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1. Introduction.

"FOllOW*Up studies" are frequently used wheﬁ the
effect of a certain treatment (B) for a spesific illness
(A) 1is examined. L patients, suffering from A, are
treated with B and are thereafter observed until a certain
fixed date or for a fixed period of time. At the end of the
observation period the experiment is considered completed.
Each patient can then be classified as being in one of the
following states: i) still suffering from A, ii) recovered
from A, iii) dead from A, 1iv) lost for other reasons.

Statistical conclusions in "follow-up studies" of
this kind, usually have been based orly on the relative

number of patients in the different states at the end of the

period. The length of time each patient has spent in the
different states during the observation period has not been
taken into account. Important information are thereby not
utilized.

In this ~paper we shall discuss how different
information concerning transfers of states during the
observation period are going to influence on estimation in a
"follow-up study". The work is based on papers by E. Fix and
J. Neyman, 1961 [2] and E. Sverdrup, 1966 [3]. In his paper
Sverdrup considers a model utilizing the length of time each
patient stays in the different states during the observation

period. This model will be denoted "complete design".




It is, however, sometimes difficult to observe exactly
when a patient changes states, particularly to notice

exactly when a patient changes from sick to healthy, or vice

versa Hence the complete design is frequently not applicable.
In the following we shall try to construct stochastic models
for "follow-up studies", models that in different

situations utilize as much as possible of the information

at hand. These models are then compared to see what can be
gainec by introducing specified additional information in

the analysis.




2. Notation.

The following notationh will be used throughout the
paper.
Every patient, taking part in the study, belongs at

any time to one of the four states:

;¢ suffering from A (sick),

T,: recovered from A (healthy),

(2.1) T2 dead from A (dead),
T,: lost for other reasons (lost).

In principle it is possible to split the patients in
more states, but we shall only consider these four. We shall
also postulate that the only possible transfers are %he

following:

T1 3 T2, from sick to healthy,
o 2> Ty from healthy to sick,
T1 > T3, from sick to dead,

> 'T4, from healthy to lost.

For a sick person x vyears of age we define the

parameters

e

G

I

force of mortality (concerns transfer from
force of recovering (concerns transfer from

T, - T,)



a(x =,/&+G; = force of decrement from illness.
Thus A4 dx 1is the probability that a sick person,
x years old, shall die (from A) before age x+dx, and
(Y;dx is the probability that he shall recover (from A)
before age x+dx.
For a healthy person x years old, we similarly
introduce:

)

X

F&
A

I

force of loss (concerns transfer from T2 -> T4)

force of sickness (concerns transfer from

T, » T1)

i

Y o+

- f& = force of decrement from T2-

Clearly, the forces of transfers usually depend on the
age of the patients and of the duration of the illness. In
the cases where a patient has several transfers from one
state to another, it may also depend on his number of
transfers. In this paper we are going to study the particular
case where all forces of transfers are constants, independént
of age x as well as of duration of stay in the different
states. This assumption is commonly made in mortality
statistics. The model may still be quite realistic if the
group of patients is relatively homogenous with regard to
age and state of illness. Furthermore the usual assumptions
made in connection with birth and death processes ([1] ch.17)
about independence etc., are postulated.

The probability that a person who at a certain time

t vyears later will be in state T., is denoted

1S 1n j

i?



PrYs 1= 1,25 3= 1,2,3,4.

These probabilities are determiried ds functions of /X,U,FD
and v  are given in the Appendix (A.1).

A patient will be allowed to have more than one
transfer from one state to another during the observation
period. Hence we need the probabilities that a person who

at a certain time is in T t years later will be in Tj’

i?
having had n; transfers from 'ﬁ} to T2. These

probabilities are denoted

(2.5) p M 1= 1,2, 3= 1,2,3,45 Ny = 152,
These probabilities are also determined as functions of
MsG; 0 and Y and are given in the Appendix (A.2).
Attention is restricted to the case where all the
patients (L) are suffering from A (are in T,) when
entering the study. For person no. k, k = 1,2,...,L the
following notation is used (all quantites referring to the

total observation-period):

=
1

the number of transfers from T, = T3
(dying from A),
(2.6) SK = the number of transfers from T, -> T2
(sick to healthy),
R, == the number of transfers from T, -> T,

K.
(healthy to sick),



N, = the number of transfers from I, > T,
(healthy to lost),

V, = the total time the patient stays in T, (sick),
W, = the total time the patient stays in T, (healthy),
UK =thetime from entrance to death if the patient dies

from A without being recovered.

M, and NK can of course only take on the values O or 1.

K.
Furthermore we introduce the following notation:

(2.7) \ykj-ng = 1 if patient np. k at the end of the
observation period is in Tj, having had

nj transfers from T, to Tse

0 otherwise.

L S
Hence LJ.-nj = S y;J'nJ is the number of patients, being
k=1
in T. at the end of the observation period, having had

j
nj transfers from T1 to T2.



3. Designs with constant observation period.

In this section we shall study the case where each
patient is observed a fixed time T. With the assumptions
made in Chapter 2, we may handle the material as if all
patients enter at time €= 0 and were observed a fixed
time T, which without loss of generality is taken to be 1.

Different designs are coneeivable. We shall consider
four of them. In Chapter 4 the corresponding estimates for

M5 05 F’ and V will be discussed.

3.7. Design I. Reduced design based on the total number of

transfers between the different states.

If a person during the observation-time T 1is allowed
to have more than one transfer from one state to another,
the relative frequencies of patients in the different states
at the end of the experiment will not yield sufficient
information for estimation of the forces A,{, F>and V. We
shall assume that the total number of transfers from one

state to another is determined and base the estimates on:

"

Sh,

total number of transfers from T1 > T3
(dead from A),

total number of transfers from T1 > T2

>S5,

(3.1) (sick to healthy),

2R

il

total number of transfers from T2 > T1

(healthy to sick),




(3.1) g_Nk = total number of transfers from T2 = T4
(healthy to lost).

In the Appendix (A.3) the expectations of M,S,R,N

are expressed as functions of /L,G}F> and V.

E(M) = '1('1%6" sV), E(S) = - R% R
(5.2) 1 (s Gop PolpGop
E(R) = 1 lus€rpsv) s E(N) = Y2 (kGspsP) -

If we replace the left hand sides of (3.2) with the
P Mk PN Sk 2 Rk ZNK

T T and I the

b
~ . ~ :
solutions of (3.3)\u.r«t..)a,G}F> and Y can be used as

corresponding estimates T

estimates of /&,G}F) and Y .

| C{?1( aG',P,V) =T 0 %(}4,6‘,‘0,\/) =T
3.3) Lo~ LR ~os o N
( Ll/1( a@’P,V) = "fls ’ q’z(ﬂ,G’Pav) = LK .

