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1 • INTRODUCTION AND Sill1MARY 

When using the ordinary regression model 

( 1 ) 

one may be faced with one of the problems: 

1. There may be outliers in the material. The regression 

structure is assumed to be essentially stable, but for some 

reason or other, the absolute difference 

IYt- 2: xti~i\ 

is feared to be abnormally high for some indices t. How 

can the outliers be identified and excluded? 

2. There may have been a shift in the regression parameters. 

How can the time of occurrence of such a shift be estimated? 

In the following we shall present two simultaneous methods, 

both are in a sense optimal. The first of them is a coordinated 

sequence of ordinary student tests obtained by reasoning similar to 

the idea basic to Anderson's test for the complexity of a regressiop 

model~ see [1]. The second method is a cumulative sum test obtained 

by maximizing minimum average power, see [2]. The two methods are 

based on statistics obtained by stepwise regression in the directiop 

of observations. 

2. STEPWISE REGRESSION IN THE DIRECTION OF OBSERVATIONS. 

Let (yt' xt) ; t = 1, ••• ,s be observations in the regression 

model (1). The least square estimator of the parameter vector ~ 

is 
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where is the material on matrix form. Let y ( 2 ) , X ( 2 ) 

be another material satisfying (1). The least square estimator of 

the combined material may now be computed according to the formula 

where 

and 

* e 

If furthermore e( 1 ) = y( 1)- x( 1 )~( 1 ) and the residualvector 
.... 

for the combined material is e = y - XP , then the sum of squared 

residuals may be calculated by 

(2) 1 ' *' * e e = e( 1 )e( 1 ) + e He 

These formulae were derived by Placket [3]. Valiaho [5] has 

put these ideas into a computational scheme wherein also ordinary 

stepwise regression (stepwise regression in the direction of vari-

ables) is possible, Proofs of the formulae and extensions of them 

is found in the two references. 

3, TRE PROBLEM 

In the following, we shall assume the model 

Yt = xtl-3 + ut ; t ~ -r+1 , ••• , 0 

;t=1, .•. ,s. 

Ut' t = -r+1, •• ,,s are independent N(O,cr). The q-dimensio

nal regressor vectors xt are non-stochastic, ~ is the q-dimen

sional column vector of regression parameters, and Yt is the 

dii"ferericc oe"tween the true mean 01. the r ... ~-essand Yt and 

xt~; - o~ ..:::y t< co , t = 1 , ••• , s • 
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We want to determine at what time the first shift in the 

regression structure occurs. That is, we want a method which 

determies the least k for which yk I= o. This problem may be 

formulated as a test problem with s alternatives: 

Ho 0 y1 = y2 ::. = y = 0 • • • • s 

A1 • y1 I= 0 • 

(3) A2 . 
y1 = 0 y2 I= 0 • ' 

• 

• 
• 

A test for this is an s-dimensional vectorfunction 

($ 1 (y), ••• ,$s(y)) of the vector of observations, y, satisfying 

If y is observed, 

and alternative Ai 

s 
L: ~.(y) < 1 • 

i=1 J. -

s 
H 

0 
is rejected with probability L: $i(y) 

i=1 
is accepted with probability $i (y). At most 

one of the alternatives is acc·epted, and if Ai is accepted then 

our conclusion is that the first shift in the regression structure 

occurs at time t = i. If H0 is not rejected, the material gives 

no reason to claim any shift in the regression structure. 

Denote by 8 the entire parametervector (representing 

cr, ~. y1 , ••• ,ys)' and by 0 the space of a priori possible e • 

0 is partitioned into the s + 1 disjoint subsets 

'"•s+1 = le I y1 = • • • = Ys = ol 

ok = le I y1 = = yk-1 = o, yk I= ol • k = 1 , ••• 's • • • J • 
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The problem may now be formulated 

H0 : e E ns+1 ; -\: : a E ok ; k = 1 , ••• , s • 

A test ¢ is called a level a test if 

Let 

The power function of ¢ is the vector function 

(p(a, ¢1 ), ••• ,~(e, ¢s)). We shall construct two level a tests 

which maximizes the power function with respect to two different 

optimality criterions. 

When 8 E nk' i.e. the regression structure is stable up to 

time t = k-1 but a shift occurs at time t = k, then p and a 

should be estimated by Pk_1 , crk_1 which are the least square esti

mators based on the material Y-r+1 , ••• ,Yk_1 • 

(4) 

where Xk_ 1 is the regressor matrix ~~d Xk_1 the regressand 

vector of the material (Yt' xt) ; t = -r+1, ••• ,k-1. The model 

error at time t = k, yk' should in this case be estimated by the 

observed residual 

For the residuals we have 
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Lem:m.a 1 

* * * e1 1 e2 , ••• ,es are stochastically independent and normally 

distributed with 

(5) 

Proof. 

