Thus, the frequency of mode number j of the ship reads 

1 ae9 
a-= w- kU cos /3- kV sin/3- Olm(eJ aJ). 

Likewise, we may deduce that the frequency of the exciting force becomes 

1 8X9 a-= w- kU cos/3- kV sin/3- O.Im(---1 ) XJ 8/3 . 

(93) 

(94) 

We show in figures 7 - 8 some examples of the responses in the vertical modes of motion of 
ship 1 and the TPS in slow rotation. The figures show that e~~ are much larger than the 
counterparts at n = 0. Furthermore, both figures show that the frequency of the rotating 
ship becomes different in the heave and pitch modes of motion. For ship 1 we note that 
the frequency of the response and the exciting force is the same in the respective modes, 
while for the TPS the exciting force X3 and the response 6 have different frequencies, 
as shown in figure 7 c. For this ship the frequency in pitch becomes large for kl close to 
13.5. This is, however is of no concern, since the amplitude 161 is very small close to this 
wavenumber. 

In figure 9 we show the properties of the surge motion due to a rotating ship 1 for 
fixed wavenumber and wave heading varying between oo and 180°. Of interest, among 
others, is to see how the frequency of oscillation behaves for wave heading close to goo 
(beam seas), where the surge motion disappears. We observe that 8~ jumps at this wave 
heading, but this does not affect the derivative of 8~ with respect to the wave angle, when 
we approach 90° from above or below. Even 88P/8!3 = Im((aeP/8!3)/e~) is smooth and 
becomes zero for /3 ---+ goo' in spite of that e~ becomes zero there. 

7 Concluding remarks 

In this first report of the project entitled "The complete wave drift damping and appli­
cations" we have described the linear part of a method for obtaining the complete wave 
drift damping matrix. This includes the basic equations and perturbation expansions, 
formulation of boundary value problems for a set of potentials and the corresponding in­
tegral equations, the linear pressure and surface elevation, the linear forces and motions. 
The theory is illustrated by several exmples. In the next parts of the project we focus 
first on the second order quantities like force, moment and energy balance, and thereafter 
on case studies where the complete theory is applied. These parts of the project will be 
documented by similar reports as this one. 
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Figure 7: (a) and (b): Vertical responses of ship 1. Solid line: I~J0 1 x 10-1, I~J0 1 x w-1. 

Da.shed line: 1~g1, 1~g1. (c) Coefficient of relative decrea.selincrea.se in frequency due to 
rotation for the heave mode and (d) the pitch mode. Solid line: Im[(8f!jl8f3)1f!j] (motion), 
Da.shed line: I m[ ( axJ I 8{3) I XJ] (exciting force). {3 = 135°. h = 00. Same discretization 
a.s in figure 3. 
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8 List of symbols 

The list is ordered chronologically in accordance with the contents of the report. 

0- xyz- coordinate system in relative frame of reference 
i,j, k- corresponding unit vectors 
Ui + Vj + Dk - slow velocities of the body, !1: rotation about the vertical axis 
<I> 1 , cj/ - incoming wave potential, see eq. 1 
A - amplitude of incoming waves 
w - frequency of incoming waves in the fixed frame of reference 
k- wavenumber of incoming waves 
{30 - wave angle in fixed frame of reference 
f3- wave angle (between x-axis and wave direction) in relative frame of reference 
g- acceleration of gravity (=9.81m/s) 
!{ = w2 jg 
h - water depth 
i = yCT 
a = w - Uk cos f3- Vk sin f3 - encounter frequency 
R and e - defined by X = R cos e' y = R sin e 
a - rotation angle of the body in the fixed frame of reference 
l - characteristic length of the body, ship length 
T(U) = Uwjg 
T(V) = Vwjg 
T(D) = Djw 
v - fluid velocity in the relative frame of reference 
v' - fluid velocity in the fixed frame of reference 
<I>' - velocity potential, \7 <I>' = v' 
<I> - linear wave potential, proportional to A 
xu - potential due to slow motion in x-direction (without waves) 
xv- potential due to slow motion in y-direction (without waves) 
i 1 - potential due to slow rotation about the vertical axis (without waves) 
1jJ( 2l - time-averaged potential proportional to A 2 

