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A problem frequently encountered in 
quality control is the determination of 
sampling plans whose opera.ting character
istic ( OC) is at least 1 - a.0 if a para.
meter 8 assumes the va.lue 8 = e0 and is 
no more than S1 if 9 = e1 > e0 • A proce
dure usable with existing tables for finding 
double sampling plans for the binomial, hyper
geometric9 and Poisson cases is given. 

1 . INTRODUCTION 

Let n be the sample size~ c the ac~teptance number 

and y0 = c + 1 the rejEction number of a single sample plan 

based upon a binomial~ hypergeometric, or Poisson random vari-

able. If we let e be the parameter of interest~ then it is a. 

standard problem to find sampling plans which meet the require-

ments 

oc > 1-a0 if e eo = = 

< 
s1 if e e1 > eo = = 

( 1 • 1 ) 

or equivalently 

Power < if e eo = ao = 

> 1 s1 if e 81 = - = 
( 1 . 2) 

With a. good table of the appropriate distribution such plans 

are found by observation and without difficulty (a fact which 

simplifies the double sample solution). For a given c the 

first inequality determines an integer nu(c) = nu such that 

the inequality is satisfied of < 
n = nu • Similaxly 9 from the 
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second inequal;ity find nL(c) such that all > we = nL n = nL 

satisfy the inequality. If nL >nu no solutions exist for 

the chosen but if < 
c nL = nu then a.ll n such that 

< < solutions. Usua.lly would list all nL=n=nu are one solu-

tions EJtarting with c = 0 and increasing c a. unit at a time~ 

terminating when an optimum solution is found. 

Since the inequalities (1.1) have an infinite number of 

solutions (finite in the hypergeometric case)~ we usually 

~elect a specific solution which minimizes a function G(n,c) . 

Although the most familar of such functions is G(n,c) = n , 

other possibilities include the Dodge-Romig [1, Formula. (2-8) 

p. 34] "average number of items inspected" and the Hald (3] 

linear cost function. For the more complicated G(n,c) mini

mization is in general not achieved with the smallest c which 

permits solutions or with the minimum n for a. given c . 

Since our goal is merely to find plans sa.tisfying ( 1 .1) ~ such 

minimization problems axe beyond the scope of this paper. 

We will consider double sampling plans which depend upon 

four predetermined constants n 1 ~ n2 , c1 , c2 . The procedure 

begins by observing a random vaxiable x1 based upon a. random 
< sample ~:f size n1 • If x 1 = c 1 , we accept (the lot, procesB~ 

0r hypothesis whichever is appropriate) on the basis of the 

sample. On the other hand if x1 > c2 > c 1 ~ we reject. 
< 

However~ if c 1 < x 1 = c2 a s·econd sa.mple of size n2 is taken 

and a. second random variable x2 is observed. Then we accept 

if and reject if When tables 

conta.in right hand sums, it is more convenient to work with 

power rather than OC and. y1 = c 1 + 1 , y2 = c2 + 1 rather 

tha11 c 1 ~ c2 . 

For the binomial case we will use the notation 

b(y;n,p) = (~) pY(1-p)n-y , y = 0~ 1 ~ 2, ..• ,n ( 1. 3) 
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for the probability function and cumulative sums will be 

denoted by 
n 

E(r;n,p) = ~ b(y;n,p) ( 1. 4) 
y=r 

Probably the two most useful tables are the Harvard [4] and 

the Ordnance Corps [7] tables. The former gives E(r;n,p) to 

five decimal places for p = .01( .01).50 (plus a few :rational 

fractions) and n = 1(1)50(2)100(10)200(20)500(50)1000 while 

the latter (which is out of print but is available in many 

university libraries) gives the same sum to seven decimal 

places for p = .01(.01).50 and n = 1(1)150 . 

The hypergeometric probability function will be denoted by 

(k)(N-k) 
p(N,n,k~y) = ::I. n-x.:_ a 

(N) 
n 

where a = ma.x [O, n-N+ k] 

and cumulative sums by 

r 
P(N,n,k~r) = ~ p(N,n,k,y) 

y=a 

< < 
= y = b ( 1. 5) 

b = min[k,n] 

( 1 • 6) 

Apparently the best table of the hypergeometric is the one 

prepared by Lieberman and Owen [5] which gives both (1.5) and 

(1.6) to six decimal places for N = 1(1)50(10)100. 

