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ON Tl:lE USE OF STANDARD TABLES TO OBTAIN DODGE-ROMIG LTPD 

SAMPLING INSPECTION PLANS. 

WILLIAM C. GUENTHER 

UNIVERSITY OF flYOMING 

Procedures are described which yield single and double 

sample Dodge-Romig (iJ Zot tol-erance percent defective (LTPD) reo·ti­

fying inspection plans. For the determination of such plans only a 

deck cal-culator and s·tandard tabZea of the discrete probability 

distribut-!-ons are required.Some advantages gained by using these 

procedures rather them the Dodge-Romig tabZe inaZude :(a) The Con­

sumer's Risk is not li~ited to&lfJ (b) More ahoices of LTPD are 

avaiZable.(c) SmaZZer average total inspection is achieved by 

using a plan designed for speaifia i 1process average 11 and Zot size 

rathe1• ·than a comproomise plan designed to cover intervals on these 

two parameters. 

1. INTRODUCTION 

A product that is mass produced is assembled at random into lots 

Of' size N. From each Zot -items are sarrrpZed at random and the number of 
~ 

defectives is observed. Om the basis of the observation the Zot is ei·ther 

accepted or rejected. If the lot is accepted aZZ defective items found 

when sanrpZ·ing are replaced by non-defectives. If the lot is rejected aU 

N items are examined ar~ all defective items in the lot are replaced. The 

pl"ocedure just described is the speaial aase of rectifying inspeation wh-Z:ch 

we are about to aonsider. Our goa Z. is to determine reasonab Z.e sampling 

plans for the type of sitvation just described. 

Let us assu~e that the proaess produces a defeotive with probability 

p. Each inspeated Zot will contain an unknown number of defectives3 say k. 

Let Y be the number of defect·ives in a random sconple of size n drawn 

from a lot. It is weZ.Z known that the probability function of Y given 

k is the hypergeometria 

( k 'MN-k \ 
p(N3 n3 k3 y) :::: yj:/n-yJ. 

(~) 
a '3._ y -~ b 
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where a = max [o,n-(N-kJ]., b =--min [k_,n] and the unconditional probabil-ity 

function of Y is the binomial 

(1. 2} 

For both single and double sampling we wiU min·imize the average 

totaZ inspection if p = p, the ''process average., 11 subject to the con­

dition that the operating characteristic(OC) of the smnpling plan be no 

more than S1 if the lot contains k1=Np1de[ect~ves.(In the language of 

Dodge-Romig [1]p 1=pt=LTPD., B1=The Consumer's Risk.) 

Binomial cumulative sums will be denoted by 

n 
E(r;n,p) = L: b(y;n,p) ( .3) 

Y""Y' 

For our purposes we find that three tab7,es are useful. The Ordnance 

Corps [?] table gives ( 1.3) to seven decimal places for n = 1 (1) 150" 

p=. 01 (. 01). 50. The Harvard [4] tabLe gives (1 • 3) to five decimal places 

for n=1(1)50(2)100(10)200(20)500(50)1000,p=.01(.01).50 (plus a few rational 

fractions). The Weintraub [8] table gives the same sum to ten decimal 

places for n=1(1J100_, p=.0001,.0001(,0001).001(.001).10. 

I12 the hypergeometric case we w~ll use the tables of Lieberman and 

Owen [.5] which gives both (1.1 ) and 

r 
P(N,n,k,r) = E p(N,n,k,y) 

y=a 
(1. 4) 

to six decimal places for iV=1(1)50(10)100. In addition two approximations 

to(1.4) will be used. These are 

P{1V.,n,k,r) .= 1-E(r+l;n,~J 

if n/N :; •1 0, k ~ n 

P(N_,n,k,r) .= 1-E(r+1;k,;) 

if k/N -~ •10_,k<n Even when 

(1. 5) 

(1. 6) 

neither condition n/N ~ •lO_,k/N ~ o10 is satisfied the ~ppro::cimation is 

usually surprisingly good if we use (1.5) when k ~ n,(1.6) when k < n(as 

suggested by Lieberman and Owen). The examples considered later in the 

paper suggest that the accuracy obtained using the binomlaZ approximation 
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is sufficient fo~ practical purposes. 

If sample sizes are largel'' tha:n Z.50, it is usuaZ.Z.y convenient 

to use the Poisson approximation to the binomial. Two good tables, 

which togethe~ provide about aU the entries that woul-d eve~ be 

needed, are the ones prepared by General- El-ectric I)] and Molina [6]. 
If more accuracy is desired than can be obtained from the 

approximations (which is unlikely in most applications), then a high 

speed compul;er can be used to obtain a solution by fa Z lowing the same 

procedure demonstrated in the examples. 

