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1. INTRODUCTION.

Consider the e<sample model, in which the observations are

= é = *e .
(1.1) X, S; * Ui o 1,200y
= 1,2,400,C,

e
[

vhere the variables U 5o Bre independently distributed with cumulative

distribution function F. Let
(1.2) Yij = med (xi “ " xj p)

be the median of the n, nj differences Xi‘Q( - X.i ‘3 (X =l,2,...,ni, ﬁ= 1,2,
ooy ). It has been shown by the Hodges and Lehmann Ezj that the estimate

Yij of g’i - g,j has more robust efficiency than the standard estimate

Tij = Xi. - Xj. vhere Xi. = E Xia(/ n, .

The estimates Yi.j do not satisfy the linear relations satisfied

by the differences they estimate. To remedy this, the raw estimates Yij were

N AN
by Lehmann E3_I replaced by adjusted estimates zij of the form gi - (Sj .

This was done by minimizing the sum of squares

giving (see [2 :‘_)

L}
=
1
<

(1.4) Zij

vhere Yi. = (1/e) & Y ..

i3 and where Yii is defined to be zero for all i.

The purpose of this note is to argue that in the sum of squares
(1.3) there should be used weights according to the number of observations

on which the different Yij are basged.



For purpose o6f reference we state a theorem of Lehmann. Let
the sample sizes n, tend to infinity in such a way that n. = g i N(N =§ ni).

Then we have the following theorem (Theorem 2 of E3J ).

THEOREM 1.

(i) The joint distribution of (V_, V2""’Vc—1) where
. .
= 2 - _t . . M
Vi N (Yic (%i S ) is asymptotically normal with zero
mean and covariance matrix
Var (v,) = (1/12)(1/¢ , + 1/C ) / ([£P(x)ax)®
i S i g c J

Cov(v; ,V;) = (1/12 ge)/( f £2(x)ax)? .

Here the density f of F is assumed to satisfy the regularity conditions

of Lemma 3/a) of [l] .

(ii) PFer any i and

where ~’ indicates that the difference of the two sides tends to zero in

probability.

2. WEIGTED ESTIMATES.

Define the 3¢ (e-1)- component vector Y' = E Y. oseens
12,713
Yc 1 c] . Denote the covariance matrix of Y by A. Suppose that E Yij
=ts
=§\i - g j (conditions under which this holds or approximately holds are
. . N T . - . . A
given in {21) for all i and Jj . To estimate the gifferences G —g.
I, 1 Jd
can then be treated as an ordinary regression problem. The minimum variance

unbiased linear estimatesof the §i _ﬁj are obtained by minimizing



(2.1) Zaij’kl(Yij '(gi" gj))(Ykl- (5 = 510

1

13Kl 4enote the elements of AL,

where a
o3 1 D = - > ]
Since from Theorem 1 asymptotically E Yi,j g’i ;5 1t
seems reasonable to minimize (2.1 ) even if the Yij are not exactly
unbiased estimates of éi - é\j for finite N.
Unfortunately the elements of A are unknown. But suppose

we use an arbitrary matrix W with elements W 15,11 such that we shall
?

minimize
A Q .
(2.2) T o0 ( - (5, - )y, - (5 - &.)).

Let Y*ij dencte the minimizing

U
value of j‘i - 5\3 in (2.2). We shall study the asymptotic distribution
of the Yxij' We shall allow the matrix W to vary with the number of
observations, and use the notation W(nl, Nyseees nc) = WN. Let the ni

tend to infinity as in Theorem 1.

THEOREM 2.

For any sequence {WN }of matrices of rank =2 c-l1 converging

to a matrix W = of rank ®* c-1, asymptoticelly for sany i and
Nw 7 (v - v, .)~0
ij ij
PROOF. To get a full rank regression problem we introduce the parameters

i = 1,2,-..,0—1.

(2.3) o, = §‘i -

\Jvw

c

Then
(2.4) 8. -%J. =9, -fz

Let B dencte the design matrix such that (2.2) can be written




R
(2.5) (Y - Bo)! Wy (Y - B'9)
vhere @' = (0., 6,,...,08, ;)

The value of © minimizing (2.5)is

A t -1 -y
QN = (B wN B) ™ B wN Y.

Define ¥, by Y = (ch,..., Yc—l,c)'

By Theorem 1(i)

1
(2.6) N° (Y - B Yl)'\.' 0.

We have

1 ' 1

20 - = ', -1 "o -lv ] 2 - ' -1 ]
(2.7) (G - Y,) [(B 1 B) B -(B W B) B | wE(y - BY,) + (B'W B)TRN_

B'W N% (y - BY,).

1
By (2.6)and the continuity of the second functicn &nd the uniform convergence

in any closed interval of the first function on the right hand side of (2.7)

it follows thai;. /’\

(o, - BY,) ~o.