wu = -i + Vxu 
wv = -j + 'Vxv 
wn = - k x a:! + \7 xn 
w = uwu + vwv + nwn 
<l>t, <I>u - partial first and second derivatives of <I> with respect to time 
<I>z - partial derivative of <I> with respect to z 
¢~K - partial derivative of¢~ with respect to K 
\7 h - horizontal gradient 
cPD - diffraction potential 
cPD = ¢~ + T(U)¢¥/ + T(V)¢}Y + T(D)¢.W- perturbation expansion of cPD 
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<Pj - radiation potential 
-+.0 -+.W -+.1 v ·'· H1 -+.1H1 - perturbation potentials due to "'· '+']' '+') ' '+'J ' '+'] '+'] '+'J 
~j -response amplitude in mode number j (j = 1, ... , 6) 
~J, ~Ju, ~J v, ~Jn - perturbations of ~j 
n = (n1 , n2 , n 3)- unit normal vector of the body 
x x n = (n4,ns,n6) 
6ij - Kroenecker delta 
HJ(B)- far-field amplitude of <PJ 
Lh( <f;, x) = 2V h<fJ· V hX+<PV~x- operator at z = 0, enters in free surface condition 
m~- m-terms, j = 1, ... , 6, s = u, v, n 
Hf - far-field amplitude of <PJ - <j;1 + T( U)<P}u Hr- far-field amplitude of <PJ- <j;1 + T(U)<P}v 
kw -wavenumber, see eq. 41 
pv- wavenumber, see eq. 42 
C9 (kh) = tanhkh + kh/ cosh2(kh)- see eq. 43 
"'13n - part of -+.ln •1•1n see eq 44 '+'J '+'D ' '+'J ' • 
H} 3n -far-field amplitude of </J}3n 
G0 -zero speed Green function 
Gw, G1 v, G1n - auxiliary functions, see eqs. 58 - 60 

e' = ( e' rt'' (') - source point 
SB -wetted body surface 
SF - free surface 
p- pressure 
p - density of the fluid 
( - elevation of free surface 
Fj - force, see §4 
Xj, XJ, X}u, X} v, X}n - exciting forces, see §5 
h0 - far-field amplitude of G0 , see eq. 72 
~Ju = <P]u + 2k cos fJ<PJK - potential 
~J v = <P] v + 2k sin fJ<PJK - potential 
B ( x) - local beam of ship 1 
B0 - beam of ship 1 and TPS 
l - ship length 
hk = ajk + bjk/iO"- added mass (real part) and damping (imaginary part) 
JJk, J}J!, J}[, J}f - perturbations of hk 
M- body mass 
Mij - body mass matrix 
Mij - matrix accounting for the Coriolis force, see §6 
5 - local frequency 
6j, 6J - phase angles of responses 
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1 Introduction 

This report contains "The wave drift damping matrix and applications, part 2", and describes 
the theory for and the numerical evaluation of the wave drift damping matrix Bij· We also 
compute the horizontal drift force (Fx, Fy) and the drift moment Mz about the vertical axis, 
I.e. 

(1) 

T(U) = Uwjg, T(V) = Vwjg, T(O) = Ojw. (2) 

(U,V,O denote slow velocities along the x, y, z-directions, w wave frequency and g acceler­
ation due to gravity.) The report is organized as follows: Section 2 describes wave drift 
damping results and computations of force and moment at zero speed. Results illustrating 
convergence and various checks of the method are also described. In section 3 the poten­
tials of the wave field are described, section 4 contains formulae for the complete wave drift 
damping matrix Bij, and section 5 contains formulae for the energy check. While section 2 
is descriptive, sections 3-5 are mathematical. 

u n 

2 



2 Wave drift damping results 

2.1 Description of the main steps of theory and results 

The mathematical problem is formulated in the relative frame of reference which follows 
the slow velocity of the floating body, and non-Newtonian forces (the Coriolis force) are 
accounted for. The first step is to compute the potentials which determine the components 
of the fluid flow at the geometry under consideration. This is obtained by solving the integral 
equations which are derived from a set of boundary value problems. The numerical solution is 
found by exploiting a low-order method which gives sufficient accuracy for practical purposes. 
We then evaluate the added mass and damping coefficients, the exciting forces and the linear 
motions of the body. In all parts of the formulation the slow drift motions of the body are 
accounted for, where the slow drift velocites U, V and n appear as prefactors like in (1)-(2). 
The linear part of the method is described in part 1 of this report, see reference [15]. 

In the next step we derive formulae for the wave drift damping matrix, with results given 
in section 4. We start with the equations of conservation of linear and angular momentum, 
where all terms are consistently accounted for. This means that terms proportional to the 
wave amplitude squared times the slow velocities in the three horizontal modes of motion are 
included. The formulae are relatively simple at the onset, but the final versions become rather 
complex. The physical and mathematical arguments used in the derivations are basically 
conservation of mass, various versions of Gauss', Stoke's and Green's theorems, in addition 
to some manipulations. The precise derivations are given in the references [3], [8], [9] for 
the formulae which determine B11 , B21 , B61 , B12 , B22 , B62 (translation). These coefficients 
are in this report developed on (novel) explicit form. The derivations for the angular mode, 
i.e. B16, B26, B66, are given in the references [11], [12], [13]. The final formulae express the 
damping coefficients by: 

i) contributions determined by the far-field amplitudes of the linear velocity potentials, 
where the effect of the slow drift velocities are taken into account; 

ii) contributions determined by the far-field dipole moments of the potential governing 
steady velocities in the fluid, introduced by the linear wave field. These velocities couple to 
the slow drift velocities in the mathematical formulation (see reference [8]); 

iii) and, for B66 , contributions due to linear body responses coupled by the matrix rep­
resenting the effect of the Coriolis force and the restoring force matrix. 