2. THE SINGLE SA!VJPLE C.4SE 

A sampZe of size n is selected at ~andom from a lot of size N. 

Let X be the number of defectives in the sample. If x -~a defective 

items are found in the sconpZe., these items arc replaced by non-defectives 

and the lot is accepted without further inspection. If x > c the lot 

is totaZ"ly inspected and aZZ defective items in the Zot are replaced by 

non-defectives. If the Zot contains k defectives, then the operating 

characteristic is 

(2.1) 

When k = k1 = Np 1 we wish to accept the Zot with probability at most 

th so t.Trtat n and c must tla-t;isfy the inequality 

For a Zot containing k items the expected number of items in­

spected is 

(2.3) 

However, if the process average is p, then k is a random variable and 

the number of defective items in a sample of size n has an unconditional 
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binomial- distzoibutlon with parameters n and p. In other words 

JS is a conditional e;x,pectation, the 'IA.nconditionaZ expected value being 

(2.4) 

Dodge and Romig [1] have mini'7zized (2. 4) at 

p=]? subject to (2.2) but if we prefer we could minimize (2.3) at 

k = NP instead. 

In general the result would not be too different since the t;inomial is 

used to approximate the hypergeometric and thus (2.4) approximates (2.3). 

The minimum values wiU be denoted by 'J8 and IS • 

The minimimt·ion is accompUshed by trial starting with c = 0 

and increasing c a unit at a time. For each c the minimum n satisf'yinq 

(2.2) is found and IS (or J 8Jis computed. Calculations cease when the 

minimum is observed. We will demonstrate by examples. 

Example 2.1 

If N=50,k 1=12,8 1 =o20 find the plans which minimize IS and JS 

when p = p =.OJ. Find the OC if k = N,P = 3. 

Solution 

Condition (2.2) becomes P(50,n,12,c)<.20. With the Lieberman and OWen [5J 

. ' 

if c=3,:i n~ 20, etc. 6bv·Zou.ely we chose the. minimum n in each interval. 

Using the Ordnance Corps[?] (or Harvard [4]) and the Lieberman and o-wen 

tabZes we find if c=O~n=6 Is= 6+44 E(1;6,.06) = 6+44(.310130)=19.65 

J8 = 6+44[1-P(50_,e,s,oJ] = 6+44(.324286) = 2o.2? 

if c=1,n=11 Is= 11+39 E(2;11,.06) = 11139(.138216)=16.39 

JS = 11+39[.1-P(50,11_,3,1J]=11+39(.11?8E?)=15.60 
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J 8=16+34 [1-P(so, 16, 3., 2J]=16+34(. 028571)=16. 9? 

Further caZcuZations are obviousZy unnecessary and the pZan which mini­

mizes both I 8 and J8 is n=11,c:=1 with 18=16.39, J8=15.60. 

The OC at k = 3 is 

OC = P(50,11~3,1)=.882143 

!xampZe 2.2 

If N~1000~k1=100(pl=·10),81=•10 find 

the pZan which minimizes the average amount of inspection if p=.02. Find 

the OC when k=k=NP· 

SoZution 

With N=lOOO we are out of the 1~ange of the Lieberman-OWen hypergeometric 

tabZe and zve use the approximation 

OC = P(1000,n,100,c) :·1-E(c+1;n,.10) 

(with n > 100 approximation (1. 6) is slightZy better ; so that (2. 2) 

becomes 

E(c+l;n.,.lO) ~ .90 

With the Ordnance Corps [?} tabZe we verify that if c = O,n ~ 22, 1.:f c = ~ .. 

n ~ 38, if c = 2, n > 52, if c = 3, n ~ 65, if c = 4_, n > ? 8 _,if c=5 _, n > 91:­

if c = 6_,n ~ 104_,if c=?,n ~ 116,etc. Since the vaZue of J8 wouZd have 

to be computed by using the binomiaZ approximation we caZcuZate onZy I 8 
which is the approximation for J 8• We get 

if c=O_,n=20 I8=20+980 E(1; 20,,02)=20+980(.33239)=345.? 

c=l_,n=38 I 8=38+962 E(2;38,,02)=38+962(.1?603)=20?.3 

a=2_;,..=52 I 8=52+948 E(. :52, .02)=52+948(.08593)=133.5 

c=3_,n=65 I 8=65+935 E(4;65,.02)=65+935(.04138)=103.? 

c=4,n=?B I~?8+922 E(5; 78_,.02)=?8+922(.02028)=96,? 

c=5,n=91 I 8=91+909 E(C;91,.02)=91+D09(.01006)=100.9 
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Obvious~y fUPther aaZauZ.ations are unnecessary and the desired plan is 

n=7B~a=4. 

