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1. INTRODUCTION AND SUMMARY. 

We shall be concerned with the parametric problem of 

testing hypotheses concerning the value of one parameter when 

the valuesof other parameters (nuisance parameters) are not 

specified. Neyman [6] derived under certain conditions a 

locally most powerful two-sided test for this problem i.e. 

he gave the form of the test maximizing the second derivativ~ , 

of the power function with respect to the parameter of interest 

at the point specified by the hypothesis. Generalizations of 

Neyman's results were given by Scheffe l7] and Lehmann (2], 

using the same technique as Neyman. They were also able to 

prove that the tests were UMP unbiased. A new technique fo+ 

dealing with these problems were introduced by Sverdrup [9] 

and Lehmann and Scheffe [4] where the completeness of the 

sufficient statistics in an exponential family of densities 

is used to derive UMP unbiased tests. It is stated by 

Lehmann and Scheffe [4] that the conditions imposed earlier 

imply an exponential family of densities. 

When no UMP unbiased test exists we have little ,general 

theory.The problem is both one of principle and of technique. 

Most stringent tests exist under general conditions but are 

difficult to derive in particular cases. Lehmann [3] proposed 

maximin tests and a local form of maximin tests called tesw 

which maximize the minimum power locally. Definitions of 

these are given in Section 2. Spj0tvoll (81 has given an 

example of the form of a maximin test when no UMP unbiased 
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and invariant test exists. 

This paper is an attempt to establish some general 

theory for testing hypotheses when the probability density of 

the observations does not constitute an exponential family 

under both the hypothesis and the alternative. The assumptions 

made in Section 3 is satisfied if we have an exponenti~l 

fa~ily under the hypothesis, but do not say anything about 

the form of the. density under the alternative. The results 

concern maximin tests and locally most powerful tests, and 

under certain conditions the form of these tests for the 

particular family of densities studied, is given in Section ~· 

In Section 4 the theory in Section 3 is applied to 

the problem of testing serial correlation (not circular) in 

a first order autoregressive sequence. It is found that the 

usual tests is nearly UMP invariant. 

In Section 5 the problem of testing the value of the 

ratio. of variances in the one-way classifisation variance 

components model is considered. Some numerical results is 

given for the power functions of the maximin test, the 

locally most powerful test and the standard F-test. The 

results indicat~ that the standard F-test performs well 

compared with the other tests. 
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2. DEFINITIONS AND ELEMENTARY CONSEQUENCES. 

Let X be a random variable with distribution 

belonging to a family ? = 1 P6 ,~ : ( (;,,_) & .D..} of distri­

butions. Let the parameter e be real. We shall consider tpe 

problem of testing the hypotheses 

The functions 

e= e 
0 

against 

against 

d 1 ( {j ) = rna X ( e - 60 , 0 ) , 

d2 (&) = 1$- Sol ' 

e >S , 
0 

e * e . 0 

will be used as measures of distance f~om the hypotheses H1 

and H2 respectively. 

In the following let H and d stand for either H1 

and or and Let denote the power 

function of a test r ~ 
The concepts maximin tests and tests which maximize 

the minimum power locally have been introduced by Lehmann l3Q. 
I 

Definitions of these tests and of locally most powerful tests 

are now given in terms of the distance function d. 

DEFINITION 2.1. A level Dl... test Cfo of H is locally 

most powerful (LMP) with respect to the distance function 
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d if, given any other level cJ... test l{', there exists 

for each 1} . a ~ such that ~(e,')J;ro) ;? \(e,-v;v when 

o < d(e) ~ A. 

Define sets w 6 by 

d (&) ~ 6.1. 

DEFINITION 2.2. A level ~ test ~0 of H maximizes the 

minimum power over wt~.( ~fixed) if .iJ;! ~ (e,,_,..,f0 ) ~ 

inf f3 ( e-,17; f) for any other level d... test <(. 
w~~ 

The test o/o is said to be a maximin test over vuA. 

More generally we can speak of maximin tests over any subset 

w of the set of alternatives by replacing we by w in 

Definition 2.2. In Section 3 we shall be concerned with 

subsets of the form {(e ,v--) : d(€)) = 61. 

DEFINITION 2.3. A level Ol. test Cf 0 of H is said to 

maximize the minimum power locally with respect to the 

distance function d if, given any other level ol test~, 

there exists a 6 1 such that 

when 0 <.. t:::. <.. 6' • 

A level d... test Cf is similar if ~ (€10 ,'1J",Cf) = o( for 

r(G;'IY-,Cf) ~ t"-. when d(&) > O, all "\J-, it is unbiased if 

and we shall say that it is unbiased at & if for each ~ 
0 

there exists 6. such that (3, (8,1,9-;Cf) ~ d... when o .(.d(e)£. .D.. 
l 

The following two lemmas are easily proved by comparing 
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with the test Cf(x) = Cl£.. • 

LEMMA 2.1. If for each <f the power function (!' ( e ,17; <p) .ts 

continuous in e at 9 0 , then a LMP test is similar. 

LEMMA 2.2. A test which maximizes the minimum power locally 

is unbiased, and if the power function of each test is 

continuous in e at e 0' then it is similar. 

In view of Lemma 2.1 we introduce the following 

definition. 

DEFINITION 2.4. A level CJ.... test Cf 0 of H is locally 

most powerful similar (unbiased) with respect to the 

distance function d if, given any other similar (unbiased 

at e 0) 

such that 

level d... test q>, there exists for each v a 

~(6,'"\J;fo) ~ \(e;\9-,f) when 0 <..d(G)<. A. 

We shall use the abbreviations LMPS and LMPU. Note 

that a LMPU test need not be unbiased after the usual 

definition of unbiasedness, only unbiasedness near &0 is 

required. 

The following lemma proves that in some cases a LMPU 

test maximizes the minimum power locally. (Compare Lehmann 

[3], p. 342). 