All the contributions i), ii), iii) are of importance and must generally be evaluated. For 
geometries with special motion characteristics, some of the terms may predominate, however. 
Computations for a ship (Turret Production Ship) indicate that the terms i) and ii) are of 
equal importance, a result which seems 'to be due to the relatively large body responses 
of this geometry. The contribution iii) may be somewhat smaller than the other terms. 
Preliminary computations of a tension-leg platform indicate that the terms of category i) 
give largest contribution. This is due to the particular geometry of a tension-leg platform 
and that such a platform has relatively small linear responses. 
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2.2 Wave drift damping computations 

The wave drift damping coefficients are functions of the wave angle and the wavenumber, 
and extensive examples for the entire wave drift damping matrix is rather demanding. Here 
we will show some results which may illustrate the main trend for some of the damping 
coefficients. The results may serve as reference and basis for further computations. Several 
computations of six of the wave drift damping coefficients have been presented in the refer­
ences [3]-[12], namely the damping coefficients Bi1 and Bi2 , (i = 1, 2, 6), due to translation. 
We also show here novel computations for the damping coefficients in the yaw mode, i.e. 
B16 , B26 and B66 . We perform computations for two ship models and an offshore platform. 

2.2.1 Ships 

The first ship model has circular section and beam B( x) given by 

B(x) = Bo[1- (2xll) 4 ], lxl < ll2, (3) 

where l denotes the ship length and l I B0 = 5.6. We refer to this model as Ship 1. The other 
ship is a Turret Production Ship (TPS) with length to beam ratio equal to 5.6. Results for 
B11 and B61 are shown in figures 1-2 for two different water depths for the TPS and Ship 
1 (to be precise, the geometry used to produce figure 2 is slightly different from (3)). The 
damping coefficients B16 , B26 and B66 are shown in figures 3-5 for various wavenumbers 
and wave headings, where the latter is defined as the angle between the length direction of 
the ship, towards the bow, and the wave direction. Wave angle goo means beam seas, 135° 
quartering seas and 180° head seas. The wavenumber range is 4 < kl < 16, which means 
that for a ship with length 230m the wave length ,\ = 271" I k is in the range 

gom <.\<360m (4) 

The figures 3-5 show trends which mainly are: 

• The values of B16 and B26 give forces comparable to B11 and B12 for angular velocity 
times ship length nz equal to translatory speed U. 

• B16 and B26 may be both positive and negative. There are no physical reasons which 
contradict this. 

• B16 and B26 are almost the same for the two ship models for waves with headings 157°, 
180°. This is not true for quartering waves and beam seas, where both B16 and B 26 

are large but different for the ships. For {3 =goo, B26 = 0 for Ship 1, due to symmetry. 

• B66 is always positive for the ship models. This is not true for all geometries, however. 
Computations for an offshore platform show that B66 may be negative for some regions 
of the incoming wave length, see below. 

• B66 becomes larger for the TPS than for Ship 1. This is most significant for beam seas. 
The effect on the damping coefficients due to the responses of the ship are found to be 
large. This result is obtained by comparing with computations in reference [12], where 
the effect of motions were discarded. 
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For comparison, we show in figures 6-8 computations of Fxo, Fyo, Mzo· A realistic ratio 
between n and w may be 1:50, which means that the contribution from the damping matrix 
may significantly increase the total force or moment acting on the body by 20-50%. 

2.2.2 Offshore platform 

In the next examples the geometry is a model of an offshore platform, namely an array of four 
vertical circular cylinders with radius a, draught 3a and with the cylinder axes located at 
(x, y) = (±3.5a, ±3.5a). In this case the water depth is infinite. In figures 9-10 are presented 
results for the wave drift damping coefficient B11 and B66 . The results exhibit quite strong 
variations with respect to the wavenumber and the wave angle. In most cases the wave 
drift damping is positive. For some wavenumber and wave angle domains the wave drift 
damping becomes negative, however. This occurs for B11 when 0.5 < ka < 0.7 ((3 = 180°). 
For B66 negative wave drift damping is most pronounced for (3 = 45° and 0.6 < ka < 0.8, 
1.15 < ka < 1.35. In figure 10 are also shown results by the method of Emmerhoff and 
Sclavounos who obtain the wave drift damping moment for vertical cylinders by pressure 
integration over the body (Sclavounos, personal communication). The agreement between 
the two different methods is good. 

2.3 Convergence and the energy check 

As mentioned in part 1 of this report [15] it is desirable to develop checks when deriving a 
rather complex method. This makes possible a verification of the theory and the numerical 
code. Another aspect is convergence of the method. These issues are illustrated in the 
examples in figures 11-14. 

First is considered convergence of the added mass and damping coefficients !25 and - fs2, 
which should be equal, according to the theory. In figure 11 we show computations of these 
coefficients versus the inverse number of panels (1/ N) on the wetted ship surface. The figure 
illustrates the accuracy of the computations, indicating that !25 + f 52 --+ 0 as 1/N--+ 0. 

In figure 12 is studied convergence of B16 and B66 for Ship 1 for two different wave 
headings. The number of panels on the wetted body surface is N =392, 800, 1568, with 
corresponding number of panels on the free surface NF=1568, 3200, 6272. The results 
document convergence. 

