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Procedures are described which yield single and double
sample Dodge-Romig [Zj lot tolerance percent defective (LIPD) recti-
fying inspection plans. For the determination of such plans only a
deck calculator and standard tablea of the discrete probability
distributions are required.Some advantages gained by using these
procedures rather than the Dodge-Romig table include :(a) The Con-
sumer's Risk is not limited to.1l) (b) More choices of LTPD are
available. (c) Smaller average total inspection L8 achieved by
using a plan designed for specific "process average' and lot size
rathey than a compromise plan designed to cover iwtervals on these

two parameters.

1. INTRODUCTION

A product that is mass produced is assembled at random into lots
of stze . From each lot items are sampled at random and the number of
defectives is observed. Om the basis of the observation the lot is either
accepted or rejected. If the lot is accepted all defective items found
when sampling are replaced by non-defectives. If the lot is rejected all
N <items ave examined and all defective items in the lot are replaced. The
procedure just described is the special case of rectifying inspection which
we are about to consider. Our goal is to determinz reasonable sampling
plans for the type of situation just described.

Let us assune that the process produces a defeotive with probability
p. Each inspected lot will contain an unknown number of defectives, say K.
Let Y be the number of defectives in a random sample of size n drawn
from a lot. It is well known that the probability function of Y given
k 1is the hypergeometric

( k gzv_k
Yin=

.

p(W,n,k,y) =



where a = max [0, n-(l‘l—k)-l s b =min [k,nj and the unconditional probability

function of Y <& the binomial

b(y;n,p) :@ pY (1-0)"Y, y=0,1,2,...,m (1.2)

For both single and double sampling we will minimize the average
total inspection if p = p, the "process average,” subject to the con-
dition that the operating characteristic(0C) of the sampling plan be no
more than By if the lot contains Kk,=Np defectives.(In the language of
Dodge~Romig [1]pi=p +~LIFD, By=The Consumer's Risk.)

Binomial cumulative sums will be denoted by

n
E(r;n,p) = T blysn,p) ( .3)
y=r

For our purposes we find that three tables are useful. The Ordnance
Corps |7] table gives ( 1.3) to seven decimal places for n = 1(1)150,
p=.01(.01).50. The Harvard [4]table gives (1 .3) to five decimal places
for n=1(1)50(2)100(10)200(20)500(50)1000,p=.01(.01).50 (plus a few rational
fractions). The Weintraub [8] table gives the same sum to ten decimal
places for n=1(1)100, p=.0001,.0001(,0001).001(.001).10.

In the nypergeometric case we will use the tables of Lieberman and
Owen [5] which gives both (1.1) and

p(N,n,k,y) ' (1.4)
y=a

P(N,n,k,r) =

IR

to six decimal places for 1i=1(1)50(10)100. In addition two approximations

to(1.4) will be used. These are

P(li,n,k,r) = 1-E(r+1_;n,-%) (1.5)

if n/N < 10,k >n

P(N,n,kyr) = 1-E(r+] ;7<,%) (1.6)

if k/N < *10k<n  Even when

neither condition n/N < *10,k/N < °10 s satisfied the approximation is
usually surprisingly good if we use (1.5) when k > n,(1.6) when k < n(as

suggested by Lieberman and Owen). The examples considered later in the

paper suggest that the accuracy obtained using the binomial approximation




s sufficient for practical purposes.

IT7 sample sizes are larger than 150, it is usually convenient
to use the Poigson gpproximation to the binomial. Two good tables,
which together provide about all the entries that would ever be
needed, ave the ones prepaved by General Electric |2] and Molina [6].

If more accuracy is desired than can be obtained from the
approximations (which is unlikely in most applications), then a high
speed computer can be used to obtain a solution by following the same

procedure demonstrated in the cxamples.