Dodge and Romig [1} g·ive n=65~c=3 but their ptan is designed to 

aover intervals on both N and p. 
The OC at k.=k=1000( .. 02)=20 is OC?:: 1-EUi:;?B~.02)=.97972. 

Hatd [3] has derived assymptotia foPmutas whiah~ together with 

some au:x:iUary tabtes:J aan be used to obtain aampting pZans of the 

type we have aonsidered. Considerable aatauZation seems to be required. 

HiG paper has one numeriaa 7, exconp Z.e whiah we wi U now work for a 

aorrrparison of resultfl • 

. . 

ExaJT(r) Ze 2. 3 
-~------
If N=280~p 1=.10(k 1=28)~S 1=.10~ find the ptan whiah minimizes the 

average amount of inspeation if p = • 045. 

Sotution -
fve need 

OC = P(280~n,2B,a):: 1-E(a+1_;2B, 2~0J ~ .10 

or 

n E(a-t-1;28.,2875 ::,..90 

and 

Without interpotating on p in the binomial tabte 7.Je find 

if a=O., n/2BO>.OB~n~ 86~Is=26+254(.69794)=203 

a=l~ n/250~.14~n~ 40,I8=40+240(.54265)=170 

a=2~ n/280?_.18,n~ h'1,I8=51+229(. 40442)=144 

a=J., n/280>.23~n> 65~I8=65+215(.33554)=137 
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o:::S_,n/280~. 51~ n~B7..,Is=87+193 ( .19784)=125 

c=6_, n/280?_. 35,n;.,9B,I 8=98+182 ( ,15299 )=·126 

c=7_,n/280~.39,n?..l10_,Is=110+170(.1283)=132 

where E(c+1jn,.045) was found from the Weintraub [Bjtable except 

for n=110 for which the Poisson approximation was used. Reccmputing 

the three smallest Is's using linear intePpolation in the binomial 

table yields 

if c=4_,n/280"?_.2655,n>?5,Is=75+205(,24845)=125.9 

a=5,n/280>.3065~n~86_,Is=B6+194(.19090)=123.0 

c=6,n/280"?_.3460,n~97,Is=97+183(.14740)=124.0 

The plan with minimum IS is n=B6, a=5 with Is=123.0. Hald gives 

n=B4,a=s,i8=119.6 

but his Consu~er;s Risk is slightly larger than .10 while ours 

(wi·' hin the limits c~~ the approximation) has Consumer's Risk slightly 

less than .10. 

The average outgoing quality for the single sample case is 

n ~-

AOQ = (1- NJpL1-E(a+l;n,pJ] (2.5) 

The maximum of (2.5) taken over p is called the average outgoing 

quality limit (AOQL). Dodge and Romig [1,pp. 37-39] describe a method 

of approximating AOQL. We observe that AOQL can also be found 

by trial using Weintraub's [8J table .. For Example 2. 2 in which N=1000, 

w.?B_, o=2 

we find 

if p=.045 

p=. 046 

p=.047 

AOQ=.922(.045)(.72575)=.03011 

AOQ=.922(.046)(.?1065):::.03014 

AOQ=.922(.047J(.fD538)=.03013 

so that AOQ£.=.030. The Dodge-Romig solution also gives AOQL=.030_, 

occurring at p=.0467. 
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3. THE DOUBLE SAMPLE CASE 

A sample of size n 1 is selected at random from a lot of 

size N. Let X1 be the number of defective items in the sample. 

If x 1;;a1 defecti?Je items are found in the SOJrrple, these items are 

replaced by non-defectives mld the lot is accepted without further 

inspection. If c 1 <x 1~c 2 a second sample of size n 2 is sel-ected 

at random from the remcining N-n 1 items and X2 the number of 

defective items in the second sample is observed. If c 1 <x1+x 2~c 1 

the lot is accepted without further inspection but aU defective item$ 

found in both samp Z.es are rep "laced by good ones. If either x 1 >a;: or 

c1<x1~2 and x1+xz>cz the lot is totally inspected and aU defecti·ve 

items in the lot are replaced by nua·-defectives. If the Zot conta1:ns 

k defectives, then 

oc: .. :lf(k; N, n1, n~., c 1,~s2J 

Cz-Cl 
=P(N,n1,k,a1)+ E p(N,nl,k,cl+j) P(N-nl,nz_,k-al-j,az-cl-j) 

j=l 

The counterparts of (2.3) and (2.4) are 

and 

where y1=ci+l,y2=c2+l and 

Yz-yl-1 
K(p;nl,n2,YI.,y2)=E(y2;ni,p)+ l: b(y1+j;n1,pJ E(y2-y1-j~ nz,p) 

j=O 

(3.1) 

