Statistical Research ReportNo 4Institute of MathematicsMarch 1969
University of Oslo
A PROCEDURE FOR FINDING DOUBLE SAMPLING PLANSFOR DISCRETE RANDOM VARIABLES
by

Visiting professor from University of Wyoming William C. Guenther

# A PROCEDURE FOR FINDING DOUBLE SAMPIING PLANS <br> FOR DISCRETE RANDOM VARIABLES 

WILIIAM C. GUENTHER UNIVERSITY OF WYOMING


#### Abstract

A problem frequently encountered in quality control is the determination of sampling plans whose operating characteristic ( $O C$ ) is at least $1-\alpha_{0}$ if a para. meter $\theta$ assumes the value $\theta=\theta_{0}$ and is no more than $\beta_{1}$ if $\theta=\theta_{1}>\theta_{0}$. A procedure usable with existing tables for finding double sampling plans for the binomial, hypergeometric, and Poisson cases is given.


1. INTRODUCTION

Let $n$ be the sample size, $c$ the acseptance number and $y_{0}=c+1$ the rejection number of a single sample plan based upon a binomial, hypergeometric, or Poisson random variable. If we let $\theta$ be the parameter of interest, then it is a. standard problem to find sampling plans which meet the requirements

$$
\begin{align*}
O C & \geqq 1-\alpha_{0} & & \text { if } \theta=\theta_{0}  \tag{1.1}\\
& \leqq \beta_{1} & & \text { if } \quad \theta=\theta_{1}>\theta_{0}
\end{align*}
$$

or equivalently
Power $\leqq \alpha_{0}$ if $\theta=\theta_{0}$

$$
\begin{equation*}
\geqq 1-\beta_{1} \quad \text { if } \quad \theta=\theta_{1} \tag{1.2}
\end{equation*}
$$

With a good table of the appropriate distribution such plans are found by observation and without difficulty (a. fact which simplifies the double sample solution). For a given $c$ the first inequality determines an integer $n_{U}(c)=n_{U}$ such that the inequality is satisfied of $n \leqq n_{U}$. Similarly, from the
second inequality we find $n_{L}(c)=n_{L}$ such that all $n \geqq n_{L}$ satisfy the inequality. If $n_{I}>n_{U}$ no solutions exist for the chosen $c$ but if $n_{L} \leqq n_{U}$ then all $n$ such that $n_{L} \leqq n \leqq n_{U}$ are solutions. Usually one would list all solutions starting with $c=0$ and increasing $c$ a unit at a time, terminating when an optimum solution is found.

Since the inequalities (1.1) have an infinite number of solutions (finite in the hypergeometric case), we usually select a specific solution which minimizes a function $G(n, c)$. Although the most familar of such functions is $G(n, c)=n$, other possibilities include the Dodge-Romig [1, Formula (2-8) p. 34] "average number of items inspected" and the Hald [3] linear cost function. For the more complicated $G(n, c)$ minimization is in general not achieved with the smallest $c$ which permits solutions or with the minimum $n$ for a given 0 . Since our goal is merely to find plans satisfying (1.1), such minimization problems are beyond the scope of this paper.

We will consider double sampling plans which depend upon four predetermined constants $n_{1}, n_{2}, c_{1}, c_{2}$. The procedure begins by observing a random variable $X_{1}$ based upon a random sample of size $n_{1}$. If $x_{1} \leqq c_{1}$, we accept (the lot, process, or hypothesis whichever is appropriate) on the basis of the sample. On the other hand if $x_{1}>c_{2}>c_{1}$, we reject. However, if $c_{1}<x_{1} \leqq c_{2}$ a second sample of size $n_{2}$ is taker and a second random variable $X_{2}$ is observed. Then we accept if $x_{1}+x_{2} \leqq c_{2}$ and reject if $x_{1}+x_{2}>c_{2}$. When tables contain right hand sums, it is more convenient to work with power rather than $O C$ and $y_{1}=c_{1}+1, y_{2}=c_{2}+1$ rather than $c_{1}, c_{2}$.

For the binomial case we will use the notation
$b(y ; n, p)=\binom{n}{y} p^{y}(1-p)^{n-y}, y=0,1,2, \ldots, n$
for the probability function and cumulative sums will be denoted by
$E(r ; n, p)=\sum_{y=r}^{n} b(y ; n, p)$
Probably the two most useful tables are the Harvard [4] and the Ordnance Corps [7] tables. The former gives $E(r ; n, p)$ to five decimal places for $p=.01(.01) .50$ (plus a. few rational fractions) and $n=1(1) 50(2) 100(10) 200(20) 500(50) 1000$ while the latter (which is out of print but is availa.ble in many university libraries) gives the same sum to seven decimal places for $p=.01(.01) .50$ and $n=1(1) 150$.