LEMMA 2.3. Let o/o be a LMPU level ~ test of H and 

suppose that the power function 0(e,l9-, ro) depends only 
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upon d(e) and is continuous as a function of d. Then ~0 

maximizes the minimum power locally provided 0 (a-;).?", <f0 ) is 

bounded away from ~ for every set of alternatives which is 

bounded away from H (measured by d). 

PROOF. --- If a test o/ is not umbi~eed~then for some A' 

we have \D! ~ (e ,~,<f) <( ~ for 0 ~ A...:::. D..'. Hence 

inf ~(~ ,rJ-,f<) > inf\(e,'l7·,Cf.) for 0 <(A < A'. Suppose then 
uJA o wt> . 

that cp is u~biased. Let -~ be a fixed value of )J-, sine~ 

Cfo is LMPS we have for some ~* 

( 2. 1 ) 

Define a(A) by inf (3. (tt,VZ.., fc) =: d..+a(t:.). By the condition 
WI:. \ 

of the lemma a(.c..) does not depend upon t'IJ- and a(A) > 0 

when l:::.. > 0. Since \> ( e ;"1?-, <f'o) is continuous as a function 

of d, there exists 6.1 L... ~* such that a( t:::.') <. a(A*). 

Hence 

(2.2) 

Then we have by (2.1), (2.2) and the fact that f(e,'t9-,tp0 ) 

does not depend upon ~. 

=:; inf ~ ( e,"$*, <P. ) 
l...t) ( 0 

b 
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= \2l ~ ( e ,~, ro) for 0 L. b. ~ ll1 • 

A 

The next two lemmas gives conditions under which a test 

is LMPS or LMPU. Let denote the two first 

derivatives of the power function with respect to e. 

LEMMA 2.4. Suppose that the power function of any test cp 
has a continuous derivative with respect to 19 at e0 • If 

there exists a similar test o/o such that 

~e( 60 ,-v-, fo) > ~G ( &0 ,'\Y; f) for all v- when Cf is any other 

similar test, then fo is the unique LMPS test of H1 

with respect to d1 • 

LEMMA 2.5. Suppose that the power function of any test 

has a continuous second derivative with respect to & at 

90 • If there exists a test ro unbiased at 80 such that 

~'&(eo ,19; ro) > ~e( 90 ,'lJ', 'f) for all rV- when r is any other 

test unbiased at e 0 , then Cf 0 is the unique LMPU test 

of H2 with respect to d2 • 

PROOF. We give only the proof. of Lemma 2.5, since the proof 

of Lemma 2.4 is similar. 

For any test rf we have C: (e,".Y-,f) = f( e0 ,'\?;Cf)+(8- CS) 

