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1. INTRODUCTION AND SUMMARY .

WNe shall be concerned with the parametric problem of
testing hypotheses concerning the value of one parameter when
the valuesof other parameters (nuisance parameters) are not
specified. Neyman [6] derived under certain conditions a
locally most powerful two-sided test for this problem i.e.
he gave the form of the test maximizing the second derivative
of the power function with respect to the parameter of interest
at the point specified by the hypothesis. Generalizations off
Neyman's results were given by Scheffe {7] and Lehmann (2],
using the same technique as Neyman. They were also able to
prove that the tests were UMP unbiased. A new technique fo;
dealing with these problems were introduced by Sverdrup [9]1
and Lehmann and Scheffe {4] where the completeness of the
sufficient statistics in an exponential family of densities
is used to derive UMP unbiased tests. It is stated by
Lehmann and Scheffe [4] that the conditions imposed earlier
imply an exponential family of densities.

When no UMP unbiased test exists we have little general

theory. The problem is both one of principle and of technique.
Most stringent tests exist under general conditions but are
difficult to derive in particular cases. Lehmann [3] proposed
maximin tests and a local form of maximin tests called tests
which maximize the minimum power locally. Definitions of
these are given in Section 2. Spjetvoll {871 has given an

example of the form of a maximin test when no UMP unbiased



and invariant test exists.

This paper is an attempt to establish some general
theory for testing hypotheses when the probability density of
the observations does not constitute an exponential family
under both the hypothesis and the alternative. The assumptions
made in Section 3 is satisfied if we have an exponential
family under the hypothesis, but do not say anything about |
the form of the density under the alternative. The results
concern maximin tests and locally most powerful tests, and
under certain conditions the form of these tests for the
particular family of densities studied, is given in Section 3.

In Section 4 the theory in Section 3 is applied to
the problem of testing serial correlation (not circular) in
a first order autoregressive sequence. It is found that the
usual tests is nearly UMP invariant.

In Section 5 the problem of testing the value of the
ratio. of variances in the one-way classification variance |
components model is considered. Some numerical results is
given for the power functions of the maximin test, the
locally most powerful test and the standard F-test. The
results indicate that the standard F-test performs well

compared with the other tests.



2. DEFINITIONS AND ELEMENTARY CONSEQUENCES.

Let X be a random variable with distribution
belonging to a family (.P='(Pev_ : (8,9 ¢ D.} of distri-
b
butions. Let the parameter © be real. We shall consider the

problem of testing the hypotheses

6= 90 against @ >0,

Hy + ©= 6 against  ©% Q.
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will be used as measures of distance from the hypotheses H1

and H, respectively.

In the following let H and d stand for either H1
and dy or H, and dy. Let (5(6,3},({?) denote the power
function of a test %7,

The concepts maximin tests and tests which maximize

the minimum power locally have been introduced by Lehmann L§].

Definitions of these tests and of locally most powerful tests

are now given in terms of the distance function d.

DEFINITION 2.1. A level ok test (¥b of H 1is locally

most powerful (LMP) with respect to the distance function




d if, given any other level o\ test ({9, there exists
for each 44 - a & such that (5(9,"!7;?70) E’E:(G,W?’,LF) when
0 <d(e) <« A.

Define sets Wy by

Wy = {(e,w}) 2 d(e) 2 A} .

DEFINITION 2.2. A level ol test ¢, of H maximizes the

. o w f. . . ,1)- é
minimum power over w,(Afixed) if 1\({1{(3(9, ,(}90)
inf (GL,’V",(F) for any other level ol test @-
Wa
The test (:(O is said to be a maximin test over w,.
More generally we can speak of maximin tests over any subset
w of the set of alternatives by replacing Wy by w in

Definition 2.2. In Section 3 we shall be concerned with

subsets of the form {(e,v) : d(9) =A}

DEFINITION 2.3. A level ol test C(JO of H 1is said to

maximize the minimum power locally with respect to the

distance function d 1if, given any other level ol test C? ’

there exists a A' such that inf@R (e % @) = inf R(6,V,0)
WAG ! ’ % WA ’ ’?

when 0 <« A< A'.

A level oL test @ is similar if (3(90,'17‘,({7) = ol for
all "%, it is unbiased if G(@,ﬁ},cp) > o\ when d(&) > 0,
and we shall say that it is unbiased at & = if for each "

there exists & such that (Z,(Q,'l},(‘e) > ol when O <&d(8)¢< A .

The following two lemmas are easily proved by comparing



with the test ce(x) = O .

LEMMA 2.1. If for each q7 the power function (}(Q;ﬁﬁq@ is

continuous in € at 60, then a LMP test is similar.

LEMMA 2.2. A test which maximizes the minimum power locally
is unbiased, and if the power function of each test is

continuous in 6 at 630, then it is similar.

In view of Lemma 2.1 we introduce the following

definition.

DEFINITION 2.4. A level o test (pé of H 1is locally

most powerful similar (unbiased) with respect to the

distance function d 1if, given any other similar (unbiased
at 90) level ok test (¢, there exists for each *a A
such that G(e,ﬂ};%) = (5(9,'\9,39) when O <d(8)< A.