The hypergeometric probability function will be denoted by
$\mathrm{p}(\mathrm{N}, \mathrm{n}, \mathrm{k}, \mathrm{y})=\frac{\binom{\mathrm{k}}{\mathrm{y}}\binom{\mathrm{N}-\mathrm{k}}{\mathrm{n}-\mathrm{y}}}{\binom{\mathbb{N}}{\mathrm{n}}}, \quad \mathrm{a} \leqq \mathrm{y} \leqq \mathrm{b}$
where $a=\max [0, n-N+k], \quad b=\min [k, n]$
and cumulative sums by
$P(N, n, k, r)=\sum_{y=a}^{r} p(N, n, k, y)$
Apparently the best table of the hypergeometric is the one prepared by Lieberman and Owen [5] which gives both (1.5) and (1.6) to six decimal places for $\mathbb{N}=1(1) 50(10) 100$.

The Poisson probability function will be denoted by
$p(y ; \mu)=\frac{e^{-\mu_{\mu} y}}{y!}, \quad y=0,1,2, \ldots$
with cumulative sums
$E(r ; \mu)=\sum_{y=r}^{\infty} p(y ; \mu)$
Molina [6] gives (1.7) and (1.8) to a.t least six decimal places for $\mu=.001(.001)(.01)(.01) .30(.1) 15(1) 100$ and the General Electric [2] table gives (1.7), (1.8), and left hand cumulative sums to eight decimal places for considerably more values of $\mu$ if $\mu<2$ but for less values of $u$ if $\mu>2$. In Poisson type problems $Y$ is usually the sum of $n$ independent
random variables a.ll having probability function (1.7) with replaced by $n \mu$.

For the double sample case we seek $n_{1}, n_{2}, c_{1}, c_{2}$ which satisfy (1.1) and (1.2). The well known expressions for power and $O C$ which we will use are for the binomial case Power $=K\left(p ; n_{1}, n_{2}, y_{1}, y_{2}\right)$

$$
\begin{equation*}
=E\left(y_{2} ; n_{1}, p\right)+\sum_{j=0} b\left(y_{1}+j ; n_{1}, p\right) E\left(y_{2}-y_{1}-j ; n_{2}, p\right) \tag{1.9}
\end{equation*}
$$

for the hypergeometric case

$$
\begin{align*}
O C & =H\left(k ; n_{1}, n_{2}, c_{1}, c_{2}\right) \\
& =P\left(\mathbb{N}, n_{1}, k, c_{1}\right)+\sum_{j=1} p\left(N, n_{1}, k, c_{1}+j\right) P\left(N-n_{1}, n_{2}, k-c_{1}-j, c_{2}-c_{1}-j\right) \tag{1.10}
\end{align*}
$$

for the Poisson case

$$
\begin{align*}
\text { Power } & =K\left(\mu ; n_{1}, n_{2}, y_{1}, y_{2}\right) \\
& =E\left(y_{2} ; n_{1}, \mu\right)+\sum_{j=0}^{y_{2}-y_{1}-1} p\left(y_{1}+j ; n_{1} \mu\right) E\left(y_{2}-y_{1}-j ; n_{2} \mu\right)
\end{align*}
$$

## 2. THE DOUBLE SAMPLE SOLUTION

Obtaining solutions for (1.1) in the double sample case involves some trial and error. However, if we use the information discussed in this section, those solutions are found very rapidly. Since an infinite (finite in the hypergeometric case) number of solutions are possible, we can select the specific solution which minimizes some function $G\left(n_{1}, n_{2}, c_{1}, c_{2}\right)$. Possibilities for such a function include the Dodge-Romig [1 , Formula (2-9), p. 34] "average number of items inspected," the two sample analogue of the Hald [3] linear cost function, or some other function of the average sample size, ASN [i.e., $w_{1}\left(\operatorname{ASN}\right.$ when $\left.\theta=\theta_{0}\right)+w_{2}\left(\operatorname{ASN}\right.$ when $\left.\theta=\theta_{1}\right)$, where $w_{1}$ and $w_{2}$ are positive fractions whose sum is 1]. As we stated for the single sample case, such minimization problems will not be considered
here.
The first step is to list the single sample solutions (and non-solutions) since this information is essential to the double sample case. Reading from the standard tables which we have already mentioned we obtain the following type of information:

$$
\begin{aligned}
& \text { if } c=0 \quad n \leqq n_{U}(0), n \geqq n_{L}(0), n_{L}(0)>n_{U}(0) \text {, no solution } \\
& \text { possible } \\
& c=1 \quad n \leqq n_{U}(1), n \geqq n_{L}(1), n_{L}(1)>n_{U}(1) \text {, no solution } \\
& \text { possible } \\
& c=r-1 \quad n \leqq n_{U}(r-1), n \geqq n_{U}(r-1), n_{L}(r-1)>n_{U}(r-1) \text {, no } \\
& \text { solution possible } \\
& c=r \quad n \leqq n_{U}(r), n \geqq n_{L}(r) \text {, solutions for } n_{L}(r) \stackrel{\bullet}{=} \sum_{n} n_{U}(r) \\
& c=r+1 \quad n \leqq n_{U}(r+1), n \geqq n_{L}(r+1) \text {, solutions for } \\
& \text { etc. } \\
& n_{\mathrm{L}}(\mathrm{r}+1) \leqq \mathrm{n} \leqq \mathrm{n}_{\mathrm{U}}(\mathrm{r}+1)
\end{aligned}
$$

Thus, if solutions exist for $c=r$, then selutions are possible for all $c \geqq r$. Further, as $c$ ircreases so do $n_{L}(c)$ and $n_{U}(c)$.

Returning to the double sample case, we make the following observations:

1. Obviously double sample plans satisfying (1.1) exist for a.ll $c_{2} \geqq r$ (where $r$ is defined above), $c_{1}=0,1,2, \ldots, c_{2}-1$ since one such plan is $n_{1}=n_{L}\left(c_{2}\right), n_{2}=0$. It can be shown that if solutions exist for given $c_{1}, c_{2}$ with $n_{1}=n_{1 m}$, the minimum $n_{1}$ to admit solutions, then solutions exist for a.ll $n_{1} \geqq n_{1 m}$ up to the maximum value $n_{1}$ can assume, a. set which includes the single sample solutions. Hence, we cannot have $c_{2}<r$ since for such $c_{2} n_{1}=n_{L}\left(c_{2}\right), n_{2}=0$ is a. solution and this implies that a single sample solution exists, contrary to assumption.
2. Bounds on $n_{1}$ for chosen $c_{1}$ and $c_{2}$ are immediately
a.ttainable from the power and the $O C$. For example, in the hypergeometric case the condition $H\left(k_{1} ; n_{1}, n_{2}, c_{1}, c_{2}\right) \leqq \beta_{1}$ implies
$P\left(N, n_{1}, k_{1}, c_{1}\right) \leqq \beta_{1}$
or $n_{1} \geqq n_{1 I}$. Similarly $H\left(k_{0} ; n_{1}, n_{2}, c_{1}, c_{2}\right) \geqq 1-\alpha_{0}$ implies
$\mathrm{P}\left(\mathbb{N}, \mathrm{n}_{1}, \mathrm{k}_{\mathrm{O}}, \mathrm{c}_{2}\right) \geqq 1-\alpha_{0}$
or $n_{1} \leqq n_{1 U}$. The corresponding conditions for
the binomial case are
$E\left(y_{1} ; n_{1}, p_{1}\right) \geqq 1-\beta_{1}$
$E\left(y_{2} ; n_{1}, p_{0}\right) \leqq \alpha_{0}$
and for the Poisson case
$E\left(y_{1} ; n_{1} \mu_{1}\right) \geqq 1-\beta_{1}$
$E\left(y_{2} ; n_{1} \mu_{0}\right) \leqq \alpha_{0}$
Solutions do not always exist for $n_{1}=n_{1 I}$ but this number provides a lower bound in our search.
3. We must have $n_{1}+n_{2} \geqq n_{L}\left(c_{2}\right)$. To see this assume the converse is true, that is there exist $n_{1}, n_{2}$ such that $n_{1}+n_{2}<n_{L}\left(c_{2}\right)$. Then the power a.t $\theta=\theta_{1}$ is ma.de $\geqq 1-\beta_{1}$ by taking $n_{1}$ observations all of the time and $n_{2}$ observations part of the time. The power is not decreased of the second sample is taken with probability 1. But this means that a single sample plan with the given $c_{2}$ exists with $n=n_{1}+n_{2}<n_{L}\left(c_{2}\right)$, contrary to the definition of $n_{L}\left(c_{2}\right)$. 4. For given $c_{1}, c_{2}$ lower and upper bounds on $n_{2}$, say $n_{2 I}, n_{2 U}$ can be found for each $n_{1}$. Of course, if $n_{2 U}<n_{2 I}$ solutions are not possible for the chosen $n_{1}$ and $n_{1}$ has to be increased. Both $n_{2 I}$ and $n_{2 U}$ are non-increasing functions of $n_{1}$ which behave very well, a fact which considerably reduces the number of trials required. As $n_{1}$ increases $n_{2 L}$ rapidly approaches $n_{J}\left(c_{2}\right)$ and $n_{2 I}=n_{L}\left(c_{2}\right)$ for a.t least
$n_{L}\left(c_{2}\right) \leqq n_{1} \leqq n_{U}\left(c_{2}\right)$. (This is readily explained in terms of the behavior of the power function.)