The Poisson probability function will be denoted by 

e-uuy 
p(y;!-l) = 

yl 

with cumulative sums 

= 
E(r;u) = ~ p(y;!-l) 

y=r 

( 1. 7) 

( 1. 8) 

Molina. [6] gives ( 1. 7) and ( 1. 8) to a.t lea.st six decimal places 

for 1.1 = .001(.001)(.01)(.01).30(.1)15(1)100 and the General 

Electric [2] table gives (1.7), (1.8), and left hand cumulative 

sums to eight decimal places for considerably more va.lues of 

1.1 if IJ. < 2 but for less values of u if 1.1 > 2 . In 

Poisson type problems Y is usually the sum of n independent 
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random variables a.ll ha.ving p:robabili ty function ( 1. 7) with 1-l 

replaced by nj..L . 

For the double sample case we seek n 1 ~ n2 , c 1 ~ c2 which 

satisfy (1.1) and (1.2). The well known expressions for power 

and OC which we will use are for the binomial case 

Power= K(p;n 1 ,n2 ,y1 ,y2 ) 

y2-y1-1 
= E(y2 ;n1 ,p) + _L: b(y 1+j;n1 ~p) E(y2-y1-j;n2 ,p) (1.9) 

J=O 

for the hypergeometric case 

OC = H(k;n 1 ,n2 ,c 1 ,c 2 ) 
c2-c1 

=P(N,n1 ,k,c1 ) +_I: p(N,n 1 ~k,c 1 +j) 
J= 1 

for the Poisson case 

Power= K(u;n 1 ~n2 ,y 1 ,y 2 ) 

y2-y,-1 

P(N-n1 ~n2 ,k-~-j~c 2-c 1 -j) 

(1.10) 

= E(y2 ;n1u) + _L: p(y1+j;n1 !-l) E(y2 -y1-j;n2 u) 
J=O 

(1.11) 

2. THE DOUBLE SAMPLE SOLUTION 

Obtaining solutions for (1.1) in the double sample case 

involves some tria.l and error. However, if we use the infor-

ma.tion discussed in this section, those solutions a.re found 

very rapidly. Since an infinite (finite in the hypergeometric 

case) number of solutions are possible, we can select the 

specific solution which minimizes some function G(n1 ,n2 ,c 1 ,c2). 

Possibilities for such a function include the Dodge-Romig [1 ) 

F8rmula (2-9), p. 34] "averagE number of items inspected," the 

two sample analogue of the Hald [3] linear cost function, or 

some other function of the average sample size, ASN [i.e.~ 

w1 (ASNwhen 8=9 0 ) + w2 (ASN when 8=81), where w1 and w2 a.re 

positive fractions whose sum is 1]. As we stated for the single 

sa.mple case, such minimiza.tion problems will not be considered 
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here. 

The first step is to list the single sample solutions 

(and non-solutions) since this information is essential to the 

double sample case. Reading from the standard tables which we 

have already mentioned we obtain the following type of infor-

mation: 

if c = 0 < > n = nu(O), n = n1 (o), n1 (o) > nu(O) 9 no solution 

possible 

c = 1 
< > 

n = nu(1), n n1 (1)9 n1 (1) > nu(1) 9 no solution 

possible 

c = r-1 
< > 

n = nu(r-1)9 n = nu(r-1) 9 n1 (r-1) > nu(r-1) 9 no 

solution possible . . . . 
c = r 

< > < < 
n nu(r), n n1 (r)9 solutions for n1 (r)=n=nu(r) 

c = r+1 < > n nu(r+1)~ n = n1 (r+1) 9 solutions for 

etc. 

< < 
n1 (r+1) = n = nu(r+1) 

lfhus, if solutions exist fer o = r , then sglutione a.re 

> c = r . c iLcreases so do possible for all Further 9 a.s 

n1 (c) and nu(c) . 