~~(e0 ,c~<f)+i(e-e0 ) 2~~e(90+tJ8-&J0 ) ,~f). for some tee with 

0 <-tcp<::..1. If cp is unbiased at 9-0 , we get ~(&,'lY;f) = 

+; ( 6'- e0 ) 2 £''~( ~0 +t~ S- e0 ) ,~, Cf). Consider a fixed '\J- and Cf • 

When \6 - e0 ! is small enough then 
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f~fJo+tro (11-&o) ,<t9-,Cfo) "/ ~8-(e-o+tf(e-eo) ,VI";tp) since 

~~~(e0 ,t>J-,f0 ) > ~~(l9-0 ,tl,f). Hence f(€;,V'-,<p0 ) >~(g,r&-,£t') for 

19--e0 1 small enough, and the lemma is proved. 

A test Cf of H2 satisfying 

(a) ~(~o,t9;'f) = o( ' (b) ~~(eo,1',lf) = 0 and t~e( ~ ,1J; o/) = 

maximum among tests satisfying {a) and (b)' was denoted test 

of type B by Neyman [6]. If there exists a unique test of 

type B, then by Lemma 2.5 it is aLMPUtBstcfH2 • But in 

general we cannot be certain that a type B test is LMPU 

as defined above. 

The reason for formulating the definitions of locally 

most powerful tests as above is to have a definition covering 

both one-sided and two-sided tests, and to ensure that the 

corresponding tests have optimum properties near the 

hypotheses to a greater extent than guaranteed by type B 

tests. This way of defining locally most powerful tests is 

not new, see e.g. Lehmann (3], p.342, where the one-parameter 

case is considered. 

3. DERIVATION OF MAXIMIN TESTS AND LMP TESTS FOR A 

PARTICULAR FAMILY OF DISTRIBUTIONS. 

We shall consider the case where the probability 

distribution of X belongs to a family ~X = 

{P e ,.,_X : ( et ,'~>!-) t S2.} where P e '"'"X is de£ ined by 
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where r- is a u -finite measure over a Euclidean space. 

#e shall assume that there exists a value ~ of ~ 

such that the distribution P X dominates the family ~X. 
eo'~ 

In that case we may write 

( 3. 1 ) 
b(t(x) ,e0 ,'19~,) )dP a.X "CL (x) 

17o' vo 
({)X a.e. ~ • 

Further it is assumed that the statistic T = t(X) ip 

sufficient when e =eo, and that the family of distributions 

for T when e = e0 is boundedly complete. 

The assumptions stated above will be assumed to hold 

for the rest of this section. 

Pxlt Let. 
e-0 

denote the conditional probability 

distribution of X given T = t when s = 0 • 
0 

Since T 

sufficient, 

Let EXjt 
eo 

pXIt 
eo 

denote 

can be chosen to be independent of ~. 

expectation taken with respect to pXIt • 
60 

Similarily X T let Ee '\9- and E e ~ denote expectations with 
' ' 

respect to the distribution of X and the marginal distri-

bution of T respectively. 

A test Cf is similar if E~o'""'Cf(X) =d. for all rJ-. 

Since T is sufficient and complete when G = e a test is 
0 

E~ It~( X) = cl. a. e. 'fT where 
~0 &0 

the family of distributions for T when 

similar if and only if 
T c:p & denotes 

0 
9-=1:}. 

0 
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The following lemma will be useful when establishing 

the uniqueness of tests. 

LEMMA 3.1. Let 

statistic and let 

X be a random variable, T = t(X) a 

EXl ET and EXIt denote expectations 

with self-evident notation. Given a test function ro such 

that 

m 
when h(x) > :?:ki (t(x) )fi (x) 

1=1 

m 
h (X) <_ Lk · ( t (X)) f 1. (X) 

i=1 l 

for some functions h,f 1,f2 , ••• ,fm,k1 ,k2 , ••• ,km. Then a te~t 

function cp satisfying 

(3.2) 

satisfies 

if and only if ~(x) = ~0 (x) a.e. on the 

{x: h{x) :f t=ki(t(x))fi(x)}. Otherwise 
1=1 

EXfo (X)h(X). 

PROOF. We have by (3.2) 

i = 1,2, ••• ,m 

set ..... . 

EX~(X)h(X)< ( ( 
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Exm( x) k . ( t ( x) ) f . ( x) = E 1 k. ( T) Ex It 
1 )_ )_ )_ 

~(X)fi(X) ~ E1 ki(T)EXIto/0 (X)fi(X) 

= Exo/0 (X)ki(t(X))fi(x). 

It follows that 

EXr0 (X)h(X)-EXo/(X)h(X) 

~ EX(f<0 (X)-r(X))(h(X) -t=k. (t(X))f. (X)). 
. 1 )_ )_ 
)_= 

By the definition of o/o the above difference is ~ 0 for 

all \Jl. It is = 0 if and only if CP(x) 
l m t 

set {x : h(x) * z==k. (t(x))f.(x)~. 
"1)_ )_ J 
)_= 

on 

the 

We have the following theorem 

THEOREM 3.1. For the hypothesis 9 = 8 0 against 

(e,~) = (e 1 ,~) there exists a most powerful similar level 

~ test ~1 defined by 

1 when a (X' 6'-1 '~ ) I a (X' e 0 ''t9;) ? c ( t) 

ce1 (x) = ((( t) when a (X' e 1 '~ ) I a (X' eo' ')90) ~ c(t) 

0 when a(x,e1 ,~1 )la(x, &0 ,'V"0 ) < c(t), 

where c(t) and Y(t) are determined by E~lt ~1 (X) = ~ 
0 

for all t. 
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PROOF. By (3.1) the power of any test 'f at (S1 ,17;) is 

( a (X, e 0 ,~ ) b ( t (X) , 9 0 , ".9o) ) 

= El ~ (b(T,a-1 ,~)/b(T,B0 ,~0 ))E~It(Cf(X) 
vo' o '-'o 

a(x,e1 ,~ )/a(X, ~0 ,1~)). 

A test maximizes the power under the condition of similarity 

X It if it for each t maximizes El:L (G?(X)a(x,e 1 ,~ )/a(X, e ,rt9:)) 

under the 

E~~tcp(x) 
test Cf1 

REMARK. 

~0 ' 0 0 

condition of similarity i.e. under the condition 

= ot._. By the Neyman-Pearson fundamental lemma the 

has this property. 

0)X 
The test is unique ( a • e • S ) if 

PX ,,.Q. (a(X,e71 ,~) = c(t(X) )a(X, fJ ,~)) = O. 
~o v0 o o 

The Remark is proved by using Lemma 3.1 with h(x) = 