2. THE SINGLE SAMPLE CASE

A sample of size n 1is selected at random from a lot of size UN.
Let X be the nunber of defectives in the sample. If x < ¢ defective
items are found in the sampie, these items are replaced by non-defectives
and the lot is accepted without further inspection. If x > c¢ the lot
18 totally imspected and all defective items in the lot are replaced by
non-defectives. If the lot contains k defectives, then the operating

characteristic 1s
oc = P(N,n,k,c) (2.1)

When k = ky = lipy we wish to accept the lot with probability at most
B1 so that n and ¢ must 8atisfy the inequality

P(N,n,k1,c) < B (2.2)

For a lot containing Kk <tems the expected number of items in-

spected 18

Jsr nt(N-n) [1-P(N,n,k,c)] (2.3)

However, if the process average s p, then k is a random variable and
the number of defective items in a sample of size n has an unconditional



binomial distribution with parameters n and p. In other words
Ig 18 a eonditional expectation, the wnconditional expected value being

I~ n+(N-n)E(c+1;n,p) (2.4)

Dodge and Romig |1] have minimized (2.4) at

p=p subject to (2.2) but if we prefer we could minimize (2.3) at
% = Np instead.

In general the result would not be too different since the binomial is
used to approximate the hypergeometric and thus (2. 4) approximates (2.3).
The minimum values will be denoted by J S and I g -
The minimi zation is accomplished by trial starting with ¢ = 0
and increasing ¢ a unit at a time. For each c¢ the minimun n satisfying
(2.2) is found and Iq (or Jg)is computed. Calculations cease when the

minimum 18 observed. We mZZ demonstrate by examples.

Example 2.1
If N=50,k1=12,B: =20 find the plans which minimize Iy and Jg |

S
when p = p =.00. Find the 0C if k = Np = 3,

Solution
Condition (2.2) becomes P(50,n,12,¢)<.20. With the Lieberman and Owen [5]
table we verify that if c=0,n> 6, 0 if e=1,n> 11, 2f e=2,n>16,

i1f e=3, n> 20, etec, 6bviously we chose the minimum »n in each interval.
Using the Ordnance Corps[7] (or Harvard [4]) and the Lieberman and Owen
6+44 E(1;6,.06) = 6+44(.310130)=19.65

~
i

- tables we find 1f e=0,m=6
Jg = 6+24[1-P(50,6,3,0)] = 6+44(.324286) = 20,27

if e=1,m=11 I, = 11+39 E(2;11,.06) = 11439(.138216)=16.39

e
"

11+39[1-P(50,11,3,1)]=11+39(.117857)=15.60




53}

if 0=2,n=16 I 16434 E(3;16,.06)=16+34(.067260)=18.29

JS:16+34[1~P(50,16,3,2)1=16+34(.0285711=16.97
Further calculations are obviously unnecessary and the plan which mini-
mizes both Iy and Jg is n=11,c=1 with _TS=16. 39, 35:15.60.

The OC at k = 3 s

0C = P(50,11,3,1)=.882143

g‘ccamgle 2.2
If N=1000,k,1=100(p1=.10),B1=.10 find

the plan which minimizes the average amount of inspection if p=.02. Find
the OC when k=k=Wp.

Solution
With N=1000 we are out of the range of the Lieberman-Owen hypergeometric
table and we use the approximation

oC = P(1000,n,100,¢) = 1-E(c+13n,.10)

(with n > 100 approximation (1.6) is slightly better }so that (2.2)

becomes
E(ct+l;n,.10) > .90

With the Ordnance Corps |7] table we verify that if ¢ = O,n > 28, if ¢ = 1,
n>38, ife=2,n2562 if c =3,n2>65, if ¢ = 4,n > 78,if e=5,n > 91,
if ¢ = 6,m > 104,if e=7,n > 116,ete. Since the value of JS would have

to be computed by using the binomial approximation we caleulate only I 3

which is the approximation for J 5 We get

If c=0,n=20 I_=20+980 E(1; 20,,02)=20+380(.33539)=345.7
c=1,n=33 I_=38+962 E(2;38,,02)=38+962(,17603)=207.3
0=2,n=52 I.=52+948 E(. -52,.02)=52+948(,08593)=133.5

65+935 E(4;65,,02)=65+935(,04138)=103.7

|.
e

Uy U

1]

e=3,n=65 IS
c=4,n=78 IS:'-75'+322 E(5; 78,.02)=73+922(.,02028)=96,7
e=5,n=91 I,91+909 E(€;31,,02)=51+309(.01008)=100.9

tn




Obviously further calculations are unnecessary and the desired plan is

n=78,c=4,

Dodge and Romig [1] give n=65,c=3 but their plan is designed to
cover intervals on both N and p.
The 0C at k=k=1000(,02)=20 is 0CZ 1-Ef.;78,.02)=.97972 .