Returning to the double sample case, we make the following 

observations: 

1 . Obviously double sample plans sa.tisfying ( 1 • 1 ) exist for 

a.ll > (where is c2 = r r defined above) 9 c, = o, 1 9 29··· ~c 2 -1 

since one such plan is n1 = nL(c2) 9 n2 = 0 . It can be shown 

that if solutions exist for given c 1 , c 2 with n 1 = n 1m, 

the minimum n 1 to admit solutions; then solutions exist for 

all > 
n 1 = n 1m up to the ma.ximum va.lue n 1 can assume, a set 

which includes the single sa.mple solutions. Hence 9 we cannot 

have since for such is a 

solution and this implies that a single sample solution exists~ 

contrary to assumption. 

2. Bounds on n 1 for chosen and are immediately 
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attainable from the power and the 

hypergeometric case the condition 

implies 
< P(N,n1 ,k1 ,c1 ) = S1 

or Similarly 

implies 
> 

P(N,n 1 ~k0 ,c 2 ) = 1 - a0 

OC . For example 9 in the 
< 

H(k1;n1,n2,c1,c2) = !31 

( 2. 1 ) 

(2.2) 
< 

or n1 = n1u . The corresponding conditions for 

the binomial case are 

E(y1 ;n1 ,p1) 
> 

1 131 = -

E(y2;n1 ,po) 
< 
= ao 

and for the Poisson case 

E(y1 ;n11J.1) 
> 

!31 = 1 -
E(y2;n1u0) 

< 
= ao 

(2.3) 

(2.4) 

(2.5) 

( 2. 6) 

Solutions do not always exist for n1 = n 11 but this number 

provides a lower bound in our sea.rch. 

> 3. We must have n1 + n2 = nL( c2) . To see this a.ssume the 

converse is true, that is there exist n 1 , n2 such that 

n1 + n2 < nL(c2) . Then the power at 8 = 81 is made > 
1- ~1 = 

by taking n 1 observations all of the time and n2 observa

tions pa.rt of the time. The power is not decreased of the 

second sample is taken with proba.bili ty 1. But this means 

that a single sample plan with the given c2 exists with 

n = n1 + n2 < nL ( c2) 9 contrary to the definition of nL(c2) 

4. For given c 1 9 c2 lower and upper bounds on n2 ' sa.y 

. 

n2L ' n2U can be found for each n1 . Of course, if n2U <~L 

solutions a.re not possible for the chosen n1 and n1 ha.s to 

be increased. Both n2L and n2U are non-increasing functions 

of n1 which beha.ve very well, a fa.ct which considerably re-

duces the number of trials required. As n1 increases n2L 

rapidly approaches nL(c2) and n2L = nL(c2) for at lea.st 
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< < 
n1 (c2 ) = n 1 = nu(c2 ) • (This is readily explained in terms of 

the behavior of the power function.) 

In summary 9 the recommended procedure is 

1. List the single sample solutions and non-solutions. 

2. 

3. 

Select any 

begin with 

Select any 

begin with 

c2 for which solution exist. Usually we would 

the smallest possible c2 . 
< c 1 such tha.t 0 = c 1 < c2 . We would probably 

c 1 = 0 and increase c 1 a unit at a time. 

4. For chosen c1 ~ c2 determine bounds on n 1 . We would 

probo.bly begin looking for solutions with the smallest n 1 

satisfying the appropriate inequality ( 2. 1), ( 2. 3), or ( 2. 5) 

and then increase n 1 a unit at a. time. 

5. By trial for the chosen c 19 c2 9 n 1 find bounds on n2 
< determined so that (1.1) is satisfied. If n 21 = n2u 9 then 

one set of solutions is the chosen c 1 9 c2 9 n 1 9 and 
< < 

n2L = n') = n2U · 

6. Select a.nother and repeat step 5 9 proceeding 

in some orderly fashion. I:·~ .;~.n. xpplic;J.tion we would ter-

minate calculations when we find a. solution which minimizes 

a function G(n1 9n2 9c 1 ,c2 ) . 

As we will demonstrate by examples in the next section, 

solutions are easily found. When the sum of products 

appearing in (1 .g), (1 .10) 1 or (1 .11) contains more than 

one term, use the accumula.ti ve mul tiplica.tion fea.ture which 

is built into most good desk calculators. 

3. EXAMPLES 

Example 3. 1 
Find some double sampling pla.ns for the hypergeometric 

case with N = 50t k0 = 3, k1 = 12, a0 = .109 s1 = .20 . 