We shall use the abbreviations LMPS and LMPU. Note
that a LMPU test need not be unbiased after the usual |
definition of unbiasedness, only unbiasedness near Go is
required.

The following lemma proves that in some cases a LMPU

test maximizes the minimum power locally. (Compare Lehmann

(3], p.342).

LEMMA 2.3. Let ‘PO be a ILMPU level o test of H and
suppose that the power function (3(8;ﬁ%%%) depends only



upon d(©) and is continuous as a function of d. Then %5
maximizes the minimum power locally provided Gu(&,’lﬁ‘,%) is
bounded away from o for every set of alternatives which is

pbounded away from H (measured by d).

PROOF . If a test @ 1is not unbigeed,then for some A'
we have inf (6,\9',(?) <ok for 0 <« A< &', Hence
: Wy
. . s',, '
1&2%(6 ,ﬂ?’,?’o) > 1\5§{5(9,1 ,Lf) for 0< a < A', Suppose then
that (p is unbiased. Let " be a fixed value of V", since

C("O is LMPS we have for some AE

*

(2.1) G(e,’\ﬁz(,%) ég(@,w‘)—x,q?) when 0 « d(®)< AT,

Define af(a) by infe(e,'\?‘,qﬂ) =ol+a(n). By the condition
W, o

of the lemma a(&) does not depend upon % and a(&) > 0

when & >0. Since (5(6,‘17‘,%) is continuous as a function

of d, there exists A'a« A¥ such that a(a') ¢ a(at).

Hence

(2.2) inf (e,wg%) = inf (3,(9,(\9;%) for 0< A< &,
W N INEICE

Then we have by (2.1), (2.2) and the fact that (&(6,’1}‘“,%)

does not depend upon V.
inf (6,%,9) £ inf G(e,v‘,g) £ inf @(9,192‘,7:)
- p2d(6) A" SICIEY

£ inf (9,"9"‘(, ) = inf 3(8,«9*, )
Aéd(e)éﬁ*@ & Yo ( &




— 3 i
= l‘g’i (e,w},cfo) for 0 « A<,
The next two lemmas gives conditions under which a test
is LMPS or LMPU. Let (ﬁ'G and (3, denote the two first

derivatives of the power function with respect to G.

LEMMA 2.4. Suppose that the power function of any test qo
has a continuous derivative with respect to ¢ at 90. If
there exists a similar test Q% such that

(5'9(60,’17“, (Fo) >(5é(6‘0,’\7;(?) for all ~>~ when ¢ is any other
similar test, then q?o is the unique LMPS test of H1

with respect to d1-

LEMMA 2.5. Suppose that the power function of any test
has a continuous second derivative with respect to & at
©,- If there exists a test CFO unbiased at 90 such that
"9(90’% %) >(3"g(90,’\9,?) for all “ when C( is any other
test unbiased at 90, then CFO is the unique IMPU test

of H, with respect to d,-

PROOF. We give only the proof of Lemma 2.5, since the proof

of Lemma 2.4 is similar.

For any test (@ we have G(G,* ,cp) = (5(60,’\?,(?)%9—6{))
8ol 8,1 Vrp)+5(6-6,)7
0 th,(. 1. If @ 1is unbiased at 90, we get <3(6‘,°\7;§D) =

'é(@gté@-@o),\’?@ for some t‘t” with

2
When |©-6 ! is small enough then

i

+1(6L690)2 g(@O+qée-eb),¢%?ﬁ. Consider a fixed 9% and @ -



GEJGb+tT (9-66);93?g)~> Gg(9b+t?(9_eb),¢%¢) since
o
Gg(eo,«},%) > B30V, ). Hence ((8,%,¢)) >@(0,%¢) for

K}-ebl small enough, and the lemma is proved.

A test ¢ of H, satisfying
(2) g (6,%9) =5 (p) Col9,Vs9) = 0 and (8 ,%5¢) =
maximum among tests satisfying (a) and (b), was denoted test
of type B by Neyman [6]. If there exists a unique test of
type B, then by Lemma 2.5 it is a LMPU test of Hy. But in
general we cannot be certain that a type B test is LMPU
as defined above.

The reason for formulating the definitions of locally
most powerful tests as above is to have a definition covering
both one-sided and two-sided tests, and to ensure that the
corresponding tests have optimum properties near the
hypotheses to a greater extent than guaranteed by type B
tests. This way of defining locally mest powerful tests is
not new, see e.g. Lehmann [3], p.342, where the one-parameter

case is considered.

3. DERIVATION OF MAXIMIN TESTS AND IMP__TESTS FOR A

PARTICULAR FAMILY OF DISTRIBUTIONS.

We shall consider the case where the probability
distribution of X belongs to a family TX =

{?efﬁx : (@{@7€=31:S where Pe,vx is defined by



dpe,g_()() = a(x,e,\})b(t(x) 79"\})‘:1}-&()()’

where ru is a 0 -finite measure over a Euclidean space.

