
Statistical Research Report 
Institute of Mathematics 
University of Oslo 

No 3 

March 1969 

ON THE DETERMINATION OF SINGLE SAMPLING ATTRIBUTE PLANS 

BASED UPON A LINEAR COST MODEL AND A PRIOR DISTRIBUTION 

by 

Visiting professor 
from University of Wyoming 

William c. Guenther 



. ON THE DETERMINATION OF SINGLE SAMPLING ATTRIBUTE 

PLANS BASED UPON A LINEAR COST MODEL AND A PRIOR 

DISTRIBUTION 

WILLIATv'I C. GUENTHER 
UNIVERSITY OF WYOMING 

The linear cost model previously forma­
lized by Hald [4] 9 [5] 9 [9] is reviewed. 
Techniques are described which permit easy 
determination of sampling plans based on 
that model. The degenerate 9 the two point, 
and the beta distributions are considered as 
prior distributions for p , the process 
fraction defective. For calculations only 
standard tables and a desk calculator are 
required. 

1. INTRODUCTION 

In recent years a number of papers have appeared concerned 

with sampling inspection models which are constructed under the 

assumption that both costs and a prior distribution of p , the 

process fraction defective, should be incorporated into the 

model. Hald [4], [5], [9] has done extensive work in this area 

and is responsible for much of the notation which we will use. 

The contribution of this paper is the presentation of elementary 

procedures by which such sampling plans can be determined and 

through which properties of such plans can be investigated. 

In our discussions and evaluations we will need some of 

the well known discrete probability functions. For a binomial 

random variable X we will use the notation 

( 1. 1 ) 

for the probability function and cumulative sums will be 
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denoted by 
r 

B(r;n,p) = "E b(x;n,p) ( 1. 2) 
X=O 

and 
n 

E(r;n,p) = I: b(x;n,p) ( 1 • 3) 
x=r 

The most convenient table to use is the one published by the 

Ordnance Corps [16] which gives (1.3) to seven decimal places 

for p = .01(.01).50 and n = 1(1) 150. The Harvard [12] 

table gives the same sum to five decemal places for n's up to 

1000 but in jumps ranging from 2 units between n = 50 and 

n = 100 to 50 unjts between n = 500 and n = 1000. The 

probability function of a hypergeometric random variable will 

be denoted by 

( 1. 4) 

where a = max[O,n-N+k] , b = min[k,n] and cumulative sums by 
r 

P(N,n,k,r) = r. p(N,n,k,x) 
x=a 

( 1. 5) 

Lieberman and Owen [13] have given both (1.4) and (1.5) to six 

decimal places for N = 1(1)50(10)100. For other N we use 

P(N,n,k,r) ~ B(r;n,~) (1.6) 

if n ~ k, n/N ~ .10 and 

P(N,n,k,r) ~ B(r;k,~) 

if k < n, k/N 2 .10 , 

( 1. 7) 

approximations which appear to be quite adequate. For the 

Poisson probability function we use 
_,, X 

P ( x; ,'.l) = e ~u .. 
X! 

and for cumulative sums 
oc 

E(r;~) = "E p(x;~) 
x=r 

( 1. 8) 

( 1. 9) 

Both Molina [14l and General Electric [3] have tabulated (1.8) 
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and (1.9) to at least six decimal places for a considerable 

range of lJ. • The former table is probably better if :.1. > 2 

and the latter if u ~ 2 . Finally~ we also need the negative 
' 

binomial probability function 

f( k ) _ I.C.x+k) k( 1 )x 
x; ~P - x!r(k) P -p 

with cumulative sums 
r 

F(r;k,p) = ~ f(x;k,p) 
X=O 

(1.10) 

(1.11) 

Williamson and Bretherton [17] have given both (1."10) and (1.11) 

to six decimal places for p mostly in steps of .02 and k 

mostly in steps of .1 9 a table that is very adequate for our 

purposes. 

Terminology for sir.gle sampling attribute plans is fairly 

standard. Items produced by a process are assembled at random 

into lots of size N . From each lot a random sample of size 

n is selected and X the number of defective items in the 

sample, is observed. If x ~ c , where c is called the 

acceptance number, the lot is accepted and if x > c the lot 

is rejected. One course of action which is frequently followed 

calls for replacement of defective items found in sampling 

accepted lots and for total inspection of rejected lots with 

all defectives being replaced. 

Let Y be the number of defective items in the lot. We 

assume that the behavior of Y is governed by a binomial dis­

tribution with parameters N and p • A given lot will have 

a fixed number of defectives~ say Y = y = k , and the probabi­

lity function of X given k is the hypergeometric (1.4). 

Further, if we let U = Y- X be the number of defective items 

in the remaining N- n items in a lot 9 it is well known 

(i.e., see Hald [3], p.401-402) that the unconditional distri-

butions of X and U are independent and binomially distri-
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buted with parameters n , p and N- n , p respectively. 

The probability of aceepting a lot is called the operating 

characteristic (OC) and is 

OC = P(N,n,k,c) (1 .12) 

a sum of hypergeometric probabilities. Since (1.12) is a con-

ditional probability depending upon a given k , we may be more 

interested in the average operating characteristic (AOC), the 

expected value of (1.12) taken over Y, given by 

AOC = B(c;n,p) (1.13) 

From a practical standpoint usually it makes little difference 

which view is adored since, according to (1.6), (1.13) approxi­

mates (1.12) with p = k/N. 

2. THE LINEAR COST MODEL 

We wil.l assume that associated with a sampling plan is a 

cost function which can be expressed in the form 

( 2. 1 ) 

Hald [4] has suggested the following interpretation for the 

constants: 

s1 Cost per item for sampling and testing 

s2 Repair cost for a defective item found in sampling 

A1 Cost per item associated with handling the N- n items 

not in~pected in an accepted lot (frequently is 0) 
A2 Cost associated with a. defective i tern which is accepted 

( ma.y be quite large) 
R1 Cost per item of inspecting the remaining N - n items in 

a. rejected lot 
R2 ~epair cost associated with a. defective item in the remain­

ing N - n items of a. rejected lot 

Logically we would expect that s 1 ? R1 , s2 ? R2 (with 

equality frequently holding) since it should be no more expen-
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sive to sample or repair on a large scale than on a small scale. 

