Statistical Research Report	No. 2
Institute of Mathematics	June 1968
University of Oslo	

ALTERNATIVEINTERPRETATIONS OF SOME KOLMOGOROV-SMIRNOV TYPE STATISTICS.

By

Emil Spjøtvoll

SUMMARY

It is shown how the Kolmogorov - Smirnov two-sample test can be expressed as a function of the difference of ordered ranks and their expectations. In the case of equal sample sizes this lead to the consideration of a statistic which in some sense is finer than the Kolmogorov - Smirnov statistic. Similar interpretations are also given of Rényi's and Cramér von Mises test.

1. THE KOLMOGOROV-SMIRNOVTWOSAMPIE STATISTICS:

Let X_{1}, \ldots, X_{m} and X_{1}, \ldots, Y_{n} be samples from continuous distri bution functions F and G, respectively. Let F_{m} and G_{n} be the empirical distribution functions formed from the samples, that is, $m F_{m}(t)$ is the number which do not exceed t, with $n G_{n}(t)$ defined analogously.

The Kolmogorov - Smirnov two-sample tests for the hypotheses

$\mathrm{H}_{1}:$	$\mathrm{F}=\mathrm{G}$	against
$\mathrm{H}_{2}:$	$\mathrm{F}=\mathrm{G}$	against

are based upon the statistics
and

$$
D^{+}=\max _{t}\left(F_{m}(t)-G_{n}(t)\right)
$$

$$
D=\max _{t}\left|F_{m}(t)-G_{n}(t)\right|,
$$

respectively .
Let the ordered observations be $X_{(1)}<\ldots<X_{(m)}$ and $Y_{(1)}<\ldots<Y_{(n)}$,
and let $R_{l}<\ldots<R_{m}$ be the ordered ranks of the $X ' s$ in the combined sample, and $S_{1}<\ldots<S_{n}$ the ordered ranks of the Y 's. Here R_{i} and S_{j} are the ranks of $X_{(i)}$ and $Y_{(j)}$ respectively, in the combined sample. We shall now express D^{+}and D in terms of the ranks.

First consider D. Suppose maximum occur at a point t_{0} (not necessarily unique). If $F_{m}\left(t_{0}\right)-G_{n}\left(t_{0}\right)<0$, the point t_{0} must be contained in some interval $\left[Y_{(i)}, X_{(j)}>\right.$ where $Y_{(i)}$ and $X_{(j)}$ are consecutive observations in the combined ordered sample. Since the rank of $Y_{(i)}$ is S_{i} and of $X_{(j)}$ is R_{j} we find

$$
\begin{equation*}
F_{m}\left(t_{0}\right)-G_{n}\left(t_{0}\right)=\frac{1}{m}\left(S_{i}-i\right)-\frac{i}{n}=\frac{j-1}{m}-\frac{R_{j}-j}{n} \tag{1.1}
\end{equation*}
$$

If $\quad F_{m}\left(t_{0}\right)-G_{n}\left(t_{0}\right)>0$, the point t_{0} is in some interval $\left[X(j), Y_{(i)}>\right.$
where $X_{(j)}$ and $Y_{(i)}$ are consecutive observations in the combined sample. We get

$$
\begin{equation*}
F_{m}\left(t_{0}\right)-G_{n}\left(t_{0}\right)=\frac{1}{m}\left(S_{i}-i\right)-\frac{i-1}{n}=\frac{j}{m}-\frac{R_{j}-j}{n} . \tag{1.2}
\end{equation*}
$$

Since the maximum must occur in some interval $\left[Y_{(i)}, X_{(j)}>\right.$ or $\left[X_{(j)}, Y_{(i)}>\right.$ it follows that
(1.3) $=\frac{1}{m} \max _{i}\left[\max \left(\frac{m+n}{n} i-s_{i}, s_{i}-\frac{m+n}{n} i+\frac{m}{n}\right)\right]$
or in terms of the R's,
(1.4) $D=\frac{I}{n} \max _{i}\left[\max \left(R_{i}-\frac{m+n}{m} i+\frac{n}{m}, \frac{m+n}{m} i-R_{i}\right)\right]$

Now consider D^{+}. If maximum occur at same point t_{o} with

$$
F_{m}\left(t_{0}\right)-G_{n}\left(t_{0}\right)>0 \text {, then equation (1.2) holds. It is aleo possible }
$$

that $D^{+}=0$. Then t_{o} can be chosen equal to $X_{(m)}$ and no Y_{i} is greater than $X_{(m)}$. In that case

$$
F_{m}\left(t_{0}\right)-G_{n}\left(t_{0}\right)=0=\frac{m}{m}-\frac{R_{m}-m}{n}
$$