Hald [3] has derived assymptotic formulas which, together with
somec auxillary tables, can be used to obtain sampling plans of the
type we have considered. Considerable calculation seems to be required.
His paper has one numerical exampie which we will now work for a

comparison of results.

Ex_@v}e 2.3
If N=280,p1=.10(k1=28),81=.10, find the plan which minimizes the

average amount of inspection if p = .045.

Solution
We need

- 0C = P(280,n,28,c)% 1—E(a+1;28,-9—ng—0’) < .10
or

E(c+1;28,525 .90

and

I n+(280-n)E(c+1;m, . 045)

Without interpolating on p in the binomicl table we find

if =0, n/280>.08,n> 26,I =26+254(.69794)=205
o=1, n/2502.14,n2 40,I40+240(.54265)=170
c=2, 1/2802.18,n> 61,1 751+229(,40442)=144

e=3, n/280>.23,n> 65_,IS=65+215(.,33554):137



e=4,n/2803, 87,n276,1=76+804(. 25699)=128
c=5,1/280%, 51,7287, 1 ~87+193(.19784)=125

s
0=6,1/2602, 35,1298, 1 ,=98+182(,15299)=126
0=7,1/2802, 39,12110, 1 =110+170(.1283)=132

where E(et+l;n,.045) was found from the Weintraub [§|table except
for n=110 for which the Poisson approximation was used. Reccmputing
the three smallest IS'S ustng lirear interpolation in the binomial
table yields

if e=4, n/280_>__. 2655371;75,IS:75+205(. 24845)=125.9
0=5,n/280%, 3065,1286, I =86+194(,19090)=123.0
6‘2‘6_,?1/280;. 3460,71?__:97,IS=97+183 (.14740)=124.0
The plan with minimun I i6 n=86, c=5 with fS=123.0. Hald gives

n=84,0=5, I‘Szz 19.6

but his Consumer's Risk is slightly larger than .10 while ours
(Wi’ hin the limits cf the approximation) has Consumer's Risk slightly
less than .10,

The average outgoing quality for the single sample case is

40g = (1= Tpl1-Ble+1;m,p]] (2.5)

The maximum of (2.5) taken over p 1is called the average outgoing
quality limit (AOQL), Dodge and Romig [},pp.57-3Q] deseribe a method
of approximating AOQL. We observe that AOQL can also be found

by trial using Weintraub's [§] table. For Example 2.2 in which N=1000,

n=78, c=2

we find

if p=.045 A0Q=.522(,045)(.72575)=.03011
p=.046 A0Q=.922(.046)(.71085)=.03014
p=.047 A0Q=.322(,047)(.£9638)=,03013

so that A0QL=.030, The Dodge-Romig solution also gives AO0QL=.030,
ocecurring at p=.0467,



8.,THE DOUBLE SAMPLE CASE

4 sample of size n, ts seclected at random from a lot of
size N. Let X, be the number of defective items in the sample.
If x1<ey defective items are found in the sample, these items are
replaced by non-defectives and the lot is accepted without further
inspection. If ec1<¢15e, a second sample of size n, is selected
at random from the remaining N-n, items and X, the number of
defective items in the second sample is observed. If ci<w1+xz<c»
the lot is accepted without further inspection but all defective Ztems
found in both samples are replaced by good ones. If either x;»c: or
c1<w1<e, and xTrtxa>er the lot is totally inspected and all defective
items in the lot are replaced by nun~defectives. If the lot contains

k defectives, then

OC=H(k;N,ni1,m2,c1,82)
Co=Cy
:P(N:nlakgcl)‘l' X p(NanI,kgcl""j) P(A?—nlsnz_,k“'Cl"j_,GZ—cl_j) (3°1)
31

The counterparts of (2.3) and (2.4) are

12 [1-P(W,n1,%, 1) | #(H-ny-n,) [1-H(k; 0,71 ,m0,01,02)] (3.2)
and
ID=n1+n2E(y1; nl,p)+(N—n1—n2)K(p;n1,n2,yl,yg) 2.3)

where yi1=e1+l,y:=c2+1 and
Y2=y1-1

K(psni,nayy1,y2)=E(yasm1,p)+ £ bly1+dina,p) Elya=yi=d,na,p)  (3.4)
J=0

As in the single sample case we will minimize the average

amount of inspection at p subject to the condition that

oc < B1 Zf k=K,
ar

If(k15N3n1,n2,C1,62)=<; B (3.5)



The minimim values of (3.2) and (3.3) will be danoted by

jp and fD respectively., If N > 50 so that it is not practical
to use the table of Liecberman and Owen [5] ,then we will use
binomial approximations for hypergeometric sums, power instead

of 0C, and condition (3.5) is replaced by
K(pisni,n2,y1,Yy2/2 181 (3.6)

where pi=ky/N. Of course, then we may minimize only I, but, as

in the single sample case,fD and ':;D and tne resulting plans will not
be enough different io be of practical importance. We will consider
both cases <n numerical examples.