(3. 2) 

(3. 3) 

(3. 4) 

As in the single sample case we will 1r.inimize the average 

amount of inspeation at p subject to the aondition that 

ar 

(3.5) 
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The minimum values of (3.2) and (3,3) wiZZ be d~noted by 

JD and ID respectively. If N > 50 so that it is not practical 

to use the table of Liebeman and (Ju)en [5] , then we wiU use 

binomial approximations for hypergeametric S74nS_, power instead 

of OC, and condition (.3.5) is replaaed by 

where p 1=k 1/N. Of course, then we may minimize only ID but, as 

(3. 6) 

in the single sample case,ID and JD and the resulting plans witl not 

be a;nough different to be of practical impo1~tance. We will consider 

both easeR in numerical examples. 

Because of condition (3,5) it is necessary for any c 1,c2 that 

(3.?) 

When tlw binomial approximation is used (3.?) becomes 

(3.8) 

These inequati·ties provide a tower bound on n1., say nl • Let n0 
be the minimum value of n whi~h satisfies (2.2) when c=c2, that is, 

the value of n for the corresponding single sarnple plan found with 

c=c 2 (a double sample pZan with n 1=n0, n 2=Q). Then for each pair 

c1_,c2 we consider only SC111rf?ling pZans for whiah nl~n 1~n0 (for Zar~1er 

n 1 the value of n 2 is 0 and ID=I8 is larger). 

Fw:•tner., given n1~0J..;~a 2 we next aonsider onZy the minimum value of n 2, 

say ni which satisfie.s (3. 6), or(3. 5), sinae larger values just increase 

ID. Although intuitively obvious, this is true beaause 

J((p;nhn2.,yl,Y2)<E(y1;nt~P), a resuZt which foZZows from :3.4) and the 

faat that 

sinae otherwise ID> J5 and the objeat of doubZe sampting(to reduoe 

average total inspection) wouZd be defea·ted. PZa:as whiah satisfy the 

above three aonditions, nameZ.y 
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1, For chosen a13 a2 we have nl~n1~n0 • 

2. For chosen o 1,a2, and ni~1<n0 we have n 2 a minimum. 

3. The value of n 1 is suah that n1<'i8 • · .. 

WiU be oaUed aaaeptable plans. Obviously the ocr:nd-idates for a pZ.an 

~hiah yie?:ds "l can be Zimiterl to tha: ola.r~s of acaeptable pl.ar.s • 
. TuJo fafts usefuZ in determining the minimum n 2 for a 

given n 1 a:r.>e : 

.t. We·'inust have n 1+n 2::Z.f)• To aee this assume the converse is true, 

that is there exist n 1,n2 such that n1+n2<n0• Then the power at k=kt 

is mar:r., ~1-Sl by taking n 1 observations aZZ of the time and n2 

o .E:J .. rvations part of the time. The power is not decreased if the 

seaond sample is taken with probability 1. But this means that a single 

sample plan with the given o2 exiqts with n=n 1+n 2<n0 aontrary to 

the definition of no· 

2. As n 1 inarea.ses n1+n 2 is non-inareasing and has as its minimum 

value n0 (attainable at least when n 1=no-,n2=0J. This sum may be con­

siderably greater than n0 when n 1=ni but gets aZose to n0 after 

n 1 has been inareased by relatively few units. This is explained by 

observing that when n =nf, E(y 1;n 1,p), which is greater than the power, 

is very neaP Zy 1-S 1 and to satisfy ( 3. 6) the te:r>ms E ( y ·cy 1 ~ j; n 2 _, pi muGi; 

be large eo that n 2 is large. As n 1 increases the difference between 

power and E ( y 1; n 1 _, p) gr01us at a re Zati ve Zy rapid paae permitting ·the 

E(y 2-yl-j;n2_,p) and n2 to be muah smaZZer. 

We now consider the organization of a numerical probZem. As a 

first step we should oaZcuZate 'i3 ror r8 ; since, as we have aZ.ready 

mentioned, it is not necessary to consider plans for whiah ID > 18• Then 

1. With c 1=0 determine nl from (3.7) or (3.8). 

(a) Wi·th az=l 

(1) Find n0 • 

(2) By triaZ find ni using the fact that n1+n2?:!Lo· 

(3) With n},n! find ID (or JD). 

