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ABSTRACT 

A test statistic is defined to be best for calculating 

significance probabilities if it maximizes the probability 

of getting a given small significance probability• It is 

shown that a test statistic which is best from a power 

ftlnction point· of view is also best for calculating 

significance probabilities. 
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1 .. INTRODUCTION 

Let X be a random variable with distribution belonging to a 

family (P8 : 9 E Q} of distributions. Consider a hypothesis test-

ing problem with a simple null hypothesis and a simple alter-

native 

H : 8 = e 
0 

against 8 = 8 1 • ( 1 ) 

Let T(X) be a statistic such that small values of T(X) seem 

reasonable if e = e
0 

? and large values of T(X) are not reason­

able if e = q
0 

but more reasonable if e = e1 • 

The significance probability if the value x of X is observed is 

aT(x) = P8 C T(X) 2: t(x)J • 
0 

(2) 

We call T(X) a test statistic. A small value of aT(x) indicates 

that the null hypothesis is not true. The smaller aT(x) is, the 

more we tend to disbelieve the null hypothesis. The use of the 

significance probability as a measure of how much the.data contra­

dicts the null hypothesis has been mentioned by several statisticians. 

In Fisher C 2, p. 80 J one can read "The actual value of P obtain­

able from the table by interpolation indicates the strength of the 

evidence against the null hypothesis 11 • (P here corresponds to 

aT(x).) Hodges and Lehmann r 3, p. 283] state that "The significance 

probability may be thought of as giving, in a single convenient 

number, a measure of the degree of surprise which the experiment 

should cause a believer of the null hypothesis". Takeuchi [4, 

p. 1056] writes "Should the 'size" of the test be always preassigned 

or can the "level of significance" be determined from the sample? 

This problem is not purely an academic one, although no satisfactory 

mathematical theory for the latter approach has yet been established, 
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in most real applications, it is usually considered to be, I think, 

the more upprnpri1lte approach". Bahadur C 1 J used significance pro­

babilities in his "stochastic comparison" of tests. It is the 

purpose of this paper to formulate a statistical theory for signi­

ficance probabilities. 

2. OPTIMUM STATISTICS FOR CALCUIJATING SIGNIFICANCE PROBABILITIES 

If we have several test statistics for calculating significance 

probabilities in the problem (1), we would prefer the statistic 

which gives the smallest significance probability when the alterna­

tive is true. We formalize this in the following 

Definition. T(X) is a best test statistic at significance 

probability a if for any other statistic U(X) we have 

(3) 

T(X) is a uniformly best test statistic if for ffiLY other statistic 

U(X) (3) holds for all 

The following theorem gives us a connection between best level 

a tests in the ordinary sense and best test statistics for calcu­

lating significance probabilities. 

Theorem 1. Given the problem (1). Suppose that there exists a 

random variable T(X) and a UMP level ~ test which rejects 

when T(X) > c • The~n T(X) is a best test statistic at signifi­

cance probability a for the problem (1). 

Proof: Let 

FT(t) = P9 [T(X) < tJ • 
0 

(4) 

It is easily verified that for any random variable T(X) wa have 

P9 [FT(T(X)) ~ 1-t] ~ t • 
0 

(5) 
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Since F(c) = 1 -~,we have 

[t : FT(t) 2: 1-a,1 :'2 [t : t 2: c} • 

By (2) and (4) 

aT (X) = 1 - P 
8 

r T (X) < T ( x)] = 1 - F T ( T ( x) ) , 
0 

from which we obtain 

(6) 

(7) 

P 8 . raT(X) :S aJ = PA. CJ.J'T(T(X)) > 1 - a] i = 0,1 • (8) 
J_ J_ 

By (6) 

P e. [F T ( T (X) ) ?: 1 - a] 2: P e. r T (X) ?: c ] 
J_ J_ 

i = 0,1 • (9) 

By (5) we have 

P
80 

[FT(T(X)) ?: 1 - a] ;;; a. (10) 

The test of (1) which rejects when FT(T(X))?: 1-a. is therefore a 

level ~test. By (9) its power at e1 is greater or equal than the 

power of the test based upon T(X) .. Since the latter is most power­

ful, we must have equality sign in (9). Combining (8) and (9) we 

then get 

( 11 ) 