In summary, the recommended procedure is

1. List the single sample solutions and non-solutions.
2. Select any $c_{2}$ for which solution exist. Usually we would begin with the smallest possible $c_{2}$.
3. Select any $c_{1}$ such that $0 \leqq c_{1}<c_{2}$. We would probably begin with $c_{1}=0$ and increase $c_{1}$ a. unit a.t a time.
4. For chosen $c_{1}, c_{2}$ determine bounds on $n_{1}$. We would probably begin looking for solutions with the smallest $n_{1}$ satisfying the appropriate inequality (2.1), (2.3), or (2.5) and then increase $n_{1}$ a. unit a.t a. time.
5. By trial for the chosen $c_{1}, c_{2}, n_{1}$ find bounds on $n_{2}$ determined so that (1.1) is satisfied. If $n_{2 I} \leqq n_{2 U}$, then one set of solutions is the chosen $c_{1}, c_{2}, n_{1}$, and $n_{2 I} \leqq n_{2} \leqq n_{2 U}$.
6. Select another $n_{1}, c_{1}, c_{2}$ and repeat step 5, proceeding in some orderly fashion. In an aplication we would terminate calculations when we find a solution which minimizes a. function $G\left(n_{1}, n_{2}, c_{1}, c_{2}\right)$.

As we will demonstrate by examples in the next section, solutions are easily found. When the sum of products appearing in (1.9), (1.10), or (1.11) contains more than one term, use the accumulative multiplication feature which is built into most good desk calculators.

## 3. EXAMPLES

## Example 3.1

Find some double sampling plans for the hypergeometric
case with $\mathbb{N}=50, \mathrm{k}_{0}=3, \mathrm{k}_{1}=12, \alpha_{0}=.10, \beta_{1}=.20$.
Solution
We first consider the single sample case. The conditions
(1.1) are $P(50, n, 3, c) \geqq .90$ and $P(50, n, 12, c) \leqq .20$. From the Lieberman and Owen [5] tables we find that the inequalities require
with $c=0 \quad n \leqq 1, n \geqq 6$ no solution possible
$\mathrm{c}=1 \mathrm{n} \leqq 10, \mathrm{n} \geqq 11$ no solution possible
$\mathrm{c}=2 \mathrm{n} \leqq 23, \mathrm{n} \leqq 16$ or $16 \leqq \mathrm{n} \leqq 23$
$\mathrm{c}=3 \mathrm{n} \leqq 50, \mathrm{n} \leqq 20$ or $20 \leqq \mathrm{n} \leqq 50$
$\mathrm{c}=4 \mathrm{n} \leqq 50, \mathrm{n} \geqq 25$ or $25 \leqq \mathrm{n} \leqq 50$
$\mathrm{c}=5 \mathrm{n} \leqq 50, \mathrm{n} \leqq 29$ or $29 \leqq \mathrm{n} \leqq 50$
etc.
Double sample solutions are possible with $c_{2}=2,3,4,5$, etc. We will limit our search to the case $c_{2}=2$ (since the procedure is identical for other $c_{2}$ ). Thus we can have $c_{1}=0$, $c_{2}=2$ and $c_{1}=1, c_{2}=2$.

First consider the case $c_{1}=0, c_{2}=2$. From inequalities (2.1) and (2.2) we know that $P\left(50, n_{1}, 12,0\right) \leqq .20$ or $n_{1} \leqq 6$ and $P\left(50, n_{1}, 3,2\right) \geqq .90$ or $n_{1} \leqq 23$.