As an example suppose that a m&~ufacturer of boys jackets 

assembles lots of size 100 for shipment. An item is regarded 

as a defective if it is judged to require repair before it would 

be acceptable to a customer. Let us assume that 

R1 = s1 = .10 , R2 = s2 = 2.00 ~ A1 = 0 , A2 = 4.00 , figures 

determined on the basis of accounting records. The cost A2 

arises from the fact that the buyers also use sampling inspection 

procedures and may return individual items or entire lots. 

The plans which we intend to discuss are based upon the 

average cost per lot. To obtain that average we take the 

expected value of the random variable associated with (2.1). 

Recall that U and X are independent so that E(U!x) = (N-n)p. 

Hence if we take the conditional expectation with respect to U 

given x followed by taking the expectation with respect to X 

we get (for fixed p ) that the average cost is 

K(N~n,c,p) = nK (p) + (N-n)[K (p)P(p) + K (p)Q(p)] s a. r 
( 2. 2) 

where Ks(p) = s1 + S2p , Ka(p) = A1 + A2p , Kr(p) = R1 + R2p , 

P(p) = B(c;n,p) , Q(p) = 1 - P(p) • Alternatively we may write 

(2.2) using only one binomial sum as 

If Kdp) r - Ka(p) = R1 - A1 - (A2-R2)p = 0 has a solution 

in the interval (0,1), denote that solution by Pr • We note 

that if 

p < Pr Kr(p) - Ka(p) > 0 
(2.4) 

p > p r , Kr(p) - Ka(p) < 0 

3. PRIOR DISTRIBUTION OF p DEGENERATE 

We first consider the case in which the distribution of p 

concentrates all its probability at one point. In other words, 
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p does not really have a distribution but assumes some unknown 

value with probability 1 (the situation of classical statistics). 

If in (2.2) we let R1 = s1 = 1 and all other cost constants 

are set equal to zero, then 

( 3. 1 ) 

the cost function for rectifying inspection proposed by Dodge 

and Romig [1], [2] as early as 1929. Hald [7] has already 

mentioned the generalization of (3.1) considered in this section. 

If we knew p , then we could always minimize (2.2). If 

p < Pr , then we would always accept without sampling so that 

P(p) = 1 n = 0 and 

K(N,n,c,p) = NKa(p) (3.2) 

On the other hand if p > pr we would always reject without 

sa.mplinc; so tha.t P(p) = 0 , n = 0 anc 

K(N,nsc ,p) c:: NKr(p) (3.3) 

Since p is unknown, a reasonable type problem is to minimize 

K(N,n,c,p) , where p is our guess for the true p , subject 

to one or two conditions on the OC 0r AOC) curve. For example, 

we could require 

P(N,n,k1 ,c) ~ ~1 (3.4) 

(as Dodge and Romig have done) or 

P(N,n,k0 ,c) ? 1 - ~0 ( 3. 5) 

or both (3.4) and (3.5). 

For the minimization procedure it is convenient to rewrite 

(2.2) as 

K(N,n,c,p) = n[Ks(p)-Kr(p)] + (N-n)[Ka(p) - Kr(p)]P(p) + NKr(p) 
(3.6) 

If R1 = s1 , R2 = s2 so that Ks(p) - Kr(p) : 0 , 

then let 

R(N,n,c,p) = [K(N,n,c,p) - NKr(p)]/[Ka(p)-Kr(p)] 

= (N-n)P(p) 

(3.7) 

(3.8) 

To minimize (3.6), maximize or minimize (3.8) according to 
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whether the denominator of (3.7) is negative or positive. If 

either s1 > R1 or s2 > R2 (or both), let 

R(N,n,c,p) = [K(N,n,c,p) - NKr(p)]/[Ks(p)-Kr(p)] (3.9) 

= n + (N-n)yP(p) 

where v = [Ka(p)-Kr(p)]/[Ks(p)-Kr(p)] 

(3.10) 

and minimize (3.10). 

In all situations either the minimum is obvious or minimization 

is easily accomplished by first finding the minimum with c = 0 , 

then the minimum with c = 1 , then with c = 2 , etc. termina-

ting when it is obvious that the absolute minimum has been 

found. We illustrate by examples. 

Example 3.1 

Using the cost constants of the jacket example of Section 2, 

minimize the average cost when p = .02 subject to the condition 

(a) oc f .10 if k1 = Np 1 = 10, (b) oc ~ .95 if k0 = Np0 = 1, 

(c) both (a) and (b). 

Solution --
(a) K (. 02) - K (. 02 ) = a r Since R1 = s1 = .10 , 

-.10 + 2(.02) = -.06 we maximize R(100,n,c,.02) 

= (100-n)[1-E(c+1;n,.02] subject to P(100,n,10,c) 2 .10. 

Using the Lieberman and Owon [13] table we observe that 

the side condition is satisfied if n ~ 20 with c = 0 

if n ~ 33 with c = 1 , if n? 44 with c = 2 if 

n ~ 55 with c = 3 • With each value of c we need 

consider only the smallest value of n since both 100- n 

and [1-E(c+1;n,.02)] decrease with increasing n. 

Using the Ordnance Corps [16] table for binomial sums 

we obtain 

R(100,20,0,.02) = 80(.66761) = 53.41 
R ( 1 00, 3 3, 1 , . 02) = 67(.85917) = 57.56 
R ( 1 00, 44, 2 , • 02) = 56(.94223) = 52.76 
R(100,55,3,.02) = 45(.97567) = 43.91 
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and the desired plan is n = 33 c = 1 with 

K(100,33,1,.02) = (-.06)(57.56) + 100(.14) = 10.55 

(b) The side condition P(100,n 9 1,c) ~ .95 is satisfied for 

n 2 5 with c = 0 and for all n ~ 100 with c ~ 1 

(obviously). Now R(100,n,c,.02) is maximized if we 

always accept with no sampling and K(100,0,c,.02) = 8.00. 