The only montrivial thing to show is that * e. and 
l 

* ej are 

uncorrelated when i < j. With Uk defined ~alogous to Yk' 

see (4), we have 
A A A 

= - covar(Yl., x .. p. 1 ) + covar(x .\3. 1 , x.\3. 1 ) 
J J- J J- l l-

' ·j I 
== - EU. o (x. (X. 1 X. 1 ) - X. 1 U · 1 ) l J J- J- J- -J-

( ( I )-1 I )( I ( 1 )-1 I) +Ex.x. 1x. 1 x. 1u. 1 u. 1x. 1 x. 1x. 1 x .• J J- J- J- -J- - l- l- l- l- l 

But 
I I 2 

X. 1E(U. 1 oU.) = x.cr 
J- -J- l l 

and 
I I l 2 

X. 1E(U. 1u. 1 ) =X. 1o J- -J- -l- l-

so and are uncorrelated. 

4. A COORDINATED SEQUENCE OF STUDENT TESTS 

Let pk . k = 1, ••• ,s be probabilities , 
s 

0. = L: pk < 1 • 
k=1 

and let 

pk 
a.k = • 

1-p - ••• -pk 1 -1 
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Denote by 6k the testfunction of the ordinary student test 

at level ~k for the problem 

Hk : y1= ••• =yk = 0, against~ : y1= ••• =yk_1 = 0, yk # 0 

That is 

(6) 

6k(y) = 0 when 
Y -x 8 
I k k' k-1 I :s tk 

0 k-1Tk 

where tk is the upper ia.k fractile in the student distribution 

with r+k-q-1 degrees of freedom. 

Consider the test 

k-1 
(7) ~k = 6k II ( 1 - 6 . ) ; k = 1 1 ••• , s • 

j=1 J 

This test is an optimal l~vel a test in the following sense: 

Theorem 1 • For k = 1,2, ••• ,s ' we have 

(i) E ~k = pk v1hen y 1= ••• =yk = 0 

(ii) E ~k > pk when y1=· •• =yk-1 = 0 

(iii) when y1= ••• =yk_1 = 0 , E ~k is maximized among all 

tests satisfying (i) and (ii), 

Proof. 
s+1 

Introduce W:k:- 1 = U ni; k == 1, ••• ,s+1. The sequence of 
i=k 

testing problems introduced above may be written 



- 7 -

Relative to ~-1 , the statistic 

... ... 
~ = (crk-1' Pk-1' Yk, ••• ,Ys) 

is sufficient and complete, since the family of distributions of 

~ when e varies over w k-1 is a regular exponential one; 

k=1, ••• ,s. 

But according to Sverdrup [4], the test w defined by (7) 

satisfies (i)-(iii) whenever the underlying test 6k is unifonnly 

most powerful unbiased test for ~{ against ~ at level ak ; 

k = 1, ••• ,s. 

To see that ok is uniformly most powerful unbiased level ak 

test for Hk against ~' it is convenient to write the model 

(~ ) on standard regression form: .K-1 

Y. = x.l3 + 
1. 1. 

s 
L: 

j=k 
o .. y. +U.; 

l.J J 1. 

6. . is the kroenecker delta. 
l.J 

i = -r+1,.o.,S , 

The least square estimators of the parameters are 

"' 13 = p k-1 and "' rv y. = Y.-x. p 
1. 1. 1. 

and the sum of squared residuals is 

Q = 
0 

i =k, ••• ,s, 

Consequently, by ordinary regression analysis, the mentioned student-

test is the uniformly most powerful Q~biased level ak test. Note 
... ... 

that the test is based on the statistic (pk_1 , crk_1 , Yk) or on ~· 

The test w defined above is very simple. One tests sequenti

ally Hk : yk = 0 against ~c : yk i= 0 assuming y 1 =· •• ::::yk_1 = 0 

by ordinary student tests with coordinated levels a.k; k = 1, ••• ,s , 
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and when a Hk is rejected for the first time, say Hj, it is 

stateded that the first shift in the regression structure occurs 

at time t = j. 
By lem~a 1 and the following lemma, it is easy to characterize 

the power function of ~ further. 