Ihis method is proposed by Sverdrup [3]. The estimates
are asymptotically unbiased. To be able to discuss their
relative goodness we need their asymptotic variances. These
can be derived from the covarians matrix for M,S,R,N (A.4).

We shall return to this question in Chapter 4.

3.2. Design II. Reduced design based on number of patients

with specific number of transfers.

If we observe the number of patients in the different



states at the end of the observationperiod and in addition
how many transfers each of them has had from T, to T2,
estimates for/M,,G}FD and V can be constructed based on

the statistics:

L =3 \/J'néi = number of patients that at th
jeong = K = number of patients that a e
end of the observation period are in, state

(3.4)

Tj, having had nj transfers from T, to

Iy

(»&J'nj is defined in (2.7) and is either 0O or 1.)

_ 1.0 1.1 1en 2.1 4.n
Ve = M Y ,...,»ﬁ 1;y; ,...,»& 4), K=1,2,+.4,L,

are now considered as L realizations of the stochastic vector
1.0 1.1 Ten, 2.1 4.n,

(\/ ,\/ ,...,»/ A ,...fy ) with one and only one

component 1 and the others O. The "likelihood-function"

for these L observations is given by

11.0 Ly o 11.1 L, .
(p ) .

LN ]

(3.5) f(Y1’Y2’°"7YL)=(P

11.n, L 12.1 L 14.n, L
1 1. .1 .
) Mp )2l H 4

(p 4 >

p13 N3 (2.5) being the probability that V33 _ 9. In the
P k

Appendix (A.2) p*3°"™3 are given as functions of /&,Gﬂf>

and ¥V . If these expressions are introduced in (3.5) the

maximum-likelihood estimates M.L.E. for /&,G]FQ and }/)

can be determined in the usual way.




- 10 -

The length of the observation time “C will usually
put a natural upper bound to the number of transfers from

T,- The number of factors on the right hand side of (3.5)
hence will be small. If, however, some of the patients have

a large number of transfers from T1, it will be a rather
cumbersome work to determine the M.L.E. A shortcut approach
might be to count just the patients with few transfers (at
‘most one or two), establish the corresponding likelihood-
function and proceed from there. These estimates will, of
course,y, be less accurate than the preceding ones. We shall

discuss the different estimates and their accuracy in

Chapter 4.

3.3. Design III. Reduced design with time of death included.

As already mentioned, it is often impossible to
determine the exact point of time a patient transfers from
sick to healthy (T, - T,), or equivalently from healthy
to sick (T2 > T,). However, the times of death are
usually easier to determine. If this information is
introduced into the model, it should be possible to establish
more accurate estimates of/M JF}fJ and than the ones
obtained in the preceding designs. To simplify the notation
we assume that the patients who die from A have had no
transfers from T; to T, and back to T,. (This will

usually be the case.)
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We shall base our ecstimates on the following

statistics:

T.n
Ly.ny = > )(( ! the number of patients in T,

at the end of the observationtime, having had

ny transfers from T,, n;= 1,2,... .

3
i

\ 2.n2
E 4: ¢ the number of patients in T2
at the end of the observationtime, having had

n, transfers from T1, n, = 1925000 &

E——Mk = number of transfers from T, > Tq it is
equivalentt@_thenumber of patients who die from

A during the observation period.

> U, = the total time from start until death for all
the patients who die during the observation-

period.

1.0 1.1 Ten
As in Design II >& = (YL ,7& ,_._'»i 1,

2.1 4.n
yk ,o-o\/k 4,Uk)’ k"_‘ 1,2,000,1—:,

are considered as L realizations of the stochastic vector
(\ﬂ°o;y1'1,...:y4.n4,u) where one of the 5/'5 is one,
the others are zero,and U denotes the time from entrance
to death when \/3"1 is one, and otherwise is zero. The

"likelihood=-function" will now be
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11.0 L1.OﬁZU 11.1 L1.1

(3.6) flyqsvps---sy)=(p ) “Slo ) L
(p 2) 2-n2(p ) 4-1...(p 4) 40““.//&
13.0

where the factor with p is left out since the

1100)

probability of dmeing between u and u+du is /u(p Ydu.

The expressions for piJ'n§ given in (A.2) are now
introduced into (3.6) and M.L.E. of /A,G}f) and }) are
determined.

As in Design II it is possible, as a short-cut
approach, to ignore patients with more than one (or possibly
2) transfers from T1 to T2 and thereby reduce the number
of factors on the right hand side of (3.6).

The corresponding M.L.E will be asymptotically
unbiased. We shall in Chapter 4 discuss their accuracy

compared with the corresponding estimates obtained in the

other designs.

3.4. Design IV. The complete design.

In the situation where for each patient the number
of transfers between states as well as time of occurence for
such transfers are observable, the estimates can be based

on the following statistics:
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> M, = the total number of transfers from T, > T3

2__Sy: the total
2__R: the total
(3.7)

Z_ Nk: the total

2 Vk: the total

E WK: the total

In this case the

sets of observations is

(3.8) flyqsygreeesyp) =

(patients who die),

number of transfers from T, > T,

(sick to healthy),

number of transfers from > 14

(healthy to sick),

number of transfers from T, > T,

(patients lost),

time the patients spend in T,

(are sick)

time the patients spend in T2
(are healthy).

"likelihood function" for the L

given in {3] and will be:

e-VHB‘)Zer-(pN )T, /Z:MK G;sK Pi',RK VS,NK

The M.L.E. of /L,G:F7 and V are now determined in the

usual way.
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4., A comparison of the estimates obtained in the

different designs.

The estimates mentioned in Chapter 3 are all
asymptotically unbiased estimates of G F and Y, as the
number (L) of patients tends to infinitys The asymptotic
variances shall be used as a criterion for accuracy of
these estimates. Evaluation of the asymptotic variances will,
however, in most cases be t@&dious and lead to lengthy
expressions, even if there are no principle difficulties in
carrying through these computations. We will therefore
restrict ourselves to simplified cases.

In Section 4.1 we shall discuss how information about
the times of death will influence the estimates, when the
forces of relapse and loss after being recovered, are set
equal to zero (P =+ = Q). This assumption will be
realistic if we ignore what happens to a patient after
having been cured.

In Section 4.2 we shall discuss the difference
between Design I and Design II and in particular see how the
accuracy of the estimates of Design II changes when patients
with several transfers from T, are left out. Here we assume
that the forces of death and loss are zero (M= V = 0).