Hence N%(Y;Ec - Yic)'v 0 for any i . By Theorem 1(ii) and the fact that
Yzj = Y;isc - YZ.EC it follows that I\I%(]!;..E:j - Yij J~»0 for any i and j. The
theorem is proved.

It is seen from the above theorem that the asymptOtic distribution
of the estimates does not depend on the matrices WN. Hence the asymptocic
distribution will be the same as for the best linear estimates.

(The solution of (2.1)). In particular this is true for the estimates Zi,j
given by Lehmann.

But , of course, the best unbiased linear estimates will give better

estimates than the Zi,j for finite N. Since A 1is unknown we cannot find the
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former. By Theorem 1(i) the asymptotic value of A is known, but it is
singular and cannot be used in (2.1).

We now propose to use the asymptotic variances of the Yi.

J
as weights i.e. we want to minimize

(2.8) q=5_ (1/n; + :I./n‘_i )—l(Yij- ( éi - gj))a with respect to éi - fj

We introduce (2.3) and (2.4) in (2.8). Af4EY derivation of (2.8) with
respect to the Gi it is found that the minimizing values are given by the

solutions of the equations

A n, n, n,
i ¥ n o : n. +n n. +n.
& ifepe Vi ok i i

u = l,2,ooo,c"lo

It does not seem easy to find an explicit algebraic solution

of (2.9), though for each specific set of the n, we can solve (2.9), ir

necessary with the aid of an electronic computer.
It follows from Theorem 2 that the asymptotic distribution of

A A, . . . . .
the Oi - ©. 1s equal to the asymptotic distribution of the estimates

J
Zi,j and hence the same is true regarding asymptotic efficiencies.

We now proceed to prove that in some respects the estimates
~ A\

-0 j is better than the Zi" Let D be o subset of the integers

i
1,2,...,c. Suppose that n, =3 gi N as N —= 00 when i € D while ni/l\! 30
when 1 &€ D. We shall study the asymptotic distribution of the estimates |
in this case, Without loss of generality we may assume D = {1,2,...,'0} for

some b < c.

THEOREM 3.

Suppese that N-aoo such that n, -» i N when i=1,2,...,b
e e ke AN
S ?i = 1). Then the asymptotic distribution ofthe 8 - ej of (2.9) for

b is equal to the asymptotic distribution of the Yij in Theorem 1

when ¢ 1s replaced by b.



PR OOF. Q can be written

_ -1 £ 1y2
Q= > (/n; +1/n )7y £ i'gj))
max(i,j)%b
(2.10)
D N CV EWAIC T I e CAREIC AR AP D ok

max(i aj ))b
By assumption the last expression on the right hand side of (2.lo) tends

to zero when N->oo. Hence
Q ~ (1/n01/n )7y, (£~ £0)°
max(1,j)%b J J J
which is of the form (2.8) with ¢ replaced by b. The theorem now easily
follows since the same results holds for the Yij with 1i,] £y as ror the
o . . é
Yij with 1,3 Ce

In [3] is given an example which shows that the estimate

Z,, ©of fl - g o is not consistent when n, and n, tends to infinlity
unless also n, tends to infinity (c=3). Tueorem 3 proves that the new
. TN . .. .
estimates Oi - ©. do not have this definciency. If for the same 1 and
J
AN .
j n. and n. tends to infinity then Oi- Oj is a consistent estimate

1 J
of %i —gs.

3. AN ALTERNATIVE ESTIMATE.

Since the estimates o, -~ Oj of (2.9) is not easily computed
unless one haveaecess to an electronic computor, we shall give alternative
simpler estimates which also are weighted estimates.

We shall minimize

2
(3.1) 3T mymy (v, -(§; - §0°.
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By differentiation it is easily found that the values of §1 - % j

minimizing (3.1) is

=v— = :-.Q
(3.2) Wis =2 nq{(yq Yjp() Y- X

. . . 3 o= (S -1
where we have lntrodused the weighted differences Yi (:. n o« ) E Nex

Y.

i Compare (1.h4).

It follows from Theorem 2 that the estimates W have the

same asymptotic properties as the ZIJ and Ol - ’9':] Fur‘chermore it is

easily seen that Theorem 3 holds for the wij.

1 2 c
™~ ~~
When ny =mn, =... =n, both 8, -Oj za.ndwij reduce to
Zij' Further we have
THEOREM L, If n, =n.=...= n =n
1 2 c

then the estimates Zi' are the minimum variance unbiased linear estimates.

PROOF . Define 62 and a by

62 Var Y

12

(4.1)
2

aé Cov (Yl ).