(c) With both conditions we see from (a) and (b) that solutions 

are possible for c = 1 33 ~ n ~ 100 , for c = 2 , 

44 ~ n ; 100 , for c = 3 55 ;? n ~ 100 and the desired 

plan is n = 33 , c = 1 • 

Example 3.2 

Repeat Example 3.1 with N = 1000 

Solution 

(a) Now the side condition is expressed 

in terms of the binomial approximation obtaining 

E(c+1;n,.10) ~ .90 • From the Ordnance Corps table we 

find by observation that n ~ 22 with c = 0 n ~ 38 

with c = 1 n ~ 52 with c = 2 n ~ 65 with c = ' ' 
n ~ 78 with c = 4 ' 

n ~ 91 with c = 5 
' 

etc. 

R(1000,22,0,.02) = 978(.64117) = 627.1 

R(1000,38,1 9 .02) = 962(.82397) = 792.7 

R(1000,52,2,,02) = 948(.91407) = 866.6 

R(1000,65,3,.02) = 935(.95862) = 896.3 

R(1000,78,4,.02) = 922(.97972) = 903.3 

R( 1000,91 , 5,. 02) = 909(.98994) = 899.9 

and the desired plan is n = 78 , c = 4 with 

K(1000,78,4,.02) = 95.80 • 

Then 

(b) The side condition P(1000,n,10,c) ~ .95 is replaced by 

E(c+1;n,.01) f .05 an inequality satisfied for n ~ 5 

3 
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with c = 0 , n ~ 35 with c = 1 ~ n ~ 82 with c = 2 • 

However, once more we accept with no sampling and 

K(1000,0~c,.02) = 80. 

(c) It is impossible to satisfy both conditions with c = 0 

(n~5~n~22) and with c = 1 (nf35,n~38) . With c = 2 we 

can have 52 ~ n ~ 82 and in that interval n = 52 yields 

the minimum. Since K(1000,n,c,p) will be minimized at 

the smallest n in each interval it is not necessary to 

find qn upper bound for c = 3,4,etc. and the desired 

solution is again the same as in (a). 

Example 3.3 

Rework part (a) of Example 1 if s1 is increased to ,15, s2 

is increased to 2.5 and all other constants remain the same. 

Solution 

Now we use (3.10) with y = -1 when p =.02 . Thus we 

minimize R(100,n,c,.02) = n- (100-n)[1-E(c+1;n,.02)]. 

We find 

R(100,20,0,.02) = 20 - 80(.66761) =-35.41 

R(100,33, 1, .02) = 33 - 67(.85916) =-24. 56 

R(100,44,2,.02) = 44 - 56(.94223) = - 8.76 

and the desired plan is n = 20 
' 

c = 0 with 

K(100,20,0,.02) =.06(-35.41) + 100(,14) = 11.88 

4. THE TWO POINT PRIOR DISTRIBUTION 

In many situations it is probably realistic to assume that 

values of p are determined according to some probability dis­

tribution. For example, suppose that a machine is used to pro­

duce a particular item. After every lot the machine setting is 

checked and reset at the correct value. We could assume that 

during the production of a particular lot p remains constant 
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(and the other binomial conditions are satisfied) but for each 

lot p is determined according to a prior distribution. A 

simple prior distribution which has been given considerable 

attention by Hald [6] 9 [7], [8], [9] is the two point prior 

with probability function 

f(p) = w1 ( 4. 1) 

= w2 P = P2 

where w2 = 1 - w1 and the w's and p's are assumed to be 

known. 

The prior (4.1) is admittedly difficult to justify in 

practical situations and the beta prior considered in Section 5 

has considerably more appeal. Let us attempt to obtain a setting 

for the current model in terms of the jacket example. Suppose 

that three shifts, two day shifts and one night shift, have made 

the same number of lots. The lots have been mixed together at 

random in a warehouse. Later it was determined that the day 

shifts make jackets of which .01 are defective on the average 

while the night shift has .10 on the average of their items 

defective. Under these assumptions the prior distribution 

of p is 

f(p) = 2/3 p = • 01 
(4.2) 

= 1/3 p = • 10 

Now that p has a distribution (2.2) generates a random 

variable with an average value, say K(N,n,c) • If we let 

Ks = w1KS(p1) + w2Ks(p2) 

Km = w1Ka(p1) + w2Kr(p2) 

and define 

then after a little algebra, we get Hald's [i.e.,see 9] 

"standardized" form 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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where 

Y1 = w1(Kr(p1) - Ka(p1)J/(Ks-Km) 

Y2 = w2[Ka(p2) - Kr(p2)J/(Ks-Km) 

(4.7) 

(4.8) 

For our purposes the advantage of using R(N,n,c) rather than 

K(N,n,c) is that less writing and calculating are involved in 

the minimization procedure. 

There are, of course, different types of sampling plans 

which can be determined incorporating the average cost function 

K(N,n,c) . If n and c are determined so that K(N,n,c) is 

a minimum, then (n,c) is called a Bayesian sampling plan. We 

shall also consid9r plans determined by minimizing K(N,n,c) 

under one or two side restrictions (on either the OC or AOC 

curve). The latter type sampling plans are called restricted 

Bayesian plans. 

We first consider the Bayesian case. If P < p < p2 1 - r 

(see (2.4)), it can be shown that v1 > 0 v2 > 0 • Under 

these circumstances R(N,n,c) may be minimized by always 

rejecting without sampling in which case 

R(N,n,c) = Ny 1 

or by always accepting without sampling so that 

R(N,n,c) = Nv 2 

(4.9) 

(4.10) 

or by finding a pair (n,c) which makes (4.6) as small as 

possible. The procedure for minimizing (4.6) consists of deter­

mining the smallest R(N,n,O) , then the smallest R(N,n,1) , 

then the smallest R(N,n,2) , etc. terminating when the abso­

lute minimum has been found. If pr < p1 or Pr > p2 , it 

can be shown that R(N,n,c) is minimized by (4.9) and (4.10) 

respectively. 