It follows that
(1.5) $\quad D^{+}=\frac{1}{m} \max \left[\max _{i}\left(s_{i}-\frac{m+n}{n} i+\frac{m}{n}\right), 0\right]$
or
(1.6) $\quad D^{+}=\frac{1}{n} \max _{i}\left(\frac{m+n}{m} i-R_{i}\right)$

Let $E R_{i}$ and $E S_{i}$ be the expectations when $F=G$ of R_{i} and S_{i} respectively. We shall prove that

$$
D=\frac{1}{m} \max _{i}\left[\max \left(\frac{m}{n(n+1)} i-\left(S_{i}-E S_{i}\right), S_{i}-E S_{i}-\frac{m}{n(n+1)} i+\frac{m}{n}\right)\right]
$$

(1.7)

$$
=\frac{1}{n} \max _{i}\left[\max \left(R_{i}-E R_{i}-\frac{n}{m\left(\frac{m}{m}+1\right)} i+\frac{n}{m}, \frac{n}{m(m+1)}-\left(R_{i}-E R_{i}\right)\right]\right.
$$

and

$$
\begin{equation*}
D^{+}=\frac{1}{m} \max \left[\max _{i}\left(S_{i}-E S_{i}-\frac{m}{n(n+1)} i+\frac{m}{n}\right), 0\right] \tag{1.8}
\end{equation*}
$$

$$
=\frac{1}{n} \max \left(\frac{n}{m(m+1)} i-\left(R_{i}-E R_{i}\right)\right)
$$

To prove (1.7) and (1.8) we now find $E R_{i}$ and $E S_{i}$. It is
easily seen that when $F=G$
(1.9) $P\left(s_{i}=x\right)=\frac{\binom{x-1}{i-1}\binom{m+n-x}{n-i}}{\binom{m+n}{n}} x=i, \ldots, m+i$.

From (1.9) we obtain the identity
(1.10) $\sum_{x=1}^{m+i}\binom{x-1}{i-1}\binom{m+n-x}{n-i}=\binom{m+n}{n}$.

We find

$$
\begin{aligned}
E S_{i} & =\sum_{x=i}^{m+i} x\binom{x-1}{i-1}\binom{m+n-x}{n-i}\binom{m+n}{n}^{-1} \\
& =\binom{m+n}{n}-l_{i} \sum_{x=i}^{m+i}\binom{x}{i}\binom{n+n-x}{n-i} \\
& =\binom{m+n}{n}-1 i \sum_{x^{\prime}=i^{\prime}}^{m+i^{\prime}}\binom{x^{\prime}-1}{i^{\prime}-I}\binom{m+n^{\prime}-x^{\prime}}{n^{\prime}-i^{\prime}}
\end{aligned}
$$

where $x^{\prime}=x+1$, $i^{\prime}=i+1 \quad n^{\prime}!=n+1$. Hence by (1.10.)

$$
E_{i}=\binom{m+n}{n}^{-1} \quad\binom{m+n+1}{n+1}=\frac{m+n+1}{n+1} i
$$

By symmetry

$$
E R_{i}=\frac{m+n+1}{m+1} i
$$

The identities (1.7) and (1.8) now follows.
In (1.7) and (1.8) the Kolmogorov-Smirnov statistics are
given in terms of ranks. The form indicates that they are closely related to the statistics

$$
V=\frac{1}{n} \max _{i}\left|R_{i}-E R_{i}\right|
$$

(1.21)

$$
W=\frac{1}{m} \max _{i}\left|S_{i}-E S_{i}\right|
$$

and

$$
\begin{align*}
& \mathrm{V}^{+}=\frac{1}{\mathrm{n}} \max _{i}\left(E R_{i}-R_{i}\right) \\
& \mathrm{W}^{+}=\frac{1}{m} \max _{i}\left(S_{i}-E S_{i}\right) \quad . \tag{1.12}
\end{align*}
$$

If we were interested in rank test for the hypothesis H_{1} and H_{2} the test statistics (1.11) and (1.12) would appear to have a more intuitive appeal than the statistics (1.7) and (1.8) whichseem somewhat artificial. The three sets of statistics will be composed in Sections 2 and 3.

