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Summary 

It is shovm by Takeuchi and .Akahira, 1974, that conditio­

nal independence together with a condition o£ "partial sufficiency" 

imply "prediction sufficiency" for loss functions not depending on 

the unlmown parameter •. We shall here prove that these conditions 

are necessary as well and there-by o Dtain a complete description, 

in terms of conditional expectations, of "prediction sufficiency" 

for loss functions not depending on the unknown parameter. It 

turns out that these conditions may be replaced by a condition of 

conditional independence for prior distributions. 



1. 

Introduction. Consider the pro-blem of taking a decision t on 

the "basis of our observations X when the loss is determined by 

t and a non observable variable Y • Consider also a fu.'lction 

X0 of X • It will be assumed that the joint distribution of 

X and Y is determined by an unknovm parameter e • We are also 

assuming that the rnerri t, or the laC'lc of it, of any procedll.I'e is 

to be judged solely on the expected loss, i.e. risk, it incures. 

In this context the problem of sufficiency may, somewhat 

loosely, be phrased: When are \ve justified in claiming that no 

in:f o:r:ma tion is lost by basing ourselves on xo rather than on 

all of X ? Note that the situation where the loss is determined 

by t and e may be regarded as the particular case where 

E-.c (Y=e 1 e) = 1 for all 8 • 

It should be stated at once that we are in this introduction 

wilfully omitting several qualifications. A rigoruos trea-Gmen t 

will be given in the next section. 

In order to clarify the scope of this paper, let us for a 

moment consider the more general situation where the loss depend 

on e as well as on and Y • Considering a non negative 

fl:mction L of (e, t, Y) as a loss function, we may say that X0 

is L-sufficient for X w.r.t. Y if the set of decision rules 

based on X 
0 

is essentially complete. 

By theorem 1 in Tru~euchi ~'ld Akahira [5] (See also theorem 

10.2 in Bahadur [1]) X is L-sufficient for X w.r.t. Y 
0 



2. 

provided: 

c1 : X0 is sufficient for X 

c2 : X and Y are conditionally independent given 

X0 for all e • 

If these conditions are satisfied then, following Tru~euchi 

and Akahira [5 page1019] we shall say that X0 is prediction 

sufficient for X w.r. t. Y • This .corresponds to X0 ·being 

adequat for X w.r.t. Y in Skibinsky's [4 page 156]terminology. 

That prediction sufficiency implies L-sufficiency for 

any L may be seen directly by a randomization argument. A 

statistician knowing X 
0 

only may, by a random mechanisme" 

"' construct another variable X so that (X, Y) has the sarne distri-

·bution as (X, Y) • [Let U be l'ecta .. ngularily distri-buted on 

[0,1] and independent of (X,Y) • Then there are, for each x0 

in the range of X0 , a function cp"r so that the distri.bution 
"''"o 

of cpx (U) 
0 

is equal to the conditional distribution of X given 

Xo=xo • It is easily checked that we may talce x = crx (u) J • 
0 

L'1 their paper [5], Takeuchi and ~abira proved that 

L-sufficiency for sufficiently many loss functions L implies 

prediction sufficiency. If, however, \ve restrict attention to 

loss functions which do not depend on e then they found that 

c1 could be weakened to: 

There is a set B so that the conditional distri-

bution of X given X0 does not depend on e vv-hen 

X0 E B while the conditional distribution of Y given 

X0 does not depend on 8 when X0 ~ B • 



Roughly the aTgmnen t in [5] runs as follows: Let the loss 

L be determined by v and the decision taken, and 1 e t 6 be a .J.. 

r-..J 

decision rule based on X • Choose 6 = EoiX0 when XaE B and 
"' 

such that ELIX0 is small when xo ~ B and 6 is used. Then, 

with o·bvious notations: E..v(LIX0 ) = Eu(LIXo) when xo E B and 
6 

Er-..J(LIX0 ) is not much larger than Eo(LIXo) when xo ~ B • As 
6 

a particular case consider prediction v'Ji th squared error loss of 

some square integrable real valued function Y0 of X • If 

g(X) is any predictor with finite risk then g (X0 ) given by: 

f Eg(X) \X0 when xo E B 
g(X ) = \. 0 when EYo IXo xo ~ B 

is at least as good. 

Consider now a fixed, finite and non trivial decision 

space T • Denote by ~the class of loss functions L = L(Y,t) 

whiqh depends only on Y and the decision taken. If X0 is 

L-sufficient for X w.:c. t Y for all L E [ then we shall say 

that X0 is [-sufficient for X w.r.t. Y • 

vfe shall see L-"'1. the next section that the conditions c1 

and c2 can 1 t be reduced vri thout violating L-sufficiency. 