Because of condition (3.8) it is necessary for any ci,cz that

P(N,ny,k1,c1)< B (3.7)
When the binomicl approximation is used (3.7) becomes
E(y15m1,p1)21-B1 (3.8)

These inequalities provide a lower bound on my, say n} . Let n 0
be the minimm value of n which satisfies (2.2) when c=c,, that is,
the value of n for the corresponding single sample plan found with
e=cy(a double sample plan with ny=n 0° n2=0). Then for each pair
e1,C2 we consider only sampling plans for which n{f__nl_g_no (for larger

ny the value of n, is 0 and ID:IS 18 larger).

Further, given ny,ai,cr we next consider only the minimum value of w,,
say nj which satisfies (3.6), or(3.5), since larger values just increase

Iy Although intuitively obvious, this is true because

K(psnisna,yi1,Y2)<E(yisni,p), a result which Follows from .3.4) and the
fact that

E(y2-y1=d;sne,p)Sl. Finally, only if n1<fs do we need to consider a plan

since otherwise I,> I g and the object of double sampling(to reduce

average total inspection) would be defeated. Plans which satisfy the

above three conditions, namely
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1 .
1. For chosen ci,c, we have nin:<i,.

2. For chosen ci,cz, and n%éplép we have n, a minimum.

0
3. The value of n, is such that ni<I,,

Will be ealled aceeptable plans. Obviously the candidates for a plan
which yields fb can be limited to the class of acceptuble plans.
Two facts useful in determining the minimum n, for a

given ny are :

1. We'must have ny#n2n,. To see this assume the conmverse is true,

that ©s theve exist ni,n, such that ni+n.<n,. Then the power at k=X

0
is mate >1-By by taking ny observations all of the time and n,

¢ .s«rvations part of the time. The power is not decreased if the
second sample is taken with probability 1. But this means that a single

sample plan with the given c¢a exi<sts with n=n;#ng<n, contrary to

, 0
the definition of e

2. As my 1incregses mnitny 18 non-increasing and has as its minimum
value no(attainable at least when nlznO,n2=0). This sum may be con~

0 0 after
n1 has been increased by relatively few units. This 1s explained by

siderably greater than n, when my=ni but gets close to n
observing that when n =nf, E(yi;n1,p), which s greater than the power,
is very nearly 1-B1 and to satisfy (5.6) the terms FE(y,~yi1-j, na,p) must
Le large eo that n, 18 large. As n, wncreases the difference between
power and El(yisni.p} grows at a relatively rapid pace permitting the

E(y,=y1=gsn2.p) and n, to be much smaller.

We now consider the organization of a numerical problem. As a
first step we should caleulate fé(or 75) since, as we have already

mentioned, it 18 not necessary to consider plans for which I, > fS“ Then

1. With e1=0 determine ni from (3.7) or (3.8).
(a) With c,=1
(1) Find e
(2) By trial find n; using the fact that mi#n,>n
(3) With ni,ni find I, (or Jp).

0.
(b) Repeat (a) with ¢,=2. As a first guess for the new nj increase the
old n; by the same amount that ni has increased.

(¢) Repeat (a) with c2=3.

ete.,
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Terminate when it 18 obvious that Ib must Zncrease with

further increase in cg.

2. Repeat Step 1. but with ni replaced by nl +1.
Then repeat Step 1 with ni replaced by nl +2 ete.,terminating
when it is obvious that a minimum has been found for each c,

which it has been necessary to constder with c¢,=0.

3. Repeat Steps 1 and 2 with ¢,=1, then with ¢1=2, then with ¢,=3, ete.,
terminating when the Ib get too large. This happens at worst when
n;>.-fs.