a ( x , e 1 ,.'1'1" ) b ( t ( x), e-1 , ~ ) I ( a ( x , e 0 , 'V6 ) b ( t ( x ) , ~ 0 , ~ ) ) and 

PX as probability measure. The remarks following eo ,·~o 
Theorem 3.3 and Theorem 3.5 later can be proved in a similar 

way. 

It should be noted that Theorem 3.1 can be regarded as 

an application of Theorem 3 of Sverdrup (9] to the family 
ClX 1 . 
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The following corollary is obvious. 

COROLLARY 3.1. does not depend upon then it 

is the uniformly most powerful similar level ~ test for 

testing &=Et 
0 

against 

This leads to 

THEOREM 3.2. Suppose that Cf' 
... 1 in Theorem 3.1 does not 

depend upon 1~ and that ~ ( e,~ <f1) ~ (3(e1 ,.&9;tp.,) for all 
I 

( s, ""'") with e ~ e-1. Then Cf'1 is a maximin test among 

similar level ~ tests over the set of alternatives with 

e ~ e1' and lf1 is the unique maximin test if it is the 

unique most powerful test. 

By Corollary 3.1 ~ 1 is the uniformly most power-

ful test for 9-= e-
0 

against 9-=G1. Hence any other test 

has less or equal minimum power when i'3=G 1 , and hence less 

or equal minimum power over e ~ ~1. If f1 is unique any 

other test must have less power for some points with g= 91 , 

and hence less minimum power over the set of alternatives 

with e ~ 91. 

Let a~ and b~ denote the derivatives with respect 

to Et of the functions a and b respectively. The next 

theorem gives the form of the test that maximizes 
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Jl:jEOREl'v'\ 3 • 3. Suppose that for any test Cf the derivative 

with respect to e of the power function ~ ( e~'"\9; f) can be 

computed under the integral sign. Then among similar level 

r:}.. tests the following test Cf 2 maximizes the derivative 

of the power function at (90 ,~) 

when a~( X' &-0 ,\9-0) I a (X~ eo' ~0) > c( t) 

r2 ( x) == when a~(x,e-0 ,:9Q)Ia(x, ~0 ,~) = c(t) 

when a~ (X' f70 'A~) I a (X' eo'~) <: c(t), 

where c(t) and 'i(t) are determined by 

for all t. 

PROOF:_. The derivative at (e 0 ,~) with respect to 8 of 

the power function of a test ~ is 

( 
~~(e0 ,'t9;,r) = j'f(x)(ae(x,e0 ,~)b(t(x),G0 ,,;;) 

+a ( X , eO , '\J-0 ) b ~ ( t ( X ) , @ O , 1J; ) ) d~( X ) 

= E~0 ,~~(x)(a~(x,g0 ,~0 )la(x,e0 ,~)+be(t(X),e0 ,-~)l 

b ( t (X) , e-0 , t9;) ) 

= E~0 ,1}0 (be(T,e0 ,~0 )lb(T,e0 ,~)) E~~t~(x) 
+ E~0 ,~0E~~t(~(X)a~(X,&0 ,-19-0 )Ia(x,e0 ,~) ). 

~~(&0 ,~,r) is maximized under the condition of similarity 

if for each t the second expectation in the last expression 
is maximized under the condition of similarity. An appli-
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cation of the Neyman-Pearson fundamental lemma gives the test 

REIV\ARK. The test is unique (a.e. :fX) if 

The next theorem gives a condition under which the test 

cf2 of Theorem 3.3 is LMPS. 

THEOREM 3.4. In addition to the assumption of Theorem 3.3 

suppose that the derivative is continuous in 

e at e 0 for any test <f' and suppose that the hypothesis 

testing problem H1 is invariant under a group G of 

transformations, and that & is a maximal invariant under 

the induced group G of transformations of the parameter 

space. If Cf' 2 of Theorem 3. 3 is unique and the power 

function is invariant, then Cf' 2 is the unique LMPS level 

d... test of H1 with respect to the distance function d1 • 

PROOF. Since 'f 2 is unique we have 

(3.3) 

for any other similar level ot test cp. 
' 

We shall show that 

~~ (% i~' ~) ::;. ~~( 90 ,1.9-,f) for all ,.y-. Then by Lemma 2. 4 

Cf2 is LMPS. 
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Suppose on the contrary that there exists a ~ such 

that 

(3.4) 

Since 9 is maximal invariant there exists a g ~G such 

that g( (e,~)) = (e,~*). Consider the test ~* = ~ where 

g corresponds to g. We have E;,19;:
0

C{Jg (X) = 

X X 
.s.g-((6-,'19--o))f(X) = Ee,19-*~X), or in terms of power functions, 

~(e~~'q'9) = r(~,~*,tf). Hence by (3.4) ~~(&0 ,t*,f2 ) 

f ~~(60 ,~,r) = ~a(e0 ,~,~g). But r2 is invariant, hence 

0EJ S0 ,¥,cp2 ) = (1&(e 0 ,19c;,Cf2 ), and we get ($'J e0 ,1i{;,lf2 ) 
\ 

~ ~~(~o'~o'rg) which contradicts (3.3). 

COROLLARY 3.2. Under the assumptions of Theorems 3.3 and 

3.4 the test 'f 2 maximizes the minimum power locally with 

respect to the distance function d1 , provided its power 

function is bounded away from d... when e is bounded away 

from e.. 
0 

PROOF. Follows from Theorem 3.4 and Lemma 2.3, since here 

a LMPS test is LMPU. 

Let a 11 and 
~ 

b~ denote the second derivatives with 

respect to e of the functions a and b respectively. 

THEOREM 3.5. Suppose that for any test 

second derivative with respect to e of 

cp the first and 

(-3 ( Gl, 1?; Cf) can be 
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computed under the integral sign and suppose that 

a~(x,8o,r&-)la(x,eo,v)+be(t(x) '130,1-)lb(t{x) ,eo,IJ-) = k(IJ-)h(x) 

for some functions k and h, with k('\S\-) '> 0 for all 13-. 

Then among level ol tests unbiased at e 0 (with respect to 