Figure 13 shows the energy check for Ship 1, illustrating that the energy in the method 
is conserved. A correct energy check, which is non-trivial, also documents soundness of 
the method. Similar computations are performed for other geometries (results not shown), 
giving the same positive check of the method. 

In the last illustration we let Ship 1 rotate about an axis of 100 ship lengths away from the 
ship. This means that the ship is almost performing a translation. We then compare results 
for B11 , B16 /ks, B66 /s 2k in incoming head waves, where s = 100/ and L the ship length, k 
the wavenumber. These coefficients, obtained by three completely different formulae, should 
be equal with this scaling, a result which is confirmed by the computations shown in figure 
14, giving another check of the method. 
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Figure 5: Same as figure 3, but B66 . 

10 



o.o~~ 

-0.1 -

-0.2 ~ 

-0.4-

(a) 

~ 
'\~ 

\~ 180° /·~·~ 
\:\ .·······. .·z--..... , ;,- ~.~ -r 

, ., I __ ..... 157° 

\ I 
\ I 

\ 135° I 
\../ 

-o.s~·----~·-----~·----·-----·~---._·--~·~ 

0.0 

-0., 

-0.2 

-0.4 

4 6 8 10 12 14 

(b) 

4 6 8 10 12 14 

16 
kl 

16 
kl 
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3 The potentials 

We describe the incoming waves in the relative frame of reference by the potential 

q/ = coshk(z +h) e-ikRcos(f3-B) 

cosh kh ' 
(5) 

where A, k and {3 denote respectively the amplitude, wavenumber and wave angle of the 
incoming waves and h the water depth. Furthermore, 

0' = w - U k cos {3 - V k sin {3 (6) 

where 
I<= ktanhkh (7) 

The velocity potential <I>' describing the entire flow my be written by 

(8) 

where <I> denotes the linear wave potential being proportional to the wave amplitude and is 
due to the incoming, scattered and radiated waves, Uxu + Vxv + f!x0 the potential due to 
the flow generated by the body when there are no waves, and '!j;(2 ) a time-averaged potential 
being proportional to the wave amplitude squared. 

3.1 The wave potential <I> 

We may write 

We shall here be interested in the far-field. For ¢>0 we have 

<Po- <PI= R-1/2 Ho(B) cos:o~~u~:u: h) e-ikwR + 0(1/ R), R-+ oo, 

For the potentials due to U and V we find (see references [3], [9]) 

(10) 

<Po -<PI+ T( U)<Pw = R-1/2 Hu (B) cos:o~~u~:u: h) e-ikw R + 0(1/ R), R-+ oo, (11) 

q;o- <PI+ T(V)<PlV = R-1/2 Hv (B) cos:o~~vilzV: h) e-ikivR + 0(1/ R), R-+ oo, (12) 

where 

1u ( 2T(U) ) 
k = k 1 + c g ( k h) (cos B - cos {3) ' (13) 

IV ( 2T(V) ( . . ) 
k =k 1+ Cg(kh) smB-sm{J), (14) 

kh 
C9 (kh) =tanh kh + 2 

cosh kh 
(15) 
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and Hu,v denote far-field amplitudes of the potentials. 
In the slow yaw-problem we obtain the potentials as follows, see references [11]-[13], 

(16) 

where ¢}3n satisfy 

(17) 

and H 13n denotes the far-field amplitude of ¢13n. 

3.2 The potential 'ljJ(2) 

The second order potential 'ljJ(2) appears in the formulae for the second order fluid pressure, 
and for the mean force and moment always multiplied by the slow velocity w. To leading 
order in n it is then sufficient to consider the boundary value problem for 'ljJ(2) when u = 
V = n = 0. The free surface condition for 'ljJ(2l then reads 

8'ljJ(2) = -~~V'<I>. V'<I> + ~ o<I> ()3<I> + ~ o<I> ()2<I> =- A2g Im(¢o82¢o*) at z = 0 (18) 
oz got g2 ot 8zot2 g ot oz2 2w oz2 

where a bar denotes time-average and a star complex conjungate. 
The boundary condition at the body reads 

8'ljJ(2) - -
----a;;-= -n · [(e +a X~)· \7]\i'<I> +(a X n) · [(djdt)(e +a X~)- V'<l>] (19) 

where e = Re[(6, 6, 6)eio-t], a= Re[(~4, ~5, ~6)eio-t]. Furthermore, IY''l/J(2)1 --+ 0 for R--+ oo, 
()'ljJ(2) joz = 0 at z =-h. 

The solution for 'ljJ(2) may be obtained by an integral equation. The analysis below shows, 
however, that to find the mean force and moment, only the boundary conditions for 'ljJ(2) are 
required, and not the complete solution for 'ljJ(2). A complete discussion of the significance 
of 'ljJ(2), and how to obtain the potential, is given in reference [8]. 
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4 Formulae for the wave drift damping matix. 