This assumption will be realistic when the illness considered
is mild, and it is common to recover and relapse several
times during the observationperiod, while the risk of dying
from the illness and the possibility of loss can be ignored.

Even if the use of such specialized models will be
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limited, they may give a first indication of the goodness
of the estimates suggested for the different designs. In
particular, one will be able to study how the estimates

improve when more information is introduced into the models.

4.1, Influence of information about the times of death.

whenlO=9=O.

In this particular case, the probability that a
patient who has recovered, again will relapse during the
observationperiod is set equal to zero. This implies that
his number of transfers from T, to T, can be at most 1.
The expressions are thereby considerably simplified. For

this case we introduce:

L1 = L1.O ¢ number of patients who stay sick,
(4.1) L, =L, 4 : number of patients who recover (from A),
Ly = Ly o @ number of patients who die (from A).

We shall now discuss the M.L.E. of /M.and § for the

following designs:

Design II (based on L;,L, and L3) s

Design III (based on L,,L, and Ly and the times
of death),

Design IV (based on LisL, and Lj and the times

“of transfers between states).
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- v . e o o e - o o - —————————

In this particular case the estimates proposed for
Design I and Design II will coincide. The "likelihood-
function" (3.5) will be

(4.2) f1(Y1,Y2’;"7YL) =

o (Gm) L1[@(1-e‘(5%))]L2[ -~ (€))L
SRS COR

ijen

where we have replaced p with the expressions from
(A.2) with P==\) = 0. The M.L.E. ( *,GX) are now given

as the solutions of the following equations:

* *
Gx(1-e-(M+G )l _ L_2- Mx 1 e‘(G +/df L3
* ’ ! * \ L L]

P +(Tx L G +_}~

Gﬁ and /mf coincide with the estimates from the classical

c(1-¢~ )
@t

a patient shall recover during the observationperiod,while

pul1-e= M)
N g

during this period. The solutions to the equations are:

actuarial statistics, is the probability that

is the probability that he is going to dje

L1 L1
X _ 1m T X _ lo. T

(43) © =" M T T
Ly 3

and the matrix of the asymptotic covariances is
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-1
$%1n £, 21n £, |
E=——7 > E Er—————
éh/{'\’ /u SC
_ $21n £, ¢%1n £,
—_— E =———
du JE 0G? )

where f, 1is given by (4.2). This covariance matrix is
determined and the results given in (A.5). Numerical
evaluation of the asymptotic variances has been carried out
for selected values of‘Ag(= 0, 0.1, 0.5, 1 and 2) and of
G(= 0, 0.1, 0.5, 1 and a, and the results are given in
Table 1y p- DO, column \V/ and VIII.

In addition to L,;L, and L, (4.1) we now, for each
k, observe u (the time from entrance to death if patient
nr. k dies during the observationperiod). The "likelihood-

function" (3.6) then becomes

(4.4) f2(Y1aY2,"-aYL)=

- L,+JU, L -(E+m) ] L
le‘(ﬂm)] 177K L8 [6(1-%+M/"‘)J 2

" with the expressions from

where we have replaced le'
(A.2) with F7=-»7= 0. > U¢ 1is the total time from entrance
to death for the patients who die during the observation-

NA
period. The M.L.E. 9#467 hence are found as the solutions
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of the equations:

2 A
1 - (& +M) L 2 U
9:-,.\1 +e =R =-—1+ K,
(gs) O Sehoa-eTEA Ll
A
p_Lla
kS L,

s . A g
Explisit expressions for A4 and & can not be
found but for given values of L1,L2 and L3 there are
clearly no difficulties in finding numerical values for the
PAS
~

estimates. The matrix for the asymptotic covariances of/&h

N,
and § 1is

$ln £, Sn £, ) !
E , E
:»u2 éu:é@ﬂ
>2ln f2 ézln f2
E

woc 962

where f, is given by (4.4). This matrix is determined, and
the result given in (A.6). Numerical evaluation of the
asymptotic variances has been carried out for selected

values of i (= 0, 0.1, 0.5, 1, 2) and § (= 0, 0.1, 0.5, 1, 2),
and the results given in Téble 1 p.204column IV and VII.

In addition to L;;L, and Lg (4.1) we know the
dates of transfers for each of the patients and are able to

observe V,, the time he spends in T, (sick). In this
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particular case the "likelihood-function" (Z.8) may be

written:

)LV L, L
(4.6) f3(Y1’Y2a°"sYL)= (}& /*36—2

and the M.L.E. of s and§ (/’,Z,a-) are

L L

N

A N~
(4.7) M= 'y § =

M
<

k k

Furthermore the matrix for the asymptotic covariances

A A
for /A and & is

-1

. é 1n f b 1n f
b/u 56’
_ $%1n £, . $1n £,

e 96 562

f3
result is given in (A.7). Numerical calculations for

selected values of /L(= 0, 0.1, 0.5, 1 and 2) and

being given by (4.6). This matrix is determined, and the

S(= 0, 0.1, 0.5, 1 and 2) has been carried out. The results

are given in Table 1, p.20, column III and VI.
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Table 1

The maximal obscervationtime “C set equal to 1,F>=\) = Q.

/E. > @' are the MLE corresponding to Design IV,
‘ﬁl,ég are the MLE corresponding to Design III,
/A*,Gﬁ are the MLE corresponding to Design II.
I II III Iv Vv VI VII VIII
A A\ * ’\ A £
L VaTw L vazu, L Var Lvard Lvaroc L var o
0.1 O 0.1705 0.105 0.105 - - -
0.5 O 0.635 0.635 0.649 - - -
1 0 1.582 1.582 1.718 - - -
2 0  2.95 2.956 6.389 - - -
0 0.1 - - - 0.105 0.105 0.105
0.1 0.1 0.110 0.110 0.110 0.110 0.110 0.110
0.5 0.1 0.665 0.668 0.682 0.133 0.133 0.134
1 0.1 1.649 1.662 1.806 0.165 0.165 0.166
2 0.1 4.786 4.852 6.728 0.239 0.239 0.244
0 0.5 - - - 0.635 0.649 0.649
0.1 0.5 0.133 0.134 0.134 0.665 0.679 0.682
0.5 0.5 0.791 0.807 0.825 0.791 0.807 0.825"
1 0.5 1.931 2.007 2.191 0.965 0.984 1.030
2 0.5 5.447 5.817 8.246 1.362 1.363 1.536
0 1 - - - 1.582 1.718 1.718
0.1 1 0.165 0.166 0.166 1.649 1.791 1.806
0.5 1 0.965 0.994 1.030 1.931 2.093 2.191
1 1 2.313 2.498 2.754 2.313  2.498 2.754
2 1 6.314 7.163 10.586 3.157 3.369 4.226
0 2 - - - 2.906 6.389 6.389
0.1 2 0.239 0.244 0.244 4.786 6.598 6.728
0.5 2 1.362 1.486 1.536 5.447 7.431 8.246
1 2 3.157 3.689 4.226 6.314 8.444 10.586
2 2 8.149 10.324 17.473 8.149 10.324 17.473




4.1.4. Conclusive remarks.

We shall follow the usual practice, expressing the
relative goodness of two asymptotically unbiased estimates
by their asymptotic relative efficiency (a.r.e), defined
as the reciprocal ratio of their asymptotic variances.

