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.ABSTRACT 

.A theorem on the construction of smallest volume 

invariant prediction regions for the observed values 

of random variables is given. Various applications 

of the theorem is given, including predictions from 
a regression function and predictions of the values 

of the observations from an exponential distribution .. 
It is shown by a counterexample that smallest volume 

invariant prediction regions do not necessarily mini­
mize volume uniformly in the class of all prediction 
regions. 
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1. Introduction. Let the random variable Y over the measurable 

space (u:J ,j~ ) have a 'dGnsi ty h(y) with respect to a measure v., 

We shall consider the problem to predict the observed value y of 

Y before y is observed, and shall construct a region~ a predict­

ion region, which has a given probability 1-a of covering the 

observed value. Such a region is indicated by a measurable fm1ction 

Q(y) , where ~(y) is the probability that y is in the prediction 

region. Let v* be a measure defined on Dlj which is used to de-
" 

'') . 

fine volume in the space ,:;l_; so that the volume of a set B E /!;· is 
I 

'/ 

v*(B) = I dv*(y) • 
B 

We shall assume that v* is absolutely continuous with respect to 

v , and that dv*(y) = a(y) dv(y) • Hence 

v*(B) = J a(y) dv(y) • 
B 

The volume of the prediction region given by the prediction function 

cp (y) is then 
[' J cp (y) a (y) d v (y) • 

Definition. The prediction function cp(y) is a smallest volume 

predic-tion frmction for Y at prediction level 1-a if 

( 1 ) I Q(y) h(y) dv(y) > 1-a , 

and for ru1y other prediction function t satisfying 

J•(y) h(y) dv(y) 2 1-a 

we have 

Jt(y) a(y) dv(y) 2 s~(y) a(y) dv(y) • 
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A prediction region corresponding to a ~(y) satisfying (1) is 

by Guttman [8, p. 5] called a (1-a)-expectation tolerance region. 

Fraser and Guttman [·~], Guttman [6] , [7} and [8) considered another 

optimality property of prediction regions than smallest volume by 

introducing a weighing function indicating the desirability of the 

various regions. 

In Section 2 we shall need the following 

Lemma. The smallest volume prediction level 1-u is of the form 

where k 

so that 

1 when a(y) < kh(y) 
~(y) = 

0 when a(y) > kh(y) 

a~d the value of ~(y) when a(y) = kh(y) 

J ~(y) h(y) dv(y) = 1-a • 

are determined 

Proof. Follows easily by an application of the Neyman-Pearson 

lemma .. 

Suppose now that the density of Y depends upon en unknown 

parameter 8 , the density being h(y,O) , 0 E 0 . Before predict-

ing the value of Y we observe the value of a random variable X 

independent of Y which has density f(x,8) w.r.t. a a-finite 

measure ~ on a measurable space (~ , 0q). We can now indicate a 

prediction region for 

the probability that 

X has the value x • 

region is 

Y by a measurable function ~(x,y) which is 

y is included in the prediction region when 

When X = x , the volume of the predicted 

J ~(x,y) dv*(y) 

The unconditional volume is 

j[J~(x,y) dv*(y)]f(x,o) d~(x). 
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The prediction level of the prediction function ~(x,y) is 

The prediction region has prediction level 1-a j_f 

for all o. 

2. The theorem.. In the following vve shall assume that there exists 

a group G of transformation g of (X,Y) such that the distri­

bution of g(X,Y) belongs to the family of distributions of (X,Y) .. 

Let gO E 0 be the parameter corresponding to the distribution of 

g(X?Y) when 0 is the parameter of the distribution of (X,Y) .. 

Assume also that gO == 0 • Let G be the group of all g ,. If the 

assumptions above hold we shall say that the prediction problem is 

invariant under the group G • 

A prediction function ~(xjy) is invariant if 

for all x, y and g • 

We shall consider invariant prediction functions. Let T(x,y) be 

a maximal invariant function under G • An invariant prediction 

function depends only upon T(x,y) • For the concepts used herep 

see, e.g., Lehmann [9]a 

Suppose that G is transitive over n • Then the distribution 

of T(X,Y) does not depend upon 0 • Let T(X,Y) have density 

p(t) w.r.t. a measure ),_ over the space (r ,g) . Let A.* be a 

measure which indicates volume in J j and let dA*(t)/dA(t) = c(t) • 

We make the following 

!§_sumption. Let Tx (y) = T (x, y) • Then for all X • 



Theorem. Let ~(t) be defined by 

¢(t) = 
(1 
~ y Lo 

when 
vvhen 
when 

Cc(ttl < kp(tl 
~ = kp(t 

C\t > kp(t 

where k and y are determined so that E ~(T) = 1-a e Then 

~(x~y) = w(T(x,y)) is a smallest voltune invariant predictiog_funct-

ion at prediction level 1-a • 

Proof. Vie have 

Hence ~ has prediction level 1-a. Let ~1 (x,y) be any other 

invariant prediction function at level 1-a • Since ~1 is invari­

ru1t it depends on x and y only through T e Hence ~1 (x,y) = 

~ 1 (T(x,y)) .. Since by the Lemma, ~ minimizes 

J cp(t) dt..*(t) 