d2 ), the following test ~3 maximizes the second derivative 

of the power function at (e ,t.9-) 
0 0 

( when a ~ ( X ' $0 '1?o ) I a ( X ' eo ' ~ ) + c 1 ( t ) a e ( X' e-0 ' ~~ ) I 

a (X, e0 , ~) > c2 ( t) 

r3(x) = ~(t) when a~ (X' e-0 ''\9o) I a (X' <\ ''~) +c 1 ( t) a e (X' e 0 '~)I 

a(x,&0 ,~) = c2 (t) 

la when ae(x,eo,V6)1a(x,&o'~)+c1(t)a$(x,&o,~)l 

a(x,e0 ,'\J;) '-. c2 (t), 

where c1 ( t) , c2 ( t) and '6 ( t) are determined by 

E~~t~3 (x) = ~ and E~~t~3 (x}(aG(X,60 ,~)1a(X,&0 ,~)+ 
b~(t(X) ,e0 ,~)lb(t(X), e0 ,~)) = 0. 

PROOF. Unbiasedness in some neighbourhood of 60 implies 

o = EX _CD(X) (a,;(x, ~0 ,~)1a(x,e0 ,"..9-) 
eo,~ 0' 

+b~(t(X) ,e-0 ,'19-)lb(t(X) ,S0 ,"&-)) 
(3.5) 

= E I Ex I tm( x) (a ' ( x e :-tr) I 
e-o ,~ &o ' e ' o ' 

a(X,~0 ,~+be(t(X) ,&0 ,-J}Ib(t(X), S0 ,lY7). 
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We may choose the function h(x) in the theorem equal to 

ae(x,&0 ,'\?"0 )/a(x,$0 ,1J-0 )+be.(t(x) ,90 ,~)/b(t(x) ,130 ,·~). Hence 

by (3.5) 

0 = E~0 ,-~~~tf(X)(ag_(x,&0 ,~)/a(X,&0 ,~)+ 
b~(t(X) ,e0 ,~)/b(t(X), 90 ,~)). 

Completeness of T implies 

(3.6) 

The test must be similar, hence as before 

(3.7) C?T 
a.e. -1e • 

0 

We have 

B"(G 1 Q.. ()).) = ET EX!tmfX)(a"(X e ~)/ 
,- & o ' v o ' l Eta ' '\9o Go 'f , e ' o ' . o 

a (X, 90 , 1\9;) +2ae (X, G-0 , ~) b ~ ( t (X) , e0 , ·t9(;) I (a (X, e0 , 1~) b ( t (X) , & 0 ,~)) 

Maximum is obtained if for each t the expectation EXIt eo 
in the above expression is maximized under conditions (3.6) 

and (3.7). An application of the Neyman-Pearson fundamental 

lemma gives the test q; 3 • 
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REMARK. Th t t . . ( QX) e es lS un1que a .e. ,) if 

p eo '\Slo ( a le ( X ' e-o ,-19; ) + c 1 ( t ( X ) ) a e ( X ' tJo '"~ ) = 

c2 (t(X) )a(X,S0 ,'1.9c)) = o. 

THEOREM 3.6. In addition to the assumptions of Theorem 3.5 

suppose that ~e.(e-,19;r) is continuous in e at eo for any 

test Cf and suppose that the hypothesis testing problem 

H2 is invariant under a group G of transformations, and 

that is a maximal invariant under the induced 

group G of transformations of the parameter space. If Cf' 3 

of Theorem 3.5 is unique and the power function is invariant, 

then Cf 3 is the unique LMPU level o._ test of H2 with 

respect to the distance function d2 • 

PROOF. Analoguous to the proof of Theorem 3.4. 
' :. 

A corollary analogo~s to Corollary.3-2 could also be 

formulated. 

We have tacitly assumed measurability of the functions 
:,'_! .. · '·' 

occuring in the theorems. We shall not prove this, but only 
(. 

note that in ~a2h specific case we may find (meas~rable) 

tests which is of the form given in the theorems. By Lemma 

3.1 they will be most powerful. 
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4. TESTING FOR SERIAL CORRELATION. 

The model for the observations x1 ,x2 , ••• ,xn is 

x. =ox. 1+u. 
l. .) l.- l. l.=2,3, ••• ,n 

where u2 ,u3 , ••• ,un are independent N(o,?)., o.n.: 

x1 ,x2 , ••• ,xn have a multinormal distribution with 

EX.= O, Var X. =cr2/(1-rf) 
l. l. .J 

d C ( X X ) = c' li- j cr' 2; ( 1 - 2- ) · .. · an ov i, j j -~ , 

The parameters a- and g are unknown. 

We shall consider the problem of testing the hypothese$ 

t-:!2 g = 0 against J =t= 0 • 

The hypothesis testing problem H 1 is invariant under 

a common (positive) change of scale of x1 ,x2 , ••• ,xn. A 

maximal invariant is 

'~, ... , 
1 l. 

~ X~ 211· LX-
i=1 l. J 

The distribution of S depends only upon !] , hence any 

invariant test is similar. When considering invariant tests 

it is therefore no restriction to restrict attention to 

similar tests. 
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The probability density of x1,x2 , ••• ,Xn is 

( 2 n) 

n 2 n-1 2 
2JLx.x._1 +g L:x. ) ) , . 2 l l . 2 l l= l= 

which can be written in the form a(x,g,~)b(t(x),g,u) with 

and 

where 

_ n 2 2 n-1 2 n . 
t(x) = :z=:x. +?, :L:x. -20 2::x.x. 1 • 

i=1 l ~0 i=2 l ~0 i=2 l l-

The probability measure for g= go and (j-= cr can 
0 

be used as a dominating measure for any {)0 • We have 

a(x,~0 ,<J) = 1. T = t(X) is sufficient and complete when 

g = ~o· Applying Theorem 3.1, the most powerful similar 

test against an alternative (g1 ,u1 ) is found to have the 

rejection region 
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Introduce 

n . n-1 2 
2 L_x. x. _1 - ( o 1 + P0 ) L:x. 

i=2 1. 1. '~ .jl i=2 1. 
n n-1 n 
L:x.2+~2 zx.2-2f 2::x.x . 
. 1 1. 0 . 2 1. 0 . 2 1. 1.-1 1.= 1.= ]_= 

The distribution of w 1 does not depend upon cr-. T is 

sufficient and complete when ~=go· Then by a theorem 

Basu [!] w1 and T are independent when ({=go· 
The rejection region may be written w1 > c(T)/T 

of 

where 

c(T) is determined by P(W1 >c(T)/T IT) = IX when f= fo· 

But since W 1 and T are independent when S = g 0 we must 

have c(t)/t equal to a constant. Hence t~e rejection region 

is w1 > c where c is determined by P( w1 > c) = c{ when 

3 = ~o· 
slnce w1 does not depend upon G"1 it is the most 