4.1 

Bn 
pgA2 

::2~a21r {cos e ;g cos f3 :k ( CgkiH012) +cos BIHOI2 + CgRe(Ho Hl3U*)} cos Ode 

gk u + -C cosf3Re[S13 ] (20) 
2w2 9 

where a star means complex conjungate and 

sl3U = f¥ei1r/4 Hl3U*(f3) 

H0 = H$ + K(eJ /A)HJ 

4 H 13u = { [(2kcos8cjJ~.- 'fw)h0 + _!:_"Vh0 • wun·JdS + i { cjJ0 L (h0 xu)dS 
7r J j SB JK J n J{ J j Sp J h ' 

47r Hi3u = { (2k cos BcjJ~K- 'fbu)h~dS + i { cjJ~Lh(h0 , Xu)dS lsB lsF 
'f]u = c/J]u + 2kcosf3c/J~K, Lh(h,x) = 2'\lhh · "Vhx + h"V~x 

ho = yl2:;'k (tanhkh + 1) (ek(' + e-k(('+2h))ek(i(cosB+i1J'sinB)-i1r/4 
C9 (kh) 

C9 (kh) is given by (15). 

4.2 

(21) 

(22) 

(24) 

(25) 

(26) 

(27) 

B2l 
--
pgA2 

::2~a21r {cosO ;g cosf3 :k ( Cgk1Ho12) +cos BIHol2 + CgRe(Ho Hl3U*)} sin BdB 

+ gk C sinf3Re[S13u] (28) 
2w2 9 

4.3 

(29) 

where 
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M2 = (w/gA 2) { (Xv- y) [)~( 2 ) dS = 
lsB+SF un 

~Im(- { B 0 . n\7(xv- y) · \7¢0*dS + !(1 (Xv- y)B0 · n¢0*dl- { (xv- y)¢0¢~;ds) 
2 lsB CB lsF 

4.4 

Bl2 
pgA2 

(31) 

B0 = [(e~,e~,e~) +a: x (e~,e~,e~)l/A (32) 

:~2 la2 7r {sine ~9 sin/3 :k ( C9 k/H0 /2 ) +sin e/H0 /2 + C9 Re(H0 H 13v*)} cos ede 

gk !3V 
+ 2w2 C9 cos {3Re[S ] (33) 

Sl3V = f¥-ei1r/4Hl3V*(f3) (34) 

fJ(J<tO) 
H 13v = H13v + (Ke0 H13v + 2k(sinf3- sine) "'i H~ + (Kev- ksinf3e0 )H0)/A (35) 

7 J J fJK J J J J 

47rHJ3v = r [(2ksine¢JK-7,b}v)h~+ Lvh0 ·wvnj]dS+i r ¢JLh(h0 ,xv)dS (36) 
lsB 11 lsF 

47r Hi3v = { (2k sin e¢~K- 7,Ubv)h~dS + i { ¢~Lh(h0 , Xv)dS (37) 
lsB lsF 

7,U}v = <P}v + 2k sinf3¢JK (38) 

4.5 

:~2 la2 7r {sine ~9 sin f3 :k ( C9 k/H0 /2 ) +sin e/H0 /2 + C9 Re(H0 H 13v*)} sin ede 

+ gk2 C9 sinf3Re[S13v] (39) 
2w 

4.6 

( 40) 

( 42) 

(see also ( 31)). 
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4.7 

where 

( 44) 

( 45) 

47rHJ 3n = { (2iK<PJxh~n- '1f]nh~- i\7h0 · wnnj)dS + i { <PJLh(h0 ,xn)dS 
~ ~ 

(46) 

47rHi3n = { (2iK<P~xh~n- '1fbnh~)dS + i { </;~Lh(h0 ,xn)dS lsB lsF ( 47) 

4.8 
B w2 Me tO* tO ic· ·(tO*tls-2 _ tO*tls-2) 1 la21r 
~ = Im{ ijC.,if3C.,j + ~1 C.,jf3C.,i C.,if3C.,j -- (H0 (B) + H~(B))H1n*(B)dB} (48) 
pgA2 pgA2 2pgA2 2k o f3 

where Cij denotes the usual hydrostatic matrix, which also may include mooring forces, and 

0 -M 0 MZc 0 -MXc 
M 0 0 0 MZc -MYc 

Me.= 0 0 0 0 0 0 
( 49) 

~) -MZc 0 0 0 -lxy Dyz 

0 -MZc 0 fxy 0 -Dxz 

MXc MYc 0 -Dyz Dxz 0 

M denotes the mass of the body, (Xc, Yc, Zc) the center of gravity, and 

(50) 
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5 Conservation of energy 

The energy equation for translation has been described in the references [3], [4], [9]. Here 
we describe the case of a slow rotation, i.e. 

d(Ebd+EJ) =-1 (p+~pv2+pgz)v·ndS 
t SR 2 

(51) 

expressing that the rate of change of kinetic plus potential energy of the floating body ( Eb) 
and the fluid (EJ) inside the control surface SR is equal to the energy flux at SR. Let us 
consider the time-averaged energy equation, giving 