2. THE CASE $m=n$.

We shall compare the statistic $\mathrm{V}^{+}(1.12)$ which now becomes (2.1) $V^{+}=\frac{1}{n} \max _{i}\left(2 i-\frac{i}{n+1}-R_{i}\right)$
and the statistic D^{+}in the form
(2.2) $D^{+}=\frac{7}{n} \max _{i}\left(2 i-R_{i}\right)$.

Suppose that $2 i-R_{i}$ has a unique maximum for $i=k$, such that
(2.3) $2 i-R_{i}<2 k-R_{k}$ when $i \neq k$.

Then
(2.4) $2 i-R_{i}<2 k-R_{k}-\frac{k-i}{n+1}$ when $i \neq k$
since the difference of the lefthand side and righthand side of (2.3) must be ≥ 1 while $\left|\frac{k-i}{n+1}\right|<1$. But (2.4) is equivalent to

$$
2 i-\frac{i}{n+1}-R_{i}<2 k-\frac{k}{n+1}-R_{k} \text { when } i \neq k .
$$

Hence $\quad 2 i-\frac{i}{n+l}-R_{i}$ has a unique maximum for $i=k$. It follows
that

$$
\mathrm{V}^{+}=\mathrm{D}^{+}-\frac{\mathrm{k}}{\mathrm{n}(\mathrm{n}+1)}
$$

Suppose now that the maximum of $2 i-R_{i}$ is not unique, and let

$$
n D^{+}=2 k_{j}-R_{k_{j}} \quad j=1, \ldots, p
$$

Consider

$$
2 i-\frac{i}{n+1}-R_{i}
$$

It is
seen as above that the maximum value must take place for some $k_{j}, j=1, \ldots, p$. Since $2 k_{j}-R_{k_{j}}$ is constant, the maximum is attained when k_{j} is smallest. Hence

$$
n V^{+}=n D^{+}-\frac{1}{n+1} \min _{j} k_{j}
$$

Let I_{1} be the smallest i such that $n D^{+}=2 i-R_{i}$. Then we have promed that
(2.5) $\quad \mathrm{nV}^{+}=\mathrm{nD}^{+}-\frac{1}{\mathrm{n}+1} \quad I_{1}$
or
(2.6) $\quad n D^{+}=n V^{+}+\frac{1}{n+1} \quad I_{1}$.

Since nD^{+}is an integer (see (2.2)), and $\frac{1}{\left.n^{+}\right]} I_{1}|<|$ it follows that (2.7) $\quad{ }_{n D^{+}}=\left[\mathrm{nV}^{+}\right]+1$
where $\left[\mathrm{nV}^{+}\right]$is the largest integer less or equal to nV^{+}. Equation (2.7) gives D^{+}as a function of $\mathrm{V}^{+} . \mathrm{V}^{+}$is a "finer" statistic than D^{+}, since V^{+}may have several values for each value of D^{+}. In fact V^{+}is equivalent to the pair of statistics $\left(D^{+}, I_{1}\right), V^{+}$is given as a function of D^{+}and I_{1} in equation (2.5) . Conversely if V^{+}is given, D^{+}is found from (2.7) Combining (2.5) and (2.7) we then find

$$
I_{1}=n+1-(n+1)\left(n V^{+}-\left[n V^{+}\right]\right)
$$

The distribution of V^{+}when $F=G$ may be found from a result proved by Vincze (1957). In theorem 1 of his paper is given the distribution of D^{+}and I, where $I=R_{I_{1}}$. We heve $I_{1}=\frac{1}{2}\left(I+n D^{+}\right)$.

Hence

$$
\begin{aligned}
& P\left(n D^{+}=k, I=r\right)=P\left(n D^{+}=k, I_{1}=s\right) \\
& =P\left(n V^{+}=k-\frac{s}{n+I}\right)
\end{aligned}
$$

where $s=\frac{1}{2}(r+k)$. From Vincze's result we find that the above is equal to

$$
\frac{1}{(2 s-1)(2 n-2 s+2)} \frac{\binom{2 s}{s}\binom{2 n-2 s}{n-2}}{\binom{2 n}{n}} \quad \begin{align*}
& k=0 \tag{2.8}\\
& s=1, \ldots, n
\end{align*}
$$