(b) Repeat (a) with c 2=2. As a first guess for the new n~ increase the 

oZd n~ by the same amount that ni has increased. 

eta. 
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Terminate when it is obvious tl-tat I D rrrust increase with 

fUrther increase in c 2 • 

2. Repeat Step 1. but with nl replaced by nl +1. 

Then repeat Step 1 with n} replaced by nl +2 etc.~te~nating 

when it is obvious that a minimum has been fowzd for each c 2 

which it has been necessary to consider with c 1=0. 

3. Repeat Steps 1 and 2 with c 1 =1~ then with c 1=2~ then with c 1=3, etc.~ 

te~inating when the ID get too large. This l~ppens at worst when 

n1>Is. 

4. By observation seZeot the minimum ID (or JD). 

Although the procedure outlined in the previous paragraph may 

require a number of calculations~ it goes rather quickly using a de k calculator 

which has accumulative multiplication. When using the hypergeometric table it 

is probably advisable to copy down all figures before going to the calculator 

(because of the format of the table). In the binomial case it is advisable to 

copy down E(y 2 ; n1~p) ~nd the b(y1+j;n1~P) however~ the E(yz-yi-j;nz,p) may be 

transferred directly from the binomial table to the calculator and need not be 

copied. The major advantage of proaeding as sugges·ted in the previous paragraph 

is that alt the previous b(y 1+j;n1,p) are used plus one more as y 2 is increased 

by a unit. We now consider examples. 

EXC!J!IJ2}e 3. 1 

If N=SO, ~ =12., th= • 20 find the doub Ze sarnp ling p Zans which minimize I D and J D 

when p=P=.06(~3). 

Solution 

In Example 2.1 we already found that Is=16.39,Js=15.60. Also we had that if 

a=o,n0=6~ if a=1_,n0=11,if a=2_,n0=16_, if c=3_,n0=20~ 
We begin by selecting c 1=0. Then possible values for az are 

1,2,3,4, etc. and the OC is 
02 

H(k:50 .. nl.~fl.O.a2)= P(5.0 .. nl .k.O) + ~ p(!:O n 1 k J') P('-O-n1 n2 k-;;· n 2-;;') J • J ~J J • J ~ ~ ~ 3 3 ~ u .J 3 3 v 

i=l 
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CoruH,:tion (3.?) is P(SO,nl.J 12, 0) ·~ .20 which requires n 1 ~ 6. 

If c2 = 1., then n1 + n2. ~ 11. With n1 = 6 

the OC is 

H(k; 50,6,n2,.0,1) = P(50,6,k.,O) + -o(50~6"k_,l) P(4·1,n2,k-2,0) 
and 
H(1;:; 50,6,n 2,0,1) = P(50,6,12,0 + p(50,6,12,1) P(44,n 2,11,0) 

By t-:fia Z we find 
Il(12; 50_,6_,9,0,1) = .194350, H(12; 50,6,8,0.,1) = .203423 

so -that. n1 = 6,n2 = 9,cl = O,c 2 = 1 is an acceptabZe pl-an. Then 

=.6?5?14 + (.289592)(.628964) = .85?85? 

K(.oe; 6,9,~,2) = E(2; 6_,.06) + b(1; 6p06) E(1; 9_,.06) 

= .04592 + (.26421)(.42?01) = .15874 

anl when k = 3,p = .06 

= 6 + 9(.324286) + 35(.142143) = 13.90 

ID = 6 + 9E(1; 6,.06) + 35 K(.oe; 6,9,1,2) 

= 6 + 9(.310~3) + 35(.158?5) = 14.35 

We next take c 2 = 2 with c1 = 0, n1 = 6. Now n1 + n2 ~ 16 

and the OC is 

H(l<.; 50_,6,n 2,0,2) = P(50_,6,k,O) + p(50,6,k,1) P(44,n2,k-1,1) 

+ p(50,6,k,2) P(44,n 2,k-2,0) 

and 

By trial we find (a good first guess is n2 = 14) 

sa that n1 = 6, nz = 15, c1 = 0, c2 = 2 is an acceptable pZan. Then 

H(3; 50,6,15,0,2) = P(50_,6,3,0) + p(50,6_,3_,1) P(44,15,2,1) 

= .675714 + (.289592)(.889006) 

+ (.25?449)(.659091) = .95535? 
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K(. oe; 6,, 15, 1, 3,) = E(3; 6,. 06) + b (1; 6,. 06) E(2; 15,. 06) 

+ b'(2; 6,. 06) E(l; 15,. 06) 

= .003?6 + (.26421)(.22624) 

+ .(04226)(,604?1) = .08909 

and when k = 3, p = .06 

JD = 6 + 15[1 - P(5o,s,3,oJ] + 29[ 1 - H(3; 50,6,15,0,2J] 

= 6 + 15(.324286) + 29(,044643) = 12.16 

ID = 6 + 15 E(1; 6,.06) + 29 K(.06; 6,15,1,3) 