powerful s imila.r test for ~ = g 0 against g = g1 • Since 

here invariance implies similarity and w1 is invariant, it 

is also the most powerful invariant test for S =So against 

s=S1 • By the Hunt-Stein theorem ([3], p.336) the test 

also maximizes the minimum power over the s&t of alter­

natives with g = s1 • If we could prove that the power 

function of the test increases with g , then it is proved 

that it maximizes the minimum power over the set of 

alternatives with f ~J? 1 • 

The following argument will show that the test based 

on w1 is almost a UMP invariant test. We have 
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n n 2 2 2 _n_2 
2 ~x.x._ 1 / ~x. +(o 1 +~ )((x1 +x )/ ~x. -1) . 2 11 . 1 1 .J o n . 1 1 1= 1= 1= 

n 
If we neglect the term (X 2+X 2 )/ ,Lx. 2 which is small 

1 n i= 1 1 

even for moderately large values of n, we find that to 

reject when w1 > c 

where 

is equivalent to reject when 

n 
L:x.x. 1 . 2 1 1-1= 

n 2 
~· 
J x. 
~1 1 l= 

w > c' 
0 

For each ~ 1 this is an approximation to +:he most powerful 

invariant test for ~= ?o against g= g1 • It does not 

depend upon ~ 1 • Hence it is almost a UMP invariant test 

for ~=go against 

Using Theorem 3.3 and reasoning as above it is found 

that the test which maximizes the derivative of the power 

function with respect to S at the point 

on the statistic 

n , n-1 2 2::x.x. 1 - o LX· 
i=2 1 1- -~ 0 i=2 1 

W2 = n 2 2 n-1 2 n 
:;-x. + ~ L:x. - 2{> zx.x. 1 +--1 1 0 . 2 1 . 0 . 2 1 l-1= 1= -.1 1= 

with rejection region w2 > constant. 

is based 
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Since ~ is maximal invariant in the parameter space 

and the distribution of w2 depends only upon g, it is 

seen from Theorem 3.4 that the test based on w2 is LMPS. 
n 

If we in w2 neglect the term (X 2+x 2); ~x. 2 i~ 1 n . 1 1. 
1.= 

is seen as for w1 that the test based on w2 reduces to 

the test based on W0 • Hence the test based on W0 may be 

regarded as an approximation to the LMPS test. 

The statistics w 1 and w2 do not, of course, 

uniquely reduce to W0 when we neglect terms of the form 
2 2 n 2 (x1 +X )/ 2::x. . Another possible statistic is n . 1 1 

1.= 

w~ = 

.n 2 
L(x. -x. 1 ) . 2 1. 1.-l= 

n 
LX.2 
. 1 l 1.= 

= 2 -
X 2+X 2 
'1 n 
n 

LX. 2 
. 1 l l= 

- 2W . 
0 

W' ( 
0 

See for example [5]. The test with rejection region 

constant can also be regarded as both a nearly UMP invariant 

test and LMPS test. The difference between the power 

functions of the two tests can be expected to be small. 

, 

If we set £0 = 0, then the test based upon w2 

reduces exactly to the test based upon W0 , hence in this 

case the latter is LMPS. If we set ~0 = 0 and _s> 1 = 1, 

then the test based upon w1 reduces exactly to the test 

based upon W~, hence the latter is most powerful invariant 

against the a.l ternative ~ 1 = 1. This should give an 

indication of the difference between the two tests. The 

test based upon V'J 
0 

is a little more powerful than the test 

based upon W~ near the hypothesis, and the latter is a 
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little more powerful at alternative near g = 1. 

Finally we shall find a test of the hypothesis 

H2 : ~= 0 against g =!= o. [x1/xn,x2/xn, ••• ,xn_1/xn] is a 

maximal invariant under a common change of scale of all 

variables, and lSI is a maximal invariant in the para­

meter space. 

If we apply Theorem 3.5 it is found that the test 

which maximizes the second derivative of the power function 

at (O,u0 ) subject to the restriction of unbiasedness and 

similarity, rejects when 

where in this case 
n 2 

T = L:x .. 
. 1 1 1= 

This can be written as 

x 2+x 2 
_...;.1_-.:..:n_ + _1_ 

n 2 rr--2 
(Lx. 2 ) uo 

. 1 1 1= 

n 
L:x.x. 1 . 2 1 1- 2 

(=1=-=-n-- + c3 (T)) > c4 (T). 
,L:x.2 
. 1 1 1= 

n 
Neglecting the term (X 2+x 2 )!(2::x. 2 )2 and reasoning as 

1 n i= 1 1 

before we get the rejection region 

and 

where c is determined from the condition of level ol • 

This test is an approximation to the test which 

maximizes the second derivative of the power function at 

(o,a;). Since the power function of the former test depends 
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only upon l§l it is by Theorem 3.6 an approximation to 

the LMPU test at ~ = 0. 

5. VARIANCE COMPONENTS MODELS. 

In a previous paper [8] the author has studied the 

unbalanced one-way classification variance components model. 

X .. =t--t-+U.+V .. 
lJ y l lJ 

j = 1,2, ••. ,n., i = 1,2, ••• ,r, 
l 

where ~is an unknown constant, and where the U. and 
I l 

v.. are all independently normally distributed with 
lJ 

t t . d . 2 d 2 t• 1 expec a 1ons zero an var1ances 1: an CJ respec 1ve y. 

The hypothesis to be tested is 

H : 

2 2 where ~= "'L /o- . 

against 

In [8] it is shown that a maximal invariant under a 

group of translations, changes of scale and orthogonal 

transformations is 

where 

n. 
r l T 2 

Q = ~ 2::(X.;-X·) 
. 1 . 1 lJ l l= J= 

(i = 1,2, ••. ,r-1). 