Before we demonstrate the minimization process with examples, 

several comments seem to be in order. Extensive numerical in-

vestigation conducted by Hald [6] indicates that for fixed c 
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and N R(N~O,c) = min(Ny 1 ,Ny2 ) and either R(N,n,c) (a) is 

a monotonj.c increasing function of n , (b) rises to a relative 

maximum, then drops to a relative minimum below min (Ny1 ,Ny2) , 

then increases monotonically, or (c) behaves as in (b) except 

that the relative minimum is above min(Ny1 ,Ny2 ) , Further, 

these minima over n when plotted against c have a unique 

minimum which may or may not occur at c = 0 , Our calculations 

verify these condusions. It can be added that any such "curvesu 

(actually a set of isolated points) can be drawn as accurately 

as desired by using more values of n or c , whichever is 

appropriate, 

Example 4.1 

Assuming that the two point prior (4.2) is appropriate find the 

Bayesian sample plan for the jacket example. 

Solution 

We have Kr(p) = .10 + 2p , Ka(p) = 4p , and Kr(p) - Ka(p) 

= .10- 2p = 0 has a solution Pr = .05 between p1 = .01 

and p2 = .10 • After a little arithmetic we find 

R(100,n,c) = n + (100-n)[E(c+1;n,,01) + .625B(c;n,.10)] and 

min[Ny 1,Ny 2] = 62.5 . 

With c = 0 we obtain 

R(100,10,0) = 10 + 90[.09562 + .625(.34868)] = 38.22 

R(100,15,0) = 15 + 85[.13994 + .625(.20589)] = 37.88 

R(100,20,0) = 20 + 80[,18209 + .625(.12158)] = 40.65 

so that the minimum has been cornered, Further calculations 

yield R(100,14,0) = 37.58, R(100,13,0) = 37.48, R(100,12,0)=37.53 

and n = 13 yields the minimum with c = 0 . 

With c = 1 we find R(100,20,1) = 40.94 , R(100,25,1) 

= 39.65 R(100,30,1) = 40.57 , R(100,24,1) = 39.71 , R(100,26,1) 

= 39.67 and n = 25 yields the minimum with c = 1 . 
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Since the minima are increasing we can terminate calcula-

tions. The desired plan is n = 13 , c = 0 with 

K(100,13,0) = (.16/3)(37.48) + 100(.38/3) = 14.67 

In case we are interested we quickly find the OC at 

p = .01 and p = .10. We get if 

k1 = .01(100) OC = P(100,13,1,0) = .870000 

k2 = • 1 0 ( 1 00) 

Example 4.2 

If p 1 = • 0 1 , p 2 = • 0 5 , w 1 = • 8 5 , w 2 = • 1 5 , S 1 = . 4 0 , S 2 =0 , 

R1 = .30 , R2 = 0 = A1 , A2 = 10.00 (Hald's [9] figures), find 

the Bayesian sample plan for N = 1000. 

Solution 

We verify that Pr = .03 9 v1 = .6296 , v2 = .1111 so that 

R(1000,n,c) = n + (1000-n)[.6296E(c+1;n,.01) + .1111B(c;n,.05)] 

Since min(Ny 1 ,Nv 2 ) = 111.1 , obviously n ~ 111 • 

With c = 0 we get R(1000,5,0) = 121.2 

R(1000,10,0) = 135.5 , R(1000,15,0) = 152.5 R(1000,20,0) = 171.4 

These values indicate that R(1000,n, 0) is a monotonic increas­

ing function of n • A few more calculations verify this. We 

add R(1000,3,0) = 116.6 , R(1000,1,0) = 112.7 Thus with 

c = 0 the minimum occurs with n = 0 and is 111.1 . 

With c = 1 we get R ( 1 000, 5, 1 ) = 11 3. 7 9 R ( 1 000, 1 0, 1 ) = 113.2, 

R(1000,20,1) = 110.52 

R(1000,23,1) = 110.29 

R(1000,30,1) = 111.7, R(1000,24,1)=110.31 

R(1000,22,1) = 110.30 . Hence the 

minimum occurs at n = 23 • 

Next try c = 2 • We get R(1000,40,2) = 116.7 , 

R(1000,50,2) = 115.32 , R(1000,60,2) = 116.9, R(1000,51 ,2) 

= 115.33 , R(1000,49~2.) = 115.33 • Here the relative minimum 

is larger than min( NY 1 ,Nv2 ) = 111.1 • 
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There is, of course, no reason to find a minimum with 

c = 3 • However, if we had to do this, we might guess (on the 

basis of the n which produced the previous minima) that the 

minimum would occur at about n = 79 • Hence n = 70 or 

n = 75 would be a good starting point. 

Since sampling plans can be found so quickly, it is easy 

to investigate the effects of using an incorrect prior distri­

bution. For example, suppose that in Example 4.1 the correct 

weights are w1 = .8 , w2 = .2 • Now the Bayesian plan is 

n = 6 c = 0 with R(100,6,0) = 27.11 K(100,6,0) = 10.94 

Using the old plan n = 13 , c = 0 and the correct cost function 

yields R(100,13,0) = 30.57 , K(100,13,0) = 11.16 so that the 

average cost is increased by .22 by using the incorrect 

weights. As a second example suppose that the weights are correct 

but that we should have used p 1 = .02 , p2 = .08 • Now the 

Bayesian plan is n = 7 , c = 0 with R(100,7,0) = 

45.20 , K(100,7,0) = 15.81 . This time the old plan n = 13 , 

c = 0 and the correct cost function yields R(100,13,0) = 

47.81 , K(100,13,0) = 15.91 and an additional average cost 

of .10 . Many more such comparisons can be made with relative 

ease. One obvious fact is that if Nkm is much larger than 

(Ks-Km)R(N,n,c) , then small changes in the prior distribution 

do not change K(N,n,c) substantially. 