Solution 
~ 

We first consider the single s-3.mple case. The conditions 
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> P(50,n,3,c) = .go and From 

the Lieberma.n and Owen [5] tables we find that the inequa.li ties 

require 

0 < > 6 solution possible with c = n = 1 9 n = no 
< 

10' 
> 11 so·lution possible c = 1 n = n = no 

< 23, > 16 16 < < 23 c = 2 n = n = or = n = 
< 50, > 20 20 < < c = 3 n = n = or = n = 50 
< 

50~ 
> 25 25 

< < 50 c = 4 n = n = or = n = 
< 50, > 

29 29 
< < 50 c = 5 n = n = or = n = 

etc. 

Double sample solutions are possible with c2 = 2,3~4>5,etc. 

We will limit our search to the case c2 = 2 (since the proce-

dure is identical for other c2). Thus we can have c, = 0> 

c2 = 2 and c 1 = 1, c2 = 2 . 

First consider the case c 1 = 0, c2 = 2 . From inequalities 

(2.1) and (2.2) we know that < > P(50,n1 9 12~0) = .20 or n 1 = 6 

and < 
n 1 23 . 

With c 1 = 0, c2 = 2, n1 = 6 the OC at k = 12 is 

B( 1 2,; 50 9 6 , n2 , 0, 2 ) = P ( 50 , 6 , 1 2 , 0 ) + p ( 5 0 ~ 6 , 1 2 , 1 ) P ( 4 4 , ~ , 11 ~ 1 ) 

+ p(50,6,12,2) P(44,n2 ,10,0) 

= .173729 + .379046 P(44,n2 ,11 ,1) 

+ .306581 P(44,n2 ,10,0) 
> Using the fact that n 1 + n2 = 16 we find by tria.l 

ll(12;50,6,15,0,2) = .173729 + ( .379046)( .043689) 

+ ( .306581)( .008073) = .192764 

H(12;50,6,14,0,2) = .173729 + ( .379046)( .061968) 

+ ( .306581 )( .012109) = .20930 

so that makes oc < .20 • Similarly 

H(3;50,6,n2 ,0,2) = P(50,6,3,0) + p(50,6,3,1) P(44,n2 ,2,1) 

+ p(50,6,3,2) P(44,n2 , 1,0) 

By trial we get H(3;50,6,23,0,2) = .903930 

H(3;,6,24,0,2) = .896123 and OC > .90 
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< provided n 2 ~ 23 . Thus with n 1 = 6 ~ solution are possible 

< < 
with 15 = n 2 = 23 

The solutions for n 1 = 6 are of assistance in finding 

solutions for n 1 = 7 • When n 1 increases n 2 cannot so 15 

and 23 are upper bounds for the new interval endpoints, 

We find H(12;50,7,11,0~2) = .185866 ~ 

H(12;50,7,10,0,2) = .206891 so that n 2 > 11 and 

H(3;50,7,21,0,2) = .900714, H(3;50,7,22,0,2) = .892143 which 

< means n 2 = 21 . Thus with n 1 = 7 solutions are possible 

with 11 ~ n 2 < 21 

Proceeding in a similar manner we find all the solutions 

These are 

15 < n 2 < 23 

11 < < 21 n2 

9 < n 2 < 19 

7 < n 2 < 17 

6 < 

5 < n 2 < 14 

4 < 

3 < n 2 < 11 

2 < 

1 < 

n 1 = 16, 0 < n 2 < 7 

n 1 = 17, 0 < n 2 < 6 

n 1 = 18, 0 < n 2 < 5 

0 < 

0 < 

For the case c 1 = 1, c 2 = 2 we still have n 1 < 23 

but now we must have P(50,n1 ,12,1) < .20 so that n 1 > 11 

With c 1 = 1, c 2 = 2, n 1 = 11 the OC at k = 12 is 

H(12;50,11,n2 ,1,2) = P(50,11,12,1) + p(50,11,12,2) P(39,n2 ,10,0) 

= .184081 + .288024 P(39,n2 ,10,0) 

> Again n 1 + n 2 16 and we find by trial 

H(12;50,11,9,1,2) = .184081 + .288024(.047261) = .197963 

H(12,50,11,8,1,2) = .184081 + ,288024(.069764) = .204175 
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H ( 3; 50 9 11 9 n2 , 1 , 2) = P(50,11,3~1) +p(50,11 ,3,2) P ( 3 9 , n2 , 1 , 0 ) 