= 6 + 15(.31013) + 29(.08909) = 13.24 

We next take a 2 = 3 with a1 =· 0, n1 = 6. Now n1 + nz ?:. 20 

and the OC is 

+ p(50,6,k,2) P(44,n 2,k-2,1) 

and 

H(12; 50,6,n 2 ,0,3) = .173?29 + (,379046) P(44,n 2 ,11,2) 

+ (,306581) P(44,n 2,10,1) 

+ (.116?93) P(44,nz,9,0) 

By i;riaZ we find (a good first guess is nz = 19) 

H(12; 50,6,19,0,3) = .199822, H(12; 50,6,18,0,3) = .210583 

so that n1 = 6, n2 = 19, a1 = 0, a 2 = 3 is an aaaeptabZe plan. Then 

H(3; 50,6,19,0,3) = 1 (obviously) 

K(. 06; 6, 19, 1, 4) = E( 4; 6.,. 06) + b (1; 6,. 06) E(3; 19. OS) 

+ b'(2; 6,. 06) E(2; 19,. 06) 

+b(3; 6,.o6J E(l; 19,.06) 
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= .00018 + (.26421)(.10207) 

+ (.04226)(.31709) 

+ (.00358)(.69138) = .04302 

and tuhen k = 3,. p =. 06 

JD = 6 -1- 19(.324286) -;- 25(0) = 12.16 

I = 6 + 19(.31031) + 25(.04302) = 12.97 
D 

and the OC is 

+ p(50,6..,k,2) P(44,.n 2,k-2..,2) 

+ p(50,6,k..,3) P(44.,nz,k-3,1) 

+ p(50,6,k,4) P(44,n 2,k-4,0) 

and 

H(12~ 50,6,n 2,0,4) = .175729 + (,379046) P(44,n 2s11,3) 

+ (.116793) P(44,n 2,9,1) 

By trial ~e find ( a good fi~st guess is nz = 24) 

H(12; 50, 6, 24, 0, 4) = .194144, ll(12; 50, 6, 23, 0, 4) = . 203719 so that n 1 = 63 

nz = 24, c1 = 0, Cz = 4 is an acceptable plan. There is obviously no point 

in computing JD since the last term remains 0 while the second term 

increases thus increasing JD. 
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We find 

K(. 06; 6, 24,1,5) = E(5; 6,. 06) + b(l; 6,.06) E(4; 

+ b (2; 6,. 06) E(3; 

+ b'(3; 6,. 06) E(2; 

+ b (4; 6_,. 06) E(l; 

= 0 + (.26421)(.03413) 

+ (.04226)(.12845) 

+ (.00358)(.36176) 

+ (.00017)(.?2?30) = .01586 

and when p = .06 

I = 6 + 24 (.31031) + 20 (.01586} = 13.76 
D 

24,. 06) 

24,. 06) 

24_,. 06) 

24,. 06) 

Since the last te11m can decrease at most .3172 an increase of only 2 units 

in n2 wiZZ more than overcome this figure. Hence there is no point in cal-

cuZating further ID with c1 = 0, n1 = 6. 

We next repeat aU of the above steps with c 1 = 0, n2 = 7_, then with 

Continuing untiZ it is obvious that a minimum has been 

found for each value of c 2 which it is necessary to consider. With c 1 = 0 

we qet the following (n1,n2J and values of JD: 

02= 1 C2 = 2 c2 = 3 

(6,9), 13.90 (6_, 15)" 12.16 (6, 19)" 12.16 

(7,5), 13.98 (7,11), 12.14 (7,16), 12.93 

(8,4)_, 14.40 (8_, 9), 12.73 (8,14)_, 13.80 

For ID we get: 
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C?z = 1 C?z = 2 C?z = 3 C?z ~ 4 

(6~9) ~ 14.31) (6~ 15) ~ 13.24 (6~19)~ 12.97 (6~24)~ 13.76 

(?~5)_, 14.04 (7.,11), 12.46 (7,16), 13.63 (?.,20)~ 14.42 

(8.,4), 15.16 (8, 9)" 13.82 (8. 14) J 14.44 (8_,18), 15.40 

Now we repeat aU the preoeding steps with o 1 = 1. 'l'h·is time o 2 oan 

(11, 9) _, 13.07 

(12. 5) J 13. 62 

(13. 3).) 14.39 

For ID we get: 

(11_,14)" 12.77 

(12~ 10) 3 13.39 

(13, 8) 3 14.29 

(11_,9), 14.72 (11_,15)_, 14.08 (11, 19) _, 14.04 

(12_, 5) _, 14.98 (12,10)_, 14.49 

(13. 3) _, 15. ?0 (133 8) _, 15.53 

We need not oonsider 

obviousty exoeeded, Henoe oaloutations are terminated. 

