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ABSTRACT

A theorem on the construction of smallest volume
invariant prediction regions for the observed values
of random variables is given. Various applications
of the theorem is given, including predictions from
a regression function and predictions of the values
of the observations from an exponential distribution.
It is shown by a counterexample that smallest volume
invariant prediction regions do not necessarily mini-
mize volume uniformly in the class of all prediction

regions.



1« Introduction. ILet the random variable Y over the measurable

space (Y ;%) have a ‘density h(y) with respect to a measure V.
We shall consider the problem to predict the observed value y of
Y before y is observed, and shall construct a region, a predict-

ion region, which has a given prcbability 1-a of covering the

observed value. Such a region is indicated by a measurable function
o(y) , where o(y) is the probability that y is in the prediction
region. Let v¥* be a measure defined on @ﬂ which is used to de-

P

fine volume in the space ‘QJ sc that the volume of a set B ¢ ¥ is

(g

v (B) = | avx(y) .

B

We shall assume that v¥ is absolutely continuous with respect to

v , and that dv*(y) = a(y) dv(y) . Hence

v¥(B) = | aly) av(y) .
B

The volume of the prediction region given by the prediction function
o(y) is then
Joly) aly) av(y) .

Definition. The prediction function o(y) is a smallest volume

prediction function for Y at prediction level 1-a if

(1) | () n(y) avy) 2 1-a

and for any other prediction function { satisfying

[¥&) n) avy) = 1-a
we have

[v@) a) av@) 2 [0(r) aly) av(y)



A prediction region corresponding to a o(y) satisfying (1) is

by Guttman [8, p. 5] called a (1-a)-expectation tolerance region.

Fraser and Guttman (4], Guttman [6] , [7] and [8] considered another
optimality property of prediction regions than smallest volume by
introducing a weighing function indicating the desirability of the

various regions.

In Section 2 we shall need the following

Lemma. The smallest volume prediction level 1-a is of the form

1 when a(y) < kh(y)
o(y) =
when a(y) > kh(y)

where k and the value of o(y) when a(y) = kh(y) are determined

so that | e(y) h(y) av(y) = 1-a .

Proof, Follows easily by an application of the Neyman-Pearson
lemma.
Suppose now that the density of Y depends upon an unknown
parameter € , the density being h(y,0) , 0 € Q . Before predict-
ing the value of Y we observe the value of a random variable X
independent of Y which has density f(x,0) w.r.t. a o-finite
measure | on a measurable space (}{,69). We can now indicate a
prediction region for Y by a measurable function o(x,y) which is
the probability that y is included in the prediction region when
X has the value x + When X = x , the volume of the predicted

region is
J o(x,y) av¢(y)
The unconditional volume is

J"U@P(X’Y) av*(y) 1 (x,0) au(x)



The prediction level of the prediction function o(x,y) is

E, p(X,Y)

The prediction region has prediction level 1-a if

B, o(X,Y) > 1-a for all Q.

2. The theorem., In the following we shall assume that there exists

a group G of transformation g of (X,Y) such that the distri-
bution of g(X,Y) belongs to the family of distributions of (X,Y) .
Let g0 € QO be the parameter corresponding to the distribution of
g(X,Y) when ¢ is the parameter of the distribution of (X,Y) .
Assume also that g =Q . Let G be the group of all g . If the
assumptions above hold we shall say that the prediction problem is
invariant under the group G .

A prediction function m(x,y) is invariant if

p(g(x,5)) = o(x,y) for all x, y and g .
We shall consider invariant prediction functions. Let T(x,y) be
a maximal invariant function under G . An invariant prediction
function depends only upon T(x,y) . For the concepts used here,
see, €.8., Lehmann [9].

Suppose that G is transitive over ( . Then the distribution
of T(X,Y) does not depend upon 0 . Let T(X,Y) have density
p(t) wer.t. a2 measure ) over the space (7),6:) . Let \* be a
measure which indicates volume in 27‘, and let di*(t)/arx(t) = c(t) .
We make the following

Assumption. Let TX(y) = T(x,y) . Then v* T;1 = A¥ for all x



Theorem. Let (t) be defined by

(1 when c(t) < kp(t
y(t) = " Y when c(t) = kpét

LO when c(t) > kp(t

where Xk and Yy are determined so that E (¢(T) = 1-a . Then

o(x,y) = ¥(T(x,y)) is a smallest volume invariant prediction funct-

ion at prediction level 1-a .