8) $k(k+1)$		$\mathrm{k}=1, \ldots, \mathrm{n}$
(2s-k) (2n-2s+k+1.)	$\binom{2 n}{n}$	$\mathrm{s}=\mathrm{k}, \ldots, \mathrm{n}$
Since	statistic V^{+}	han D^{+}we ca

When comparing D^{+}and W^{+}we use the form

$$
D^{+}=\frac{1}{n} \max \left[\max _{i}(S i-2 i+1), 0\right]
$$

Then 0 terms here will introduce some technical difficulty. We therefore introduce the statistic

$$
D_{0}^{+}=\frac{1}{n} \max (S i-2 i+1)
$$

We have

$$
D_{0}^{+}=D^{+} \text {when } D^{+}>0 .
$$

Since we reject the hypothesis H_{1} for large values of D^{+}and since $P\left(D^{+}>0\right)=1-\frac{1}{n+1}$ (see e.g. Hodges (1957) p.473) under the hypothesis, it follows that when testing H_{1} we can use $D_{0}{ }^{+}$instead of D^{+}.

$$
\begin{aligned}
& \text { Analogous to (2.5) it is found that } \\
& n W^{+}=n D_{0}^{+}-1+\frac{1}{n+1} I_{2}
\end{aligned}
$$

where I_{2} is the maximum (not the minimum as in (2.5)) of the i's such that $S_{i}-2 i+1=n D_{0}^{+}$. It is also found that W^{+}is equivalent to the pair $\left(D_{0}{ }^{+}, I_{2}\right.$

The statistics V^{+}and W^{+}are not equivalent as shown by the following example. Let $n=4$, tia sonsider two cases. In both cases $R_{1}=1$, $R_{3}=4, R_{4}=7, S_{2}=5, B_{3}=6, S_{4}=8$. In the first case $R_{2}=2, S_{1}=3$ while in the second case $R_{2}=3, S_{1}=2$. In both cases $W^{+}=\frac{7}{20}$, while V^{+}is equal to $\frac{8}{20}$ emir $\frac{7}{20}$ respectively

By rearms, of symmetry ire have that
$P\left(n D^{+}=k, I_{2}=n-s+1\right)=P\left(n W^{+}=k+\frac{s}{n+1}\right)$ is equal to $P\left(n D^{+}=k, I_{1}=s\right)$ which is given by (2.8).

Finally compare the statistic

$$
v=\frac{1}{n} \max \left|R_{i}-2_{i}+\frac{i}{n+1}\right|
$$

and D in the form

$$
\begin{aligned}
D & =\frac{1}{n} \max _{i}\left[\max \left(R_{i}-2 i+1,2 i-R_{i}\right)\right] \\
& =\frac{1}{n} \max \left[\max _{i}\left(R_{i}-2 i+1\right), \max _{i}\left(2 i-R_{i}\right)\right] .
\end{aligned}
$$

Introduce

$$
D_{0}^{-}=\frac{1}{n} \max _{i}\left(R_{i}-2 i+1\right)
$$

and

$$
V^{-}=\frac{1}{n} \max _{i}\left(R_{i}-2 i+\frac{i}{n+1}\right)
$$

Then
(2.9) $D=\max \left[D_{0}{ }^{-}, D^{+}\right]$
and it is found that

$$
\mathrm{nD}^{+}=\mathrm{nV}^{+}+\frac{1}{\mathrm{n}+1} \mathrm{I}_{3}
$$

(2.10)

$$
n D_{0}^{-}=n V^{-}+1-\frac{1}{n+1} I_{4}
$$

where I_{3} is the smallest i mon that $n D^{+}=2 i-R_{i}$ and I_{4} the largest i Sen that $n D_{0}^{-}=R_{i}$. 2 i +2

Combinite (2.9) Ent (2.10)
$\left.D=\max \left[V^{-}+\frac{1}{\left(1-\frac{1}{n+1}\right.} I_{3}\right), V^{+}+\frac{1}{n(n+1)} I_{3}\right]$.
Since $V^{-} \leq V$ and $V^{+} \leq V$ with a.t least, one equality, we get $\frac{1}{n(n+1)} \min \left(n+1-I_{4}, I_{3} \vdots \leq \quad D-V \leq \frac{1}{n(n+1)} \max \left(n+1-I_{4}, I_{3}\right)\right.$.