Situations where we do have J... -sufficiency may thus be classified 

according to the set B appearing in condition c1 • Prediction 

sufficiency corresponds to the case Vihere B may be chosen 

as the whole range of X0 • If the conditional distribution of 

Y given X depends on (X,e) only through X0 , then c1 and 

c2 holds with B = ¢ • As an example of the intermediate si tua­

tion consider random va:ciaDles X and Y whose joint distribution 



is given by the following ta·ble of Pr(X = x, Y = yje) 

---
l I ' 1 

' ' i "- X 
Y~. 1 l 2 3 

'•, 

I 
1 ( 1 -a. ) ( 1 - ~ h I ( 1-ct8) ( 1-P) ( 1-,-8) I o.e<1-ye) I I e e l I I 

I 
2 ( 1-a.e) f3're I (1-ae)f3(1-,-8) 

I a.eYe 
I i I 

-· 

Here a.,y and ,- are functions from ® to (0,1] while 

~ E (0,1] is a constant. Simple calculations show that 

X0 = max(X,2) is dl-sufficient for X w.r.t. Y ; i.e. c1 and 

c2 are satisfied. X0 is, however, not prediction sufficient 

for x w.r.t Y unless ,- is constant on {e:a.8< 1}. 

Jl-sufficiency is closely related to conditional inde-

pendence for prior distributions. It will ·be shown that X0 is 

[.-sufficient for X w.r.t. Y if and only if X and Y are 

conditionally independent for all prior distributions with finite 

support. Actually it suffices to consider the prior distributions 

w;hich are either degenerate or u,;niform two point distributions. 
/ 

Utilizing this we prove the exis\tence of "minimum" 
;~ 

£- sufficient 

statistics. 

As is usual in this type of discussion, the functional_ 

form of the random varia.bles is of minor importance. vVe shall 

therefore express our results in terms of alge·bras of events 

rather than in terms of random varia.bles. 
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2. Sufficiency and conditional independence. 

Our discussion will be carried out within the following 

f:t'amework. There is given a family (x,Jr ,P8 ). : e E 9 

babili ty spaces and three sub a alge·bras, 9.;0 , ~ and 

• The set 9 is the parameter set of our model • 

of pro-

'G , of 

It will 

be assumed that ~0 ~S!J and that !P8 : e E e! is dominated. 

Referring to the introduction, )'?,0 , 9.> and ~ may be 

interpreted as the a algebras of events induced by, respectively, 

X0 , X and Y • 

We will also assrune that we are given a finite set T , 

with at least two elements, containing all possible decisions. 

A decision rule o is a family ot : t E T of non nega-

tive measurable varia·oles such that 2:: ot = 1 • The inter-
t 

pretation of o is the usual; i.e. ot (x) is the probability 

of taking decision t given that we have observed x • 

A loss ftmction is a non negative fUnction on 

ex X x T which is t measurable in x for fixed (e,t) in 

e )< T • Denote by j_ the class of loss functions which does 

not depend on 8 • 

The risk function 

a loss function L is given by 

= E8 L:L ( ., t)ot 
t 8 

of a decision rule 

where E8 denotes expectation w.r.t. P8 • 

w.r.t. 
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The set of all prior distributions on ® with finite 

support will be denoted ·by A • The su·o set o:f A consisting 

of the prior distributions which are either degenerate or uniform 

two point distributions will ·be denoted by A0 • 

c on 

If A. E A then P = l: A P 
A 8 8 e 

and 

By Halmos and Savage [2] there is a non negative function 

so that ® = fe : c(e) > 0} is counta-ble, L:c(e) = 1 and 
o e 

n = ~c(e)P8 dom~nates {P8 : e E e} • Put for each e E e and 

each X E A , f = dl' /dn A "/-. • Expectation w.r.t. 

iT VJill be denoted by 'IT • 

We shall say that S30 is Jl-sufficient for S1 w.r.t 

t: if to each loss function L in j.._ and each decision rule 

corresponds a 52:7 0 measurable decision rule 
I"V 

b such that: 

Criterions for ~sui'ficiency are collected in 

Theorem 

(i) 

(ii) 

(iii) 