Proof., We have
Eop(X,Y) = E y(T) = 1-a .
Hence ¢ has prediction level 1-a « DLet ¢1(x,y) be any other
invariant prediction function at level 1-a « Since P, is invari-
ant it depends on x and y only through T . Hence m1(x,y) =

¢1(T(x,y)) . BSince by the Lemma, ¢ minimizes
() an®(t)
among all prediction functions ¢ , we must have

| w6 aa (e) 2 | w(s) aa(s) o

Then by the Assumption

; ¢, (x,5) v (y) 2 j o(x,y) av’ (y)
for all x . Hence
J[J v, (x,7) av  (y)7] £(x,0)au(x) > J[j e(x,y)av ()] £(x,0)du(x) ,

which shows that the expected volume using P, is not smaller than

the expected volume using ¢ .



3. Examples. Fxample 1. Tet X,,...,X, be independent N(u,c?)
[a¥a 2% at ot ot ot oV ot o
where | and 02 are unknown. Consider the problem to predict

the values of q independent random variable Y1,...,Yq also from

a N(M,GZ) distribution. Since

2 1
] Xi and ST = n—_—,l—

n
A =

(x,-%)7

T M™MBs

1
ny

i=1

are sufficient we shall base the prediction on X and 82 +» The

problem is invariant under the transformations

X' =aXl +b
S' = aS
Yi = aYi + b 1 =156e0e5Q

where a >0 and b are real numbers. Maximal invariant are

v,-X
T. = S i=1’ovo;q_o

The variable T' = (T19'°"Tq> has a multivariate t-distribution
with n - 1 degrees of freedom and covariance matrix I + n"1E
(see [2]), where I 1is the identity matrix and E is the matrix
with all elements equal to one. The density of T is proportional
to

{1 + t'(I+n_1E)-1t/(n+1)i—%(n+q_1)
Let both XA and . be the Lebesgue measure in ¢g-dimensional
Buclidean space. Then the function ¢(t) in the Theorem is of the
form

(1 when t'(I+n"'E) 't <0
¥ () = Z‘o when ' (I+n”"E)" 1t > ¢,

where C is a constant. The statistic
1 T'(I+n-1E)~1T
q
has an F-distribution with g and n-1 degrees of freedom. To

get a 1-a prediction region we therefore have to choose



s where Fa,q,n—1 is the upper a-point of the

F-distribution with g and n-1 degrees of freedom. Using the
fact that (I + n_1E)'1 =1 - (n+q)"1E it is found that the corre-

sponding prediction region for Y1,...,Yq is

—\2 2 =1 ,= =\2 2
(7;-%)"-a"(m+a)™ (7-%)7 < as7F o 4}

I M

ORI ARS

1
The assumption is satisfied with v* the Lebesgue measure. We
then have by the definition of t that +t € 02 < gyif and only if
y €Cs +x , and v*T;1(C) = v*(Cs + X) = v*(C) which is equal to
k*(C) . It follows that (2) gives the smalles volume invariant pre-
diction region for Y1,...,Yq o

A derivation of optimal region in the Fraser and Guttman sense
for this problem can (for the case q = 1) be found in [4], [6] and
[8]. A generalization to the multivariate case will not bring any

theoretical difficulties., The results for q =1 will be the
same as those in [1], [4] and [8].

Example 2. Consider a regression problem where the random vari-

ables X1,...,Xn are independent, normal with

i= 190..911 9
-
where the {zij} are known constants and 61,...,Bp,02 are unknown
parameters. Let Z be the matrix with elements iziji , X the

vector with elements Xi and £ the vector with elements Bi .

The least square estimate of { is

B-wz)lzx.



a -1

The estimate B is N(B, Ac®) , where A = (2 2')71 .
The statistics B and
2 _ 1 _:A'_'*
§° = 55 (X-2'8)"' (X-2'¢)
are sufficient, and we shall base our prediction procedure on these,
We shall consider the problem to predict the values of ¢
future dependent variables Y1,...,Yq , where Yi is the value of
the dependent variable when the independent variables have the
values (v1i”"’vpi) =v!, i=1,.e.5q « Then Y, is N(vi 6,02) ,

i
i=1,e0e359 « The prediction problem is invariant under the transfor-

mations
Bi' = a(Bi + bi) i= 1,...,P
S' = as ,
T o=a(r, + % ) -
j =ali, + j§1 vjibj 1 = Tse0es5q o

Maximal invariant are

q 'S
Y, - Z._, v..B.
T = 3—1 JL ] i = 1yooo,q ®

i S

The random vector T' = (T1,...,Tq) has a multivariate t-distri-
bution with n-p degrees of freedom and covariance matrix I + V'AV
where V = [v1,...,vq] . Using the same v and A  ag in
Example 1 we find that the smallest volume level 1-a invariant
prediction region is
(3) {y + (=v')r (van) ™! (z-7'6) < qs2Fa,q,n_p}-

Lieberman [10] compared the prediction regions given by (3) and
prediction regions obtained by a simple application of separate
t-statistics in the case =2, and found that the latter gives

smaller prediction intervals. But if we consider the joint predict-

ion region it follows from the Theorem, since both regions are




invariant, that (3) gives a region with smaller volume. A discuss-
ion of the two methods of constructing prediction region can also

be found in Miller [11, pp. 114-116].