4. By observation select the minimum Ib (or Jb).

Although the procedure outlined in the previous paragraph may
require a number of calculations, 1t goes rather quickly using a de k caleulator
which has accumulative multiplication. When using the hypergeometric table it
18 probably advisable to copy down all figures before going to the calculator
(because of the format of the table). In the binomial case it is advisable to
copy down E(ys; ni,p) and the b(yi+j;ni,p) however, the E(y-yi=jsn2,p) may be
transferred directly from the binomial table to the calculator and need not be
cépied. The major advantage of proceding as suggested in the previous paragraph
16 that all the previous b(yi+j;ni1,p) are used plus one more as Y, s increased

by a unit., We now consider examples.

Example 3.1
If N=50,k =12, 81=.20 find the double sampling plans which minimize I, and In

when p=p=.06(k=3).

Solution
In Example 2.1 we already found that fs=16.39,33:15,60. Also we had that <f

e=0,n,=6, tf c=1,n,=11,1f c=2,n,=16, if c=3,n0:20;
We begin by selecting c,=0. Then possible values for ca are
1,2,3,4, ete. and the OC is

Ca
H(k.:50.vn1:n2:0302 )= P(50_,n1_9k,0) + Z p(50,n1,k,j) P(50—n1,n2,k-j,cz-j)
J=1




Condition (3.7) 28 P(50,m1,12,0) .20 which requires nyi 2 6.

TN

If eo =1, then ny +ny > 11. With ny =6

v

the 0OC <s

H(kS 50,6,1m2,0,1) = P(50,6,k,0) + 0(50,6,k,1) P(44,ny,k=1,0)
and

H{1%, 50,0,n2,0,1) = P(50,6,12,0 + p{50,6,12,1) P(44,n,,11,0)
By trial we find .

a(i12, 50,6,9,0,1) = .194350, H(12, 50,6,8,0,1) = .203423

go that ny = 6,mp = 9,61 = O0,¢2 = 1 <8 an acceptable plan. Then

(3] 50,6,9,0,1) = P(50,6,3,0) + p(50,6,3,1) P(44,9,2,0)
=. 675714 + (.289592)(.628964) = ,857857

X(.08, 6,9,2,2) = E(2) 6,.06) + b(1, 6,.06) E(1, 9,.06)

(04592 + (,26421)(.42701) = ,15874

and when &k = 3,p = .06
= 6 + J[1-P(50,6,3,0)] + 35[1-H(3} 50,6,9,0,1)]

6 + 9(.324286) + 35(.142143) = 13,90

I, =6 + 9E(1, 6,.06) + 35 K(.06, 6,9,1,2)

6 + 9(.31023) + 35(.15875) = 14.36

We next take cp = 2 with e1 =0, ny = 6, Now ny + n; > 16
and the 0OC <is

H(K, 50,6,n3,0,2) = P(50,6,k,0) + p(50,6,k,1) P(dd,np,k=1,1)

+ p(50,6,k,2) P(44,n5,k=2,0)
and

H(12] 50,6,n2,0,2) = 173729 + ,379046 P(44,n2,11,1)

+ 306581 P(44,13,10,0)

By trial we find (a good first gusss is np = 14)
H(18. 50,6,15,0,2) = .192763, H(12, 50,6,14,0,2) = .200929
so that ny = 6, ny = 15, ¢ = 0, co2 = 2 <8 an acceptable plan. Then
H(3: 50,6,15,0,2) = P(50,6,3,0) + p(50,6,3,1) P(44,15,2,1)
+ p(50,6,3,2) P(44,15,1,0)
= 676714 + (,289592)(.88900¢)

+ (.257449)(.659081) = 955357



]

k(.06 6,15,1,3,) = E(3. 6,.06, + b(1, 6,,06) E(2) 15,.06)

+Db(2) 6,.06) E(1, 15,.06)

00376 + (.26421)(.22624)

+ . (04226)(.60471) = .08908

and when k = 3, p = .06

e,
il

6 + 151 - p(50,6,3,0)] + 29[ 1 - H(3] 50,6,15,0,2)]

6 + 15(.324286) + 29(,044643) = 12.16

I, =6+ 15 E(1} 6,.06) + 29 K(.06, 6,15,1,3)

6 + 15(.31013) + 29(.08909) = 13,24
We next take co =3 with ey =0, n1 = 6. Now ny + ny > 20

and the 0OC “is
H(K. 50,6,m2,0,3) = P(50,6,k,0) + p(50,6,k,1) P(44,n,,k=1,2)
+ p(50,6,k,2) P(44,m2,k=2,1)