(12. 15) _, 14. 71 

and I s and J s are 

We observe that the plan n 1 = ?, n 2 = 11_, a 1 = 0_, o 2 = 2 minimizes 

both ID and JD with ID = 12.46_, JD = 12.14. 

No oonrparison with Dodge-Romig [ 1] is possible sinoe 13 1 = · .. 20 is not 

an entry in their table. 

We can make a further comparison with the single sample plan. Reoall 

that at k = 3 the OC had value .882143. For the double sample plan this is 

increased to .966785. 
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EXOJn'O le 3. 2 - ..... --~·-----· 

If N = 1000, k 1 = 100 (p 1 = .10), B1 = .10 find the double sampling pkm which 

minimizes the average araount of inspection of p = . 02. Find the OC when 

k ::.: k = Np. 

Solution 

In example 2. 2 we already found that I =96.7. s Also we had that if c = o., 

n0 = 22, if c = 1, n0 = 38, if c = 2~ n0 = 52, if c = 3, n0 = 65, if c = 4, 

n0 = ?8, etc. Now we minimize only ID (since JD would be approximated by ID). 

We will omit the calculations and results for c1 = 0 and c 1 = 2, 

demonstrating the procedUl~e with c1 = 1, the value which yields ID. Now 

that n 1 ?:. 38. 

If cz = 2 (or y 2 = 3) we must have n1 + n 2 ~ 52. With n1 = 38 the 

power is 

and 

K(.10; 38,n 2.,2,3) = E(3; 38,.10) +7:/(2; 38,.10) EU; nz~.10) 

= .74633 T .15837 E(1; n 2,.10) 

By triaZ we find 

K(.10; 38,34,2,3) = .90030, K(.10; 38,33~2,3) = .89981 

so that n 1 = 38, nz = 34, c1 = 1, cz = 2 is an acceptable plan. Then 

K(. 02; 38, 34, 2, 3) = E(3; 38,. 02) + b (2; 38,. 02) E(l; 34,. 02) 

= .04015 + (.13588)(,49686) = .10766 

and when p = . 0 2 

ID = 38 + 34 E(2; 38, .10) + 972 K(. 02; 383 34, 2, 3) 

= 38 + 34 (.17603) + 972 (.10?66) = 143.89 
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~!e next -l;ake o 2 = 3 with o 1 = 1, n1 --= 5$ ~ Now n 1 + n 2 ?:. 65 and the 

power is 

K(p; 3B,n2,2,4) = E(4; 38,p) + b(2; JB,p) E(2; nz,p} 

+ b(o; 58,p) E(l; nz,p) 

and 

K(.lo; 38,n 2,2,4) = ,53516 + (.15837) E(2; nz,.10) 

+ (. 21117) E(l; n 2 , .10) 

By triaL we find (we might first guess nz = 47) 

IU.1o; 38,54,2,4) = .90024, K(.10; 38,53,2,4) = .89980 

so that n 1 = 38, n 2 = 54, 01 = 1, o2 = 3 is an aooeptabZe pLan. Then 

K(.02; 38,54,2,4) = E(4; 38,.02) -1-}; (2; 38,.02) E(2; 56',.02) 

+ b (3; 38,. 02) E(l; 54,. 02) 

= .00687 + (.13588)(.29393) 

+ (.03327)(.66410) = .06890 

and when p = • 02 

In= 38 +54 E(2; 38,.10) + 908 K(.o2; 38,5~,2,4) 

=58 +54 (.17603) + 908 (.06890) = 100.07 

We next take oz = 4 with 01 = 1, n1 = 38. Now n1 + nz ?:. 78 and the 

power is 

K(p; 3B,nz, 2, 5) = E(5; 3B,p) + b(2; 38,p) E(3; nz,p) 

+ b(3; 38,p) E(2; nz,p) 

+ b(4; 38,p) E(l; nz,p) 

and 

xr .1o; 38, nz_, 2, 5) = .32986 + (.15837) E(3; nz, .10) 

+ (.2111?) E(2; nz, .10) 

+ (.20530) E(l; nz, .10) 

By trial we find ( we might guess nz = 74) 
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so that n1 = 38j nz = ?2~ c1 = 1~ Cz = 4 is an acceptabLe pLan. Then 

K(.o2; 38~?2~2~5) = .ooo93 + (.13588)(,17484) 

+ (.0332?)(.42341) 