From the above it is seen that

$$
\mathrm{nD}=[\mathrm{nV}]+1
$$

In a similar way it is shown that

$$
\frac{1}{n(n+1)} \min \left(I_{5}, n+1-I_{6}\right) \leq D-V \leq \frac{1}{n(n+1)} \max \left(I_{5}, n+1-I_{6}\right)
$$

where I_{5} is the smallest i such that $2 i-S_{i}=n D$, and I_{6} the largest i such that $S_{i}-2 i+1=n D$.

3. THE CASE m $\neq n$.

In the case $m \neq n$ there seems to be no simple functional selation between the variables $\mathrm{D}^{+}(\mathrm{D})$ and $\mathrm{V}^{+}(\mathrm{V})$ or $\mathrm{W}^{+}(\mathrm{W})$. This is demonstrated by the following example. Let $m=2$ and $n=12$. Then $12 D^{+}=\max$ $\left(7 i-R_{i}\right)$ and $12 V^{+}=\max _{i}\left(5 i-R_{i}\right)$. Let J_{1} be the set of $i ' s$ such that $7 i-R_{i}=12 D^{+}$, and let J_{2} be the set of $i ' s$ such that $5 i-R_{i}=12 V^{+}$. Consider the following table.

$\left(R_{1}, R_{2}\right)$	I_{1}	$12 D^{+}$	I_{2}	$12 V^{+}$
$(1,9)$	1	6	1	4
$(1,8)$	$\{1,2\}$	6	1	4
$(1,7)$	2	7	1	4
$(2,7)$	2	7	$\{1,2\}$	3
$(3,7)$	2	7	2	3

It is seen from the above table that we in general have no relationship of the form given in Section 3. I_{1} does not determine I_{2}, and the value of V^{+}does not determine D^{+}uniquely. Neither does one of the pair $\left(I_{1}, D^{+}\right)$and $\left(I_{2}, V^{+}\right)$determine any of the other two variables.

4. THE RENYI STATISTIC.

We shall consider the statistic
(4.1) $\quad R_{a}^{+}=\left(\frac{m n}{m+n}\right)^{\frac{1}{2}} \max \frac{(m+n)\left[F_{m}(t)-G_{n}(t)\right]}{m F_{m}(t)+n G_{n}(t)}$
where maximum is taken over all t such that
(4.2) $\quad(m+n)^{-1}\left(m F_{m}(t)+n F_{n}(t)\right) \geq a$.

The above statistic was introduced by Rényi (1953). The hypothesis H_{1} is rejected for large values of $\mathrm{R}_{\mathrm{a}}{ }^{+}$. A similar statistic for the hypothesis H_{2} can be constructed by taking absolute values of the weighted differences after max in (4.1). The maximum in (4.1) must occur at some point $X_{(i)}$ og $Y_{(j)}$. We have
$m F_{m}\left(X_{(i)}\right)+n G_{n}\left(X_{(i)}\right)=R_{i}$
(4.3)

$$
m F_{m}(Y(j))+n G_{n}(Y(j))=S_{j}
$$

and

$$
F_{m}\left(X_{(i)}\right)-G_{n}\left(X_{(i)}\right)=\frac{i}{m}-\frac{R_{i}-i}{n}
$$

$$
\begin{equation*}
F_{m}\left(Y(j)-G_{n}\left(Y_{(j)}\right)=\frac{S-j}{m}-\frac{j}{n} .\right. \tag{4.4}
\end{equation*}
$$

Hence (4.1) can be written

By (4.3) the condition (4.2) is

$$
R_{i} \geq(m+n) a \text { and } S j \geq(m+n) a
$$

The naximum must take place at same point $X_{(i)}$ with the exception of the of the case where the smallest S_{j}, say S_{o}, greater than $(m+n)_{a}$ is emaller than the smallest R_{i} greater than $(m+n) a$, and the raximum take place at S_{0}. In that case $S_{0}=(m+n) a$ (if $(m+n) a$ is an integer, otherwise $S_{0}=$ $[(m+n) a]+1)$, ana
$(4.6) R_{a}^{+}=\left(\frac{m n}{m+n}\right)^{\frac{1}{2}} \frac{(m+n) \cdot\left(\frac{I}{m}-\frac{(m+n) a-I}{n}\right)}{(m+n) a}$
where I is the index of the largest $R_{i}<(m+n) a$.