among all prediction functions cp , we must have 

J ~ 1 (t) dt..*(t) 2: J ~(t) dA*(t) • 

Then by the Assumption 

J cp1 (x,y) dv*(y) 2: J cp(x~y) dv*(y) 

for all x • Hence 

jcJ cr1 (x,y) d'J*(y)] f(x,o)d~-J(x) 2: JcJ cp(x,y)dv*(y)] f(x,o)d!...t(x) , 

which shows that the expected volume using ~1 is not smaller than 

the expected volume using cp • 
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3. Examples~ Example 1e 

where ~ and cr2 are unknowng Consider the problem to predict 

the values of q independent random variable Y1 ;•··~yq also from 

a N(~,cr 2 ) distribution. Since 

..,.. 1 n 

.A = - L: X. 
n. 1 J. l= 

and 
2 1 n 2 S ~--- ~ (X.-X) n-1 .; _1 2 .... -

are sufficient we shall base the prediction on X and s2 • The 

problem is invariant under the transformations 

x• = ax + b 

S' = aS 

Y. = aY. -r b 
J_ l 

i=1, .... ,q 

where a > 0 and b are real m.unbers. Maximal invariant are 

i=1, ••• ,q. 

The variable T' = (T1 , ••• ,Tq) has a multivariate t-distribution 

with n - 1 degrees of freedom and covariance matrix I + n- 1E 

(see [2]), where I is the identity matrix and E is the matrix 

with all elements equal to one. The density of T is proportional 

to 

Let both A and ,* ,, be the Lebesgue measure in q-dimensional 

Euclidean space. Then the function w(t) in the Theorem is of the 

form 

when t'(I+n- 1E)-1t < C 
when t'(I+n-1E)-1t > C , 

where C is a constant. The statistic 

has an F-distribution with q and n-1 degrees of freedom. To 

get a 1-a. prediction region we therefore have to choose 
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C = qF 7 where F is the upper a~point o£ the a,q,n-1 a,q,n-1 

F-distribution with q and n-1 degrees of £reedom.. Using the 

fact that (I + n- 1E)- 1 = I - (n+q)- 1E it is found that the corre-

sponding prediction region for Y1 , ••• ,Yq is 

(2) q ( -)2 2( )-1 (- -)2 < qs2F l .~1 yi-x -q n+q y-x a,q,n-1' 
l= 

* The assumption is satisfied with v the Lebesgue measure. We 

then have by the definition of t that t E 0 0 c &:if and only if 
c_ 

y E Cs + x 1 and v*T;1 (C) = v*(cs + i) = v*(c) which is equal to 

A.*(c) • It follows that (2) gives the smalles volume invariant pre-

diction region for Y1 1 ••• ,Yq. 

A derivation of optbnal region in the Fraser and Guttman sense 

for this problem cm'l (for the case q = 1) be found in [ 4] ~ [6] and 

[8]. A generalization to the multivariate case will not bring any 

theoretical dif£iculties. The results for q = 1 will be the 

srune as those in [1], [4] and [8]. 

Example 2. Consider a regression problem where the random vari-

ables x1 , ••• ,xn are independent, normal with 

EX. = 
l 

p 
~ z .. \3. 

j =1 J l J 

Var Xi = u2 

i = 1 , ••• ,n , 

where the !zijl are lmown constants and (3 1 ,. •• ,(3p,o 2 are unknovm 

parameters. Let Z be the matrix with elements lzijl , X the 

vector with elements X. and 
l 

The least square estimate of \3 is 

the vector with elements p i • 
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The es tim.a te 

The statistics ~ and 

are sufficient, and we shall base our prediction procedure on these~ 

We shall consider the problem to predict the values of q 

future dependent variables Y1, ••• ~Yq, where Y. 
~ 

is the value of 

the dependent variable when the independent variables have the 

values T.hen Y. 
~ 

is 

i=1, ••• ,q. The prediction problem is invariant under the transfor-

mations 
... "" 
~i~ = a((3i + bi) i = 1, ••• ,p 

S' = aS 

Y! = a(Y. + 
~ ~ 

p 
22 

j=1 
v .. b.) 
J~ J 

Maximal invariant are 
q .. 

Y.- 2:. 1 v .. ~. 
T = ~ J= J~ J 

i s 

i = 1, ••• ,q. 

~1e random vector T' = (T1 , ••• ,Tq) has a multivariate t-distri­

bution with n-p degrees of freedom and covariance matrix I + vr.AV 

Using the same * v and ,* 
1\. as in 

Example 1 we find that the smallest volume level 1-a invariant 

prediction region is 

(3) {y: (y-V'P)'(V'AV)- 1 (y-V'~) < qs 2F }. 
a,q~n-p 

Liebennan [10] compared the prediction regions given by (3) and 

prediction regions obtained by a simple application of separate 

t-statistics in the case q=2, and found that the latter gives 

smaller prediction intervals. But if we consider the joint predict-

ion region it follows from the Theorem, since bo+.h regions are 
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invariant, that (3) gives a region with smaller volume. A discuss-

ion of the two methods of constructing prediction region can also 

be found in Miller [11, PPe 114-116]. 