+ (,00594)(.?6651) = .04333 

and when p = , 0 2 

ID = 38 + 72 (.1?603) + 890 (.04333) = 93,14 

Simi Zar Zy with e 2 = 5 we find 

ID = 38 + 88 (.17603) + 874 (.02615) = 76.35 

with cz = 6 we get 

ID = 38 + 103 (.17603) + 859 (.01533) = 69.30 

with cz = 7 we get 

ID = 38 + 119 (.1?603) + 843 (.00922) = 66.72 

ffith c 2 = 8 we get 

ID = 38 + 133 (.1?603) + 829 (.00522) = 65.?4 

It appears that if c 2 is increased to 9 the increase in the second 
term 

term of ID wiU be reughly the scone as the decrease of the third/~ 'Thus~ for 

the moment at Zeaat~ further caLculations with n1 = 38 seem unnecessary. 

Next we repeat aLl the above steps for c 1 = 1 with n 1 = 393 then 

n1 = 40~ etc. 3 untiL it is obvious that we have a minimum for each c 2 • The 

resuLts in TabLe 1 are obtained. From the tabLe it is observed that ID = 62.43 

(given that the minimum does not occur with c 1 = 0 or c 1 = 2) and the 

desired plan is n1 = 403 nz = 96P c 1 = 1~ c 2 = ?, We note that it ia 

unnecessary to consider c1 = 3 (or greater) 
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Table 1. 

fn1,n2J and ID for C1 = 1 

c 2 = 2 c 2 = 3 C2 = 4 

(38,34)., 143.89 (38,54)., 100.0? (38,?2)., 93.14 

(39,24)., 134.09 (39., 43)., 99.98 (39.,59), 79.86 

(40., 19), 130.02 (40.,3?), 95.41 (40., 53), ?6.90 

(41,16), 128.82 (41,33)., 92.64 (41.,49)., 75.68 

(42.,14), 129.24 (42.,30)., 92.02 (42,45), ?5. 61 

(43., 11)., 126.?5 (43.,28)., 92.19 (43, 43), ?4.82 

(-r;4,10), 128.88 (44.,26)., 92.8? (44., 40), 74.22 

(45.,8), 128.0? (45.,24), 92.17 (45,38), 74.55 

(46,7), 129.82 (46.,22), 91.71 

(47.,5)., 128.30 (47.,21)., 93.01 

c2 = 5 c 2 = 6 c 2 = 7 c 2 = 8 

(38,88)., 76.35 (38, 103)., 69.30 (38.,119)., 66.?2 (38_, 133), 66.74 

(39,75), 69.91 (39,89), 64.69 (39,104), 63.24 (39,119), 63.71 

(40.,68), 63. '11 (40.,82)., 63.?8 (40.,96)., 62.43 (40, 110), 63.17 

(41,63)., 66.40 (41.,77), 63.11 (41.,92), 62.97 ( 41, 105) 3 63.02 

. (42.,60), 66.42 (42,?4), 63.66 (42387), 63.12 (423101), 64.44 

(43,57) 3 66.81 (43, 71), 64.18 (43,84), 64,26 (43,97) .!1 65.33 

{44,54)., 67.30 (44.,68), 64.64 (44.,81).!1 64.66 (44,94), 66.10 

( 45., 52)., 6?.50 (45.,66), 65.53 (45., 79) 3 65.59 {45, 92), 67.29 

since the condition E(yl; n1_,.10J ~ .90 requires n 1 ~ 65 and we have already 

found a number of plans with ID < 65. 

The OC at p = . 02 for the plan which minimizes ID has vaZue 

• 99649. RecaZZ that for the single sampl-e pZan of Exampl-e 2. 2 we had • 97972. 
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Dodge and Romig give for the solution to our problem n1 = 28~ n 2 = ?2~ 
c 1 = 0~ c 2 = 5 for which ID = ?0.89~ K(.lO; 28~72~1~6) = .904. 

The average outgoing7~-~e double sample case can be written in 

various fo~s but perhaps the one most convenient for use with tables is 

Again the AOQL~ the maximum taken over p, can be found by trial using the 

T1eint:..naub [ 8 J table. For the plan found in Example 3. 2 which had ID = 62.43 

we get 

if p = . 046 

p = .04? 

p = . 048 

AOQ = (.096)(.046)(.99959) + (.864)(.046)(.?6?0?) = .03490 

AOQ = (.OJ6)(.047)(.99953) + (.864)(.047)(.?5139) = .03502 

AOQ = (.096)(.048)(.99946) + (.864)(.048)(.?3338) = .03482 

so that AOQL = .035. The AOQL for the corresponding single sample case~ 

J'ound at the end of Section 2~ was • 030. Intuitively we might expect a larger 

AOQL for a plan khich on the average requires less inspection. 
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