With $c_{1}=0, c_{2}=2, n_{1}=6$ the $O C$ at $k=12$ is
$H\left(12 ; 50,6, n_{2}, 0,2\right)=P(50,6,12,0)+p(50,6,12,1) P\left(44, n_{2}, 11,1\right)$

$$
+p(50,6,12,2) P\left(44, n_{2}, 10,0\right)
$$

$$
=.173729+.379046 \mathrm{P}\left(44, \mathrm{n}_{2}, 11,1\right)
$$

$$
+.306581 \mathrm{P}\left(44, \mathrm{n}_{2}, 10,0\right)
$$

Using the fact that $n_{1}+n_{2} \geqq 16$ we find by tria.l
$\mathrm{H}(12 ; 50,6,15,0,2)=.173729+(.379046)(.043689)$

$$
+(.306581)(.008073)=.192764
$$

$H(12 ; 50,6,14,0,2)=.173729+(.379046)(.061968)$

$$
+(.306581)(.012109)=.20930
$$

so that $\mathrm{n}_{2} \geqq 15$ makes $00 \leqq .20$. Similarly

$$
\begin{aligned}
H\left(3 ; 50,6, n_{2}, 0,2\right)=P(50,6,3,0) & +p(50,6,3,1) P\left(44, n_{2}, 2,1\right) \\
& +p(50,6,3,2) P\left(44, n_{2}, 1,0\right)
\end{aligned}
$$

By trial we get $H(3 ; 50,6,23,0,2)=.903930$,
$H(3 ;, 6,24,0,2)=.896123$ and $O C \geqq .90$
provided $n_{2} \leqq 23$. Thus with $n_{1}=6$, solution are possible with $15 \leqq n_{2} \leqq 23$.

The solutions for $n_{1}=6$ are of assistance in finding solutions for $n_{1}=7$. When $n_{1}$ increases $n_{2}$ cannot so 15 and 23 are upper bounds for the new interval endpoints. We find $H(12 ; 50,7,11,0,2)=.185866$, $H(12 ; 50,7,10,0,2)=.206891$ so that $n_{2} \geqq 11$ and $H(3 ; 50,7,21,0,2)=.900714, H(3 ; 50,7,22,0,2)=.892143$ which means $n_{2} \leqq 21$. Thus with $n_{1}=7$ solutions are possible with $11 \leqq n_{2} \leqq 21$.

Proceeding in a similar manner we find all the solutions for $c_{1}=0, c_{2}=2$. These are

$$
\begin{aligned}
& n_{1}=6, \quad 15 \leqq n_{2} \leqq 23 \quad n_{1}=15, \quad 1 \leqq n_{2} \leqq 9 \\
& \mathrm{n}_{1}=7, \quad 11 \leqq \mathrm{n}_{2} \leqq 21 \quad \mathrm{n}_{1}=16, \quad 0 \leqq \mathrm{n}_{2} \leqq 7 \\
& n_{1}=8, \quad 9 \leqq n_{2} \leqq 19 \quad n_{1}=17, \quad 0 \leqq n_{2} \leqq 6 \\
& n_{1}=9, \quad 7 \leqq n_{2} \leqq 17 \quad n_{1}=18, \quad 0 \leqq n_{2} \leqq 5 \\
& n_{1}=10, \quad 6 \leqq n_{2} \leqq 15 \quad n_{1}=19, \quad 0 \leqq n_{2} \leqq 4 \\
& n_{1}=11, \quad 5 \leqq n_{2} \leqq 14 \quad n_{1}=20, \quad 0 \leqq n_{2} \leqq 3 \\
& n_{1}=12, \quad 4 \leqq n_{2} \leqq 13 \quad n_{1}=21, \quad 0 \leqq n_{2} \leqq 2 \\
& n_{1}=13, \quad 3 \leqq n_{2} \leqq 11 \quad n_{1}=22, \quad 0 \leqq n_{2} \leqq 1 \\
& n_{1}=14, \quad 2 \leqq n_{2} \leqq 10 \quad n_{1}=23, \quad n_{2}=0
\end{aligned}
$$

For the case $c_{1}=1, c_{2}=2$ we still have $n_{1} \leqq 23$ but now we must have $P\left(50, n_{1}, 12,1\right) \leqq .20$ so that $n_{1} \geqq 11$.

With $c_{1}=1, c_{2}=2, n_{1}=11$ the $O C$ at $k=12$ is $H\left(12 ; 50,11, n_{2}, 1,2\right)=P(50,11,12,1)+p(50,11,12,2) P\left(39, n_{2}, 10,0\right)$ $=.184081+.288024 \mathrm{P}\left(39, \mathrm{n}_{2}, 10,0\right)$
Again $n_{1}+n_{2} \geqq 16$ and we find by trial
$H(12 ; 50,11,9,1,2)=.184081+.288024(.047261)=.197963$
$H(12,50,11,8,1,2)=.184081+.288024(.069764)=.204175$
so we must have $n_{2} \geqq 9$. Similarly

$$
\begin{aligned}
H\left(3 ; 50,11, n_{2}, 1,2\right) & =P(50,11,3,1)+p(50,11,3,2) P\left(39, n_{2}, 1,0\right) \\
& =.882143+.109439 P\left(39, n_{2}, 1,0\right)
\end{aligned}
$$