We shall assume that there exists a value 'ﬁ% of V-

such that the distribution P A dominates the family @?X
GO”VB

In that case we may write

APy 3 (x) = a(x,007)b(t(x),8,9)/(a(x,06,,7%)

(3.1)

¢ X .
b(t(x),BO,WO))dPBb’vb(x) a.e

Further it is assumed that the statistic T = t(X) is

sufficient when @ = ©,, and that the family of distributipns

for T when © =@_ 1is boundedly complete.

o)
The assumptions stated above will be assumed to hold
for the rest of this section.
X[t
Let . Peo
distribution of X given T =t when &= 60. Since T is

denote the conditional probability

sufficient, pX1t can be chosen to be independent of ",

o)
Let Eélt denote expectation taken with respect to Pélt .
o o

Similarily let Eeﬁ}_ and EBE} denote expectations with
respect to the distribution of X and the marginal distri-
bution of T respectively.
. - . X
A =o f .
test @ is similar if Eeofﬁ%(x) or all
Since T is sufficient and complete when @= Qo a test is
similar if and only if Eé‘ﬁ@(x) = a.e. Tg} where
o

o)
‘?QT denotes the family of distributions for T when

0
ez go.
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The following lemma will be useful when establishing

the uniqueness of tests.

LEMMA 3.1. Let X be a random variable, T = t(X) a

X =T X|t

and E denote expectations

statistic and let E", E
with self-evident notation. Given a test function ?% such

that

1 when h(x) >iki(t(x))fi(><)
l:

Fol) =

0 when ) € E::k (t(x)) l(x)

for some functions h,f1,f2,...,fm,k1,k2,...,km. Then a te%t

function (p satisfying

Xt
satisfies
X _
E g( = E ((90 X)h(X)
if and only 1f (P Yz a.e. on the set

{f : h(x) # E::k (t(x) f.(x)}. Otherwise EX?(X)h(X)<_ (

EX@C)(X)h(X).
PROOF . We have by (3.2)
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= B, (X)k; (£ (X)) £ (%)

It follows that

E% X)h(X) Eqa h(X)
-qxx>)<h<x)-gf:k.(t(x)>fi(x>>.

By the definition of @  the above difference is =0 for
all ?7. It is =0 1f and only if @ (x) = ?% a.e. on

the set {x : hix) # 2::k l(x)}.

We have the follow1ng theorem

THEOREM 3.1. For the hypothesis 9==60 against

(6,%) = (61,ﬁ1) there exists a most powerful similar level

A test ?1 defined by

1 when a(x,G‘1 ,ﬂﬁ)/a(x,@o,ﬂ/%) >c(t)
,(x) = { ¥(t) when a(x,8,,%)/al(x,8,%) = c(t)
0 when a(x,61,ﬁﬁ)/a(x,@b,v;) <c(t),

where c(t) and ¥(t) are determined by E)‘It(;g1 =

for all t.
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PROOF. By (3.1) the power of any test ¢ at (91,ﬁﬁ) is

X r
f%wﬁﬁX)=E%n%@xhﬁh&ﬂﬁ)thhewﬁ)/

(a(X, 6,5 )b (t(X),0,5%))
X't(

o (X)

il

Eéo,q}o(b('f’%"%)/b(Ts%"}o))E

a(X;0,5%7)/a(X,8,,%)).

A test maximizes the power under the condition of similarity

if it for each t maximizes Eggt(%(x)a(x,e1,6ﬁ)/a(x,eo,¢;))

under the condition of similarity i.e. under the condition

Eé}t?(x) = o\ « By the Neyman-Pearson fundamental lemma the

Q
test Cﬁ has this property.
REMARK. The test is unique (a.e. @?X) if
X oL / i _
Peb,vb(a(x,e1fﬁ) = c(t{X))a(x,e,%)) = o.

The Remark is proved by using Lemma 3.1 with h(x)
a(x,0,W )b (t(x),8,95)/ (alx,8,,0% )o(t(x),8,%)) and
PX as probability measure. The remarks following
907’\76

Theorem 3.3 and Theorem 3.5 later can be proved in a similar
way.

It should be noted that Theorem 3.1 can be regarded as
an application of Theorem 3 of Sverdrup [9] to the family
X
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The following corollary is obvious.

COROLLARY 3.1. If (P1 does not depend upon Q9ﬁ then it
is the uniformly most powerful similar level &\ test for

testing ©= 90 against @&= 61.

This leads to

THEOREM 3.2, Suppose that (€1 in Theorem 3.1 does not
depend upon ‘ﬁq and that (%(6,5%?%) > F(91,¢ﬁqa) for all
(6,) with © 2 ©,. Then ®1 is a maximin test among
similar level ot tests over the set of alternatives with
826, and @, is the unique maximin test if it is the

unique most powerful test.

PROCE . By Corollary 3.1 @1 is the uniformly most power-
ful test for 9==G% against 94:91. Hence any other test
has less or equal minimum power when ©=0,, and hence less
or equal minimum power over & = 91. If Py is unique any
other test must have less power for some points with ©= 81,

and hence less minimum power over the set of alternatives

with 62 91.

