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ABSTRACT

A test statistic is defined to be best for calculating
significance probabilities if it maximizes the probability
of getting a given small significance probability: It is
shown that a test statistic which is best from a power
function point of view is also best for calculating

significance probabilities,



1. INTRODUCTION

Let X be a random variable with distribution belonging to a

family {Eb 9 € o} of distributions. Consider a hypothesis test-

ing problem with a simple null hypothesis Pe and a simple alter-
o
native P H
61
H: g =9, against g =g, . (1)

et T(X) be a statistic such that small values of T(X) seem
reasonable if ¢ = g, , and large values of P(X) are not reason-
able if g = Ao but more reasonable if g = B4 o

The significance probability if the value x of X is observed is

] LT(X) > (x)] . (2)

G,T(X) = Pe

We call T(X) a test statistic. A small value of aT(x) indicates

that the null hypothesis is not true. The smaller anp(x) is, the
more we tend to disbelieve the null hypothesis. The use of the
significance probability as a measure of how much the data contra-
dicts the null hypothesis has been mentioned by several statisticians,
In Fisher [ 2, p. 807 one can read "The actual value of P obtain-
able from the table by interpolation indicates the strength of the
evidence against the null hypothesis®, (P here corresponds to
QT(X).) Hodges and Lehmann 3, p. 2837 state that "The significance
probability may be thought of as giving, in a single convenient
number, a measure of the degree of surprise which the experiment
should cause a believer of the null hypothesis', Takeuchi [4,

p. 1056] writes "Should the 'size'" of the test be always preassigned
or can the "level of significance" be determined from the sample?
This problem is not purely an academic one, although no satisfactory

mathematical theory for the latter approach has yet been established,



in most real applications, it is usually considered to be, I think,
the more approprivte approach". Bahadur [1] used significance pro-
babilities in his "stochastic comparison" of tests, It is the

purpose of this paper to formulate a statistical theory for signi-

ficance probabilities.

2., OPTIMUM STATISTICS FOR CALCULATING SIGNIFICANCE PROBABILITIES

If we have several test statistics for calculating significance
probabilities in the problem (1), we would prefer the statistic
which gives the smallest significance probability when the alterna-
tive is true. We formalize this in the following

Definition. T(X) is a best test statistic at significance

probability o if for any other statistic U(X) we have

P FQT(X) <nl>PF 1 [aU(X) <al. (3)

84 i
T(X) is a uniformly best test statistic if for any other statistic
U(X) (3) holds for all o, O < a < 1,

The following theorem gives us a connection between best level
o, tests in the ordinary sense and best test statistics for calcu-~

lating significance probabilities,

Theorem 1. Given the problem (1). Suppose that there exists a

random variable T(X) and a UMP level o test which rejects
when T(X) > ¢ . Then T(X) is a best test statistic at signifi-

cance probability o for the problem (1).

Proof: lLet

F(t) = P, [T(X) <+t]. (4)
T B,
It is easily verified that for any random variable T(X) we have
B, [Fp(D(X)) > 1-%3 <t . (5)

0



Since PF(e) = 1 - n, we have

{t ¢ Fp(t) > 1-al g {t : % >cl. (6)
By (2) and (4)
ap(x) =1 - P r0(X) < 2(x)] =1 - Fp(2(x)) , (7)
0

from which we obtain

Pei r%(x) <al = Pei Ta(D(X)) 21 - ] 4 =0,1. (8)
By (6)

Pei [Fp(T(X)) >1-al _>_Pai re(x) >c¢l  i=0,1, (9)
By (5) we have

Py [Fp(2(X)) >1 - o] < (10)

The test of (1) which rejects when FT(T(X)) > 1= 1is therefore a
level o test. By (9) its power at 64 is greater or equal than the
power of the test based upon T(X) . Since the latter is most power-
ful, we must have equality sign in (9). Combining (8) and (9) we
then get

Pe1 fap(X) < a) = P61 r(x) > cl . (11)

Let U(X) be any other statistic which is used to calculate

gignificance probablities

Pgo LU(X) > U(X)] .

il

GU(X)

Let

Il

FU(u) Pgo (U(X) <ul

As in (8) we get

By, Tog(X) £ 0] = Py WU 21 - o] (12)
By (5)
P, rBy(U(X)) >1 - a) <a. (13)

"0
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Hence the test which rejects when FU(U(X)) >1- ¢ is a level  test
of (1). The power at 6,4 of this test is
P91 P (U(X)) > 1= o1, (14)
Since the test based on T(X) is as least as powerful we have that
(14) is less than (11). Hence by (11) and (12)

Ib1 Fog(X) < al < Pe1 fan(X) 5 al .
The theorem is proved,

Next, let both the null hypothesis and the alternative be compo-

site:
H :6¢ ¢ against 6€ O - w, (15)
Given a statistic T(X), let
Fp o(t) = By [2(X) <] (16)
“T,e(x) = P, [1(X) > 1(x)] = 1-FT99(T(X)) (17)
fEW ’

We shall call aT(X) the significance probability when x is obser-

ved.

Definition, T(X) 4is as least as good a test statistic as U(X)

at significance probability o and at the alternative 6 € Q-w if

Bylop(X) 2 al > Bylay(X) <ol . (19)
T(X) is uniformly as good as U(X) at the alternative § if (19)
holds for all o, O0<a <1,

P(X) is uniformly ae good as U(X) at significance probability
o if (19) holds for all 8 € Q - w.

T(X) is uniformly as good as U(X) if (19) holds for all

ay 0 <a <1, and all o € 0w .