W = -1 (p + ~pv2 + pgz)v · ndS- d(Eb d+ Ef) = W 0 + T(O)WH1 + ... 
SR 2 t 

(52) 

For W 0 and WH1 we find 

(53) 

(54) 

where Cg = owjok, Bg = B 0 . k and filr! = 2iK(H3K + H~K) + H13· 
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6 List of symbols 

Bij - wave drift damping matrix 

0- xyz- coordinate system in relative frame of reference 

i,j, k- corresponding unit vectors 

Ui + Vj + !lk- slow velocities of the body 

<I> 1 , ¢1 - incoming wave potential 

A, w, k- amplitude, frequency, wavenumber of incoming waves 

f3 - wave angle (between x-axis and wave direction) 

g - acceleration of gravity ( =9.81m/s) 

J{ = w2 jg 

h - water depth 

i = F-1 
(j = w- Uk cos f3- Vk sin f3- encounter frequency 

Rand ()-defined by x = R cos B, y = R sin() 

T(U) = Uwjg, T(V) = Vwjg, T(!l) = !ljw 

<I>' - velocity potential 

<I> - linear wave potential, proportional to A 

xu, x v, x0 - potentials due to slow velcities along x, y, z-directions 

1jJ(2) - time-averaged potential proportional to A 2 

wU = -i + Vxu, wv = -j + Vxv, w 0 = -k X X+ Vx0 

w = Uwu + Vwv + !1w0 

cPK - partial derivative of¢ with respect to J{ 

\l h - horizontal gradient 

¢ - potential 

¢ = ¢ 0 + T(U)q;w + T(V)¢1v + 7(!1)¢10 - perturbation expansion of¢ 

cPj = cj;J + T(U)cPJU + T(V)cPJV + T(!l)cPJO 
-perturbation expansion of cPj, j = 1, 2, ... , 6, D 

";,lU oi• 1V o!,W- potentials 
'fiJ ' 'fl] ' 'fl] 

-+- 11U -+-11 v -+-110 - potentials 
'fl] ' 'f'J ' 'f'J 

-+,13U -+,13V -+,130 - potentials 
'f'J ' 'f'J ' 'f'J 

~j -response amplitude in mode number j, j = 1, ... , 6 

~J' ~Ju' ~J v' ~}0 - perturbations of ej 
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B 0 = [ ( ~~' ~g' ~g) + :v X ( ~~' ~~' ~g) J I A 

n1 - generalized unit normal vector of the body 

Lh(c/>,x) = 2\h¢· ~hx+c/>V~x- operator at z = 0 

H0 Hu Hv Hw H1v Hw.- far-field amplitudes 
' ' ' ' ' 

H 13U H 13V H 13n - far-field amplitudes 
' ' 

H0 = H~ + I<(~J /A)HJ 

H13u = Hj3U + ( I<~J HJ 3u + 2k( cos {3- cos 0) 8(:~~) HJ + (I<~Ju- k cos f3~J)HJ) /A 

H13v = Hj 3v + (I<~JHJ3v + 2k(sin{3- sin0) 8(:~j) HJ + (I<~Jv- ksinf3~J)HJ)/A 

H I3n _ HI3n + rf [ (cw. + · ~ _ 2 · 82 (Kej)) Ho _ 2 · 8(Kej) 8Ho + co HI3n] /A 
- 7 1\ <.,J Z 8{3 Z 8K8{3 J Z 8K 80 <.,J J 

Ml = (wjgA2) fsB+sF(Xu- x)8t~2J dS 

M2 = (wjgA2) fsB+sF(xv- y)8t~2J dS 

pu k1 v - wavenumbers 
' 

C9 (kh) = tanhkh + kh/ cosh2 (kh) 

S B - wetted body surface, 

SF - free surface 

p - pressure, 

p - density of the fluid 

Fx, Fy, Mz - horizontal drift force, yaw moment 

B( x) - local beam of ship 1 

B0 - beam of Ship 1 and TPS 

l - ship length 

iJk = ajk + bik/iCJ- added mass (real part) and damping (imaginary part) 

JJkl f}J!, f}[, J}f - perturbations of iJk 
M- body mass 

Mij - body mass matrix 

M{1 - matrix accounting for the Coriolis force 

Cij - hydrostatic coefficients 

W, W 0 , ww.- energy fluxes 

X a - centre of gravity 

X B - centre of bouyancy 
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Additional effect of external damping/mass/restoring 

The symbols used here are defined in Chapter II and III and in reference 13. First we consider the 
equation of motion. Let the mass and restoring force matrices Mij and Cij contain external effects. 
Additional external damping may be written: 

Bf = Re[-iO"bg(~J + T(U)~}u + T(V)~}v + 7(0)~}0 + iT(O)~J.t3)eiut] (1) 

where O" = w - kU cos j3- kV sin /3. By using the relevant equations for the exciting and hydrody­
namical damping forces, and ( 1) for Bf, we find that the equation of motion becomes, for zero speed 
and to leading order in T(U), T(V), T(O) respectively 

( -w2(Mii + Jg- ibg/w) + ciiJ~J = AXP (2) 