Let aé

to © of the functions a and b respectively. The next

and bé denote the derivatives with respect

theorem gives the form of the test that maximizes

(&'é 8, "V CP) locally.
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THEOREM 3.3. Suppose that for any test CP the derivative
with respect to © of the power function (}(efﬁ;@ﬂ can be
computed under the integral sign. Then among similar level
oA tests the following test ¥, maximizes the derivative

of the power function at (8, ,¥;)

1 when a'(x,9~ 9'\9 )/a(x,e 9'\?') > c(t)
Pylx) = X{t) when ae_\x,e W) /alx, 8,,1%) = c(t)
0 when ag(x,EByfg) a(x,eoaﬁz) < c(t),

where c(t) and ¥(t) are determined by E?'t?Q(x):sc(
o
for all t.

PROCEF . The derivative at (60,1%) with respect to 8 of

the power function of a test (P

(’e 60105 @) ﬂ a5(x5 85, % )o(t(x),8,,%)
+a(x,90,17;3)b'9(t(><),G’Osq%)))dr.(x

= By s0X 38,:0%)/a(X, 6,5V ) +bg(t(X),0,,% )/
b(t(X),%o,“L%))
- T X't
N ,ﬁ}( (T, 9, $')/b(T,9 q
T X[t , | o
+ Eeo’&oEeol (@(x)ay(X56,5%)/a(X,8,,%) )

(5'9( eo,w%,@ is maximized under the condition of similarity

if for each t the second expectation in the last expression
is maximized under the condition of similarity. An appli-



cation of the Neyman-Pearson fundamental lemma gives the test
e

REMARK. The test is unigue (a.e. ﬁBX) if

——

A

P .
B, %,

aé(X,Goa’vt) = c(t(X))a(X,&O,’VO)) = 0.

The next theorem gives a condition under which the test

Cfé of Theorem 3.3 is LMPS.

THEOREM 3.4. In addition to the assumption of Theorem 3.3

suppose that the derivative G%é?,ﬁﬁqﬁ is continuous in

& at 190 for any test (f, and suppose that the hypothesis
testing problem H, is invariant under a group G of
transformations, and that ©& 1is a maximal invariant under
the induced group G of transformations of the parameter
space. If ¢, of Theorem 3.3 is unique and the power
function is invariant, then q?2 is the unique LMPS level

A test of Hy with respect to the distance function d1.

PROOF . Since Q72 is unique we have
! 3 !
(3.3) (59(90,&%3,%; > GQ(GO,\%,?)
for any other similar level oL test @. We shall show that

\
@&(90,19, &) >§('9(90,19',i7) for all v*. Then by Lemma 2.4
C€2 is LMPS.
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Suppose on the contrary that there exists a ¥ such

that
(3.4) (Ag(eo,v",@) £ g;(eo,**,gv).

Since © is maximal invariant there exists a g £G such

that 5((9,$%)) = (8,7). Consider the test @* = @9 where

g corresponds to “§. We have Eﬁfﬁg?g(x -

E;, T X) = Eéjﬂqux), or in terms of power functions,

(5( ,’l?’ C(g —G 8,V (? Hence by (3.4) e'e(eo,'\?*,CFz)
GQ 8,9, ? 6@ eofﬁ;,?g). But (F2 is invariant, hence

(59 "93€ $2) = (ol€qr%s@p) s and we get %'9(90”‘%’%)
\6 n?,qy which contradicts (3.3).

COROLLARY 3.2. Under the assumptions of Theorems 3.3 and

3.4 the test (?2 maximizes the minimum power locally with
respect to the distance function d1, provided its power
function is bounded away from o( when 8 1is bounded away

from 9-0.

PROOEF . Follows from Theorem 3.4 and Lemma 2.3, since here

a LMPS test is LMPU.

Let ag and bg denote the second derivatives with

respect to © of the functions a and b respectively.

THEOREM 3.5. Suppose that for any test QD the first and

second derivative with respect to @ of §3(9,¢%?» can be
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computed under the integral sign and suppose that

L(xy8,5%) /a(x, 8, ,0)+b L (£(x) 5 8,,%)/b(£(x),8,,%) = k(W) h(x)
for some functions k and h, with k() > 0 for all V.
Then among level ol tests unbiased at 9() (with respect to
d2), the following test CP3 maximizes the second derivative

of the power function at (GO;ﬂB)

—

when a&(x,eo,%)/a(x, 6,5 % )+cy (t)a('a(x, &%)/

a(x,6,,9%) >cy(t)

%g(x) ={ ¥(t) when g(x,e,q?-)/a(x,e 9ﬁ+c1( )a (x 9 1})/

a(x,6,,%) = c,(t)

LO when aé( )V’)/a(xy ,’LL)‘*‘C1( ) e(xﬂ}oﬂ%)/

a(x,@o,\%) < C2(t)9

where c1(t),02(t) and ){(t) are determined by
Xlt?:a = o and EXItC€3 Xe })/a(Xa ’\9”0)+

b'e(t( Y o”\%)/b(t( ) s O"vg)) = 0.