The results in Table 1 indicate that the estimates
obtained in the different situations are almost equally
accurate as long as the forces of transfers are small. If,
however, these forces are large, the accurackes of
corresponding estimates increases when one goes from Design
II to Design III and further on to Design IV. When, for
instance, M = ' = 2, the asymptotic efficiency of the
estimates obtained in Design IV (all dates included)
relative to the corresponding estimates of Design II (no

t 3 mes included) is easily found to be

. *
N lim var s

aoroe-(/;/\k:/f) = aor-e-(G:G*) = %;inwvar/h 2.14.
L=oe

Similarly the asymptotic efficiency of estimates obtained
in Design IV relative to the corresponding estimates of

Design III (times of death included) is considerably less:

lim var/}§

A

A R L 2 L oo
a.r,e.(ﬁnzﬁh) = a.r.e.(§:0) = Tim var 0 = 1.27.

L')o.g
These results indicate that it is of particular importance
that follow-up studies are conducted according to the design,

utilizing the maximum possible information, when the forces
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of transfer are large.

4.2, Comparison of the estimates obtained in Design I, II

and IV, when s+ = V = 0.
2

We shall now discuss the situation where the forces
of death and loss can be ignored, and each patient may
repeatedly recover and relapse within the observation-
period. In this case Design II and Design III coincide while
Design I and Design II will yield different estimates. We

shall discuss the estimates under the following conditions:

In Design I one restricts oneself to observe the total ::
number of transfers from T, > T, (sick to

healthy) and from (T2 > T1) (healthy to sick).

In Design IIa the estimates are based on the number of
patients (L1 o) Wwho stay in T, (sick) all
the time and the number of patients (L2 »

who change from T, to T2 only once.

In Design IIb the estimates are in addition to L1.O and

L based on the number of patients (L, ,)

2.1
who recover and again relapse during the

observation period.

In Design IIc the estimates are in addition to L1 O,L2 19

and L1 1 based on the number of patients
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(L, ,) who recover, relapse and again

recover during the observationperiod.

In Design IV the number of transfers from I, 2 T2 and
from T, T, as well as the total time the
patients stay in T, (sick) and in T,
(healthy) are recorded.

. —— - - - - ] - e - - - -

Our task is now to construct estimates for & and/o ,

(Q andﬁ) that are based on

.

the total number of transfers from T1 > T2
(sick to healthy),

e
1}

the total number of transfers from T2 > T1,
(healthy to sick).
~s
Using the formulaes for ES and ER given in (A.3), &

and 25 are determined as the solutions of the equations:

- ~ o~ A
S G ,~ ~ 1. '(S+P)
4.9 T FpP )
. ):RK 'F\; ~ o~ 1_e-(5+5)
T g SOz )

~
Explicit expressions for « and ﬁ; are not obtainable.

To find the asymptotic variances of the estimates we proceed
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as follows:
‘We denote the solutions by

~N

§= s(s.,R.),p = r(S.4R.),

LS,
s and r being unknown functions, S. = I and
>R
R. = —tﬁ. Since, as L >0,

p p
S. —=2> ES and R.— ER,

s.(R.) will with large probability be close to ES(ER)
when L is large. We now expand the functions s(S.,R.)
and r(S.,R.) in a Taylor series about (ES, ER), leaving
out terms of second and higher order. Then
¥
s(S.,R.) ™ s(ES,ER) +z5> (S.-ES) +—5—§ (R.-ER),
(4.10)
~ T T(n _
r(S.,R.) = r(ES,ER) +-ﬁ.(s.-ES) +aRSR. ER).

Then

N éx 5 (%o o
as.var(G) s, )Svar S.+ Sﬁ—)'var R.+

8% 5%

(4 11) Sn F—‘COV‘(R\-,S.),

X _2 5)(

) = (SE%)var S°+(§—T) “var R.+
2 §§T gﬁ%-cov(R.,S ).
1)

The ¥ 1index means that after the differentiation of
r (S.,R,) and s(S.,R.) w.r.t. S. and R., these are replaced

as.var

Lo

by ES and ER respectively.
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From the covariance matrix of R,S,M,N in (A.4) we get

2

var(R) = -ER-(ER) +2€(-§‘:’_ER - ggg ER),

2

I}

(4.12) var(s) = -ES-(ES) +2q(3§g. ES - 2 ES),

9—1
_ _FR. s s ry o
cov(R,S) = -ER‘ES +5(6§ES 5}55) +0‘(&_)_ER -%ER).
By differentiating ES and ER (A.3) with respect to

/b,sag' and V whereafter//;, and V are set equal to
zero (A.19), we are able to express (4.12) by & and ¢ .

Furthermore
&% S 8ES 8Es -
&S. ’§S. o5 ? 5‘5
§¥s  §Xp S 5
&R. ' 6R. o S

By inverting the last metrix we then have all the

terms of (4.11) expressed by & and ¢ -
Numeriecal evaluations of the asymptotic variances
N N/
of O and ‘g have been carried out for selected values
of & (= 0, 0.1, 0.5, 1,2) ands (= 0, 0.1, 0.5, 1, 2). The

results are given in table 2 and 3 column IV.

In this case the estimates are based on
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number of patients in T, (sick) all the time,

[}

Li.o

and
(4.13) L

2.1 number of patients who has one transfer from

T, to T, (sick to healthy).