By trial we find $H(3 ; 50,11,32,1,2)=.901786$,
$H(3 ; 50,11,33,1,2)=.898980$ so that $n_{2} \leqq 32$
Continuing we find all the solutions for $c_{1}=1, c_{2}=2$. These are

$$
\begin{array}{llll}
n_{1}=11, & 9 \leqq n_{2} \leqq 32 & n_{1}=18, & 0 \leqq n_{2} \leqq 7 \\
n_{1}=12, & 5 \leqq n_{2} \leqq 26 & n_{1}=19, & 0 \leqq n_{2} \leqq 5 \\
n_{1}=13, & 3 \leqq n_{2} \leqq 22 & n_{1}=20, & 0 \leqq n_{2} \leqq 4 \\
n_{1}=14, & \supseteq \leqq n_{2} \leqq 16 & n_{1}=21, & 0 \leqq n_{2} \leqq 3 \\
n_{1}=15 & 1 \leqq n_{2} \leqq 14 & n_{1}=22, & 0 \leqq n_{1} \leqq 1 \\
n_{1}=16 & 0 \leqq n_{2} \leqq 11 & n_{1}=23 & n_{2}=0 \\
n_{1}=17 & 0 \leqq n_{2} \leqq 9 & &
\end{array}
$$

## Example 3.2

Find some double sampling plans for the binomial case with $\mathrm{p}_{0}=.05, \mathrm{p}_{1}=.20, \alpha_{0}=.05, \beta_{1}=.10$. Solution

For the single sample case the inequalities (1.2) are $E\left(y_{0} ; n, .05\right) \leqq .05$ and $E\left(y_{0} ; n, .20\right) \geqq .90$. From the Ordnance Corps [7] table we find that the inequalities require

$$
\begin{aligned}
& \text { with } c=0 \quad n \leqq 1, n \geqq 11 \text { no solution possible } \\
& c=1 \quad \mathrm{n} \leqq 7, \mathrm{n} \geqq 18 \text { no solution possible } \\
& \mathrm{c}=2 \mathrm{n} \leqq 16, \mathrm{n} \geqq 25 \text { no solution possible } \\
& \mathrm{c}=3 \mathrm{n} \leqq 28, \mathrm{n} \geqq 32 \text { no solution possible } \\
& \mathrm{c}=4 \mathrm{n} \leqq 40, \mathrm{n} \geqq 38 \text { or } 38 \leqq n \leqq 40 \\
& \mathrm{c}=5 \mathrm{n} \leqq 53, \mathrm{n} \leqq 45 \text { or } 45 \leqq \mathrm{n} \leqq 53
\end{aligned}
$$

etc.
Double sampling plans are possible for $c_{2} \geqq 4$. With
$c_{2}=4$ we can have $c_{1}=0,1,2,3$. Since all solutions are obtained in a similar manner we will consider only the case $c_{1}=3, c_{2}=4\left(y_{1}=4, y_{2}=5\right)$. From inequalities (2.3) and (2.4) we know that
$E\left(4 ; n_{1} .20\right) \geqq .90$ or $n_{1} \geqq 32$ and
$E\left(5 ; n_{1}, .05\right) \leqq .05$ or $n_{1} \leqq 40$
With $n_{1}=32, \mathrm{y}_{1}=4, \mathrm{y}_{2}=5$ the power at $\mathrm{p}=.20$ is $K\left(.20 ; 32, n_{2}, 4,5\right)=E(5 ; 32, .20)+b(4 ; 32, .20) E\left(1 ; n_{2}, 20\right)$ $=.79562+.11129 \mathrm{E}\left(1 ; \mathrm{n}_{2}, .05\right)$
Using the fact that $n_{1}+n_{2} \geqq 38$ we find by trial $K(.20 ; 32,13,4,5)=.79562+.11129(.94502)=.90079$ $\mathrm{K}(.20 ; 32,12,4,5)=.79562+.11129(.93128)=.89926$ so that $n_{2} \geqq 13$ makes Power $\geqq .90$. Similarly $K\left(.05 ; 32, n_{2}, 4,5\right)=E(5 ; 32, .05)+b(4 ; 32, .05) E\left(1 ; n_{2}, .05\right)$ and by trial we obtain $K(.05 ; 32,15,4,5)=.04904$, $K(.05 ; 32,16,4,5)=.05028$ so that Power $\leqq .05$ if $n_{2} \leqq 15$. As in the hypergeometric case, having found one solution, the next one requires less trial. With $n_{1}=33$ we find $K(.20 ; 33,8,4,5)=.90239, K(.20 ; 33,7,4,5)=.89794$ and $n_{2} \geqq 8$. Then $K(.05 ; 33,12,4,5)=.04959, K(.05 ; 33,13,4,5)$ $=.05115$. and $n_{2} \leqq 12$.