The following conditions are equivalent: 

s~ 

~0 
~ 

is £-sufficient for S1 w.r. t. f: 
is pairw-ise L -sufficient for s~ w.r. t. ~ 

and '& are conditionally independent given ~0 
for each PA: A E A 

$!> and ~ are conditionally independent given ~0 
for each PA: A E A0 



(iv) 9.J and t are conditionally independent given ~0 
for each 8 and there is a set in a .Ji)o 

(a) 

(b) 

so that~ 

To each bounded % measurable function g 

a 'S!Jo measura·ble function sg so that 

E9 (g\~ 0 ) = sg a.e on Bo for each 8 E ® 

To each bounded ~ measm·able function h 

a ):,0 measurable function 

E8 (h \ $10 ) = t 11 a.e P8 on 

so that 

for each 

corresponds 

corresponds 

e E e • 

The implication (iv) => (i) is, essentially, proved in Takeuchi 

and Akahira [5], while the implication (i) => (iii), and thus 

(ii) => (iii) , follovrs easily from theorem 2 in their paper. 

Proof of the theorem. 

The structure of the proof is 

(i) => (ii) => (ili) => (iv) => (i) 

II " 
l i II 
ll =======:::;== >(iii) 

(i) => (ii): Follows directly from the definition of 

J. -sufficiency. 

(i) => (iii): Consider a particula:c /, E A and a particular 

loss function L E J, • If o is a decision rule then, by (i), 

there is a $h0 measuratle decision rule 
rv o so that 

J r6d'A ~ Jr0d'A. 



s. 

is ~-sufficient for w.r.t. when the 1..mder-

lying distribution is knovm to ·be PA. • In this case, however, 

cl consists of all non negative loss functions. By theorem 2 

in [5 ], ~0 is prediction sufficient for ~ w.r.t. C( in this 

situation. Thus 9.J and " are conditionally independent 

given Cl. under P., • 
;):)0 {\. 

(ii) => (iii) : This is just a particular case of the statement 

"{ii) => (iii)": proved above. 

(iv) => (i): This is essentially proved in theorem 3 in Tru{euchi's 

and Akahira' s paper [5]. For the sru{e of completeness, however, 

we include the argument here: Take L E cl, as loss function and 

let 0 be a decision function. By (iv) there are for, for each 

t E T ' 9>0 measura-ble functions cpt and M(.,t) on, respectively, 

Bo and Be so that cpt = Ee (ot l~o) • e E 8 on Bo while 
0 ' 

M(.,t) E8 (L(.,t)jS!1 0 ) Be "-' "-' = .. 8 E ® on Define 0 by 6t = cpt ' 0 • 
rv 

Be M(·,rr) M(•,t). on B while 6 = 1 on where = min Then: 
0 "t' 0 t 

r 6 (e) = E8 6 IB L+E6 0I 0 L. =(by conditional independence) 
' 0 ' 13 

0 

E ~IB L + E9 0I M ~ E "'IB L + E8I 0M(.,,-) = (by conditional 
e,5 o ' B~ e,o o B0 

independence) = r (e) • 
'6 

It remains to prove: 

(iii) => (iv): We will in this part of the proof use the notation 

~ to denote the restriction of a measure ~ to ~ 0 • 

Suppose (iii) holds. We must prove the existence of a set 

B · with the desired properties~ The crucial result needed is: 
0 



Pe " 
,....... 

*) almost ever~Nhere P8 
0 1 

vrhen 80,81 E t8 and g and h are bounded functions on X 

which are, respectively, ~~ measurable 

As only two values, e0 and 81 , of 8 

in the proof of (§) assume that e = j0,1l 

TI = ~(P0+P1 ) • Then **) 

and ~ measurable. 

are L~volved we may 

e = 0 e = 1 and 
' 0 ' 1 

It follows that we must show that (§) holds a.e. TT on the set 

1 
[ !\. E(f. I~ ) > 0 J • We restrict ourselves to this set for . 0 l 0 l= 

the remaining part of the proof of 11 (ili) => (iv)" • The quali-

fication 11a.e. rr" will be omitted. 