Lemma 2. 

vllien y1= ••• =yk = 0, then o1 , ••• ,6k are independent and 

independent of 5k+1 , ••• ,6s • 

Proof 

for each j ~ k, 6j+1 , ••• ,6s is a function of Dj+1 which 

is sufficient ~~d complete relative to w.. But the distribution 
J 

of does not vary with 8 E w., so by Basu's theorem 
J 

o1 , ••• ,6j is independent of 6j+1 , ••• ,6s for all e E wj • When 

y 1 = ••• =yk = 0, e E wj for j = 1, ••• ,k and \'Te have the conclusion. 

By the recursion formula (2) and the definition of Ti , (5), 

it is seen that 

A2 -1 A2 -2 *2 
a.= (r+j-q) [(r+j-q-1)a. +T. e. J 

J . J-1 J J 

and by iteration 
* r+j-g "'2 r-g ~2 j e. 2 

a2 
a. = cr2 a o + I: (--L) 

J . 1 T .a 
~= ~ 

\vhich by lemma 1 is seen to be eccentric x2 

r+i-q degrees of freedom and eccentricity 

j s. 2 
p j = . I: (a~_) 

~=1 ~ 

. 
' j = 1, ••• ,s • 

distributed with 
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But an eccentric distributed stochastic variable 

eccentricity p may be written 

w == Y2 + z 
where 

2 
~-1 • 

Y and Z are independent, Y 

It is seen that as r+j-q ~co , 

W with 

in probability, and consequently for r+k-q large enough, 

Y.-x.p. 1 _,.l J J- ·, ~ j = k+1, ••• ,1 
0' . 1 T . 

J- J 

has approximately the same simultaneous distribution as 

i.e. they are approximately independent and normally distributed. 

By combining the two lemmas vre then have since 

l-1 
$1 = TI (1-6.)61 , the 

j=1 J 

approxL."'Ilation: 

When r+k-q is not too small, then for y1, ••• ,yk = 0' k<l < s 

k 1-1 
~(8,$1) = (1- L: pj) 0 :P( n 6. = 0' 61 = 1) 

j=1 j=k+1 J 

k 1-1 
A:! (1 - L: J?.)( TI qj) ( 1-ql) 

j=1 J j=k+1 

where 

q. = ~(t.~1~(r+j-q-1)- 1 p .' 1 J J J-

s..; I 1 
~)- ~(-tj~1+(r+j-q-1)- Pj_1 -

J 

- ~) 
O'Tj 

t. is defined by (14) and ~ is the c.df. of the standard normal 
J 

distribution. 

' 
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5. A CUSUM TEST 

Assume a known. A sufficient statistic is then 

Our problem defined by (3) is invariant to the group of transtor-

.... * * ... * * mations: (~ 0 , e1 , ••• ,es) ~ (p 0 -b, a1e1 , ••• ,ases) where b is any 

q dimensional vector and ai E {-1,1! ; i = 1, ••• ,s. 

A maximal invariant is 

*2 *2 (e1 , ••• ,ei)' 

on which we, by the principle of invariance, may base our inference. 

To simplify notation, we write 

* ei 
Zi=~; i=1, ••• ,s. 

l 

By lemma 1 the problem is 

independent, z? is x 2 
l 

now: 2 2 z1 , ••• ,zs are stochastically 

distributed with one degree of freedom 

and eccentricity. 

g. 2 
"A.=(_l;,) ;i=1, ••• ,s. 

1. CJTi 

"Ai .f= 0 ;' i = 1 , ••• , s • 

Following Pfanzagl [2], we shall construct a level ~ test maxi-

mizing minimum average power over the sub-alternatives 
f 

'-\ = !e \"A1= ••• =A.i_1=0, "Ai 2: "A,. •• ,I~s > "Al ; i = 1, ••• ,s , "A> o. 
I.e. 

s 
inf ! l: 

i=1 
p(e., ~.); 

1. 1. 

f e. Eo. 
1. 1. 

i=1, ••• ,sl 

is to be maximized with respect to ~ among all level ~ tests. 
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The density of Z =(Z~, ••• ,z;J belonging to the sub-alternative 

' Oi "closest" to H0 , is 

f(z;e.) 

s s 2 
- 2 s -! -i ~ z. 