Let U(X) be any other statistic which is used to calculate 

significance probablities 

PA (U(X)?: U(x)] 
0 

Let 

Fu(u) = p 
go [U(X) < u J 

As in (8) we get 

PA. 
J_ 

rau(X) ;;; 0'] = P e. rFu(U(X)) > 1 - o,J • 
J_ 

( 12) 

By (5) 

p rFU(U(X)) > 1 - a] < a • eo - - ( 13) 
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Hence the test which rejects when Fu(U(X)) > 1- a is a level test 

of (1). The power at e1 of this test is 

P
8 

rFU(U(X)) :? 1- a.]. 
1 

( 14) 

Since the test based on T(X) is as least as powerful we have that 

(14) is less than (11). Hence by (11) and (12) 

P8 rau(X) :S rtl :5 P8 [a.T(X) ~ a] • 
1 1 

The theorem is proved. 

Next, let both the null hypothesis and the alternative be compo­

site: 

H : e E cc against e E o -· w, 

Given a statistic T(X), let 

FT,e(t) = Pe rT(X) < t J 

aT,e (x) = Pe CT(X) ;:: T(x)J = 1-FT (T(x)) 
~ e 

( 15) 

( 16) 

( 17) 

aT(x) == sup aT 9(x) • (18) 
9Ew ' 

We shall call aT(x) the significance probability when x is obser-

ved. 

Definition. T(X) is as least as good a test statistic as U(X) 

at significance probability a. and at the alternative e E D-w if 

( 19) 

T(X) is uniformly as good as U(X) at the alternative e if (19) 

holds for all a. , 0 :5 a. :5 1 • 

T(X) is uniformly as good as U(X) at significance probability 

a. if (19) holds for all 6 E 0 - w. 

T(X) is uniformly as good as U(X) if (19) holds for all 

a , 0 < a. :5 1 , and all e E 0. -w • 
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Theorem 2. Given the problem (15). Suppose that there exist a 

random variable T(X) and a most powerful level a test against the 

alternative e1E 0.~ which rejects H when T(X) ~ c • Then T(X) 

is a best test statistic at significance probability a, and at the 

alternative e1 for the problem (15). 

Proof: Since by assumption 

P
8

[ T(X) > c] = 1-FT,e (c) < a, BEi .. :J , 

we have 

inf F T , 
8 

( c ) > 1 -a. 
8 Elld· 

It follows that 

[ t : inf F T 
8 

( t ) ~ 1 - a} :;::, [ t t > c } • 
8Ew ' 

By (17) and (18) for all 8 

P8[aT(X) :5: a]= P(/ inf FT 8 , (T(X) ~ 1-ad • 
e I Ecu , 

From (20) and (21) we have for all 8 

P 8 [ inf F T 8 , ( T ( x) ) ;::: 1 -a J ;::: P 8 [ T ( x) ~ c J • 
8'Ew ' 

Furthermore , when e Ew , we have by ( 5) 

(20) 

(21 ) 

(22) 

P 8 [ inf F T fi 1 ( T (X) ) ;::: 1 - a] :5 P G [ F T 8 ( T (X) ~ 1 -a J < a . ( 2 3 ) 
8 I Etu 2 

' 

Therefore, the test which rejects H in (15) when 

inf FT,e(T(X)) ~ 1-~ is a level CJ, test of H • By (22) its power 
8Ew 

at the alternative 81 is greater or equal to the power of the test 

based on T(X) • Since the latter is most powerful, we must have 

equality in (22) when e = e1 • Combining (21) and (22) we get 

P8 /aT(X) ::; aJ = P
81 

[T(X) > c]. (24) 

Let U(X) be any other statistic used to calculate significance 

probabilities, and let Fu,e and au be defined in the same way as 

(16) and (18). We have as in (21) and (23) 
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P r·c-:u(X)_:: aJ = P,J inf FU 9(U(X)) ::: 1-a] for all 9. (25) 
8 

\7 e'Ew ' 
and 

e E w • 

Hence the test which rejects when inf Fu, 8(U(X)) > 1-a is a level 
8'Ew 

test of (15). The power at the point 8 1 is 

P
9 

[ inf Fu 8(u(x)) ~ 1-aJ 
1 A ' Ew ' 

which must be equal or less than the power of the most powerful test 

which is P
8 

[T(X) > c] • Hence by (24) and (25) 
1 -

P8 [au(X) < a]< P 9 [aT(X) < a.], 
1 - - 1 

(26) 

which proves the theorem. 