~xa~ple 3. Let X1 , ••• ,XYJ be n independent rru1dom variables 
I J. 

from an exponential distribution 

(4-) 8e-ex x > 0 • 

Let the problem be to predict the values of q independent random 

variables Y1 , ••• ,Yq, also with the density (4)* We shall base 

the prediction on the sufficient statistic X = :t" -1 " n X 
.J. L.oi=1 i " 

problem is invariant under the transformations 

i=1 ~ .... 9 q 

where a > 0 . Maximal invariant are 

Y. 
l 

Ti =-
nX: 

Using the fact that 

i=1 ' " •• 'q .. 

2nOX and 20Y. are independent and have 
l 

chr-square distributions with 2n and 2 degrees of freedom, 

respectively, it is easily found that the joint density of 

( f ~ + 1)-(n+q) 
l.li 

i=1 

The 

Again, letting li. and t...* be the Lebesgue measure we find that 

f1 when l:i~1 t. < c 
*(t) 

l = l_o when 2::i~1 ti > c ' 
where c is a constant. The variable 

q 
q 1 2::. 1 Y. n 2:: Ti 

l= l =-q i=1 q n 
2:: . 1 xi l= 
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has en F-distribution witb 2q and 2n degrees of freedom~ It 

follows that C = q Fn 2 2 /n ~ 
'""' q, n 

The prediction region for becomes 

( 5) 

* The Ass~®ption is easily seen to be satisfied with v equal to 

the Lebesgue measure. Hence (5) is the smallest volume inva:t:iant· 

prediction region. 

For the problem of finding optimal prediction regions in the 

Fraser an Guttman sense for this problem see Guttman [7] and [8]. 

Goodman and Madansky [5] have studied the problem to find tolerance 

regions for an exponential distribution. 

Example 4~ As an extension of Exrunple let x1 , ••• ~xn have the 

density 

(6) -e (x-11) Oe r- 'X > \.l ' 

where both f-1 and e are lli~known. This example is also studied 

by Guttman [7] and [8]. 

n 

The statistics V = min X. and 
i l 

W = I: (X.-V) are sufficient, ar-d V and W are independent. 
. 1 l l= 

2neV has a chi-square distribution with 2 degrees of freedom and 

2GW has a chi-square distribution with 2(n-1) degrees of freedom~ 

see [3 ]. 

Let Y1 ,& •• ,Yq from the distribution (6) be q variables to be 

predicted. The· problem is invariant under the transformation. 

V' = aV + b 

Yi' = aYi + b i=1, ••• ,q 
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where a > 0 • Maximal invariant is 

i = 1, ...... ,q G 

We shall study only the case q "" 1 • The density of T = T1 is 
found to be 

(7) p(t) ""' 
( nC"n-1) ( 1 +t)-n 

n+1 

l n(n-1) ( 1-nt)-n 
n+1 

when t > 0 

when t < 0 • 

From (7) and the Len~a we find that the 1-a prediction region for 

T has the form 

The region for y 
1 

then becomes 

[ v - 1( 1 1 ) v + 
-q 

(1 - 1/(~-1))w] - i/(n-1) w • n n 
0. a, 

4.A counterexample,. The following example shows that the 

smallest volume invariant prediction region does not necessarily 

have smallest volume in the class of all prediction region. Consider 

again Example 1 and let q = 1 ru1d a2 be known and equal to 1. 

It is easily found that the smallest volume invariant prediction 

region for y- y - 1 is 

where zo./2 is the upper a/2 point of standard normal distribution. 

The volume of this region is 

( -1).1. (8) 2 1+n 2 za; 2 • 

Consider the following alternative prediction region for Y • 

If x <- _1_ (i + 1)iz ~ then use the region [x- (1~)tz , nx] • n+1 n a n a 
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If - -1-(1 + l)iz < x < _1_(1 + 1)iz then us the region n+1 n a, - - n+1 n a. ' - e 

[x- (1 + ~)iza. , x + (1 + ~Y~za.]w If x > uhC1 + ~)"!za. , then 

use the region [- nx, x + (1 + l)~z J. 
n a. 

The region has prediction level 1-a since we can verify that 

the probability that Y is in the prediction region is equal to 

P[Y-X _> -(1 + l)iz and Y + nX < OJ n a 

= (1-a)P[Y + nx < o] + (1-a)P[Y + nx 2: o] = 1-a. • 

When -(n+1)- 1 (i+n- 1 Y~z < x < (n+1)- 1 (1+n- 1)iz , the volume 
a - - a. 

of the prediction region is 2(1+n-1)iza, which is smaller than 

(8) since za < za/2 • 
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