PROOE . Unbiasedness in some neighbourhood of 60 implies

(sé(eo,w},cg) = 0, hence

8
+oa(t(X),8,7%) /b(t(X),8,57%))

0 = Ego,@gg(x)(a'(x,eo,'\’)/a(x,eo,“})

il

T X[t [
Bg ol QU0 (33 (6,85

a Xseoaqg')"'b'e(t(x) 33'07“'9')/b(t(x) ’ Boﬂy'))
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We may choose the function h(x) in the theorem equal to

a'e(xe907'\9'0)/3(X790aq%)+b'9(t(x) ’90’196)/b(t(x)’@oﬂ}6)- Hence

by (3.9)

_ =T Xt ' '
0 = Eg isFy X (46 05,5 /a (%, 0,575 )+

Completeness of T implies

EX!tce(X)(a'(X,Go,ﬁ%)/a(x,eo,'lﬂ")+b'(t(X),6 V) /

o) 0”70

b(t(X),Qo,l%)) = 0, a.e. .

The test must be similar, hence as before

X1t ) = T
(3.7) EG_O @x) =4 a.e. ffeo.
We have

" _ gl Xt "
9(9071967?’) = Eeo"\%EQO X)(ae(xaeoﬂ%)/

W)b(t(X),8 %))

a(Xyeoa(\ga)"'Qa ' (X’goﬂ%)bé(t()() ’eos'va)/(a(xs 907 5 0%

e

+bii

Q(t(X) ,903"\%)/b(‘t(X),9 y1-) ).

o” O

X |t
Eo

0
in the above expression is maximized under conditions (3.6)

Maximum is obtained if for each t the expectation

and (3.7). An application of the Neyman-Pearson fundamental

lemma gives the test QDB.
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REMARK. The test is unique (a.e. °§

p%,\%(a’é(x,eo,ﬂaha,(t(x))aé(x,Gg,"»"g,) =
cy(t(X))a(X,8,,7%)) = O.

THEOREM 3.6. In addition to the assumptions of Theorem 3.5

suppose that 68(9,19;?) is continuous in & at &, for any
test Cp and suppose that the hypothesis testing problem

H2 is invariant under a group G of transformations, and
that |© -90‘ is a maximal invariant under the induced
group G of transformations of the parameter space. If QDS
of Theorem 3.5 is unique and the power function is invariant,
then (P3 is the unique LMPU level & test of H2 with

respect to the distance function d,.
PROOE . Analoguous to the proof of Theorem 3.4.

A corollary analogOQS-tthorollaryﬁ3,2 could also be
formulated. ; -

- We have tac1tly assumed measurablllty of the functlons
ocooring 1n the theorems. We shall not prove thls, but only
note that in each spec1flc Case we may flnd (measurable) |
tests Wthh is of the form glven in the theorems. By Lemma

3 1 they w1ll be most powerful.
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4. TESTING FOR SERIAL CORRELATION.

The model for the observations X1,X2,...,Xn is

Xi = ?Xi_-]'l'ui i = 2,3,0-0,“

where U,,Uy;...,U ~ are independent N(O,G2)s, anl
Xqy9Xpy ooy X, have a multinormal distribution with
_ - a2/(1. , _ L i-jl2
EX; = 0, Var X; =G/(1 5?) and Cov(X;,X;) = % o~/(1-f),;
The parameters Q" and o are unknown.

We shall consider the problem of testing the hypothese$

H1 : §=§O against S>>S70,
Hy gz 0 against g# 0.

The hypothesis testing problem Hy 1is invariant under
a common (positive) change of scale of XqsXgreeerX o A

maximal invariant is

The distribution of S depends only upon S>, hence any
invariant test is similar. When considering invariant tests
it is therefore no restriction to restrict attention to

similar tests.
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The probability density of X1,X2,...,Xn is

. 231_1' 2))

2 X:X: 4+ X ’

,f i%i-1 Q o5 1

which can be written in the form X1Q & (t(x),g,Gj with

x,g,G‘ =exp ( g g%

i=2

and

b(£(x),0,0)=(2m) 2 ¢"(1-¢%)
where

= X' + Xo ‘-2 X-X. °
) %;; i gb %;; i g% g;% i%i-1

The probability measure for ‘§= go and g= G, can
be used as a dominating measure for any CTO. We have
a(x,gb,Gﬁ = 1. T = t(X) 1is sufficient and complete when
9 ZJ?O. Applying Theorem 3.1, the most powerful similar
test against an alternative (g1,63) is found to have the

rejection region

n n- 2
2 izzgxixi_1 - (g% ) %Xi > c(T).
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Introduce

n-1 5

n
2 %:—_;Xixm - (0476, Zixi

= "n o 5 n=-1 5 n_
gxi G zi:::zxi =20 gxixid

The distribution of Wy does not depend upon G. T is
sufficient and complete when Q==§B. Then by a theorem of
Basu []] W, and T are independent when g)=\§o'

The rejection region may be written W; > c(T)/T where
c(T) is determined by P(W1 >c(T)/TIT) = oL when §>=.§B’
But since W4 and T are independent when % =.?o we must
have c(t)/t equal to a constant. Hence the rejection region
is Wy > c¢ where c¢ is determined by P(W1 > c) = o when
§=8o

Since W, does not depend upon G it is the most
nowerful similar test for §=§o against g= 81. Since
here invariance implies similarity and W, is invariant, it
is also the most powerful invariant test for_g =,§o against
© =§1. By the Hunt-Stein theorem ([3], p.336) the test
also maximizes the minimum power over the set of alter-
natives with g =.§1. If we could prove that the power
function of the test increases with g y then it is proved
that it maximizes the minimﬁm power over the set of
alternatives with g’éj?1.