20 Y13

Note that both .62 and a depend upon n and F, By symmetwy we have
2

Var Y:LJ =6 id j.
(4.2) Cov (Yla,Ykl) = 0 \ id=k,i%l, jdk, jF1l.
Cov (Y, ,Yll) = a62 iF L, i$d, 1%l
o (i) 7 L i e
137 gL 2 oY .
Cov (Y N )=-aé kd=j,igd=j, kg1

ij
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Let the covariance matrix of Y given by (L4.2) be G(a)éa.
It can be verified that the inverse of G(a) is (1+2(c--.’£’)<3.za,)"l G(a)

where d= - a.(l+(c-—h)a.)‘l . Hence

(2.1) 1is proportional to
J-1

% =5 (v, - (&; - §,1°

1=1

+24d 3y gFl' fyik (

7 T=1 p=i+l

A A
Li - (81 =300 Gy - (8, - ¢y

J-1 J-1 4
*2a T 0T 3 (4 (5 -5 N (g - (55 -5,
i i=l  hel

The part of Ql involving jgc{ can be written

ST (8, 8
te g 3ol - (5 ETRUTREC P 7R)

j=1 \
r2dS” S (v, -8 Ny - (5 -5 .

= 2 <1+a(c-1))(cﬁ( -5:5\;'”' 2_Yei)
1

AN
Hence the minimizing values i satisfy

o le—p |, -1
;0‘(: c- 2_4;4'0 ;Yﬁii

and hence by (1.4)

A -1 -1 —
. = - = 3 - >
e e



5. An example.

In this section the estimates are compared on an example
taken from Scheffé:" The Analysis of Variance". p. 140. It is a two-way
layout with factors genotype of the foster mother and that of the litter.
The observations are weights(average) of the litter. Let Al’ A2, A3, Ah and
Bl’

litter respectively. The observatoons are:

B2, B3, Bh denote the different genotypes of the foster mother and the

Table 1.
(/”‘———-‘*\‘~___fl___—e’"——‘h—_h\\\\ (""*_~*“‘“\~\‘_f3~,,,—”"ﬁa——~\\\\
A A, A3 A A A, A3 A,
61.5 55.0 52.5 L2.0 60.3 50.8 56.5 51.3
68.2 k2.0 61.8 54.0 51.7 6h.7 59.0 Lo.5
64,0 60.2 49,5 61.0 49.3 61.7 47,2
65.0 52.7 48,2 48,0 64.0 53 0
59.7 39.6 62.0
B3 | B,

37.0  56.3 39.7  50.0 50.0  59.5 k5.2 44,8
36.3 69.8 46.0 43.8 57.4 52.8 57.0 215
68.0 67.0 61.3 54,5 54,0 56.0 61.4 53.0

55.3 k7.0 k2.0

55.7 sk.0

Let § i3 denote the expectation of the variables from

- - - A
(Ai, Bj)' In Table 2 are given the estimates of the dlfferencesj;ij—ﬁahh

obtained by the different methods.




Classical

Classical
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Table 2 .
§11- SUk go1buh $31- BUk 3h1- 3Mh $12- Sk Soo-figd3e-ghl Sha- Lk
Y .2 . 3.5 6.1 0.0 3.9 lo.7 5.0 - 2.2
yA 1k.35 3.86 L.65 0.1%4 3.1 12,0 4.82 - 2.87
W 14.29 3.88  L.57 0.06 3.01 11.95  4.83 - 2.88
] 14,31 3.87 L.60 0.09 3.07 11.98 4.82 - 2.89
1k.62 3.34 5.07 = o.lo 3.27  11.58 4.87 - 3.16
513- Shb £23- GUb §33- Shb gh3- Skl S1h-Ghh S2L-Ek g3h-EUL
Y -7.8 15.5 2.7 0.5 5.0 6.5 5.5
Z - T.50 15.48 3.11 0.31 5.19 6.68 5.Th
W - T.84  15.51 3.12 0.33 5.21 6.68 5.73
] - 7.66 15.49 3.12 0.31 5.21 6.67 5.7
- 1.96 15.31 2.5k4 0.37 5.29 7.0b 5.47

From Table 2 the estimates of any gij - .gkl can be

found. It is seen that in this example the estimates Z, W and © do not
differ much. The estimates © tend to lie betueen Z and W. 1In the
example the sample sizes vary from 2 to 6 while c=16. The results seem to
indicate that for such a small variation of sample sizes relative to the

value of ¢, the weighted estimates will not much change the estimates Z.

To see the effect for smaller c when the variation from 2 to 6 of
sample sizes seems more important, we select the factor combinations (Al,Bl),
(Ah,Bl) and (Ah,Bz). Then we have c¢=3 and sample sizes 6,6 and 2. The

estimates are given in Table 3.
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Table 3.

511 -8k g1 -3ke SU1 - & b2
Y 15.8 18,05 3.1
Z 15.52 18.3 2,78
W 15.66 18.L0 2.7k
e 15.61 18.38 2.77
Classical 1k.72 17.78 3.06

. . =
It 1s seen that the estimate of 5711-\§_u1 based on W and ©
are closer to the original estimate Y than the estimate based on Z.

This is as should be expected since there are 6 + 6 observations behind the

hY

estimate of the difference :%ll- SINE while there are 6 + 2 observations

behind the other estimates.
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