1

By introducing/[¢= V = 0 into the expressions of

p11'0 and p12'1 (A.2) the "likelihood-function" will be
“Ly0, e5-e"% La.

a-g
(1 _Gé-i-gg-sl)L'M .O-L2.1

from which the M.L.E. of & and ¢ here denoted 6’)*3*,

(4.14) f4(y1,...,yL)=e (6

can be determined.
Sln £, Sin £,

The necessary expressions for Y and —535__

are given in (A.8). Explisit expressions for 6 % andﬁj *
are not obtainable. The matrix for the asymptotic co-

variances of &% and‘g ®lsars

E,Zln £, gzln £, -1
E Fa2 E :gEF7ij
2 2
§°In £, $°In £,
dobde 632

where the second order derivativesare given in (A.9).

Numerical evaluations of the asymptotic variances of
e and‘g * for selected values of & (0, 0.1, 0.5, 1, 2)
andkg (= 0, 0.1, 0.5, 1, 2) are carried out, and the results
are given in Table 2, p.37 and Table 3, p.32 column V.
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----. - s - - R R s N R R

In addition to Lll.o and L

41 defined in (4.13)

the estimates are based on

(4.15) L1.1 : the number of patients, who recover and again

relapse within the observationperiod.

The "likelihood-function" connected with this
design is

-GL - -6 L
(4.16) £.(yqseeesyp) = e 1.0 ¢ f—ge )24

Q(e-g-e-o- -G))L1 1

i3
(0-—.7 o- -

5 o5
(=)= (%200 v ) e e 5\ LLy.0k2. 17

1092’

H

with p11'0,p12°1,p11'1 replaced by the corresponding

expressions given in (A.2) fo;/u,='V = 0. The M.L.E. of

G and 3 , here denoted & ** and 3 ®, are determined the
In £

£1n f5 5
usual way. (?T?F—— and —z@r—— are given in (A.10)).

Explieit expressions for o ¥ andg*x are not obtainable.
The matrix for the asymptotic covariances of G ** and‘g *x

is given by
Sinfy Pl )7
E —Er———— E TS??Eig

-l élnf %lnf5§
| S35+ FEg )
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The second order derivativesof this matrix are given in
(A.11).

Numerical evaluations of the asymptotic variances
of o™* and 3;0( for selected values of G (=0, 0.1, 0.5,
1, 2) and g (= 0, 0.1, 0.5, 1, 2) have been carried out.
The results are given in Table 2, p. 37 and Table 3, p. 31

column VI.

The estimates of & and \f are now in addition to
L1.O,L2.1,L1.1) defined in (4.13) and (4.15)}based on:
(4.17) L, o : the number of patients that during the

observationperiod recover, relapse and

recover again.

The "likelihood-function" for this case is obtained

1.0 12.1 11.1 12.2

from (3.6) with p P ’P and p replaced by

the corresponding expressions given in (A.2) fog/L0’=‘J = 0.

-gL -¢__-GL
£ (yyreeeayp)=e 1'°<sg-€—§——) 2.1
_o)e~ T L1, 2 f L
(4.18 )= 5) (HG gle ™11, (65(0’/Q+2)e(e©_—}(0’e -2)e73 2.2 |
3 L-Li.04

((0’-0) (e -36‘0 -62n +6@ +(3o Lot P ol-ap-c)e 55L1.1'L2.:
7 ) A Ay

(Gf
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The M.L.E. of & and S) s here denoted O_xxx and
1n f6

jﬁ**, are then obtained the usual way. r— and
¢

£ are given in(A.12)).
The equations to be solved are here more compli-
cated than in the preceding cases, but as in the preceding

sections numerically values for the estimates can be

determined for given values of L. O,L2 1,!mland L1.1.
RHKE  KHM

g. is

The asymptotic covariancematrix of &

é, In £, gzln £,
_5__ —5'_5?

) 5 $1n £, $%n £,
* %o ko 6¢ » F 6§2

with the second order derivativgéof the matrix given in
(A<13). Numerical calculations of G *HX and\g *#X have

been carried out for selected values of G (= 0, 0.1, 0.5, 1, 2
and‘? (= 0, 0.1, 0.5, 14 2). The results are given in

Table 2, p. 37 and Table 3, p. 32 column nr. VII.

In this case the estimates are based on

> SK: total number of transfers from T1 to T2
(sick to healthy),

(4.19)
E RK: total number of transfers from T2 to T1

(healthy to sick),
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V, : the total time the patients are in T, (sick),
K 1

W, : the total time the patients are in T
k 2
(healthy).

The "likelihood-function" for this case is given by

“oLVi BIW IS¢ YRy

(4.20) f7(Y1,Y2’---’YL) = e G g ’

A
and the M.L.E. for @ and.] , (o and\y ) are found to
o £S o IR
be 6 =77 § =5 -
K K
A
The asymptotic covariancematrix of 6}, 3 1S

i %1n £, . S £,) 7
552 66652
“Cln £, $%n £,

E 666;’ E 5572

with elements given in (A.14).
P A
Numerical calculations of ©  and 5) have been
carried out for selected values of G ( = 0, 0.1, 0.5, 1, 2)
andvf (= 0, 0.1, 0.5, 1, 2). The results are given in Table 2,
p. 37 and Table 3, p-32, column III.
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Table 2.

The maximal observationtime <€ put equal to 1}fb='v = 0.

A

éﬁ\g are MLE corresponding to Design 1V.
?;,3?'are estimates corresponding to Design I.
of ¥ are MLE corresponding to Design IIa.
o%fgx* are MLE corresponding to Design IIb.
crxxf #AX  are MLE corresponding to Design IIc.

I II IIT v Vv V1 VII
G 4 var{L'd varyI'g var{L'e varfLig: varVLie
0.1 0.1 ©0.105 0.105 0.105  0.105 0.105
0.5 0.1 0.630 0.644 0.648 0.643 0.643
1 0.1 1.557 1.693 1.714 1.690 1.690
2 v.l 4.488 6.388 6.400 6.379 6.379
0.1 0.5 0.104 0.104 0.105 0.104 0.104
0.5 0.5 0.613 0.626 0.649 0.625 0.625
1 0.5 1.473 1.607 1.718 1.598 1.593
2 0.5 4.0%50 5.771 6.390 5.504 5.452
0.1 1 0.104 0.104 0.105 0.104 0.104
0.5 1 0.596 0.612 0.649 0.609 0.608
1 1 1.396 1.524 1.718 1.517 1.516
2 1 3.673 5.186 6.388 4.988 4.983
0.1 2 0.1703 0.103 0.105 0.103 0.103
0.5 2  0.572 0.583 0.649  0.586 0.586
1 2 1.295 1.411 1.718 1.415 1.415
2 2 3.212 4.446 6.389 4.439 4.416
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Table 3.