+ p(50,6,k,3) P(44,n,,k=3,0)
and

H(12) 50,6,n2,0,3) = 173729 + (,379046) P(4d,n,,11,2)
+ (,306581) P(44,n,,10,1)
+ (.116793) P(44,n2,9,0)
By trial we find(a good first guess is na = 19)

H(12) 50,6,19,0,3) = .199822, H(12, 50,6,18,0,3) = .210583

so that ny = 6, ny = 19, ¢y = 0, ¢, = 3 s an acceptable plan. Then
H(3, 50,6,19,0,3) = 1 (obviously)
X(.06, 6,19,1,4) = E(4 6,.08) +b {1, 6,.06) E(3] 19.08)

+b'(2; 6,.06) E(2] 19,.06)

+b (3, 6,.06) E(1] 19,.06)




= ,00018 + (.26421)(.10207)
+ (,04226)(.31709)

+ (.00358)(,69138) = .04302

and when k = 3, p =.06
J, = 6 + 19(,32428€¢) + 25(0) = 12.16

6 + 19(,31031) + 25(.04302) = 12.97

~
1

We next take ¢, =4 with ¢y =0, ny = 8. HNow ny + n, > 35
and the 0C <s

H(X] 50,6,12,0,4) = P(50,6,k,0) + p(50,6,%,1) P(44,n,,k=1,3)
+ p(50,6,k,2) P(d4,mp,k=2,2)
+ p(50,6,k,3) P(44,n,,k=3,1)

+ p(50,6,k,4) P(44,m,,k=4,0)
ana

H(12] 50,6,n2,0,4) = 173729 + (,379046) P(44,n,,11,3)
+ (.306581) P(44,n,,10,2)
+ (.116793) P(44,n5,9,1)
+ (,081899) P(44,n,,8,0)

By trial we find ( a good first guess 18 na = 24)

H(12) 50,6,24,0,4) = .194144, E(12) 50,6,23,0,4) = .203719 so that n, = 6,

neg = 24, ¢1 = 0, co = 4 <s an acceptable plan. There is obviously no point

in computing Iy since the last term remains 0 while the second term

inereases thus increasing I e




We find

K(.06: 6,24,1,5) = E(5} 6,.06) +b (1} 6,.06) E(4, 24,.08)

+b (8, 6,.06) E(3, 24,.08)
+b'(3, 6,.06) E(2, 24,.06)

+b(4; 6,.06) E(1; 24,.08)

=0 + (.26421)(.03413)
+ (.04226)(.12845)
+ (.003568)(.36176)

+ (.00017)(.72730) = .01586

and when p = .06

Ib =6+ 24 (.31031) + 20 (.01586) = 13.76

Sinece the last term can decrease at most .3172 an increase of only 2 units
in n, will more than overcome this figure. Hence there is no point in cql-

culating further I, with ey = 0, ny = 6.

We next reveat all of the above steps with ¢ = 0, np, = 7, then with

e1= 0, ng = 8, ete., Continuing until it <8 obvious that a minimum has been
feund for each value of ¢, which it is necessary to consider. With c; = 0

we get the following (miy,nz) and values of J.:

D
ea=1 ey = 2 ey = &
(6,9), 13.90 (6,15), 12.16 (6,19), 12.16
(7,5), 13.98 (7,11), 12.14 (7,16), 12.93
(8,4), 14.40 (8,9), 12.73 (8,14), 13.80

For Ib we get:
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¢y = 1
(6,9), 14.35
(7,5), 14.04

(8,4), 15.16

6222
(6,15), 13.24
(7,11), 12.46

(8,9), 13.82

02:3 @254
(6,19), 12.97 (6,24), 13.76
(7,16), 13.63 (7,20), 14.42

(8. 14), 14.44 (8,18), 15.40

Now we repeat all the preceding steps with ¢y = 1. This time ca2 can

take on the values 2,3,4,etc,

02:2
(11,9), 13.07
(12.5), 13.62

(13.3), 14.39

We get the following (ni, mna) and values of

Gy = 8
(11,14), 12.77
(12,10), 13.39

(13,8), 14.29

J.:

For Ib we get:

cs = 2 ey, = & Gy = 4

(11,19), 14.04

(11,9), 14.72 (11,15), 14.08

(12,5), 14,98 (12,10), 14.49 (12.15), 14.71

(13,13), 15.78

(13.3), 15.70 (13,8), 15.53

We need not consider ¢ = 3 since naw ny 2 16 and fé and 35 are

obviously exceeded, Hence calculations are terminated.
We observe that the plan ny = 7, npy = 11, ¢y = 0, ¢, = 2 mintmizes

both Ib and Jb

with fD = 12.46, JD = 12.14.