Hald [6 , p.43] has defined efficiency of a sampling plan as 

e(N,n,c) = R0 (N)/R(N,n,c) 

where R0 (N) and R(N,n,c) denote respectively the standardized 

cost of the optimum plan and the plan in question. His paper 

gives some numerical results, some comments about efficiency 

for large lot sizes, and some suggestions. One of his recom-

mendations is that if the choice of p 1 and p 2 is in doubt, 
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then choose p1 too large and p2 too small. Mis calculations 

indicate that small changes in either the p's or the w's do 

not materially reduce the efficiency, 

Since a Bayesian solution requiring no sampling may be 

unsatisfactory, it is worthwhile to consider restricted Bayesian 

plans. That is, we will minimize K(N,n,c) subject to side 

conditione on either the OC or the AOC curve. For example 

we may require that the AOC be no more than s2 if p = p2 ~ 

a restriction which produces the inequality 

(4.11) 

Alternatively, we may require that if p = p1 the AOC be at 

least 1 - a 1 which yields the inequality 

E(c+1;n,p1 ) (4.12) 

Finally, we may insist that K(N,n,c) be minimized subject to 

both conditions. For each c Inequalities (4.11) and (4.12) 

yield lower and upper bounds on n • Since we already know how 

to minimize the average cost function over all n , we obviously 

can use the same procedure to perform the minimization over a 

subset of these n • 

Example 4.3 

Minimize the cost function of Example 4.1 subject to the condi­

tion that AOC be no more than .10 if p = p2 = ,10 • 

Solution 

We minimize 

R(100,n,c) = n + (100-n) []\6+1 ;n, .01) + .625B(c;n, .10)] subject 

to the restriction E(c+1;n,,10) ~ .90 • From the binomial 

table we observe that we must have n ~ 22 with c = 0 , 

n ~ 38 with c = 1 , n ~ 52 with c = 2 , etc. 

With c = 0 we find R(100,22,0) = 42.27 , 

R(100,23,0) = 43.16 and conclude that the minimum occurs at 
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n = 22 . 

Wjth c = 1 we find R(100~38,1) = 45.13 , 

R(100,39,1) = 45.88 and the minimum is achieved at n = 38 . 

Since the minima are increasing we terminate calculations. 

With c = 2 we would have n ~ 52 which is obviously too 

large. Thus the desired plan is n = 22 , c = 0 and 

K(100j22j0) = 14.92 . (Recall that the Bayesian plan gave 14.67.) 

Exam£1e 4.4 

Rework Exemple 4.3 if the weights are changed to 

and N = 1000. 

Solution 

Now y1 = 1 , y2 = 1.25 and 

R(1000,n,c) = n + (1000-n)[E(c+1;n,.01) + 1.25B(C;n,.10)] 

With c = 0 , n ~ 22 we find that the minimum occurs at 

n = 26 and R(1000,26,0) = 328.64 

With c = 1 , n ~ 38 the minimum is achieved at n = 49 

m1d R(1000,49~1) = 175.05. 

With c = 2 , n ~ 52 we might guess that the minimum 

OCCl.lTS at n = 72 • Actually it occurs at n = 71 and 

R(1000,71,2) = 129.02 • 

With c = 3 ' 
n ~ 65 we might guess that the minimum 

occurs at n = 93 . We find that n = 90 does the job and 

R(1000,90,3) = 120.98 • 

With c = 4 ' 
n ~ 78 we might guess that the minimum 

occurs at n = 108 Actually n = 107 produces a minimum 

with R(1000,107,4) = 127.28 . 

We terminate calculations and the desired plan is n = 90 , 

c = 3 with R(1000,90,3) = 120.98 
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!!Xample 4.5 

Minimize the cost function of Example 4.1 subject to the condi-

tion that the AOC be at least .95 if p = p 1 = .01 • 

Solution 

The side condition is E(c+1;n,.01) f .05 From the binomial 

we observe that n & 5 with c = 0 < , n = 35 with c = 1 ' 

n ~ 82 with c = 2 • 

With c = 0 we find R(100,5,0) = 44.72, R(100,4,0) = 47.15 

and the minimum occurs at n = 5 • 

With c = 1 , n ~ 35 we find that the minimum occurs at 

n = 26 and R(100,26,1) = 39.67 • 

With c = 2 we must have 
/ 

n = 82 to satisfy the side 

condition. However, to compete with plans obtained with c = 1 

we must have n less than about 39 Actually n = 34 is 

the right choice and R(100,34,2) = 47.74 • 

We terminate calculations and the desired plan is 

n = 26 , c = 1 and R(100,26,1) = 39.67 , K(100,26,1) = 14.78 • 

Example 4.6 

Minimize the cost function of Example 4.4 subject to the side 

condition E(c+1;n,.01) ~ .05 • 

Solution 

With c = 0 , n 2 5 R(1000,5,0) = 788.2 , R(1000,4,0)= 86~1 

and n = 5 produces the minimum. 

With c = 1 , n ~ 35 R(1000,35,1) = 228.6 , 

R(1000,34,1) = 238.3 and n = 35 produces the minimum. 

With c = 2 , n ~ 82 After trying n = 82,80,70,60,71~2 

we find that n = 71 yields the minimum and R(1000,71,2) 

= 129.02 • 

With c = 3 , the side condition requires n ~ 137 • 
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Observing the n's which produced the minima with c = 1 , 

c = 2 we might guess that n = 107 • After trying 

n = 105, 100, 90, 80, 89, 91 we find that n = 90 yields a 

minimum and R(1000,S0,3) = 120.98. 

With c = 4 we must solve E(5;n,.01) ~ .05 . This can 

be done with the Poisson approximation using E(5;.01n) ~ .05 

The Molina [4] table reveals that .01n ~ 9.43 or n ~ 943 , 

a bound which is not too helpful. Observing the results for 

c = 2 and c = 3 would suggest that n = 109 After trying 

n = 120, 110, 100, 109, 108, 107, 106, we find that n = 107 

yields the minimum and R(1000,107,4) = 127.28. 

We terminate calculations and conclude that n = 90 , c = 3 

is the desired plan with R(1000,90,3) = 120.98 • 

Example 4.7 

Minimize the cost function of Example 4.4 subject to the two 

conditions E(c+1;n,.01) ~ .05 and E(c+1;n,.10) ? .90 . 

Solution 

We have only to put together the results of Example 4.4 and 

Example 4.6 . To satisfy the side conditions we found that 

if c = 0 n ::;; 5 n :? 22 
' 

c = 1 n ~ 35 n ~ 38 

c = 2 n ~ 82 n :? 52 

c = 3 n ~ 137 n :? 65 

c = 4 li ~ 943 n :? 78 

Obviously we must have c 2:' 2 • 

With c = 2 we seek the minimum with 52 ~ n ~ 82 • 

We already know from the previous examples that this occurs at 

n = 71 and R(1000,71,2) = 129.02 

With c = 3 , 65 2 n ~ 137 . The previous examples show 

that n = 90 produces the minimum and R(1000,90,3) = 120.98 • 
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With c = 4 ~ 82 ~ n ~ 943 . The previous examples show 

that n = 107 produces the minimum and R(1000,107,4) = 127.28 

Thus, the desired plan is n = 90 , c = 3 . 