I II I1I Iv V VI VII
G~ g) T var§ {1 varrvé: V'Livar S! W Livar SXX 2L tvarg"mF
0.1 0.1 2.135 2.174 2.174 2.174 2.158
0.5 0.1 0.484 0.493 0.493 0.493 0.493
1 0.1 0.280 0.284 0.285 0.284 0.284
2 0.1 0.180 0.183 0.186 0.186 0.183
0.1 0.5 12.095 13.335 13.250 13.250 13.001
0.5 0.5 2.718 2.977 3.032 3.029 2.966
1 0.5 1.556 1.705 1.760 1.760 1.691
2 0.5 0.988 1.090 1.152 1.151 1.064
0.1 1 27.956 34.208 34.495 34.352 34.200
0.5 1 6.223 7.858 7.873 7.847 7.466
1 1 3.523 4.335 4.591 4.591 4.24%5
2 1 2.195 2.727 3.038 3.037 2.649
0.1 2 72.15 113.62 115.34 115.34 113.25
0.5 2 15.801 24.875 26.695 26.0652 24 .516
1 2 8.781 14.096 15.823 15.807 13.457
2 2 5.301 8.660 10.778 10.773 8.185




4.2.6. Conclusive remarks.

The results of the tables illustrate how the
accuracisof the estimates differ:. from one design to another.
When the forces of transfers are small}the accuracigs of the
estimates are asymptotically only slightly different. When,
however, these forces get as large as © =‘§ = 2, the
following asymptotic relative efficiencis,defined as

reciprocal rates of asymptotic variances, are found:

A~
a.r.e. (6:0-) = 1.38,
P
a.r.e.(O‘:Gﬁ = 1.99,
A
a.r-e,(f:gxx) = 1038’
deT e (&3§¥K) = 1.37.

Hence the numerical results indicate that when the
forces of transfers are small, the estimates obtained
using Design IIa is almost as accurate as the others. If,
however, the forces of transfers are large ,one ought to
use Design IIb or IIc for estimating the forces. The
accuraciesof the estimates in Design I do not differ very
much from the estimates in Design IIb, but in all cases

they are more accurate than the estimates in Design IIa.
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5. Designs with varying observationtime.

In the preceding sections we assumed that the

maximal observationtime was constant. In this Chapter we
will discuss the case where we have no patients when the
experiment starts, and the L patients enter the experiment
successively during the period, which we without loss of
generality set equal to 1. The observationtime for

patient nr. k , Z, , are then uniformly distributed (0,1).
(It means G(z) = z or dG(z) = 1) As in Chapter 4.1 we
will look at the special case, - .§ =V = 0. During the
observationtime the patients will then either stay sick,

recover or die. In this Chapter we shall discuss 4 designs:

Desigyn A: based only or. the number of transfers.

Design B: based on the number of transfers and the time from
entrance to death for the patients who die.

Design C: based on number of transfers, time from entrance
to death for those who die, and time from entrance
until the experiment ends for those who stay sick
all the time.

Design D: based on number of transfers and the time of

occurence for these transfers.

As in the earlier sections we shall find the corresponding

M.L.E. and discuss the accuracigsof the estimates for

different values of//Lé/and g .
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5.1. Design A. Reduced design based on the number of

transfers (¢=4 = 0).
v

The assumption ~f =V =0 implies that the maximal
number of transfers a person can have is 1. To base the
estimation on the number of transfers will then be the
same as basing it on the number of patients in the different
states at the end of the experiment. As in Chapter 4.1 we |

can simplify the notation. Let

= 1 if patient no. k at the end of the obser-

j . . C
\/k vationtime is in Tj‘

= 0 otherwise.

Ly = > ‘}11 : number of patients who stay sick all the time.
L2 = > k2 : number of patients who recover from A.

: number of patients who die from A.

We Consider >/k = (yk1 ,Yk2,yk3); k = 1,2,.-.,]-.,, as
L realizations of the stochastic vector (yﬂ,72’y3). The

"likelihood-function" now will be:

(6+u) L, (1 1“9-(6%))1.
(5:2) £glyyavgn--eryy)-(12 o) 1 (E )
1-e-(6?7“)

-________) L

(/“(1' Otpe ()73

since for all k
S
+ O

(V2_1) -(fop dtaz-
Pyk. ![Gpt Z/U. l-e_w+o_)

()
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¥ '9“ + )

-~

, A1 1 -
P%a-_—.,l): pt”dtdz=/u+ o (J.~/u+g ),
0 p l "(O—'"/J-)
-8
Py, - =1-pyF=D-py3-1 - EEyn

N
wher e P, are replaced by the corresponding expressionsfrom

(A.1) with §=V= 0. The M.L.E. (u*, oo™) are now found

as the solutions of the following equations :

*x b. 3 % %
(1-1=¢ B 1-e AT
(5.3) o Gt a ) Ly N (1' g*+ ,u'f)f’s
= T =1 ? * * 7 L -
o +/u (o) +/U.

Explicit expressions for v and,lf€ are not obtainable, but for
given values of L4, L, and L3 numerical values of the estimates

are easily found.

The matrix of the asymptotic covariances of /&s and fais

2 ’ 2 -1
8 1n f8 . 2sln f8 |

E
g’/u2 !

) Sud s

LE 5,2111*1‘8 , g 521n fg
5;/u.545 E; 62 ’

fg being given by (5.2).

This matrix is determin#d, and the

results given in (A.15). Numerical evaluation of the asymptotic

variances has been carried out for selected values of A (= 0, 0.1,0.5,
1, 2) and of o (= 0, 0.1, 0.5, 1,2).

The results are given in
Table Y% p.4lcolumn VI and X.




-37 -

5.2 Design B. Reduced design based on the number of transfers and

the time from entrance to death for the patients

who die, ('szt 0).

For patient nso. 'k9 k=1,2,..., L,we introduce a random
variable U, being O if he survives the observationperiod, and

being equal to the time from entrance to death if patient nr.k dies.

(5.4) 1 U, is the total time from entrance to death for those who die.

The estimates are now based on L, , L., L3(5.1)

and EUK. We consider (yfk, ‘)/‘t{, )/'1:, Uk)? k =1,250..4 L, as
L realizationsof the stochastic vector (>/', y,l-y.’a ).