Continuing the calculations we soon have all the solutions for $c_{1}=3, c_{2}=4$. These are

$$
\begin{array}{llll}
n_{1}=32, & 13 \leqq n_{2} \leqq 15 & n_{1}=37, & 1 \leqq n_{2} \leqq 3 \\
n_{1}=33, & 8 \leqq n_{2} \leqq 12 & n_{1}=38, & 0 \leqq n_{2} \leqq 2 \\
n_{1}=34, & 6 \leqq n_{2} \leqq 9 & n_{1}=39, & 0 \leqq n_{2} \leqq 1 \\
n_{1}=35, & 4 \leqq n_{2} \leqq 7 & n_{1}=40, & n_{2}=0 \\
n_{1}=36, & 3 \leqq n_{2} \leqq 5 & &
\end{array}
$$

## Example 3.3

Find some double sampling plans for the Poisson case with
$\mu_{0}=.05, \mu_{1}=.20, \alpha_{0}=.05, \beta_{1}=.10$.

## Solution

For the single sample case the inequalities (1.2) are
$E\left(y_{0} ; .05 n\right) \leqq .05$ and $E\left(y_{0} ; .20 n\right) \geqq .90$. From the Molina [6]
table (using linear interpolation) we find
with $c=0 \quad .05 n \leqq .051 \quad .20 n \geqq 2.21$

$$
\begin{aligned}
& n \leqq 1 \quad>12 \\
& \mathrm{n} \geqq 12 \text { no solution possible } \\
& c=1 \quad .05 n \leqq .36 \quad .20 n \geqq 3.89 \\
& n \leqq 7 \geqq 20 \\
& c=2 \quad .05 n \leqq .82, \quad .20 n \geqq 5.33 \\
& \mathrm{n} \leqq 16 \quad \mathrm{n} \leqq 27 \text { no solution possible } \\
& c=3 \quad .05 n \leqq 1.37 \quad .20 n \geqq 6.68 \\
& n \leqq 27 \quad n \geqq 34 \text { no solution possible } \\
& c=4 \quad .05 \mathrm{n} \leqq 1.97, \quad .20 \mathrm{n} \geqq 8.00^{-} \\
& \mathrm{n} \leqq 39 \quad \mathrm{n} \geqq 40 \text { no solution possible } \\
& c=5 \quad .05 n \leqq 2.61, \quad .20 n \geqq 9.28 \\
& \mathrm{n} \leqq 52 \quad \mathrm{n} \leqq 47 \text { or } 47 \leqq n \leqq 52 \\
& c=6 \quad .05 \mathrm{n} \leqq 3.28 \quad .20 \mathrm{n} \geqq 10.53 \\
& \mathrm{n} \leqq 65 \quad \mathrm{n} \geqq 53 \text { or } 53 \leqq n \leqq 65
\end{aligned}
$$

etc.
Double sampling plans are possible for $c_{2} \geqq 5$. With $c_{2}=5$ we can have $c_{1}=0,1,2,3,4$. Since all solutions are obtained in a similar manner, we will consider only the case $c_{1}=4, c_{2}=5\left(y_{1}=5, y_{2}=6\right)$. From inequalities (2.5) and (2.6) we know that $E\left(5 ; .20 n_{1}\right) \geqq .90$ or $n_{1} \geqq 40$ and $E\left(6 ; .05 n_{1}\right) \leqq .05$ or $n_{1} \leqq 52$.

With $\mathrm{n}_{1}=40, \mathrm{y}_{1}=5, \mathrm{y}_{2}=6$ the power at $\mu=.20$ is $K\left(.20 ; 40, n_{2}, 5,6\right)=E(6 ; 8)+p(5 ; 8) E\left(1 ; .20 n_{2}\right)$