The following argument will show that the test based

on W1 is almost a UMP invariant test. We have
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n n_ 2 2., 2 o2
2 2 X%/ 25 (947 0) (X, %)/ 2%, 7-1)
__i= i= i=
N 140 2(1-(X, 2+x_2)/ En K. 2) 20 STRK. ./ 3 %.2 .
$ 17TV 3K T 200 2 KK/ 2K

n
If we neglect the term (X12+Xn2)/ §L1X12 which is small
even for moderately large values of n, we find that to
reject when W1:> ¢ 1is equivalent to reject when W0‘> c'

where
n
%;;Xixi-1

- =
=7

o

For each §1 this is an approximation to the most powerful

invariant test for g= ?o against g=§1. It does not

depend upon 521. Hence it is almost a UMP invariant test

for g':fo against g >So.

Using Theorem 3.3 and reasoning as above it is found
that the test which maximizes the derivative of the power
function with respect to g at the point (Q,,0,) is based

-

on the statistic

n ) n-1 5
_ %;;Xixi-1 RL %;;Xi
2 §x2+A2§u2-2 fxx

W

with rejection region W2 > constant.
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Since .g is maximal invariant in the parameter space
and the distribution of W2 depends only upon _g, it is
seen from Theorem 3.4 that the test based on W2 is LMPS.

If we in W, neglect the term (x1 X 2y/ Zx it
is seen as for W; that the test based on Wy reduces to
the test based on Wy Hence the test based on W, may be
regarded as an approximation to the LMPS test.

The statistics Wy and W do not, of course,

uniquely reduce to w_ when we neglect terms of the form

0
(X, +X / E x Another possible statistic is
n
. 2
> (X, =X. 4) 2., 2
leizzl 1 =2_u_zw
0 n n o’

See for example [5]. The test with rejection region Wé,(
constant can also be regarded as both a nearly UMP invar%ant
test and LMPS test. The difference between the power
functions of the two tests can be expected to be smeall.

If we set ‘90 = 0, then the test based upon W,
reduces exactly to the test based upon Wy hence in this
case the latter is LMPS. If we set 9, =0 and ‘91 =1,
then the test based upon W, reduces exactly to the test
based upon Wé, hence the latter is most powerful invariant
against the alternative g>1 = 1. This should give an
indication of the difference between the two tests. The
test based upon W, is a little more powerful than the test

based upon Wg near the hypothesis, and the latter is a
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little more powerful at alternative near g =1,

Finally we shall find a test of the hypothesis
Hy : ¢=0 against (% 0. [x1/xn,x2/xn,,..,xn_1/xnj is a
maximal invariant under a common change of scale of all
variables, and lgl is a maximal invariant in the para-
meter space. |

If we apply Theorem 3.5 it is found that the test
which maximizes the second derivative of the power function
at (O,G;) subject to the restriction of unbiasedness and
similarity, rejects when

CFh 2 8}5 }::xlxl ;) -+c1(T)%§;XiXi_1 > ¢, (1)

i=2 i o)
n_ 2
where in this case T = E Xi . This can be written as

n
x12+xn2 %;;Xixi-1 ’
g + g2 > e (1),

X’l( 2 n

n )
Neglecting the term (X12+Xn2)/(§ XiQ)2 and reasoning as
i=1
before we get the rejection region

WO < -C and WO'> c

where ¢ 1is determined from the condition of level ot &
This test is an approximation to the test which
maximizes the second derivative of the power function at

(O,ag). Since the power function of the former test depends
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only upon (@l it is by Theorem 3.6 an approximation to

the LMPU test at g= 0.

5. VARIANCE COMPONENTS MODELS.

In a previous paper [B] the author has studied the

unbalanced one-way classification variance components model.

Xij =t4_+lji+vij j = 1,2’ooo,ni, i = 1,2,0-.,]:,

where rL is an unknown constant, and where the Ui and

Vij are all independently normally distributed with
expectations zero and variances ‘t2 and 62 respectively.

The hypothesis to be tested is
H: A= AO against A>Ao

where A= T°/0°.
In [8]) it is shown that a maximal invariant under a
group of translations, changes of scale and orthogonal

transformations 1is

Q? Q” Q
r M
Q= S Sk )2 . RT3

G.=1,2,1-l’r"1 °
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The family of probability distributions of

[21,22,...,Zr_1] and Q «can be written in the form
(3.1) with

a(z,q,8,T) = expl 2v2 -1 -z'A o

for any @45 where A(A)G‘2 is the covariance matrix of Z

T
and n = E::ni.
i=1
In [8] it is shown that the test which maximizes the

minimum power over the set of alternatives with A2 A1, has

a rejection region of the form W1'> constant where

A(AO)'1Z-Z 'A(A1 )'12
Wy =

2'a(8,)7'2+Q

A limiting form of W, is obtained when &,-» ©o . Then we

shall reject when T >constant where

z'ale,)" 'z
T = W) R
From the identity
(5.1) zia(a) 1z = S (7. -%)2
=3 n.b+1 i

57T Xi the statistics T

i=1 "1 i=1

and W, may be computed by the observations X (el.