No comparison with Dodge-Romig [ 1] <& possible since By =20 is not
an entry in their table.

We can make a further comparison with the single sample plan. Recall

that at k = 3 the 0C had value .882143, For the double sample plan this is

inereased to .966785.
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Ezample 3.2
If N =1000, ky = 100 (py = .10), B1 = .10 find the double sampling plan which
minimizes the average amount of inspection of p = .02 Find the O0OC when

k:E:NE.

Solution
In example 2.2 we already found that fs = 96.7. Also we had that if ¢ = 0,

n,=22, 1f e=1, n, =38, if e =2, n, = 52, if c=3,n0=65, if e = 4,

0 0

0

n, = 78, ete. Now we minimize only I (since In would be approximated by ID)'

We will omit the calculations and results for c¢; = 0 and ¢, = 2,

demonstrating the procedure with ci = 1, the value which yields ‘TD‘ Now

c2 can be 2,3,4,ete. Condition (3.8) is E(2; n1,.10) 2 .90 which requires

If e2 =2 (or yp = &) we must have n1 + na 2 52. With n, = 38 the

power s

K(p; 38,n2,2,3) = E(3; 38,p) +D1(2, 38,p) E(1; na,p)

and

E(3; 38,.10) + (2, 38,.10) E(1, na,.10)

K(.10; 38,n5,2,3)
. 74633 + .15837 E(1. n,,.10)

By trial we find

k(.10 38,34,2,3) = .90030, K(,10, 38,33,2,3) = .89981

80 that n, = 38, np = 34, e1 = 1, c2 = 2 %8s an acceptable plan. Then

K(.02; 38,34,2,3) = E(3, 38,.02) +1 (2, 38,.02) E(1; 34,.02)
= 04015 + (.13588)(,49686) = ,10786
and when p = .02

I, =38 + 34 E(2, 38,.10) + 972 K(.02, 38,34,2,3)

38 + 34 (.17603) + 972 (.10766) = 143.89
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We next take c¢o =3 with ¢y =1, n1 = 88 Now ny + ny > 65 and the
pover 18
K(p; 38,m2,2,4) = E(4] 38,p) + b(2, 38,p) E(2 na,p)
+ bh(3, 38,p) E(1, na,p)

and
K(.10] 38,n2,2,4) = .53516 + (,15837) E(2] na,.10)

+ (,21117) E(1; ny,.10)
By trial we find (we might first guess np = 47)
X(.10, 38,54,2,4) = 90024, K(.10, 38,53,2,4) = .89980

so that ny = 38, np = 64, ¢1 =1, ¢o = 3 <8 an acceptable plan. Then

]

K(.02, 38,54,2,4) = E(4] 38,.02) + (2, 38,.02) E(2, 5¢,.02)
+D (3 38,.02) E(1; 54,.02)

00687 + (,13588)(.29393)

Ui

+ (.03327)(.66410) = 06890
and when p = .02

I =38+ 54 E(2) 38,.10) + 908 K(.08, 38,54,2,4)

38 + 54 (.17603) + 908 (.,08890) = 100.07

We next take ¢z = 4 with ey = 1, ny = 38, Now ny + ny > 78 and the
power 1s
K(ps 38,m2,2,5) = E(5; 38,p) + b(2, 38,p) E(3; na,p)
+ b(3; 38,p) E(2) na,p)
+ b(4; 38,p) E(1; na,p)
and
K(,10, 38,m2,2,5) = ,32986 + (,15837) E(3} na,.10)
+ (,21117) E(2) np,.10)
+ (.20530) E(1) na,.10)
By trial we find ( we might guess mny = 74)