= (2n) (n z~) e j=1 J e 
j =1 t) 

s-i+1 A -(s-i+1) 
2 •2 

- l 

where e. • A.1 =. • .=}.i-1 = 0 • l 

Let eo . ~-1 :;::. • • =A.s o;:: 0 • • 

Pfanzagl's result is: if 

structure 

~-(a)= 0 otherwise, 
l -

then it maximizes 

A·= ••• =A = 
l s 

,. 
·"' 

the level a 

among all level a tests c~1, ••• ,~s) • 

But 

A 
ll 
v 

x.· 
. ' i = 1 ' ••• 's 

test (~1, •• .,~s) 

s L \z-\~J.. -\~.\~A A . 
~ ln(e J + e J ) - (2 + ln 2)j > ln k • 

j=i 

• 

has the 
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' s. = 
1. 

- 12 -

max f(!;Si) > k !(!)~ 0 ) 
i=~1 ' ••• 's 

max 
i=1 ' ••• 's 

The test obtained is thus: 

t 

" ll 
v 

' s. > lnk 
1. • 

if Sk is the largest of the cumulative sums 
t I t 

s1 , ••• ,S8 , and if it ecceeds c 

otherwise. 

I 

c is to be determined to make the test a level c. test. 

z~ 
r 

Since is stochastically increasing in /.... and si is 
1. 1. 

z~ ' I= a. increasing in j = i' ••• 's ' 
then for any e E o. 

' e 
J 1. 1. 

is stochastically larger than if e. were the true value of 
1. 

the parameter. It is thus seen that 

S S t 

~ ~(8.,*.) = inf{ ~ ~(e 1.,$ 1.)\9 1. E 01. ; i = 1, ••• ,s} 
i=1 1. 1. i=1 

and hence, our test maximizes minimum average power over the sub 
t 

alternatives Oi; i = 1, ••• ,s , among all tests invariant to the 

above group of transformations 1 which have level a • 
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When A is not too small, the following approximation is 

reasonable 

With 

s 
s. = L; ( IZ. I - k) ' 

1. j =i J 

i -2 IZ. I~ A I 
I Z . \'VA + ln ( 1 +e J ) ~ I Z . I"J A 

J J 

k = A+j';n2 
2 A 

the following is a simple approxil1ation to the above test: 

~k(~) = 1 if Sk is the largest of the cumulative sums 

s1 , ••• ,Ss' and if it ecceeds c 

where c is to be determined to mruce the test a level a test. 

For moderate s, c is perhaps best determined by simulation. 

For large s, an approximate value of c is obtained by random 

walk theory. The problem is to choose the barriere c such that 

the process Ss' Ss_1 , ••• ,s1 with probability o. crosses the 

barriere when e = e • 

walk. 

Let now 

T. = 
1. 

0 

i 
L: (\Z.\-k); 

j=1 J 

If e = e0 , then the process is a random 

i = 1 ' ••• 

where z1 , ••• are independent N(0,1) distributed. The moment 

generating function of the steps is 

()j2 

* -w( \Z 1-k) L\Jk~ 
f (w) = E e = 2 e [1-P(w)] 

where P is the c.d.f. of the standard normal distribution. 
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* f (w) 
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w2 
wk~ 

= 2e 2 [1-~(w)] = 1 

has a unique solution w0 (< o) different from zero when 

E IZ I = J2 < k • 
TT 

In this case it is kno~~ that the probability that 

the random walk T1 , m J..2' ••• ever shall cross the barriere c is 

approximately ew0 c. Consequently, we may use the critical value 

c = w- 1 ln o. • 
0 

It should be noted that the function 

k _ "-+2ln2 
- 2Jt.. 

attains its minimum k 0 = J21n21 ~ 1.18 at /.. = 2ln2 • 

6. APPLICATIONS OF THE TWO METHODS 

For problem situation 1, with possible outliers in the material, 

the first method should be well suited. The observations are re-

indexed from -r+1 to s in such a way that we are sure about 

having no outliers among the observations with non-positive indices, 

but we are suspicious about the positively indexed observations. 

It is perhaps wise to let the most suspicious observations have the 

highest indices. 

The procedure should then be to run the t-tests in sequence, 

perhaps with p. =a • Each time we get a rejection, we just delete 
1 s to 

the observation, and carry on/the next test with unaltered estimates 

of ~ and cr. The procedure results in a purged material, which 

one can hope does not include serious outliers, and in estimates 

of p and cr based on this material. 
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If there are no outliers presented in the original material, 

then vle will with probability 1-~ accept it as it is. Property 

(iii) indicates that we have not much hope in finding another method 

satisfying (i) and (ii) with a nicer performa~ce function• 

Problem 2 is met with in several situations. When we are in-

vestigating a historical process, we ask how long a structure, which 

in our case is a regression structure, remains unchanged. We may 

ask: when did the stable period start? or: when did the stable 

period come to an end? In prediction and control situations we 

want to use a material as modern and as extensive as possible. In 

such a situation, we may ask: from what time has the present struc-

ture remained stable? In situations like this both the methods 

seem to be suitable. They should be applied with the material in

dexed chronologically or anti-chronologically. 