Example 4.8 

Minimize the Gost function of Example 4.1 subject to the two 

side conditions of Example 4.7 . 

Solution 

We already know from Example 4.7 the values of c which permit 

a solution and the corresponding ranges of n • Although we 

used each side c·ondi tion separately in :Sxamples 4. 3 and 4. 5 the 

minima previously obtained are not applicable. 

With c = 2 , 52 ~ n ~ 82 we find R(100,52,2) 

= 55.64, R(100,53,2) = 56.40 and the minimum occurs at n=52, 

a fact we would have known from Examples 4.3 and 4.5 . 

With c = 3 , 65 ~ n ~ 137 we find R(100,65,3) = 67.32 , 

R(100,66,3) = 68.15 • 

The desired solution is n = 52 , c = 2 . 

Hald [9] has advocated the use of consumer and (or) pro-

ducer risks which decreases with lot size. He suggests that 

one should take 

p (p2) = s2 N :::;:: 
No 

S2NO 
(4.13) 

= ,..-- N > No 

and (or) 

Q(p1) = a.1 N ~ No 
rx.1 No 

(4.14) 
N > N = -N- ' J. 0 

Intuitively this makes sense since the consequences of wrong 

decision are apt to be more severe with a large lot than with 

a small one. If both (4.13) and (4.14) are used, R(N,n,c) 
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will be considerably less for large lots than if one or both 

risks remain fixed regardless of lot size. Another good 

reason for using two decreasing risks is that for large N 

the cost function will be roughly the same as the cost function 

of the Bayesian plan. Finally we note that if N, N0 , a 1 , s2 

are specified, the problem reduces to one of the types already 

considered. 

5. THE BETA PRIOR DISTRIBUTION 

Perhaps one of the most reasonable choices for the prior 

distribution of p is the beta distribution with density 

0 < p < 1 ( 5. 1 ) 

where a 1 > 0, a2 > 0 are constants suitably chosen to fit a 

given problem (probably, as mentioned later, by the method of 

moments). We will be interested in distrubutions which concen-

trate the probability about small values of p • Since the 

expected value of a beta random variable is a 1/(a1+a2 ) , this 

means that a2 will be somewhat larger than a1 • No matter 

how estimates of the a's are obtained we will round a 2 to a 

near integer and a 1 to the nearest .1 if the estimate is 

between 0 and 1 and to the nearest integer if the estimate 

is greater than 1 , keeping the expectation of p as close 

to the desired average as possible. This convention allows us 

to use standard tables for the determination of sampling plans 

and, due to the apparent insensitivity to small changes in the 

parameters, without undue restriction on the choice of priors 

available. Even with these limitations we still have available 

three types of beta distributions: 

1. Those with a density which is 0 at p = 0 and p = 1 

and rises to a single maximum in between (a1>1,a2>1) 
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2. Those with a density which is 1 at p = 0 and decreases 

monotonically (a1=1,a2>1). 

3. Those with a density which is monotonic decreasing with 

no maximum (0<a1<1,a2>1) • 

We first assume that both a 1 and a 2 are integers. 

For the purpose of finding the expected value of the cost 

function, say K(N,n,c) , rewrite (2,2) as 

K(N,n,c,p) = n(S 1+S 2p) 

+ (N-n)[[(A1-R1 )+(A2-R2 )p]P(p)+(R1+R2p)1 ( 5. 2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

terms of hypergeometric sums. To do this consider the inverse 

hypergeometric distribution (the terminology of Patil and 

Joshi [15] J. From N i terns~ k of which are defective, draw-

ings are made one at a time at random and without replc.cement. 

The probability that u draws aro required to obtain d 

defectives is 
( k N-k ) 
d-1)(u-1-d+1 k-d+1 g(u)- ( 1 ) 'u=d.d+1, ..• ,N--k+d - ( N ) N- u- ' 

u-1 

and the probability that r or less draws are required to 

obtain the d th defective is 
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r 
2: g(u) (5.7) 

U=d 

Now suppose we set as a goal the obtaining of d defectives 

but agree to limit the number of draws to r . Then the goal 

will be achieved if the d th defective is obtained on the 

d th draw, the d + 1 th draw, .•• , or the r th draw. 

Hence the probability of achieving the goal is (5.7). Alter-

natively, the goal is achieved if we make r draws and obtain 

dJ d + 1, ••• , or r defectives. The probability of the 

latter event is 

Hence we have 

(5.8) 

which enables us to evaluate inverse hypergeometric probabilities 

from a hypergeometric table. 

In (5.5) let u = y + a 1 Then, using (5.8) and identi-

fying d = a 1, k = a1 + a2 -1 , r = c + a 1 , N = n + a 1 + a2 -1 

we get 

(5.9) 

Similarly, 

E[pP(p)] = (5.10) 

Now define 

R(N,n,c) = [K(N,n,c) - NK J/(Ks-K ) m m (5.11) 

where 
(a1+a2)S1 + a1S2 

Ks = (5.12) a1 + a2 

(a1+a2)A1 + a1R2 
Km = (5.13) 

a1 + a? 
'-

Then, using (5.3), (5.4), (5.9), (5.10) to evaluate the 
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expectation associated with (5.2) yields 

R(N,n,c) = n + (N-n) (y 1 [1-P(n+a1+a2 , c+a1+1, a 1+a2 , a 1)] 

+ v2P(n+a1+a2-1, c+a1 , a 1+a2-1, a 1-1)} (5.14) 

where 
(A2-R2 )[a1/(a1+a2)J 

Y1 = Ks - Km (5.15) 

R1 - A1 
Y2 = K-=T 

s m 
(5.16) 

(We note that if s2 = R2 9 then Ks- Km = s1 - A1 .) 