It is seen from the proofs of Theorems 1-2 that if we formulate 

the results of ah experiment in terms 1 of significance probabilities, 

then a standard question· like: 11How many observations do we need to 

get a preassigned power ~ at an alternative 9
1 

for a level a. test?" 

is equivalent to 11How many observations do we need to get a signifi­

cance probability ,::a with probability p when the alternative is 

81 ?". 

The results of Theorem 1 and 2 also hold if we are comparing 

test statistics in a restricted class of test statistics as, for 

example, invariant test statistics or unbiased test statistics. 

That two test statistics which are equally good when comparing 

power functions, may not be equally good when calculating signi£i­

cance probabilities is seen from the following example. 

Let x 1 and x2 be independent random variables each with pro­

bability distribution 

P[X=O] = P[X=1J = ~(1-p), P[X=2] = p • 

Consider the problem 

H : p =a against P > a. (27) 
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A level a test is given by rejecting the hypothesis p = a if 

x1 ? 2 • The power of this test is p at the alternative p • 

Let another test be based upon the sum Y = X
1

+X
2 

• We have 

P[Y =OJ = t(1-p), P[Y = 1J = ~(1-p) 2 , p[y = 2] = l(1-p) 2+ p(1-~) , 

P[Y = 3] = p(1-p), RY = 4] = p2 

The test which rejects when Y > 3 is a level a test. Also this 

test has power p at the alternative p • Hence the two tests are 

equally good as tes.ts of (27). 

As test statistics for calculating significance probabilities, 

however, x1 and Y are not equally good. 

Let a 1 (x) = P[X1 ? x] and a 2 (y) = P[Y ~ y] Then 

if y < a 

if y > a 9 

if < a2 2 y 
if a < y < a 

if Y 2: a 

Hence for calculating significance probabilities Y is better than 

3. THE EXPECTED SIGNIFICANCE PROBABILITY 

Consider again the problem ( 15). For a fixed alternative 9 , 

let us consider the expected significance probability. We have the 

following theorem 

Theorem 3. Consider the problem (15). Suppose that T(X) is 

uniformly as good as U(X) at the alternative e Then 

Ee au(X) ~ Ee ex,T(X) • 
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Proof: The expected significance probability is 
1 1 

E8 CLT(X) = s P9[CLT(X) > CL] da, = J (1-P8[CLT(X) ~ a.])da 
0 0 

1 1 

= 1- r P8[aT(X) < a]da~ 1- J P8[a.u(X) ~ a.)dcL 
0 0 

= E8 au(X) , 

where the inequality follows from (26). 

Typically, the distribution of the significance probability is 

very skew, and the expectation is not a goodmeasure of the distri­

bution. As an example Let X have an exponential denisty 

' -t_X d Ae , an consider the problem 

H A. = t-
0 

against \ < A. 
0 

The UMP test rejects when X> constant, hence we use X to calcu­

late significance probabilities. The significance probability when 

X = x is observed is 

The expected significance probability when A. obtains is 

Ea (X) = r e-A. oX A. e-A.xdx = -A,_ 
J A.+A.o 

The cdf of Y = a.(X) is 

G ( y ) = PA. [ 0'. (X ) ~ y] = p A. [ e- A.uX.::;: y J 

= P[X >-(logy)/\ ] = y"A/\o 
- - 0 

Hence the density is 

g(y) = (A./f.. ) y(A./"Ao)-1 
0 

Since A. < )l 
0 

this density is very skew. 
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The probability that ~(X) exceeds its expected value is 

A 

P, [a (X) 2,- , A.+' ] = 1 - (_l_)Ao = 1 
II. 1\ 1\.o A.+A.o 

When A ~ 0 this probability tends to 

1 A./A.o 
- (1 +A. /A.) 

0 

1 • Hence the expected 

value of a(X) tells us little about the distribution of ~(X) • 
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