$$
=.80876+.09160 \mathrm{E}\left(1 ; .20 \mathrm{n}_{2}\right)
$$

Using $.20 n_{2}=5.5$ and $.20 n_{2}=5.6 \quad(5.5$ and 5.6 are
successive table entries) yields
$K\left(.20 ; 40, n_{2}, 5,6\right)=.89999, .90002$ respectively so we conclude $.20 n_{2} \geqq 5.53, n_{2} \geqq 28$. Similarly, the power at $\mu=.05$ is $K\left(.05 ; 40, n_{2}, 5,6\right)=E(6 ; 2)+p(5 ; 2) E\left(1 ; .05 n_{2}\right)$ $=.01656+.03609 \mathrm{E}\left(1 ; .05 \mathrm{n}_{2}\right)$
Using $.05 n_{2}=2.6$ and $.05 n_{2}=2.7$ yields
$K\left(.05 ; 40, n_{2}, 5,6\right)=.04997, .05022$
respectively so we conclude that $.05 n_{2} \leqq 2.61, n_{2} \leqq 52$.
With $n_{1}=41$ the power at $\mu=.20$ is
$K\left(.20 ; 41, n_{2}, 5,6\right)=E(6 ; 8.2)+p(5 ; 8.2) E\left(1 ; .20 n_{2}\right)$ $=.82641+.08485 \mathrm{E}\left(1 ; .20 \mathrm{n}_{2}\right)$
Using $.20 n_{2}=2.0$ and $.20 n_{2}=2.1$ yields $K\left(.20 ; 41, n_{c}, 5,6\right)=.89978, .90087$ respectively so we conclude $.20 \mathrm{n}_{2} \geqq 2.02, \mathrm{n}_{2} \geqq 11$. Similarly the power at $\mu=.05$ is $K\left(.05 ; 41, n_{2}, 5,6\right)=E(6 ; 2.05)+p(5 ; 2.05) E\left(1 ; .05 n_{2}\right)$ $=.01850+.03889 \mathrm{E}\left(1 ; .05 \mathrm{n}_{2}\right)$
where .01850 and .03889 were obtained by linear interpolation. Using $.05 n_{2}=1.6$ and $.05 n_{2}=1.7$ yields $K\left(.05 ; 41, \mathrm{n}_{2}, 5,6\right)=.04954, .05028$ respectively so we conclude $.05 n_{2} \leqq 1.66, n_{2} \leqq 33$.

With $n_{1}=43$ using $.05 n_{2}=.9$ and $.05 n_{2}=1.0$ led to $.05 n_{2} \leqq .95$. To determine whether $n_{2} \leqq 19$ or $n_{2} \leqq 18$ the General Electric [2] table was used giving $.05 n_{2} \leqq .947$, $n_{2} \leqq 18$.

Similarly, all solutions were found for $c_{1}=3, c_{2}=4$. These are

$$
\begin{array}{lrll}
n_{1}=40, & 28 \leqq n_{2} \leqq 52 & n_{1}=47, & 0 \leqq n_{2} \leqq 6 \\
n_{1}=41, & 11 \leqq n_{2} \leqq 33 & n_{1}=48, & 0 \leqq n_{2} \leqq 5 \\
n_{1}=42, & 7 \leqq n_{2} \leqq 24 & n_{1}=49, & 0 \leqq n_{2} \leqq 3 \\
n_{1}=43, & 5 \leqq n_{2} \leqq 18 & n_{1}=50, & 0 \leqq n_{2} \leqq 2 \\
n_{1}=44, & 3 \leqq n_{2} \leqq 14 & n_{1}=51, & 0 \leqq n_{2} \leqq 1 \\
n_{1}=45, & 2 \leqq n_{2} \leqq 11 & n_{1}=52, & n_{2}=0 \\
n_{1}=46, & 1 \leqq n_{2} \leqq 9 & &
\end{array}
$$

1. DODGE, HAROLD F., and ROMIG, HARRY G., 1959. Sampling Inspection Tables Single and Double Sampling, (2nd ed.). John Wiley and Sons, Inc. New York, New York.
2. GENERAL ELECTRIC COMPANY, 1962. Tables of Poisson Distributions: Individual and Cumulative Terms.
D. Van Nostrand, Princeton, New Jersey.
3. HALD, ANDERS, 1967. On the theory of single sampling inspection by attributes based on two quality levels. Review of the International Statistical Institute, 35, 1-29.
4. HARVARD UNIVERSITY COMPUTATION LABORATORY, 1955. Tables of the Cumulative Binomial Probability Distribution. Harvard University Press, Cambridge, Mass.
5. LIEBERMAN, G.J. and OWEN, D.B., 1961. Tables of the Hypergeometric Probability Distribution. Stanford University Press, Stanford, Calif.
6. MOLINA, E.C., 1949. Poisson's Binomial Exponential Limit. D. Van Nostrand, Princeton, New Jersey.
7. U.S. ARMY ORDNANCE CORPS, 1952. Tables of Cumulative Binomial Probabilities, ORDP20-1. Office of Technical Services, Washington, D.C.