The "likelihood-fun¢tion™ 1ighk -

L
( l - ¢ "(O"‘,‘Al)) ' —(Gyl)mk L3
(505) fg(yl,yg,...,yL) = O"+/L1 . @ ~14

l - e"’(d +/11) Li

1- &6+a
(ei— )

since for all k the probability of dying between u and utdu

is si-e = (g, The M.L.E. (u* ¥ o™ *) ere found as solutions

of the equations :

1"& J’u' - = . ot N =__LJ.
: -( =%+ ®Ex ) O; AT Ly

Again explicit expressions for N and & are not obtainable.
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. ; . K NX
The asymptotic covariance matrix for g ,0 1s

2 2 -1
¢ln £ ) ¢ ln £,

B |

O\ 5 I §

- ~-21n/uf /2;1 ?
b’/;l& AR & ‘5_2

f9 being given by (5.5). This matrix is determinédand the
result given in (A.16). Numerical evaluation of the asymptotic
variance has been carried out for selected values of u(= 0,0.1,0.5,1,2
and o(= 0,0.1,0.5,1,2). The results are given in Table 4 p “42

column V and IX.

5.3 Design C. Reduced design based on the number of transfers,

the time .from entrance to death for those who die and,

the time from entrance to the experiment ends for thpse

who stay sick. (€=v= 0).
/

This design is applicable when one knows the date
each patient enter the experiment and the dates for those who die.
For patient no.k, k= 1,2,...,L,we introduce a random variable Xk
being equal to the time from entrance to death if patient n». k dies,
equal to the time from entrance to the experiment ends if the
patient stays sick all the time)and zero if patient no.k goes

from T, to T during the observation time.

1 2
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Hence

(5.6) E Xk = total time from entrance to death for those who die and from

entrance to experiment ends for those who stay sick all the time,

The "likelihood - function" for the L observations now becomes

1-e -(cr+/u)

_ L
(o) S x L (ol A )2
. “7“2»‘1:’}13( o~+/u’ ,

(5.7) £, (yy5 ¥pseeesyy) =

~

R A . .
and the M.L.E. I&u , o) are found as solutions of the equations :

ST e 2L,

A A
1 - e-( ot p ) 9:= o
K ~ ]
5. 8) /

2
(_?'47% ! ?wﬁ-1+e'(m

(
.

Lo

\P:}IIQ»
w
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A A
Again expliszit expressions for 65 and /ﬁl are not obtain-
able, but as in the preceding sections for given values of
L1,L2J3and i)(k numerical values of the estimates are

easily found.

. A
The asymptotic covariancematrix for /ﬁi and & is
St dln £5) 7
{E 5 ’ E
S Sp 56
- 2 2
% 1n f10 g In f10

E — E ————
@m 5(? ’ 5(52

f,o being given by (5.7). This matrix is detefmined, and
the result given in (A.17). Numerical evaluation of the
asymptotic variances has been carried out for selected
values ofvf4(= 0, 0.1, 0.5, 1, 2) and of

G(=u, 0.1, 0.5, 1, 2). The results are given in Table 4,
p. 4/2 column IV and VIII.

5.4. Design D. Complete design. (j?= N = 0).

The estimates in this design are based on L1,L2,L3

(5.1) and

(5.9) & Vi ¢ the total time the L patients stay in

T, (are sick).

As in (4.6) the "likelihood-function" is
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-(u+ro)fv, L, L
(5-10) f11(Y1,Y2’--°,YL) = e /b 5“’30\2 9

and the M.L.E.’yi,A) are

“1 L3 A L
= o
“VK Z:VK

~ A A .
The matrix :of the asymptotic covariances for ’ﬁu,a) is

$%1n £, $in £,.)
E — E
8;52 ’ 3;675@
E?ln f11 %?ln f11

E E@éﬂ » E &2

f,, being given by (5.10). This matrix is determined, and
the result given in (A.18). Numerical evaluations of the
asymptotic variances has been carried out for selected
values of/LL(z 0, 0.1, 0.5, 1, ~  2) and of

G (= 0, 0.1, 0.5, 1, 2). The results are given in

Table 4, p. 42 column III and VII.
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Table 4.

The maximum observationtime is uniformly distributed

5’: Vv = 0.

corresponding to Design D,
corresponding to Design C,

correspnding to Design B,

corresponding to Design A.

VII

VIII

IX

X

P
(_var/(j,x Lvay,z,x!_varé)\" Lvar@* Lvarg‘k L vars‘x

O —

s ® L] e . .
O — O - O -

N-OCO0OON-_"00O0ON—=000N—-00O0N=—=00C
O —

AA
Aty @ are the MLE
/3’ y o are the MLE
J/uf’, 5%¥ are the MLE
/405,5—X.are the MLE

IT III v \Y4 VI

-1

& Lvar (2 lvar e
0 0.207 0.207 0.211 0.211
0 1.173 1.173 1.270 1.288
0 2.718 2.718 3.147 3.330
0 7.046 7.046 8.921 11.130
001 - - - -
0.1 0.214 0.214 0.217 0.217
0.1 1.210 1.213 1.331 1.331
0.1 2.795 2.818 3.200 3.624
0.1 7.215 7.268 9.220 11.493
Oo5 - - - -
0.5 0.242 0.243 0.247 0.247
0.5 1.359 1.376 1.488 1.512
0.9 3.111 3.181 3.673 3.910
0.5 7.901 9.069 10.252 13.014
1 - - - -
1 0.280 0.281 0.286 0.286
1 1.556 1.592 1.725 1.755
1 3.523 3.673 3.955 4.544
1 8.781 9.264 11.408 14.732
2 - - - -
2 0.361 0.364 0.371 0.371
2 1.9795 2.060: 2.242 2.295
2 4.391 4.733 5.464 5.964
2 10.602 11.944 14.577 19.661

0.207
0.214
0.242
0.280
0.361
1.173
1.210
1 .359
1.556
1.975
2.718
2.795
3.117
3.523
4.391
7.046
7.215
7.901
8.781
10.602

0.207
0.214
0.242
0.280
0.361
1.189
1.225
1.376
1.573
2.001
2.853
2.933
3.256
3.673
4.511
8.356
8.535
9.254
10.151
11.944

-

0.211
0.217
0.246
0.284
0.366
1.288
1.327
1.488
1.696
2.122
3.330
3.422
3.787
3.955
4.951

11.127
11.349
11.743
12.312
14.577

0.211
0.217
0.247
0.288
0.371
1.288
1.331
1.512
1.755
2.295
3.330
3.442
3.910
4.544
5.878
11.127
11.492
15.074
19.661
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5.5. Conclusive remarks.

As we see from Table 4 the accuracyssof the estimates
increases when more information is introduced into the
design. If the forces of transfers are small, the
differences in accuracy are negligible. When & and M
are as large as 2, however, the asymptotic relative

efficiencies are as follows:

d.r.e }{ij%fd = 1.13,

Hence it seems to be of particular importance to
make use of the maximal obtainable information in follow-

up studies when the forces of transfers are not small.