Note first that 

= i L:(f.IS1 )E.(sl~) i l 0 l 0 

for any bounded measura'ble s • It follows, using the Markov 

property that 

*) If' IJ. and v are finite measures on J+ then IJ. 1\ v is 

the largest measure < IJ. and ~ v for the set wise ordering 

of measures. See Neveu [3 page 107] • 

**) If a and b are mllil-bers then a A ·b = min(a,b) • 
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and 

The last equation may, using the first equation, be written: 

I: a.E. (gl~ ) = 0 
. l l 0 
l 

where 

L: f . = 2 imply 
i l 

( §) follows now ·by inserting these expressions for ai ; i=O, 1 • 

We must now return to the general situation with a 

dominated family {P8:e E e} • 

We shall first show that 

and 

d 

~ P when g E ~, h E d{ 
i=O 9 i 

8· E S .. i=O, 1, 2, 3 • \ve may -
l 

, 

3 ~ rv 
3 

- restrict A e /dTT = 
i=O i 

. A E(fi ~~o) 
l=O 

since 

attention to the set 



1 1 • 

B = [ ~ E(f. 1~'1 ) > 0 J • We ami t the qualification "a. e. nrr in 
. 0 J. 0 
J.= 

the proof of (a) • By (§) we have: 

Put: 

(a) will be proved if we can show that n(B0 ) = TI(B1 ) = 0 • 

. On B0 we have - by (13) 

E8 (hI Sb0 ) = E9 (hI $b0 ) and E8 (g 19>0 ) = E8 (g I Sb0 ) • 
1 0 3 0 

On the set B n [E9 (g I 9;, ) I= E8 (g I )1 ) J 111e will also have 
0 3 0 1 0 

which is impossible on It follows that E9 (gl~ ) = 
3 0 

E8 (g 1~0 ) = E9 (g !9> ) which is also (n) 
1 0 ° 

'"" impossible on B0 • 

Hence rr(B0 ) = 0 • Similarily rr(81 ) = 0 • Thus (a.) is proved. 

N"ote next that (a) may be rewritten as 
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(a.') [E(gfe IS1o)E(fe l~o) 
1 0 

- E(gf9 \~0 )E(f9 I~ 0 )J[E(hf9 jSb0 )E(f9 1~0 ) 
0 1 3 2 

- E(hf9 j2:, 0 )E(f9 \Sb 0 )]-= 0 1 a.e. 'li. 
2 3 

M~utiplying with c(e 0 )c(e 3 ) and suwJning over e0 ,e 3 E e0 we 

get: 

(y) [E(gf8 \Sb 0 )-E(g\$b0 )E(f8 IQ,0 )][E(hf8 \~ 0 ) 
1 1 2 

- E(h!$1 0 )E(f8 !Sb 0 )J = 0 ; a.e. Tr. 
2 

Put v8 ,g = [E(gf9 \Sb0 ) = E(g\S00 )E(f8 \~0 )] 

and w9 ,h = [E(hf 9 \SJ 0 ) = E(h 1 ~0 )E(1'9 I S!:>0 )] • 

Let V and W be sets in $1 0 · such that 

g E~} 
rv 

Iv = essinf {Iv : 8 E e ' 
w.r.t. 11 

e ,g 
and 

{ Iw : ~Jij "' Iw = essinf e E ® ' h w.r.t. TT • 
e ,h 

We will complete the proof by showing that (iv) holds with 
c B0 = v n w • 

It follows from (y) that 

vc c w a. e. Tf . 
82 E e h E ~ e1 ,g = e2 ,h ' 

Hence vc ;w a. e. Tr • 81 E e g E ~ e1,g 
, 

or a. e. TT • , 

Hence v.f c V a. e. TT so that 1i(V U W) = 1. = 



Let e E e and g E ~. Then V c V a.e. TI • 
8 ,g = 

13. 

Hence.) 

by the definition of v8 ,g,E(g\S'"1 0 ) is a version of E8 (g\~ 0 ) 

on V • Similarily E(h \9.10 ) is a version of E~h \ S1J 0 ) on W • 

(iv) follows now since B c V aJ:ld B0 c W a.e. tr. 
0 = 0 = 

0 

Remar·k 1. 

Assume that 51 0 satisfies one of (and consequently all) 

conditions (i)-(iv) • Suppose further that there is, for each 

e, regular conditional probabilities of S~ given S'"b 0 and of 

(given SZ, 0 • Then these regular conditional probabilities 

may be specified so that P8 ,x(B\~ 0 ) does not depend on e 

when x E B0 and B E ~while P8 (C !51 ) does not depend on ,x 0 

e when and C E (. 

Remark 2. 

Consider three arbitrary sub a algebras 1t. ,Af and MJ 
of Jt . Then 1{ and /lAf are conditionally independent givenAf 

if and only if U v )t[ *) and A)!' are conditionally independent 

given AJ • Thus the theorem may be applied with t5Jy =}.!, 
~ . 0 

s~ = u v IV and (9 = ).T. It follows in particular that conditional 

independence for all A E A0 imply conditional independence for 

all A E A • 

*) '1t v AJ is the smallest cr-algebra. containing 1A.. and Jtr . 
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Remark 3. 