= .882143 + • 109439 P(39,n2 ,1,0) 

By trial we find H(3;50, 11 ,32, 1 ,2) = .901786 9 

H(3;50,11,33,1,2) .898980 that < 32 = so n2 = 
Continuing we find all the solutions for c1 = 1 ' c2 

These are 

1 1 ' 9 < < 32 18' 0 < < 7 n1 = = n2 = n1 = = n2 = 

12' 5 < < 26 19' 0 < < 5 n1 = n2 = n1 = = n2 = 

13' 3 < < 22 20, 0 < < 4 n1 = = n2 = n1 = = n2 = 
14, ~ 

< < 16 21 ~ 0 < < 3 n1 = = n2 = n1 = = n2 = 
< ·"' _.. < 15 1 

,_ 
14 229 0 

"•..., 1 n1 = = n2 = n1 = n1 = 
16 0 < < 1 1 23 0 n1 = = n2 = n1 = n2 = 
17 0 < < 9 n1 = = n2 = 

Example 3.2 

Find some double sampling plans for the binomial case 

with Po= .05, p1 = .20, a0 = .05, 01 = .10 • 

Solution 

For the single sample case the inequalities (1.2) are 

E(y0 ;n,.05) ; .05 and E(y0 ;n,.20) ~ .go . 

= 2 . 

From the Ordnance Corps [7] table we find that the inequalities 

require 

with 0 < 
1 ' 

> 11 solution possible c = n = n no 

1 < 7, > 18 solution possible c = n = n = no 

2 < 1 6 9 
> 25 solution possible c = n = n = no 

3 < 28, > 32 solution possible c = n = n no 

4 < 40, > 38 38 < < 40 c = n = n or = n = 

5 < 53, > 45 45 < < 53 c = n = n = or = n = 

etc. 

Double sampling plans are possible for With 
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c2 = 4 we can have c1 = O, 1, 2, 3 • Since allsolutions are 

obtained in a similar manner we will consider only the case 

c1 = 3 1 c2 = 4 ~ 1 =4, y2=5) . From inequalities (2.3) and (2.4) 

we know that 

E(4;n1,.20) ; .90 or n 1 > 32 and 

E(5;n 1 ~.o~ ~ .05 or n 1 < 40 

With n 1 = 32, y1 = 4, y2 = 5 the power at p = .20 is 

K( .20;32,n2 ,4~5) = E(5;32, .20 ) + b(4;32~ .20) E(1 ;n2,~20) 

= .79562 + .11129 E(1;n2 ,.05) 
> Using the fact that n 1 + n2 = 38 we find by trial 

K(.20;32,13,4,5) = .79562 + .11129(.94502) = .90079 

K(.20;32,12,4,5) = .79562 + .11129(.93128) = .89926 

so that n2 ~ 13 makea Power > .90 . Similarly 

K(.05;32,n2 ,4,5) = E(5;32,.05) + b(4;32,.05) E(1;n2 ,.05) 

and by trial we obtain K(.05;32,15,4,5) = .04904 , 

K(.05;32,16,4,5) = .05028 so that < Power = .05 if < n 2 = 15 • 

As in the hypergeometric case, having found one solution, 

the next one requires less trial. Vii th n 1 = 33 we find 

K(.20;33,8,4,5) = .90239 , K(.20;33,7,4,5) = .89794 and 
> 8 Then K(.05;33,12,4,5) .04959 K(.05;33,13,4,5) n2 = . = 

' 
.05115 and < 12 = n2 = • 

Continuing the calculations we soon have all the solutions 

for c1 = 3, c2 = 4 These are 

32, 13 < < 15 37, 1 < < 3 n1 = = n2 = n1 = = n2 = 

< / < < 33, 8 "' 12 38, 0 2 n1 = = n2 n, = = n2 = 

34, 6 < < 9 39, 0 < < 1 n1 = = n2 = n1 = = n2 = 

35, 4 < < 7 40, 0 n1 = = n2 = n1 = n2 = 

36, 3 < < 5 n1 = = n2 = 

Example 3.3 

Find some double sampling plans for the Poisson case with 
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1-lo = .05, IJ1 = .20, ao = .05, p1 = • 10 • 