It follows that

$$
R_{a}^{+}=\left(\frac{m n}{m+n}\right)^{\frac{1}{2}}\left[\max _{R_{i} \geq(m+n)_{a}} \frac{(m+n) \cdot\left(\frac{I}{m}+\frac{i}{n}-\frac{R_{i}}{n}\right)}{R_{i}}, \frac{\frac{I}{m}+\frac{I}{n}-\frac{m+n}{n} a}{a}\right]
$$

If we neglect the possibility (4.6) we get the statistic

$$
\begin{aligned}
& \left(\frac{m(m+n)}{n}\right)^{\frac{1}{2}} \max \\
R_{i} \geq(m+n) a & \frac{\left(\frac{m+n}{m} i-R_{i}\right)}{R_{i}} \\
= & \frac{\left(m(m+n)^{\frac{1}{2}}\right.}{n} \max _{i} \geq(m+n) a
\end{aligned} \quad \frac{\left(\frac{m}{m+1)^{i}-\left(R_{i}-E R_{i}\right) y}\right.}{R_{i}} . \quad . \quad .
$$

This should be closely related to

$$
\max _{R_{i} \geq(m+n) a} \frac{E R_{i}-R_{i}}{R_{i}}
$$

which in turn suggest the use of the statistic

$$
\max _{R_{i} \geq(m+n) a} \frac{\mathrm{ER}_{\mathbf{i}}-R_{i}}{\mathrm{ER}_{\mathrm{i}}}
$$

5. THECRAMER-VONMISESTEST.

The test statistic is

$$
M=\frac{m n}{m+n} \int_{-\infty}^{\infty}\left(F_{m}(t)-G_{n}(t)\right)^{2} d-\frac{\left.F_{m}(t)+G_{n}(t)\right)}{m+n} .
$$

By (4.4) this can be written
(5.1) $\quad M=\frac{m}{n(m+n)^{2}}\left(\sum_{i=1}^{m}\left(R_{i}-\frac{m+n}{m} i\right)^{2}+\frac{n^{2}}{m} \sum_{j=1}^{m}\left(S_{j}=\frac{m+n}{n} j\right)^{2}\right) .$.

Introduce

$$
Q=\sum_{j=1}^{n}\left(S_{j}-\frac{m+n}{n} j\right)^{2}
$$

Since the ranks S_{j} is uniquely determined when the ranks R_{i} are given, we can express Q in terms of the R_{i}. We find

$$
\begin{aligned}
Q & =\sum_{k=1}^{m} \sum_{j=R_{k}+1}^{R_{k+1}-1}\left(j-(j-k) \frac{m-13-}{n}\right)^{2} \\
& +\sum_{j=0}^{R_{1}-1}\left(j-j \frac{m+n}{n}\right)^{2}+\sum_{j+n}^{m+n}+1
\end{aligned}
$$

where the last sum is 0 if $R_{m}=m+n$. After some long and tedious computations we find-

$$
\begin{aligned}
Q & =\frac{m}{n} \sum_{i=1}^{m}\left(R_{i}-i \frac{m+n}{m}\right)^{2} \\
& +\frac{m+n}{n} \sum_{i=1}^{m}\left(R_{i}-\frac{1}{6} \frac{m+n}{n}\left(3 m^{2}-3 m n-2 m-n\right)\right)^{2}
\end{aligned}
$$

Combining this with (5.1) it is found after some more computations

$$
\begin{equation*}
M=\frac{1}{m(m+n)} \sum_{i=1}^{m}\left(R_{i}-i \frac{m+n}{m}+\frac{1}{2} \frac{n}{m}\right)^{2}+\frac{2 m+n}{12 m(m+n)} \tag{5.2}
\end{equation*}
$$

This can also be written

$$
M=\frac{1}{m(m+n)} \sum_{i=1}^{m}\left(R_{i}-E R_{i}-\frac{1}{m(m+1)} i+\frac{1}{2} \frac{n}{m}\right)^{2}+\frac{2 m+n}{12 m(m+n)} .
$$

Hence the Cramér - von Mises statistic M is closely related to the astatistic

$$
\sum_{i=1}^{m}\left(R_{i}-E R_{i}\right)^{2}
$$

REFERENCES

H O D GES , J. L. jr. (1957). The significance probability of the Smirnov two-sample test. Arkiv för Matematik, 3, 469-486.

RENY I, A. (1953). On the theory of order statistics. Acta. math. Acad. sci. hung. 4, 191-231.

V I N C Z E, I. (1957). Einige zweidimensionale Verteilungs- und Grenzverteilungssätze in der Theorie der geordneten Stichproben I. Magyar Tud. Akad. Mat. Kutató. Int. Közleményei 2, 183-209.

