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1o Introduction. We consider the binor~al model: 

X = (X1 ,x2 ~' is N~,!) where L =( o/ j>0"1(j~)· 
1(0'10"'2 ~ 

' 
The regression coefficient of X1 given x2 i~ 

~ 1 =~61 /~2 and the regression coefficient of :~ given 

x1 is ~ 2 =~ cr 2/<11 0 

Xo 

Let x1 ,o .. o,XN 

Put n = N-1o Let 

let r = a12/ ~ a11 a22' be the sample c"rrelatio~ 
coefficient o The maximum likelihood estimates of 0 1 and 

(\. " 
~2 are (61 = a12/a22 and ~ 2 = a12/a 11 and i ~ is shown 

by M.s. Bartlett [ 2] that the studentized regre~sion 
i· 

coefficients 

U= v = 

are distributed according to the Student distri~ution with 

n-1 degrees of freedom. 

We are going to show that the joint distr~bution of 

U and V is a two-dimensional Student distribution, 

(introduced by c.w. Dunnett and M. Sobel in ( 3]). We will 

assume that 0 .(.,. ?2 4. 1 • If p = 0 then u = v and if 

~2 = 1 then x1 and ~ are linearly dependent. 

2. A transformation. Introduce two new variables, 

Y and Z, by 
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{ 2.1 ) 

Then we may write 

LEMMA. The transformation (2.2} is one-to-one. 

PROOF. Naturally, when r and z are given, 

and v are uniquely determined. Now, let u = ~ and 

v = v and put p = u/ f;=1, q = v/ ~. We h~ve to 

that the equations 

(2.3) 

have a unique salution. Assume p + q. Then we easily 

find that r is given by 

(2.4} 

Subtracting the equations in (2.3) we get 

(2.5) 
~2z - ~1/z 

= 
~ 1-r( z) 2' 

p-q 

where r(z) is given by (2.4). Let h{z) 

u 

show 
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If h{z) is a monotone function, (2.5) will haye a 

unique solution. After some algebra we find 

hI ( Z) 

Consider the numerator, l(z). We see that 

2 2 

11 { z) 
~1 2~ L 4 ~1 29 

12 ( z). = 2 --+~2 = L(z) = 2+-+~2 F 
z z z z 

But lj ( z) 0 implies 1 (-1)j-1p2 ±?~~2-1 
and it = - = z 

~1 
follows that lj(z), j = 1 '2' have the same si~n for all 

z. Putting z = 1 (say) we get 

and we see that the sign is determined by p only. 

Therefore, 11 ( z) and 12(z) have the same sign, which 

means that l(z) has the same sign for all z. Thus, 

h(z) is a monotone function. 

Let us consider the case p = q. From (2.3) we get 

z = cr 1 /0"'2 and then r-p = p ~ 1-r2 ~ Plotting the left 

and the right side of this equation for all 4 combinations 

of signs of ? and p we see that the solution is 

unique. 
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3. The theorem. We are going to prove 

THEOREM. The joint distribution of the two student-
' 

ized regression coefficients U and V from a binormal 

sample of N = n+1 independent observations is the two­

dimensional Student distribution with n-1 degrees of ,_ 

freedom and correlation coefficient 2 
1-2p ' i.e. the 

joint density of U and V is 

1 2 { 2 2 - -( n+1 ) 1 ( 1 +u -21-2p )uv+v) 2 
~ ' 2 2 4 T1" ?2( 1_?2) 4(n-1 )r> ( 1-? ) 

PROOF. According to § 2 we may write 

U = \ln- 1 2 (r-~1 /Z), 
l1-r 

V = v n-12'(r-·~~Z) 
1-r 

where Z = V a 11 /a 22~ The joint distribution of a 11 , 

and is the Wishart-distribution, i.e. 

a12 have density 

n _, 
where K = (2n\fff (cr;o2 )n(1-~2 ) 2 r(~)j(n2 1 )) , see 

e.g. [1], p~67. Now, a12 = ry and from (2.1) we get 

a11 = yz, a22 = y/z. The Jacobian of this transformation 

is -2y2/z, and the joint distribution of Y,Z and r is 
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2 ;(n-3 ) -1 n-1 [ 1 
2K(1-r ) z y exp - 2 2 2• 

2 ( 1 -~ ) (j1 <1'2 

2 

•(cr22z +IS~ - 2fXT10'2r)yJ. 

lqtegrating with respect to y over the range 0 to oO 

we get the joint density of Z and r 

1 
( ) n -1 ( ) n ( 2) 2n 1 ( ) 2 n-1 2 0'162 1-'? 2 2 n-3 -1 2 0'1 -n 

11 (1-r) z {t1 2z+z--2pa1cr2r) • 

The Jacobian of the transformation (2.2) is 

and thus the joint density of U and V is 

where y is the inverse transformation of ( 2. 2) • 

According to the lemma, t}l is unique. 

Now, using (2.2), we may write 

u2-2(1-2~2 )uv+v2 = (u-v) 2+4~ 2uv 

_Q_ 2 . n-1 [( 2 2 2 2 2 2 a 
=(<r10"2) (1-r2)z2. cr-2 z -<>1 ) +4<J'1 cr2 z(rz-~1)(r-~2z)J 
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and after some calculations we get 

Hence 

2 1-r 
= 

:; (~)2 2 2n- 12 ( 2 2 
c.T1<J 2 4(n-1)~ (1i )+u -2 1-2~ )uv+v 

Putting this into (3.1) the result follows. 
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