The coordinated sequence of t-tests is favourable because it 

is so simple and because we have exact knowledge of important fea• 

tures of its power function, also when a is unknown. If a is 

unknown but r is large, the cusum test may be used with a re

placed by cr 0 • Despite the approximations done for the cusum test, 

it is felt that it is superior to the first method in the present 

situation. It is more relevant to maximize minimum average power 

than to maximize what could be called marginal powers in this case. 

The first method is easily generalized to a coordinated sequ

ence ofF-tests. Assume that it is possible to partition the index 

indices ; k = O, ••• ,s • Let Y be the k vk dimensional regressand 

vector and Xk the vk x q dimensional regressor matrix referring 

to subperiod Tk ; k = O, ••• ,s • Then the model is 
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Y0 , ••• ,Ys are independent and normal 

;k=u, ••• ,s. 

(V is the coveriance matrix operator.) 

With the problem may be to test 

Ho : ~1=···=Ps = P 

~: P 1 =···=~k-i = ~ , Pk # p ; k = 1, ••• ,s • 

With ok beeing the usual F test at level ak for testing 

Hk : ~k = ~ against ~ : pk # ~ assuming ~ 1 = ••• =~k- 1 = p, then 

k-1 
~k = TI (1-6;)6k 

j=1 c) 

has the properties 

with 

(i) E~k =· ~- when ~ 1 = ••• =Pk = P 

(ii) E~k > ~ when P1= ••• =pk_1 = P , Pk F P 

k-1 
pk = TI (1-aJ.)ak 

j=1 
; k = 1, ••• ,s. 

This is seen in exactly the same manner as for the coordinented 

sequence of student tests. 

In other situations, however, it may be known that one specific 

part of the regressionstructure is stable throughout the whole 

period while the other part may be subject to a shift. Let us 

assume stable subperiods T0 , ••• ,Ts , so that we have the model 

defined above. Now 

,- -, 

~k = I~~ l 
·' P I ~ . 

where p~ is the p < q dimensional part of the vector of regres

sion parameters which corresponds to the substructure which possibly 
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is subject to a shift, and is the dimensional part of 

the regressor matrix Xk corresponding to the possibly unstable 

substructure. 

If one is interested in testing whether there has been a shift 

in 13 1 , and if so, estimating the time v..rhen the first shift 

occurred, then one is led to the testing of the following problem 

H0 : P~=···=P~ = ~ 1 

1 1 1 
: !31=···=!3k-1 = ~ ;k=1, ••• ,s. 

Let 

1 - 1 131 . k 1 ' 0 • • ' s Ak - !3k - , = ' 
and Ulk = {e 1"'1= ••• =Ak = o} . k = 1, ••• ,s UJ = 0 , 

0 

(e is the vector of all the parameters in the model). 

As previously we may formulate the problem 

H : 9 E w 
0 s ;k=1, ••• ,s 1 

where w => ••• =>w • 
0 s The test we propose is based on sequential 

testing of 

Hk: 8 E ~ against ~: 8 E ~- 1 -wk ; k = 1, ••• ,s. 

Under wk_ 1 , we have the regressionstructure 

{9 . t .::; k-1 , 
EYt 

= Xtp + x1 At . t > k t , • 

On matrix form, this is 
I 0 ~---,------------1 

Ak ~xk o --- o 
EY = xk-1.Q.k-1 = X 

I 
0 1 

xk+1 ~~:!:1 
' • 

' ' .x1 L As J s 



- 18 -

By the standard theory it is known that the usual F-test at 

level c:x.k for Hk : ilk = 0 against Ak : t.k I= 0 in this model is 

an unbiased test based on a sufficient and complete statistic 

(relative to ~- 1 ). Let this test be denoted by bk. Then the 

multiple test 

k-1 
n ( 1-oj) ok 

j=1 
;k=1, ••• ,s, 

have properties (i) and (ii) mentioned above. 

The computational work for the above test is conveniently done 

by stepwise regression in the direction of variables. The parameter 

vector ~k is computed on basis of Qk_1 by deleting the p items 

Ak, 1 , ••• ,Ak,p from the parameter vector when utilizing standard 

stepwise regression technique. 

More on this method to construct multiple tests is found in 

Sverdrup [4], or in Das Gupta [6]. 
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