Since the distribution of the invariant statistic

depends only upon A, any invariant test has constant
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power when A = Ao’ Hence similarity represents no
restriction when considering invariant tests. We shall now
find the form of the locally most powerful invariant (LMPI)
test. Derivation gives

%(n-r)-1

2l(z,q50,,0 ) = (29)7'2'8%(4,)z g

where A%(a) = -rq%éggll— . The statistic Z'A(Ao)'1Z+Q
is sufficient and complete when tk:‘Ao [8]. Using Theorem
3.3 and Theorem 3.4 and arguing as in Section 4 it is found
that the LMPI test has rejection region W2 > constant

where

.3
) Z'A (/_\.O)z

B Z'A(AO)‘1Z+Q °

W2

From the identity (5.1) it is found by derivation

that
I n.
1o X v 1 2= v 2

It is seen that the LMPI test puts more weight to
the group means with many observations than the other tests.
It should be noted that the tests based on T,W1 and W2
reduce to the usual test when Ny =Ny = «oe =0 The
same is the case if r = 2.

It is of interest to compare the three tests by means

of their power functions. In [81 it is proved that W, and

T are distributed as ratios of linear combinations of
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chi-square distributed random variables. The exact
distribution is not known. In the case r = 3 the
following lemma can be used to obtain a relatively simple
expression for the cumulative distribution of the three

statisticse.

LEMMA 5.1. Let X1,X2,X3 be independently distributed
chi-square random variables with »Q,bb,bé degrees of
freedom respectively, and let ay and an be two constants.

Then

a1X1+a2X2

X1+X2+X3

U =

is distributed as Y, Y, where Y, and Y, are indepen-
dent and Y, has a beta distribution with V1+L§ and 1)3
degrees of freedom and (Y2—a1)/(a2-a1) has a beta

distribution with V), and V, degrees of freedom.

PROOE . Define Y, and Y, by

Yy o= (Xg+X)/ (X +Xo+X5)  and Y, = (agXy+ayX,)/ (X+X,) .
Then Y2 is independent of X1+X2, and hence independent
of Y,. Also (Yy-ay)/(ay-ay) = X,/ (X4+X5) .

We shall use Lemma 5.1 with Vy = bb = 1 and
3
V5 = n-3 where n = > n;. By integration it is found
=7
that if O <ay <.a2 then
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1 1
5(n-3) 5(n-3)
P(U > u) = 3(1-u/a)® + H(1-u/ay)?
u/a 1
- _ 1 5(n-5)
(5.2) +2 ﬂ'1(n-3) 1 S (1-‘-x)2
u/a2
u/x-a1
Arcsin(1-2 -a'—z;")dx
2
for u £ a;, and for a; £ u £ 2,
1
=5(n-3)
P(U >u) = %(1-u/a2)2
1 1
_ - =(n-5)
(5.%) 2 (n-3)T (1002
u/a
2 u/x-a1
Arcsin(1-2 =y )dx .
2

To avoid complicated formulaes we shall in the

following consider only the case Aoﬁz 0.

Let Gb761 and (?2 denote‘fhe power functions of
the tests based upon T, W1 and W2 respectively, and let
cgs¢q and ¢, denote the corresponding constants used in
the tests. In [8] it is shown that W, is distributed as

-—

o]

i

(eh+1-(N+1)/(8,%,+1))s, 2

-

[ Bl
)

iy (A) =

[ 1 Lond

2

M

=
I
—

(A%i+1)si

Q

where 812,822,...,8551 are independently chi-square

distributed with 1 degree of freedom, independent of Q



which has 2 chi-square distribution with n-r degreés of

freedom. The N are the roots of the equation

i
[B-AC| = 0 where B and C are determined from
A(a) = BatC,

We find

E1 (4) = P(w,(8) >cy)
2
Z% LA +1) /(AN +1)-Ac)s,
= p( - > cy)
r-1 5 1
2_5,°+Q
i=1

where the statistic is in the form of U in Lemma 5.1.
Regarding the test T we may use the fact that T

is distributed as

r-1 2
> a.‘k +1)
- i=1
T(a) 5
to write
r-1 5
:Z:XA% +1+c)S;
_ i=1
GO(A) = Pl -1 , >Co"
4\:151 *Q
l:

The power function of the test based on W2 is
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7'a%(0)z
Z'A(0) 71249

> c2)

—»
()
4
|

1

z' (A*(0)-c,A(0)" +02A(A)-1)Z

z'a(a) " 1z+q

= P( >c5)

— . S.
~7 >02)

where the y; are the roots of
[

| 4%(0)-cpa(0) e a(a) Hhaa) ' = 0.