and z .. = 
l 

R {5(.-X) 
1 1 r 
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The family of probability distributions of 

Z1 = [z1 ,z2 , ••• ,zr_11 and Q can be written in the form 

(3.1) with 

1 
2 -1 -1 -1 2(n-r)-1 

a(z,q,6 70') =exp(-(2~) (z'A(.o.) z-z'A(A0 ) z))q 

for any CJ"' 0' where A(A)c? is the covariance matrix of 
r 

and n = L:n .• 
. 1 l l= 

In [8] it is shown that the test which maximizes the 

z 

minimum power over the set of alternatives with 6 ~ b1 , has 

a rejection region of the form w1 > constant where 

Z'A(b0 )-1Z-Z'A(A1)-1z 
Z'A(A )-1z+Q 

0 

A limiting form of w1 is obtained when ~ 1 ~ Do • Then we 

shall reject when T >constant where 

From the identity 

( 5.1 ) 

where 

and 

1 r n. 2 z 'A(A)- z = L l (X. -5() 
i=1 nib +1 1 

r n. 1 r n. 
X= (L::. n.~! 1 )- L:: n t+1 X1. the statistics 

1=1 l i=1 i 
w1 may be computed by the observations X .. (8]. lJ 
Since the distribution of the invariant statistic 

depends only upon 6 , any invariant test has constant 

T 
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power when ~ = ~0 • Hence similarity represents no 

restriction when considering invariant tests. We shall now 

find the form of the locally most powerful invariant (LMPI) 

test. Derivation gives 

where The statistic Z'A(~ )-1z+Q 
0 

is sufficient and complete when 6. = ~0 [8]. Using Theorem 

3.3 and Theorem 3.4 and arguing as in Section 4 it is found 

that the LMPI test has rejection region w2 >constant 

where 

From the identity (5.1) it is found by derivation 

that 

Z'A*(6)Z 

It is seen that the LMPI test puts more weight to 

the group means with many observations than the other tests. 

It should be noted that the tests based on T,W1 and w2 

reduce to the usual test when n1 = n2 = ... = nr. The 

same is the case if r = 2. 

It is of interest to compare the three tests by means 

of their power functions. In [s) it is proved that w 1 

I are distributed as ratios of linear combinations of 

and 
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chi-square distributed random variables. The exact 

distribution is not known. In the case r = 3 the 

following lemma can be used to obtain a relatively simple 

expression for the cumulative distribution of the three 

statistics. 

LEMMA 5.1. Let x1 ,x2 ,x3 be independently distributed 

chi-square random variables with v1,v2,V:3 degrees of 

freedom respectively, and let a 1 and a2 be two constants. 

Then 

u = 
a1X1+a2X2 
X1+X2+X3 

is distributed as Y1 Y2 where Y1 and Y2 are indepen­

dent and Y1 has a beta distribution with V1+ tJ2 and I) 3 

degrees of freedom and (Y2-a 1)/(a2-a 1) has a beta 

distribution with v2 and v1 degrees of freedom. 

£ROOF. Define y1 and y2 by 

y1 = (X1+X2)/(X1+X2+X3) and y2 = (a1X1+a2X2)/(X1+X2). 

Then y2 is independent of X1+X2' and hence independent 

of y 1 • Also (Y2-a1)/(a2-a1) = X2/ ( X 1 + X2 ) • 

We shall use Lemma 5.1 with v1 - \) - 1 and 
3 

- 2 -

\)3 = n-3 where n = Ln .• By integration it is found 
. 1 l. J.= 

that if 0 .C.. a1 ~ a2 then 
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( 5. 3) 

P(U > u) 
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u/a 1 
+2 ~-1(n-3)-1 5 

u7a 2 

and for 

P(U > u) 

-1( )-1 +2 IT n-3 

(1•x) 
1 2(n-5) 

u/x-a 1 
Arcsin(1-2 )dx a -a 

(1-x) 
1 2(n-5) 

2 1 

u/x-a 1 
Arcsin(1-2 a -a )dx. 

2 1 

To avoid complica~ed formulaes we shall in the 

following consider only the case 6 "= o. 
0 

Let ~o'~1 and 
(32 

denote the power functions of 

the tests based upon r, w1 and w2 respectively, and let 

c0 ,c1 and c2 denote the corresponding constants used in 

the tests. In [8] it is shown that w1 is distributed as 

r-1 
L(6A.+1-(b'A.+1 )/(61'A.+1) )s. 2 
i=1 1 1 1 1 

w1 (A) = =r---=-1 ------------
L(A~.+l)S.2+Q 
. 1 1. 1 1= 

where are independently chi-square 

distributed with 1 degree of freedom, independent of Q 
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which has a chi-square distribution with n-r degrees of 

freedom. The \ i are the roots of the equation 

IB-ACI = 0 where B and C are determined from 

A( l!l.) = BA+C. 

We find 

r-1 
L~· (A1 (A'A,.+1 )/(A 1 ~.+1 )-Ac 1 )S. 2 
. 1 l l l l 

= p(=l-=~------~-------------------r-1 
L:s.2+Q 
. 1 l l= 

where the statistic is in the form of U in Lemma 5.1. 

Regarding the test T we may use the fact that T 

is distributed as 

r-1 
2 (t\A.+1)s. 2 
. 1 l l l= T ( 6.) = .::;__..;....__Q __ _ 

to write 

The power function of the test based on w2 is 
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where the t.-L. are the roots of 
! 1. 

By means of Lemma 5.1 and the expressions (5.2) and 

(5.3) the power of the tests can be computed for r = 3. 

The results for some combinations of n1,n2 and n3 are 

given in Table 1 and Table 2. For fixed n1 ,n2 and n3 

second and third column show how much must be added to 

the power function 0o to get the power functions ~ 1 

the 

and (3 2 respectively. The last column in each table gives 