If the coefficient of Q(p) in (2.3) is always negative, 

as it is if Pr < 0 , then K(N,n,c) is minimized by taking 

Q(p) = 1 n = 0 giving 

(5.17) 

On the other hand, if the coefficient is always positive, as 
it is if pr > 1 , the minimum is obtained by taking 
Q(p) = 0 n = 0 and is 

Nf(a1+a2 )A1 + a 1A2 l 
K ( N, n, c) = L j = NKa ( 5. 18) a 1 + a 2 

Corresponding to (5.18) is 

R(N 9 n,c) = Ny 1 (5.19) 

and to (5.17) is 

R(N,n,c) = Ny 2 (5.20) 

If 0 < Pr < 1 , R(N,n,c) may achieve its smallest value 

at min [Ny1 , Nv2J • Intuitively, we would expect that the 

minimum is (5.19) if 

Pr(p<pr) is small. 

Pr (p>p ) 
r is small and (5.20) if 

The constants a 1 , a2 can be estimated in various ways. 

One possibility is to eQuate th~ mean and variance of the beta 

distribution 

(5.21) 

(5.22) 



- 24 -

to estimates based upon samplihg and solve for a 1 and a2 • 

Thus, if records are available for m samples of size n 

each of which yields an estimate A pi , then we can calculate 

p = 
m 
2:: 

i=1 

m 
2:: 

i=1 

~-/m l 

Setting (5.21) equal to p 9 (5.22) equal to 

(with q=1-p) 

-(-- 2)/ 2 a 1 = p pq-s s 

a2 = (1-p)(pq-s2 )/s2 

(5.23) 

(5.24) 

2 s yields 

(5.25) 

(5.26) 

Then, we would round these numbers according to the conv·:mtion 

given in the first paragraph of this section. 

Finally, we consider the case 0 < a 1 < 1 , a2 an integer, 

(Actually a 2 does not have to be an integer but rounding has 

little effect.) If p is very small, this may be exactly 

the type of prior which seems to characterize the behavior of 

p • Hald [11] has suggested that the binomial be approximated 

by the Poisson and the beta prior be replaced by a gamma prior. 

Thus, 
c 

P(p) <=:t 2:: (5.27) 
y=O 

(5.28) 

A random variable with density (5.28) has mean b1/b2 • This 

leads to the suggestion that we set b1 = a 1 , b2 = a 1 + a 2 . 

We observe that for 0 < b1 < 1 the gamma density has the same 

shape as the beta with corresponding 0 < a 1 < 1 • Using (5.27) 

we find that (5.14) should be replaced by 
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R(N,c,p) = n + 

(5.29) 

where the F symbol is the negative binomial sum defined 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(The last fourformulas are the same as (5.15), (5.16), (.12), 

(5.13) if a 1 is replaced by b 1 , a 1 + a2 by b2 .) Here 

the derivation is straight forward and no special device, as 

was required to obtain (5.8), is necessary. 

As in the case of the two point prior, we are again inter-

ested in Bayesian and restricted Bayesian plans. The minimi-

zation procedure is unchanged. We now consider some examples. 

Example 5.1 

Let the cost constants be those of the jacket example, 

Suppose 

that it is decided that p has a beta distribution with 

a 1 = 1, a 2 = 19 (so that ~ = .05) • Using N = 100 find the 

Bayesian sampling plan. 

Solution 

We get Km = • 1 0 , Ks - Km = • 1 0 , y 1 = 1 , y 2 = 1 , N y 1 = N y 2 = 1 00, 

Pr = .05 and 

R(100,n,c) = n + (100-n)[1-P(n+20,c+2 1 20,1) + P(n+19,c+1,19,0)] 
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We first try c = 0 • Then with the table of Lieberman 

and Owen [13] we find 

R(100,5,0) = 5 + 95[1-P(25,20,2,1) + P(24~19,1,0)] 

5 + 95[.633333 + .208333] = 84.96 

Similarly R(100,10,0) = 80.34,R(100,15,0) = 79.64 , 

R(100,20,0) = 80.51 , R(100,14,0) = 79.61 , R(100,13,0) 

= 79.65, R(100,12,0) = 79.76 and the minimum occurs at n= 14. 

With c = 1 we get R(100,20,1) = 80.51 , R(100,25,1) 

= 79.91 

= 79.93 

R(100,30,1) = 80.32 , R(100,26,1) = 79.93 , R(100,24,1) 

The minimum occurs at n = 25 Since this is 

larger than the minimum with c = 0 we terminate calculations. 

Thus, the desired plan is n = 14 , c = 0 with 

R(100,14,0) = 79.61 , K(100,14,0) = 17.96 • 

Example 5.2 

Rework Example 5.1 if a 1 = 3 , a2 =57 (so that we again 

have '.l=,05). 

Solution 

Since Km , Ks - Km and a 1/(a1+a2 ) are unchanged, we still 

have v1 = v2 = 1 • The standardized cost function is 

R(100,n,c) = n + (100-n)[1-P(n+60,c+4,60,3) + P(n+59,c+3,59,2)] 

= n + (100-n)[F(n+60,n,c+4,c) + 1- P(n+59,n,c+3,c)] 

To evaluate hypergeometric sums we use the binomial approxi­

mation and linear interpolation on p in the binomial table. 

More precise evaluations seem to be unwarrented. 

With c = 0 we find 

R(100,5,0) = 5 + 95[P(65,5,4,0) + 1 - P(64,5,3,0)] 

and 

P(65,5,4,0) ~ B(0,4,.077) = .726 

P(64,5,3,0) ~ B(0,3,.078) = 1 - .216 



- 27 -

where 5/65 = .077 ~ 5/64 = .078 . Finally we get 

R(100,5,0) = 94.5 . Similar calculations produce 

R(100,10,0) = 92.4 R(100,15,0) = 91.8 R(100,20,0) = 91.9 

R(100,25,0) = 92.7, R(100,18,0) = 91.9 R(100,17,0) = 91.8 

R(100,16,0) = 91.6 R(100,14,0) = 91.8 R(100,13,0) = 91.8 

R(100,12,0) = 92.0 ,R(100,11,0) = 92.1 (Because the approxi-

mation was used~ a few extra values of R(100,n,O) were computed.) 