Example 3. Let X,5¢¢s,X ~be n independent random variables

from an exponential distribution

(4) pe” 0% x>0 .

Let the problem be tc predict the values of q independent random
variables Y1,...,Yq , also with the density (4). We shall base

the prediction on the sufficient statistic X = n Zi21 X; « The

problem is invariant under the transformations
X' =aX

YE-:aYi i=17¢o¢,q 9

where a > 0 , Maximal invariant are

T. =

i i=1}ooo,qo

adwg

Using the fact that 2n6X and 20Y; are independent and have
chr-square distributions with 2n and 2 degrees of freedom,
respectively, it is easily found that the joint density of

T1,...,Tq is proportional to

q -
( t. + 1) (n+q) .
i=t *

Again, letting XA and AY be the Lebesgue measure we find that

q
1 when Zi=1 ti <¢cC

¥ () =

. q
0 when 3.2t >0,

1

where C is a constant. The variable

B
Il Mo
=
I
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has an F-distribution with 2q and 2n degrees of freedom. It
follows that C = q F

a,2q,2n/n *
The prediction region for Y1,...,Yq becomes

1

I Mo

(5) {(y1,-.-,yq) : Yiﬁqsz a,2q,21’l}

1
The Assumption is easily seen to be satisfied with v  equal to
the Lebesgue measure. Hence (5) is the smallest volume invariant’
prediction region.

For the problem of finding optimal prediction regions in the
Fraser an Gutiman sense for this problem see Guttman [7] and [8].
Goodman and Madansky [5] have studied the problem to find tolerance

regions for an exponential distribution.

Example 4., As an extension of Example let X1""’Xn have the

density
(6) Oe_e(x—“) X > U,
where both p and © are unknown. This example is also studied

by Guttmen [7] and [8). The statistics V = min X, and
i

n

W= I (Xi-V) are sufficient, ard V and W are independent.
i=1

2npV has a chi-square distribution with 2 degrees of freedom and

20W has a chi-square distribution with 2(n-1) degrees of freedom,
see [3].
Let Y1,...,Yq from the distribution (6) be g variables to be
predicted. The problem is invariant under the transformation.
V! =av + b
W' = aW

Yl'=aYl+b i=190-o’q
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where a > 0 . Maximal invariant is
Yi-V
T.r-'—w“'— i=’1y<--yqo

We shall study only the case q =1 . The density of T = T1 is
found to be
gn-1 ( -n
1+4%) when t >0

(1) p(+) = n”

n
n+1 (1 -nt)” when t <0 .
From (7) and the Lemma we find that the 1-a prediction region for

T has the form

[- %(1 - ;j7%;;:r7) , (1= ;j7ﬁ&;:ry)] .

The region for Y1 then becomes

[V-%(’]—;W‘%-E_—,l—y)w, V+%(1-W;m-7)w:\.

4,A counterexample. The following example shows that the
et acaravaral ot ot oV o ot oV oV o  a¥ ot ot b o= o
smallest volume invariant prediction region does not necessarily
have smallest volume in the class of all prediction region., Consider

2 be known and equal to 1.

again Example 1 and let g =1 and ©
It is easily found that the smallest volume invariant prediction

region for Y = Y1 is

x - (1+n_1)%za/2 y X + (1+n"1)%za/2]
where Za/2 is the upper o/2 point of standard normal distribution,
The volume of this region is
(8)  2(1+n ), .
Consider the following alternative prediction region for Y .
(1 + 1)%za , then use the region [X - (1+%)%Za’ nx| .

If x<- n+1



1
)z, then use the region

1 o
% - 1y% =_ 113
2z, x + (1 + H)zza]. If x > 517(1 + H)?zCL , then
== o l .
use the region [-nX , X + (1 + H)§z 1.
The region has prediction level 1-a since we can verify that
the probability that Y is in the prediction region is equal to

1 -
)?z, and Y + nX < 0]

Bl—

P[Y-X > -(1 +

Wl

+ P[7=X < (1 +I-11-) z, and Y + nX>0]

= (1-a)P[Y + n¥ < 0] + (1-a)P[Y + nX > 0] = 1-a .
1 _ _ 4L
When —(n+1)—1(i+n-1)zza <X < (n+1) 1(1+n 1)2zOL , the volume
1L
of the prediction region is 2(1+n 1>2Za , which is smaller than

(8) since By < Zq/p



(2]

[3]

(4]

[5]

(6]

[7]

(8l

(9]

[10]

[11]
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