Theorem 2, Given the problem (15). Suppose that there exist a

random variable T(X) and a most powerful level a test against the
alternative 6,6 Q- which rejects H when T(X) > ¢ . Then T(X)
is a best test statistic at significance probability o and at the

alternative @, for the problem (15).

Proof: ©Since by assumption

I%[T(X) > c]l = 1'FT,9(C) < oy BEW

we have

inf F,, (¢) > 1-a.

e 20 -
It follows that

{t ¢ inf P (t) >1-aY o5 {t : t >cl . (20)

T,G - - -
pew

By (17) and (18) for all o

Pylap(X) < al= E%[e?ﬁf Fp o0 (B(X) 2 1] . (21)
From (20) and (21) we have for all 8

Pl oinf P A, (T(X)) > 1-al > PA[T(X) >c] . (22)

9 avey Ts® 6 -

Furthermore, when gcw , we have by (5)

Bl int Pp oo (2(X)) 2 1-al S B[Py o (2(X) > 1-a) s 0 . (23)

Therefore, the test which rejects H in (15) when

inf Fy e(T(X)) > 1-0, is a level o test of H . By (22) its power
pew T’
at the alternative 81 is greater or equal to the power of the test

based on T(X) . Since the latter is most powerful, we must have
equality in (22) when 6 = 6, . Combining (21) and (22) we get

Ié1[@T(X) <al = P61[T(X) > cl. (24)

Let U(X) bve any other statistic used to calculate significance
probabilities, and let FU 5 and g be defined in the same way as
4

(16) and (18). We have as in (21) and (23)
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P reg(X)< ol =P [ inf F., (U(X)) >1-0] for all ©. (25)
o U= Argrey UsO -
and

P [ inf P A(UX)) >1-0] <, when O € w .
0 8'en u,8
Hence the test which rejects when  inf Ty e(U(X)) > 1-0 1is a level
8'ew !
test of (15). The power at the point 8, is

P, [ inf B, (U(X)) > 1-al
61 At ewn U,8

which must be equal or less than the power of the most powerful test

which is Pe (P(X) > ¢] . Hence by (24) and (25)
4 2

Pe1[aU(X) < al< Pe1[aT(X) < al, (26)

which proves the theorem,

It is seen from the proofs of Theorems 1-2 that if we formulate
the results of an experiment in terms,of significance probabilities,
then a standard question like: "How many observations do we need to
get a preassigned power § at an alternative 91 for a level ¢ test?"
is equivalent to "How many observations do we need to get a signifi-
cance probability <q with probability 2 when the alternative is
84 7,

The results of Theorem 1 and 2 also hold if we are comparing
test statistics in a restricted class of test statistics as, for
example, invariant test statistics or unbiased test statistics.

That two test statistics which are equally good when comparing
power functions, may not be equally good when calculating signifi-
cance probabilities is seen from the following examples

Let X and X2 be independent random variables each with pro-

1
bability distribution

P[X=0] = F[X=11 = $(1-p), P[X=2]

1
3

Consider the problem

H: p=aqa against p > q. (27)



A level o test is given by rejecting the hypothesis p = a if
X1 > 2 . The power of this test is p at the alternative p .

Let another test be based upon the sum Y = X1+X2 + We have
7(1-p), EY =11 =10-p)%, HY = 2] = 3(1-p)% pl1-p) ,

It

P[Y = 0]

it
i
]

3] = p(1-p), EHY =41 = p° .

The test which rejects when Y > 3 is a level a test, Also this

il
1l
I

PLY

test has power p at the alternative p . Hence the two tests are
equally good as tests of (27).

As test statistics for calculating significance probabilities,
however, X1 and Y are not equally good.

Let a1(x) = P[X1z x] and a,(y) = PIY > y] . Then

s

{0 if y < a
P [a1(X) <yl =
P D if Yy >a,
and 0 if y < a2
2 . 2
Pp[az(X) <y] ={p if a7 <y <a
P if Yz o

Hence for calculating significance probabilities Y is better than

X1 .

3, THE EXPECTED SIGNIFICANCE PROBABILITY
Consider again the problem (15)., For a fixed alternative 6,
let us consider the expected significance probability. We have the

following theorem

Theorem 3. Consider the problem (15). Suppose that T(X) is

uniformly as good as U(X) at the alternative & . Then

E, (%) > By an(X) .
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Proof: The exp?oted significance probability is
1

E, ap(X) = f}?e[%(x) >alda = f (1-Py[aqp(X) < al)da

fo) (0}
1 1
=1 - | Blag(0) < alaag 1 = [ Byloay(X) < ol
o | o
= E@ C(,U(X) 9

where the inequality followe from (26),

Typically, the distribution of the significance probability is
very skew, and the expectation is not a good measure of the distri-
bution., As an example ©Let X have an exponential denisty

M , and consider the problem

ne
H: )\ = Ao against ) < A o *

The UMP test rejects when X > constant, hence we use X 1o calcu-

late significance probabilities, The significance probability when

X = x 1is observed is

a(x) = X > x] = e™ro* |

The expected significance probability when ;) obtains is

B (x) = [ o™ 0% e ™ ax - T
(0]

The cdf of Y =¢(X) is

G(y) = Bla(X) 5 3] = B e ME oy

= Prx > -(log y)/2 1 = yM o
Hence the density is

gly) = W/x,) g/ ho)-1

Since 1 < Xo this density is very skew.
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The probability that ¢(X) exceeds its expected value is

A

A - A Vo L4 1
Ble () z gixsd =1 - )™ =1 - G yx)

When A = O +this probability tends to 4 . Hence the expected

x/xo

value of o(X) +tells us little about the distribution of a(X) .
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