Among the equivalence classes of Jl-sufficient a-algebras 

there is a smallest element. In other words there is a sub 

a-algebra 9, of Sb such that a sub a-algebra 

is cl -sufficient if and only if to each B ~ E 

a B 0 E ~0 so that P 8 ( B A B 0 ) = o ; 8 € ® • 

rv 

~ corresponds 

Consider first an arbitrary J... -sufficient Sb 0 • Let 

B0 E560 satisfy (iv). Then 

(1) E(f8 !Sb) = E(f8 1510 ) a.e. n on B0 

while 

[The last statement follows directly from conditional independence 

and ·che first statement follows from the following computations: 

Let BES"b,BcB. = 0 
Then J E(f8 !S'10 )dn = J n(B\S"b0 )f8drr 

= 

B B0 

(by (i,v)) J P8 (B\S1 0 )dP8 = P8 (B) 

Bo 

Define for each A E 11.0 and each bounded 

function h a ~ measura-ble function rA (h) by: 

rA. (h) 
(EA. (hI S'"b) 

= J, 

LE(h I St) 

when 

when 

E (fA I S1> ) > 0 

E(fA. \~) = 0 • 

1: raeasurable 

Then the sub a-a~gebra Sb of S~ which is induced by 

these functions is "minimum" J_ -sufficient for S?, w.r. -t cg • 
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[ By the. definition ) 51 and '-C are conditionally independent 

given 5b for each A. E !1.0 • Hence c5b is J..--sufficient for 

S1 w.r. t ~ • The same argument applies to any sub a alge-bra 

of 51 containing ~ • Let S"b0 be another i -sufficient 

a algebra. It follows then from (1) ru1d (2) that there is, for 

each (A.th) where ), E 11.0 and h is ·bounded and ~ measurable, 

a ~0 measurable function rA. (h) so that rA. (h) = 1\ (h) a. e. rr. 

~1us ~ is, essentially contained in S.~ 0 ]. The construction 
rv 

of Sb may be simplified by noting that we may restrict atten-

tion to smaller classes of function h • If, for example, ~ 

is a ·basis for ~ which is closed illLder finite intersections 

then if suffices to consider indicators of sets in ~ • 

As an example consider the case where ® = {1,2} and 

that the joint distribution of X and Y is given ·by the ta-ble 

in section 1. Put rr = i(.P1+P2 ) 1 

r 8 (x) = n(Y=2IX=x) or= r(x) as 

Then r 8 (x) = r(x) = f3 when x-;;; 

r(x) = n(Y=2IX=x) , 

P8 (X=x) > 0 or = 0 • 

2 while r 8 (3) = v8 • 

the remark above the algebra induced by r,r1 and r 2 is 

minimum L -sufficient. Thus X = max(X,2) is "minimum" 
0 

By 

~ -sufficient provided v1 ~ ~ or v2 1 ~ . If, in particular> 

~ 1 = o , ~2 = 1 , ~ 1 < 1 and ~2 < 1 then P8 (X=e) = o and 

n(X=e) > 0 ; 8=1,2 .. It follows that it is essential that 

r 8 is defined as above on the P8 singular set (X=e]. 
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Remark 4. 

It follows from theorem 11.3 in Bahadur [1] (See also 

Skibinsky [4]) that $&0 is prediction sufficient for 51 
[i.e. S1 0 is sufficient for S1 and, 5b and ~ are condi-

tionally independent given Sb 0 J if and only if Sb 0 is suf­

ficient for all probability measures on S'b of the form 

(P8 (BIC) : B ESb) where P8 (c) > 0 • This yield in particular 

a description of conditional independence in terms of sufficiency. 

Com-bining this with our theorem) the relationship between prediction 

sufficiency and J. -sufficiency may be described as follows: 

Let for each pair denote the 

set of probability measures on S1 of the 

form 

( P8 (BC) 
1 1 l Pe1 (c) 

+ P8 (BC) 
2 

+ Pe (c) 
2 

• , BE Q; where 

P8 (C) + P8 (c) > o • Then $6 0 is 
1 2 

prediction sufficient if 

and only if ~· 0 is sufficient for u k 8 ,.e , while 5h 0 
81''82 1· .2 

is L- sufficient if and only if .)1 0 is sufficient for each 

• , 
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