K(.10, 38,72,2,5) = .90037 , K(.10, 38,71,2,5) = .89993
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so that ny = 38, ny =72, e1 = 1, ¢, = 4 1is an acceptable plan. Then
K(,02) 38,72,2,5) = 00093 + (.13588)(,17484)
+ (,03327)(.42341)
+ (,00594)(.76651) = ,04333
and when p = .02
Ib =33 + 72 (,17603) + 890 (.04333) = 93,14
Similarly with ez = § we find
Ib = 38 + 88 (.i7603) + 874 (.02615) = 76.35
with c2 = 6 we get

Ib = 38 + 103 (.17603) + 859 (.01533) = 69.30
with c2 =7 we get
I =38 + 119 (.17603) + 843 (.00822) = 66.72

D
With cp, = 8 we get

Ib = 38 + 133 (.17603) + 829 (.00522) = 65.74

It appears that if c2 %8 increased to 9 the increase in the second
term of I will be roughly the same as the decrease of the third/?gﬁzus, for
the moment at least, further calculations with ni = 38 seem unnecessary.

Next we repeat all the above steps for c¢i =1 with n, = 39, then
ny = 40, ete., until it is obvious that we have a minimum for each ci. The
results in Table 1 are obtained. From the table it is observed that TD = 62.43
(given that the minimum does not occur with ¢y = 0 or e1 = 2) and the
desired plan is ny = 40, nz = 96, e1 = 1, e2 = 7, We note that it <s

unnecessary to congider ¢y = 3 (or greater)
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¢y = 28
(38,34), 143.89
(59,24), 134.09
(40,19), 130,02
(41,16), 128.82
(42,14), 129,24
(43,11), 126.75
(44,10), 128.88
(45,8), 128,07
(46,7), 129.82

(47,5), 128,30

cér = &

(38,88), 76.35

Table 1.

¢y = 6

(ni,n2) and Ib for e =1

ey = 3
(38,54), 100.07
(39,43), 99.98
(40,37), 95.41
(41,33), 92.64
(42,30), 92.02
(43,28), 92,19
(44,26), 92.87
(45,24), 92.17
(46,22), 91.71

(47,21), 93.01

Gy =7

(38,103), 69,30

(39,89), 64.69

(38,119), 66.72

(39,104), 63.24

62:4

(38,72), 93.14
(39,59), 79.86
(40,53), 76.90
(41,49), 75.60
(42,45), 75.61
(43,43), 74.82
(44,40), 74.22

(45,38), 74.55

ey = 8
(38,133), 65.74

(39,119), 63.71

1 (42,60), 66.42

(39,75), 69.91

(40,96), 62.43 (40,110), 63.17

(40,68), 63.71 (40,82), 63,78

(41,63), 66,40 (41,77), 63.11 (41,92), 62,97 (41,105), 63.02

(42,74), 63.66 (42,87), 63.12 (42,101), 64.44

(43,57), 66.81 (43,71), 64.18 (43,84), 64,26 (43,97), 65.33

(44,54), 6€7.30 (44,68), 64.64 (44,81), 64.66 (44,94), 66.10

(45,92), 67.29

(45,52), 67.50 (45,66), 65,53 (45,79), 65.59

since the condition E(yiy, ni1,.10) 2 .90 requires n, > 85 and we have already

found a number of plans with I, < 65.

The OC at p = .02 for the plar which minimizes I, has value

D

.99649. Recall that for the single sample plan of Example 2.2 we had .97972.



Dodge and Romig give for the solution to our problem mn, = 28, n, = 72,

c1 =0, ca =5 for which I, = 70.89, K(.10, 28,72,1,6) = .904.
D 2

welihy
The average outgoing/for the double sample case com be written in

various forms but perhaps the one most convenient for use with tables is

409 = 22 p[1-B(ys} n1,p)] + (1- BT 2p[1-K(p] n1,m2,91,92)] (5.9)

Again the AOQL, the maximum taken over p, can be found by trial using the

Weintraub[ 8 1table. For the plan found in Ezample 3.2 which had I, = 62.43

we get

if p = 046 A0Q = (.098)(.046)(.59959) + (.884)(.046)(.76707) = .03450
p = .047 A0Q = (.036)(.047)(.99953) + (.8364)(,047)(.75139) = .03502
p = 048 A0Q = (.096)(.048)(.99946) + (.864)(.048)(.73338) = .03482

so that AOQL = .035. The AOQL for the corresponding single sample case,
Jound at the end of Section 2, was .030. Intuitively we might expect a larger

AOQL  for a plan wnich on the average requires less inspection.
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