( -w2(Mii + Jg- ibg/w) + cij)~}u = AXlu + [w2 fi~u- 2gkcosj3(Mii + (KJg),K- ibg/(2w))]~J (3) 

( -w2(Mii + Jg- ibg/w) + cij)~}v = AXlv + [w2 fi~v- 2gksinj3(Mii + (KJg),K- ibg/(2w))]~J (4) 

( -w2(Mij + Jg- ibg/w) + Cij)~}0 
= A(Xl0 + iX?t3) + w2 [(fi~n- 2iMij)~J + 2i(Mii + (K Jg),K- ibg/(2w))~J.t3] (5) 

Next the expression for B66 is considered. The near-field contribution to B66 may be written 

- 1 { Re{¢0*¢1 - ¢1¢0* - ~(iKB0 • nw · \7¢0*)}dS = - 1 Re[ ] 2K } SB ,t3 ,n ,t3n 8{3 2pgA2 (6) 

where superscript 1 replaces superscript 10 and 

Re[ ] = Re{~?~(A(iXi~t3 + Xl) + w2 Jg~} + w2 ji~~J + 2iw2 (Kjg),K~J.t3)- ~l*(AXp + w2 Jg~J),tJ} 
= Re{~f~(A(iX?t3 + Xl) 

+w2 Jg~} + w2 fi~~J + 2iw2(K fi~),K~J.t3)- ~}*( -w2(Mji- ib~/w) + Cji)~?,t3} 
= Re{~f,~(A(iX?t3 + Xl) + w2 [fi~~} + fi~~J + 2i(K fi~),K]~J.t3 + (w2 Mji + iwb~- Cji)~j)} (7) 

To obtain this result we have used (2). This means 

- 1-1 Re{¢0*¢1 - ¢1¢0* - ~(iKB0 · nw · \7¢0*)}dS 2K ,t3 ,n ,t3n 8{3 
SB 

= 2p~~2 Re{ ~?~{ A(Xl + X?t3) - cii~} + w2[(fg + Mii + ib~jw )~} + fi~~J + 2i(K fi~),K~J,t3]}} 
(8) 

We now use ( 3) and find 

A(Xl + iXi~t3) + w2 [Jg~} + fii~J + 2i(Kfi~),K~J.t3] = 

-(w2 Mij - iwbg- Cij)~} + 2iw2 Mij~J- i(2w2 Mij- iwbg)~J.t3 (9) 
This means that the term on the right of (8) becomes 

Re{ ~?,~{[(cji-Cij)+w2(Mij-Mji)-iw(bg+b~)]~}-2iw2 Mij~J+i[2w2 Mij-iwbg)~J.t3}} /(2pgA2) (10) 

The term (10) determines the near-field contribution to B66 . The expression for the far-field contri­
bution to B66 remains unchanged. 
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III. WAVE DRIFT DAMPING WITH WAMITUIO 
PANEL PROGRAM. MODULE INTEGRATED IN WAMIT 



Wave drift damping with WAMITUIO 
Panel program. Module integrated in WAMIT 

QUANTITIES EVALUATED BY WAMITUIO 

ADDED-MASS AND DAMPING COEFFICIENTS (IOPTN(1) = 1): 

See eqs. (74)-(77), Chapter I. 

Zero speed: 

---" A~- - B~-}f.'. = _t] BO .. = __ t]_ 

t) £m' t) £m p p w 

Derivative with respect to K = w2 / g: 

REAL/IMAGINARY PART OF f:1. K = Jg,K 
' p£m 

Perturbation due to speed along the x-axis: 

pu 
REAL/IMAGINARY PART OF f~iu = p1m 

Perturbation due to speed along the y-axis: 

pv 
REAL/IMAGINARY PART OF f~1v = __iL_ 

pLm 

Perturbation due to rotation about the z-axis: 

pn 
REAL/IMAGINARY PART OF ]~1n = P1m 

where m = 3 for i,j = 1,2,3, m = 4 fori= 1,2,3,j = 4,5,6 or i = 4,5,6,j = 1,2,3, and 
m = 5 for i,j = 4,5,6. 

EXCITING FORCES (IOPTN(2,3) = 1): 

See eqs. (63)-(64), Chapter I. 

Zero speed: 

~= xp 
t pgALm 

Derivative with respect to the wave angle (3: 
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~ xo{3 X - ,, 
i,f3- pgALm 

Perturbation due to speed along the x-axis: 

-lU xw x. = ' 
' pgALm 

Perturbation due to speed along the y-axis: 

Perturbation due to rotation about the z-axis: 

-1!1 x~n x. = ' 
' pgALm 

where m = 2 fori = 1, 2, 3 and m = 3 for i = 4, 5, 6. 

BODY MOTIONS IN WAVES (IOPTN(4) = 1): 

See eqs. (16) and (78)-(93), Chapter I. 