Solution 

For the single sample case the inequalities ( 1 • 2) are 

E(y0 ;.05n) < .05 and E(y0 ;.20n) > .90 From the Molina [6] = . 
table (using linear interpolation) we find 

with 0 .05n < .051 .20n > 2.21 c = = 
< 1 > 12 solution possible n = n no 

1 .05n < .36 ,20n > 3.89 c = = 
< 7 f 20 solution possible n = n no 

2 .05n < 
.82~ .20n > 5.33 c = = 

< 16 > 27 solution possible n = n no 

3 .05n < 1.37 .20n > 6,68 c = 
< 27 > 34 solution possible n = n no 

4 .05n < 
1 • 97' .20n > 8 .. 00-c = = 

< 39 > 40 solution possible n n no 

5 .05n < 2.61, .20n > 9.28 c = 
< 52 > 47 47 < < 52 n = n or = n = 

6 .05n < 3.28 .20n > 10.53 c = = = 
< 65 > 53 53 < < 65 n = n or = n = 

etc. 

Double sampling plans are possible for With 

c2 = 5 we can have c 1 = 0, 1, 2, 3, 4 . Since all solutions 

are obtained in a similar manner,we will consider only the case 

c 1 = 4 , c2 = 5 (y1=5,y2=6) . 

(2.6) we know that E(5;.20n1) 
< or n 1 = 52 • 

From inequalities (2.5) and 

> > .90 or n 1 = 40 and 

With n 1 = 40 y 1 = 5 y2 = 6 the power at ~ = .20 is 

K(.20;40,n2 ,5,6) = E(6;8) + p(5;8) E(1;.20n2 ) 

= .80876 + .09160 E(1;.20n2 ) 

Using .20n2 = 5.5 and .20n2 = 5.6 (5.5 and 5.6 are 
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successive table entries) yields 

K(.20;40 9 n2 ,5,6) = .89999 9 .90002 respectively so we conclude 
> > .20n2 = 5.53, n2 28 . Similarly, the power at ~ = .05 is 

K(.05;40,n2 ,5,6) = E(6;2) + p(5;2) E(1;.05n2 ) 

= .01656 + .03609 E(1;.05n2 ) 

Using .05n2 = 2.6 and .05n2 = 2.7 yields 

K(.05;40,n2 ,5,6) = .04997, .05022 

respectively so we conclude that < .05n2 = 2.61 

With n 1 = 41 the power at ~ = .20 is 

K(.20;41,n2 ,5,6) = E(6;8.2) + p(5;8.2) E(1;.20n2 ) 

= .82641 + .08485 E(1;.20n2 ) 

Using .20n2 = 2.0 and .20n2 = 2.1 yields 

K(.20;41 ,n,5,6) 
c. 

= .89978, .90087 respectively so we conclude 
> > .2on2 = 2.02, n2 11 • Similarly the power at )..t = 

= E(6;2.05) + p(5;2.05) E(1;.05n2 ) 

= .01850 + .03889 E(1;.05n2 ) 

.05 is 

where .01850 and .03889 were obtained by linear interpo

lation. Using .05n2 = 1.6 and .05n2 = 1.7 yields 

K(.05;41,n2 ,5,6) = .04954, .05028 
_,.. < respectively conclude .05n2 
--... 1.66, 33 so we = n2 = 

With n1 = 43 using .05n2 = .9 and .05n2 = 1. 0 led 

to .05n2 
< .95 To determine whether < 19 < 18 = n2 = or n2 = 

the General Electric [2] table used giving .05n2 
< .947, was 

< 18 n2 . 
Similarly, all solutions were found for c1 = 3, c2 = 4 

These are 

40, 28 < :; 52 479 0 < ~ 6 n1 = = n2 n1 = = n2 

41 ' 1 1 < < 33 48, 0 < / 

5 n1 = = n2 n1 = = n2 .:;;, 

42, 7 
< < 24 49, < ~ n1 = = n2 n1 = 0 = n2 3 

439 5 
< < 18 50, < :; n1 = = n2 n1 = 0 = n2 2 
< < 44, 3 14 51 ' 0 < ~ 1 n1 = = n2 = n1 = = n2 
< / 

45, 2 .... 
11 52, n1 = = n2 = n1 = n2 = 0 

< ~ n1 = 46, 1 = n2 9 

. 
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