By means of Lemma 5.1 and the expressions (5.2) and
(5.3) the power of the tests can be computed for r = 3.
The results for some combinations of Nysny and ng are
given in Table 1 and Table 2. For fixed n4sn, and n5  the
second and third column show how much must be added to
the power function (30 to get the power functions G y
and (32 respectively. The last column in each table gives
the power of the F-test when n, = n, = ng = n/3. The
level is 1 % and the value of A, is chosen to be 0.1.
The reason for choosing 4, = 0.1 is that for larger values
of A, the difference between FO and (31 vanishes. For
A1 = 3.0 for example the two power functions were
identical to three decimal places. The power functions
were also computed for 5 % level, bu% the results did not
in tendency differ much from those for 1 % level, though

the differences in power were smaller.
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It is seen from the tables that the difference
between G() and (31 is smally and very little is gained
by the LMPI tes£ near the hypothesis as compared with the
loss of power for moderate values of & . It is also seen
that we may have a serious loss of power compared with the

situation where ny = n, = ng = n/3.
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TABLE 1

n1=n2=2,n3=26 n1=5,n2=10,n3=15 n1=8,n2=10,n3=12 ?1Zn2=n;

N

A Gy BB bl o B o] Colr1loP®Bo |

0 .010 .000 .000 | .010 .000 .000 |.010 .000 .000 }.010
.01} .011 .001 .001} .014 .000 .000 |.014 .000 .000 [.014
.02 .013 .001 .001{ .019 .001 .001 |.019 .000 .000 {.019
.03] .015 .001 .001}| .024 .001 .002 |.025 .000 .000 |.025
.04 .017 .001 .001{ .030 .002 .002 |.032 .000 .000 [.032
.05{ .018 .002 .002{ .036 .003 .003 |.039 .000 .000 {.039
.06} .021 .002 .002| .043 .003 .003 |.046 .001 .001 [.047
.07| .023 .002 .002| .051 .003 .003 |.055 .000 .000 {.055
.08| .025 .003 .003}| .0%9 .003 .003 |.063 .001 .000 [.064
.09| .027 .004 .003| .067 .004 .003 | .072 .000 .000 }.073
o1 .030 .003 .003| .075 .004 .003 }|.081 .001 .000 [.082
2 .058 .006 .006| .163 .004 -.003 | .177 .001 =001 1{.180
.3 .091 .007 .006: .246 .002 -012 | .267 .000 =003 [.271
4 .125 .007 .00%| .319 .002 -021 | .343 .000 -004 |.348
e .160 .004 .001| .381 -00%5 -031 | .408 .001 -005 |.413
.6 .193 .002 -003| .433 - 006 -~033 | .462 =001 -~006 |.466
o7 .225 =001 -007| .478 =008 -037 { .507 -001 -006 [.512
.8 .25% -004 -012| .516 -008 039 | .546 =001 -006 [.551
9 .283 - 007 -016| .550 =010 =041 | .579 - 001 - 006 [.584

1 .310 =010 =021} .579 =010 =042 | .608 -.001 -006 }.613
2 .503 -.032 =054 ! .746 =011 =041 | .768 -001 -005 [.772
3 614 -040-068| .818 =009 -.034 | .836 =001 - 004 [.839
4 685 =042 -.073| .859 -008 =029 | .873 - 001 -003 |.875
5 .734 =042 -.073| .884 =006 -.025 | .896 .000 -~002 |.898
0 .850 =032 -059; .940 - 004 =015 | .946 .000 - 001 |.947
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TABLE 2
n1=n2=5,n3=80 n1=5,n2=30,n3=55 n1=n2=n3=30
AR Gk Bk G B16 (o8 (3
0 .010 .000 .000 .010 .000 .000 .010
.01 .014 .001 .001 .023 .005 .005 .027
.02 .020 .002 .002 .042 .009 .010 .053
.03 .026 .003 .003 .065 012 .013 .083
.04 .033 .004 .004 .088 016 016 115
.05 041 .005 .004 113 017 017 .149
.06 .049 .006 .005 137 .019  .018 .182
.07 .058 .006 .005 <161 .019 .017 .214
.08 .067 .007 .006 .184 .019 016 244
.09 077 .006 .005 «206 .019 .015 274
o1 .086 .007 .006 227 .019 .013 .301
.2 .184 .007 .000 - 391 .010 -.008 .502
.3 272 .003 -.010 .498 .001 -.028 617
4 .346 =-.001 =-.020 572 -.005 =-.042 .689
.5 .408 -.005 =-.028 627 -.009 -.032 «739
.6 460 -.008 -.034 670 -.012 -.0€0 775
o7 .504 -.010 -.039 .703 -.013 -.065 .802
.8 541 -.011 =-.042 731 -.014 -.069 .824
9 H73  -.012 -.044 753 -.014 -.071 .841
1 602 -.013 =-.046 773 -.015 -.074 .855
2 761 -.014 -.046 .872 -.013 -.071 .923
3 .829 -.012 -.039 911 -.010 -.062 .948
4 867 -.010 =-.033 .932 -.009 -.053 -961
5 .891 -.008 -.028 945 -.007 -.047 . 968
10 .943 -.005 -.017 .972 -.004 -.028 .984




]

]
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