Zero speed: 

Derivative with respect to the wave angle (3: 

to = ~~{3 
..,,,!3 A 

Perturbation with respect to speed along the x-axis: 

tlU 
-lU <,i 
~i =A 

Perturbation with respect to speed along the y-axis: 
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Perturbation with respect to rotation about the z-axis: 

PRESSURE AT CENTROIDS OF INPUT PANELS (IOPTN(5) = 1): 

The pressure components are complex amplitudes. For T(U) T(V) T(D), see eq. (5), Chapter 
I. 

Zero speed: 

Perturbation with respect to speed along the x-axis: 

-lU plU 
p =­

pgA 

Perturbation with respect to speed along the y-axis: 

-lV plV 
p =­

pgA 

Perturbation with respect to rotation about the z-axis: 

-H1 pW. 
p =­

pgA 

PRESSURE/FREE SURFACE ELEVATION AT FIELD POINTS (IOPTN(6) = 1): 

The components of pressure/elevation are complex amplitudes. 

Zero speed: 
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Perturbation with respect to speed along the x-axis: 

-lU piU 
p =­

pgA 

Perturbation with respect to speed along the y-axis: 

-IV p!V 
p =­

pgA 

Perturbation with respect to rotation about the z-axis: 

-Hl pW. 
p =­

pgA 

FLUID VELOCITY VECTOR AT FIELD POINTS (IOPTN(7)): 

Same output as for zero speed. 

MEAN HORIZONTAL DRIFT FORCE AND YAW-MOMENT (IOPTN(8) = 1): 

See eqs. (1)-(2), Chapter II. 

Zero speed: 

Wave-drift damping matrix: 

B B;j . 2 
ij = pgAZL'z = 1, ' 

MEAN ENERGY FLUX (IOPTN(8) = 1): 

w = W0 + T(U)WlU + T(V)W 1v + T(!1)W111 

For T(U) T(V) T(!1), see eq. (5), Chapter I. 

where c9 denotes group velocity. 
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INPUT TO THE PROGRAM 

The control parameter IWADD is used in the WAVE DRIFT DAMPING VERSION of WAMIT5.3 
in addition to the standard control parameters. 

IWADD = 1 means that effect of slow motions in the three horizontal modes of motion are 
included, and that the complete wave drift damping matrix and related quantities are evaluated. 
IWADD = 1 is default value in this version of WAMIT. 

IWADD = 0 means zero slow speed, with WAMIT kept in the original form. 
IWADD = 0 may be specified as the last parameter in 'config.wam'. It is not necessary to 
specify IWADD unless the user wants to employ the original zero speed version of WAMIT. 

The input files are: 
xxxx.GDF 
xxxx.POT 
xxxx.FRC 
xxxx.FDF 
These input files may be specified in fnames.wam. 

The GEOMETRIC DATA FILE (.GDF) is the same as for WAMIT5.3 

The POTENTIAL CONTROL FILE (.POT) is the same as for WAMIT5.3 

The FORCE CONTROL FILE (.FRC) is the same as for WAMIT5.3 

The following restrictions apply for IWADD = 1: 
It is not possible with additional walls. 
NBODY must be 1. 
ISOR must be 1. 
IRR must be zero. 
IDIFF can be either 1 or -1. 
!SOLVE must be 0 or 1. 
ISCATT must be 0. 
IOPTN(5) can take the values 0,1,2,3. For 2 and 3 the velocity field with zero speed is obtained. 
IOPTN(6) cannot not be equal to 2. 
IOPTN(7) can be equal to 0 or 2. In the latter case the velocity field with zero speed is 
computed. 
IOPTN(S) cannot be equal to 2. 
IOPTN(9) must be equal to zero. 

The FREE SURFACE DATA FILE (.FDF). 

The xxxx.FDF file specifies the discretization of the free surface with format as for WAMIT5.3S. 
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A group of four vertices, numbered in a COUNTER-CLOCKWISE sense when viewed from 
the fluid domain, is used to identify a panel. This is the same as for the xxxx.GDF-file. 

The parameters PARTS and NPF are read as dummy variables and are NOT used. 
The .FDF file is not assumed if IWADD = 0. 

SUGGESTED DISCRETIZATION OF THE FREE SURFACE 

The free surface integrands in the integral equations converge quickly with respect to the radial 
coordinate. The free surface contribution to some of the quantities have, however, somewhat 
slow convergence with respect to the distance from the geometry. A discretization with panel 
areas being proportional to the radial distance squared is recommended. It is suggested that 
the outer discretization radius, Rout, is chosen according to: 

Rout = L for a ship with length L. 

Rout = 2L for a platform with distance L between the columns. 

Rout = 6L for a vertical cylinder/sphere with radius L. 

AUTOMATIC GRIDDING OF THE FREE SURFACE 

The program may also be run with the same input as for the zero speed program WAMIT5.3, 
without specifying a discretization of the free surface. The program then checks if there is no 
xxxx.FDF-file, and, if so, generates a discretization of the free surface and writes this to an 
xxxx.FDF-file, the latter to be specified in fnames.wam file. 

The automatic discretization routine is not intended to be general and has curently the following 
restrictions: 

One intersection between the geometry and free surface i~,assumed. 

The following symmetries may be used: Symmetry about the x-axis. Symmetry about the x­
and y-axes. 
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