§. ~ Suwmary .

In this paper we have studied different designs for
medical follow~-up studies and suggested estimates for the
forces of transfers in each of these. By numerical
evaluation of their asymptotic variances for selected
values of the parameters, we have obtained information

about the relative accuracy of the estimates. Even if these
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computations concern only special situations, the results
indicate how accuracy can be gained by making use of the
dates of transfers in the estimation procedure. The gain
in accuracy is considerablg when the forces of transfers
are large.

We have 2irsady pointed out that the exact time of
transfers are frequently difficult or impossible to
observe. Our results show that this fact should not have
the effect that a design to be used ignores all dates of
transfers. Instead one should use a design that utilizes
information about the observable times of transfers,

for instance the time of death.
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Appendix. -

In the appendix the formulaes used in this work
are given.

The probability that a person who at a certain time
is in Ti’ t vyears later will be in Tj is denoted
ptij. These probabilities are determined when t}u46?§

and N are known.

11 1

Pt = I,-T,
t r.,t
12 o T2 1
Py 7 r2-r1(e € )
t
t 1
13 _ ML ,u/(r2+"b)(e -1) _
P - O. pZ'. L= r24r1 T4
r2t
(ry%L) (e -1)—1
9
1‘2 -
t r2t r1t
14 _ 12 _ gV e -1 e -1
Py —ofpf «dz‘—rz_r1[ 5, T :},
A1 t .t
( )p21=__£__(er2_e1)
t T5-Ty ?
t r.~t
22 1 Ty 2J
Pt T (rzﬁ%%e —(r1tf)e ,
r2t r1t
23 _ Av 9 le -1 e -1—L
Py '/}2-r1 T, ry -
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where

T, } _ %(Eb'a(& \/(x-af)2+4s§) ’

T2
ob7u+q}@?+u.

The probability that a person who is in Ti t vyears
later will be in Tj, after n transfers from T1 to T2
is called ptlJ'n . This probabilitwsfor the values of n

used in this work, ar2 given in the following:

o 11°0 = ot
11.1 _qggﬁi J*t*_eﬁlt-e<XE)
pt —a{ _“‘ e ‘x’_df ?
1 . ! <
by 2.1 __:é?c’{_;\eaét_e-af?t),
122 LKL o ke, o,y e
Py - @%15)2 e e -

(A.2)
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Z . J -
pt24 1 _J( (1 - eaet).
R.S.N;M,V,W are defined in(2.6}. The expectations
and the variances can be expressed by the forces of

tren-fers.

T Trud) a1 )
_ 1M, ryte)(e -1
EM = [ pp, dt = Pz“-%[‘ T -
Io —
r2(
(r,%¢) (e -nj
b
I
(2o0¢) (e 1 =1)
! - rt() le -
= /ﬁTpt11dt - rcz; . T B
/ 2~ T4 1
U
(r1ﬁ4)(e 2 -1{]
?
(A3) T2 -
z 12 o [r2?1 £yl 1
EN = (~p, “dt = == e -1 .& _=
6( t Ip-Ty Ty Ty I’
T r27 r17"
12 g e -1 e ! -1
ER = f P dt = 7 - /
/5 o r1[ T2 Ty 7
T 1M1, 1 (rzﬁi)(e ! -1)
EV =//’ py dt = T, T -
0
e,
(r1ﬁd)(e -1{]
Ty )
2 e -1 e -
EW = p dt = - [ - J ,
/gr t T, r1. Ty Ty

T
1 _ 1., - Z
where as before r, = 2[,(,19(0-_I-_V(e6-3() +4 Gj’
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covariance matrix is found in {3, Appendix A].

var M =/u.EV(1;u,EV)
cov (M,S) = -/L(GEEV) +—-EV- EVJ
cov (M,N) = -, VEVEW,
3 § .8
cov (M,R) -/ug —EV-EW+3.—y-EV -wEv),
&
(M,V) = - A(EV)2 + +Z—EV
cov ,w /L ]
cov (M,W) = /LLEVEW +5—EV—,
var S =G EV+o© j_ EV 2+z&—-EV 2 TEV],
cov (S,N) = O[- EVEW+SSgEW g—Evﬂ
~ cov (S,R) =Gg[EVEw+§Ev g—EV 5?EW E”
A
( cov (S,V) = 6—[ EV)? + GEV-2 —Eﬂ
cov (S,W) =6[-EVEW +§%—EW -%EV -%Evﬂ,
var N = v EW(1-vEW),
cov (N,R) = -v;wa 2+5-é—EW—§é—EWJ,
cov (N,V) = -erVEWwLS—Ew]
var R —g"w+>ﬂ[(ew +2;?EW-2<—EV\;7
&
cov (R,V) = §-Evam +sSev - _EW- _EV
’ y \/L"é S-;V ]’
cov (R,W) yf(Ew ng 2 £EW |5
var V = -(EV)2-25——EV,
('
cov (V,W) = (EVEW+<§)EV+9LEW),
var W = -(Ew)z-zg%-Ew,
cov (W,N) = -v((Ew)2+5-%ij
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To be able to calculate the asymptotic variances

for the estimates we rieed the following expressions:
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where f, is the "likelihood-function" (4.2),

+
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where f, 1is the "likelihood-function" (4.4) .,

§n £5 Sy Sn £y
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(A.7)
E,ln f B 1- e éi/a
E Sg2 - ('-//M

where f, is the "likelihood-function" (4.6),
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where f4 is the "likelihood-function" (4.14)
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oln fy 1 08 1 2
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where £ is the "likelihood-function" (4.16).
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where f, is the "likelihood-function" (4.18).
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where f7 is given in (4.20).
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- 57 -

()
Pinty IS e 6
our Al (1 B gy ()’

1-e

Gu)® A o (Gu)® (G3)°

(A.16)

$°1n £,
< =L (- — 3
59& S+ (St
, ST 3 ()
TGu G () (Gw)°
- (G3e)
(o~ (3e2) 122——432—)(1-e-(é}“))

= O s )

-(GHu)
1-e
kfyx) 1 -——25322:—')

E

+

Szln f9 e-@{jﬂ) 1-e'(QEa) 1- €+
E352 -=L (- (1-e-§a))(§a)+ (oju)s tg (5;,“)3

- (0324
N e NP U NN T, 9

TEH  Ga E Gt T (G

- (o3t
1-
o (S _ iffccr (1-e~(qjkLb

)

-+

-

f is given in (5.5).
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f,5 1is given in (5.7).
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