Thus the minimum occurs at n = 16 • 

With c = 1 we get R(100,20,1) = 92.0 , R(100,25,1) 

= 91.4 R(100,30,1) = 91.3 R(100,35,1) = 91.6 R(100,29,1) 

= 91.2 R(100,28,1) = 91.2 , R(100,27,1) = 91.3 R(100,26,1) 

= 91.3 The minimum occurs at n = 28 or 29 ~ (We arbitrarily 

take n = 28 .) 

With c = 2 we find R(100,30,2) = 92.7 , R(100,35,2) 

= 92.3 R(100,40,2) = 92.1 R(100,45,2) = 92.3 R(100,41,2) 

= 92,2 R(100,39,2) = 92. 1 R(100,38,2) = 92. 1 R(100,37,2) 

= 92.2 R(100,36,2) = 92.2 Hence the minimum occurs at 

n = 38,39,40 and is larger than the minimum with c = 1 

The desired plan has n = 28 , c = 1 , R(100,28,1) 

= 91.2 , K(100,28,1) = 19.12 

If we use the plan of Example 5.1 when actually a 1 = 3 ,a2 

=·57 , then R(100,14,0) = 91.8 , K(100,14,0) = 19.18 and the 

erroneous assumption cost .06 more per lot. 

Example 5.3 

Rework Example 5.1 if a 1 = .4 , a2 = 7.6 (so that we again 

have 1.J1 = .05). 

Solution 

We will use the approximation based upon ,5.27) and (5.28) 

with b1 = .4 , b2 = 8 . Again y 1 = y 2 = 1 and the standard-
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ized cost function is 
8 8 

R(100,n,c) = n + (100-n)[F(c;1.4,n+8 ) + 1 - F(c;.~n+8 )J 

For evaluations we use the table of Williamson and Bretherton 

[17] and linear interpolation on p (when necessary). 

With c = 0 we find 

R(100,8,0) = 8 + 92[F(0;1.4,.50) + 1 - F(0;.4,.50)] 

= 8 + 92[.3789 + .2421] = 65.1 

Similarly we get R(100,12,0) = 63.4 , R(100,16,0) = 63.9 ' 
R ( 1 00, 11 , 0) = 63.5 R(100,13,0) = 63.4 , R(100,14,0) = 63.6 

R ( 1 00 , 1 0 , 0) = 63.8 Thus the minimum occurs at n = 12 or 

With c = 1 we get R(100,20,1) = 65.4 ' 

R ( 1 00, 21 , 1 ) = 65.6 R(100,22,1) = 65.4 R(100,23,1) = 65.5 

R(100,24,1) = 65.6 R(100,25,1) = 65.9 R(100,19,1) = 65.5 

R ( 1 00, 1 8 , 1 ) = 65.7 The minimum occurs at n = 20 21 
' 

22 

13 • 

and is larger than the minimum with c = 0 • Hence we terminate 

calculations. 

The desired plan is n = 12 (or 13), c = 0 , with 

R(100,12,0) = 63.4 , K(100,12,0) = 16.34 • 

Example 5.4 

Rework Example 5.1 using (5.29) with b1 = 1 , b2 = 20. (This 

will allow us to compare the approximate solution with the 

exact solution.) 

Solution 

Again y 1 = v 2 = 1 • Now we minimize 

R(100,n,c) = n +(100-n)[F(c;2,n~~0 ) + 1 - F(c;1,n~g0 )J 
With c = 0 we get R(100,5,0) = 84.8 , 

R(100,10,0) = 81.2 , R(100,15,0) = 79.2 , R(100,20,0) 

= 80.0 , R(100,14,0) = 79.2 , R(100,13,0) = 79.2 , R(100,12,~=7~4 

R(100,16,0) = 79.2 , R(100,17,0) = 79.4 • The minimum occurs 
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with n = 13, 14, 15 9 16 (which includes the correct n = 14). 

With c = 1 we get R.(100,20,1) = 80.0 , R(100,25,1) 

= 79.4 R(100,30,1) = 79.8 R(100,26,1) = 79.5 , R(100,24,1) 

= 79.5 R(100,23,1) = 79.5 The minimum occurs at n = 25 , 

same as with the exact solution. 

The minimum is 79.2 compared with 79.61 for the exact 

solution. We now get K(100,14,0) = 17.92 as compared with 

17.96 before. 

The approximation appears to work quite well in this 

example and should be even better when the prior has smaller 

mean value. 

No further examples are necessary to demonstrate the 

procedure for restricted Bayesian plans. As we know from our 

discusion of the two point prior, conditions like (4.11) and 

(4.12) merely limit the re~ge of n for each c • Hence, as 

with the previous model, we can certainly minimize over a 

subset of n if we can minimize over all n • 

Although we limited our use of the approximation based 

upon (5.27) and (5.28) to the case 0 < a1 < 1 , the Williamson 

and Bretherton [17] tables permit a wider range of a 1 • For 

many values of p the parameter k of (1.11) is used as illL 

entry for k = .1(.1)2.5(.5)5 • The primary criterion for the 

use of the approximate procedure is not the value of a1 in­

volved but the behavior of the prior. If most of the probabi­

lity of the prior distribution is 2.10 , the range for which 

the Poisson approximation is regarded as good, then we might 

expect that the approximate procedure would give very accurate 

answer~. In our examples vve had u = • 05 . If we had used 

u = .01 9 the values given by (5.29) would have been consider­

ably more accurate. 
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Examination of Examples 5.1, 5.2, 5.3 illustrate that 

for a fixed mean u , the greater the variance of p the 

smaller the average costs. This implies that as the variance 

increases the more urgent it becomes to incorporate the prior 

into the model. 

6. COMJ'vlENTS 

The linear cost model which we have considered seems to 

be very general and quite reasonable. Potential users may 

decide that some modification of (2.1) or the interpretation 

of the constants is necessary. If the material presented in 

this paper is available, perhaps such changes will be of a 

routine nature. 

Our evaluations have been subject to the limitations of 

current standard tables. In the examples no serious handicap 

was encountered. If trouble should arise working with the 

ranges of parameters which have been tabulated, this would be 

good justificaticn for Extending the tables in their next 

editions. 
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