the power of the F-test when n1 = n2 = n3 = n/3. The 

level is 1 % and the value of D. 1 is chosen to be 0.1. 

The reason for choosing b 1 = 0.1 is that for larger values 

of A 1 the difference between ~ 0 and ~ 1 vanishes. For 

6 1 = 3.0 for example the two power functions were 

identical to three decimal places. The power functions 
I 

were also computed for 5 % level, but the results did not 

in tendency differ much from those for 1 % level, though 

the differences in power were smaller. 
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It is seen from the tables that the difference 

between ~0 and f 1 
' 

is small, and very little is gained 

by the LIV\PI test near the hypothesis as compared with the 

loss of power for moderate values of ~ • It is also seen 

that we may have a serious loss of power compared with the 

situation where n1 = n2 = n3 = n/3. 
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n1=n2=2,n3=26 n 1=5,n2=10,n3=15 
~I . 

n 1 =8,n2=10,n3=1~ n 1 ~n2=n~ 
-10 

A Po ~,- Po (12-ro 
, 01- (~o (3-2-r~o fo ~ ,-rzo 02 -fo (S i-'o 

lo 
I 

.010 .ooo .ooo .010 .ooo .ooo .010 .000 .ooo .010 

,. 01 • 011 .001 .001 .014 .ooo .ooo .014 .ooo .ooo .014 

1.02 .013 .001 .001 .019 .001 • 001 .019 .000 .ooo .019 

.001 
', 

lo03 .015 .001 .001 .024 .002 .025 .000 .ooo .025 
I 

,.04 .017 .001 .001 .030 .002 .002 .032 .ooo .ooo .032 
I 

•• 05 .018 .002 .002 .036 .003 .003 .039 .000 .ooo .039 

.o6 .021 .002 .002 .043 .003 .003 .046 .001 .001 .047 

'.07 .023 .002 .0021 .051 .003 .003 .055 .ooo .000 .055 

.08 .025 .003 .0031 .059 .003 .003 .063 .001 .ooo .064 
! 

.09 .027 .004 .oo3 1 .067 .004 .003 .072 .ooo .000 .073 

• 1 I .030 .003 .003 .075 .004 .003 1 .081 .001 .ooo .082 

.2 .058 .006 .006 .163 • 004 -.003 I .177 • 001 -. 001 .180 

.3 .091 .007 I .246 .002 -.012 .• 267 • 000 -. 003 .271 .0061 

.4 .125 .007 .005 • 319 .002 -.021 .343 • 000 -.004 .348 

.5 .160 .004 .001 .381 -.005 -.031 .408 • 001 -.005 .413 

.6 .193 .002 -.003 .433 -.006 -.033 .462 -.001 -.006 .466 

.7 • 225 -. 001 -. 007 .478 -.008 -.037 .507 -.001 -.006 .512 

.8 .255 -.004 -.012 .516 -.008 -.039 • 546 -.001 -.006 • 551 

.9 • 283 -. 007 -. 01 6 . • 550 -. 01 0 -. 041 I . 579 -. 001 -. 006 .584 

1 .31 o -.o1 o -.o21 1 • 57 9 -. 0 1 0 -. 04 2 • 608 -. 001 -. 006 .613 

2 I • 503 -.032 -. 054 ! • 746 -.011 -.041 1-768-.001-.005 .772 

3 

I 
.614 -.040-.068 .818 -.oo9 -.o34 1 .836 -.oo1 -.oo4 .839 

I 

4 • 685 -.042 -. 073 .859-.008 -.029,.873-.001 -.003 .875 

5 I • 734 -.042 -. 073 .898 
I 

.884 -.006 -.025 i .896 .ooo -.002 

11 o_.l_:_850 -.032 -.059 I • 940 -. 004 -. 01 5 i . 946 . 000 -. 001 .947 
I 
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TABLE 2 

- f n1=5,n2=3o,n3=5s : n1 =n2=n3=30 n1=n2=5,n3=80 
I 

b. ro 01-Po r2-fo ~0 ~1-~o f - (3. 2 10 I 
(5 

0 .010 .ooo .ooo .010 .ooo .ooo .010 

• 01 .014 .001 .001 
' I .023 .005 .005 .027 

.02 .020 .002 .002 .042 .009 .010 .053 

.03 .026 .003 .003 .065 .012 .013 .083 

.04 .033 .004 .004 .088 .016 .016 • 11 5 

.05 .041 .005 .004 I • 113 .017 .017 .149 I 

.06 .049 .006 .005 .137 .019 .018 .182 

.07 .058 .006 .005 • 161 .019 .017 .214 

.08 .067 .007 .006 .184 .019 .016 .244 

.09 .077 .006 .005 .206 .019 .015 .274 

• 1 .086 .007 .006 .227 .019 .013 .301 

.2 .184 .007 .ooo • 391 .010 -.008 .502 

.3 .272 .003 -.010 .498 .001 -.028 .617 

.4 .346 -.001 -.020 .572 -.005 -.042 I .689 

.5 .408 -.005 -.028 .627 -.009 -.052 I .739 
I .6 .460 -.008 -.034 ~670 -.012 -.060 .775 

.7 .504 -.010 -.039 .703 -.013 -.065 .802 

.8 .541 -.011 -.042 I .731 -.014 -.069 .824 

.9 .573 -.012 -.044 .753 -.014 -.071 l .841 

1 .602 -.013 -.046 .773 -.015 -.074 .855 

I 2 .761 -.014 -.046 .872 -.013 -.071 .923 

3 .829 -.012 -.039 • 911 -.010 -.062 I .948 

4 .867 -.010 -.033 .932 -.009 -.053 -961 

5 .891 -.008 -.028 .945 -.007 -.010 -968 
10 • 943 -.005 -.017 .972 -.004 -.028 .984 

- ·--



REFERENCES 

OJ BASU, D. (1955). On statistics independent of a 

complete sufficient statistic. Sankhya 15 377-380. 

CZJ LEHMANN, ~~L· (1947). On optimum tests ef composite 

hypotheses with one constraint. Ann.Math.Statist. 

20 473-494. 

(3] LEHMANN, E.~. (1959). Testing Statistical 

Hypotheses. Wiley, New York. 

~ 

LEHMANN, E.L. and SCHEFFE, H. (1955). Completeness, 

similar regions, and unbiased estimation. 

Sankhy~ 15 219-236. 

[5] von NEUMAN, J., KENT, R.H., BELLINSON, H.R. and 

HART, B.I. {1941). The mean square successive 

difference. Ann.Math.Statist. 12 153-162. 

[6] NEYMAN, J~ (1935). Sur la verification des 

hypoth~ses statistiques composees. Bull.soc.math. 

France 6~ 246-266. 

[7] SCHEFFE, H. (1942). On the theory of testing 

co~posite hypotheses with one constraint. Ann.Math. 

Statist. 13 280-293. 



- 37-

[sj SPJ0TVOLL, E. (1967). Optimal invariant tests in 

unbalanced variance components models. To be 

published in Ann.Math.Statist. 

\j] SVERDRUP, E. (1953). Similarity, unbiasedness, 

minimaxibility and admissibility of statistical test 

procedures. Skand.Aktuarietidskr. 36 64-86. 


