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Summary

It is shown by Takeuchi and Akahira; 1974, that conditio-
nal independence together with a condition of "partial sufficiency"
imply "prediction sufficiency" for loss functions not depending on
the unknown parameter.,. We shall here prove that these conditions
are necessary as well and thereby obtain a complete description,
in terms of conditional expectations, of "prediction sufficiency"
for loss functions not depending on the unknown parameter., It
turns out that these conditions may be replaced by a condition of

conditional independence for prior distributions.



Introduction. Consider the problem of taking a decision + on

the basis of our observations X when the loss is determined by
t and a non observable variable Y . Consider also a function
Xo of X . It will be assumed that the Joint distribution of

X and Y is determined by an unknown parameter o . We are also
assuming that the merrit, or the lack of it, of any procedure is

to be judged solely on the expected loss, i.e. risk, it incures.

In this context the problem of sufficiency may, somewhat
loosely, be phrased: When are we justified in claiming that no
information is lost by basing ourselves on XO rather than on
all of X ? Note that the situation where the loss is determined
by t and 6 may be regarded as the particular case where

Pr(¥=6|0) =1 for all 6 .

It should be stated at once that we are in this introduction
wilfully omitting several qualifications. A rigoruos treatment

will be given in the next section.

In order to clarify the scope of this paper, let us for a
moment consider the more general situation where the loss depend
on @ as well as on Tt and Y . Considering a non negative
function L of (8,t,Y) as a loss function,we may say that XO
is DLesufficient for X w.re.t. Y if the set of decision rules
based on ‘XO is essentially complete.

By theorem 1 in Takeuchi and Akahira [5] (See also theorem

10.2 in Bahadur [1]) , X, is IL-sufficient for X w.r.t. ¥
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provided:
C1: Xo is sufficient for X
02: X and Y are conditionally independent given

Xo for all 0 .

If these conditions are satisfied then, following Takeuchi
and Akahira [5 page1019] we shall say that X, is prediction
sufficient for X w.ret. Y . This corresponds to X 5 being

adequat for X w.r.t. Y in Skibinsky's [4 page 156 ]terminology.

That prediction sufficiency implies L-sufficiency for
any L may be seen directly by a randomization argument. A
statistician knowing Xé only may, by a random mechanisme'f
construct another variable g so that (i,Y) has the same distri-
bution as‘ (x,Y) . [Let U be rectangularily distributed on

[0,1] and independent of (X,Y) . Then there are, for each X

in the range of Xo s a function «o_ so that the distribution
.I‘_O

of o (U) is equal to the conditional distribution of X given
0

XO=X « It is easily checked that we may take X = Py (U)] .
0

0

In their paper [5], Teakeuchi and Akahira proved that
L-sufficiency for sufficiently many loss functions L implies
prediction sufficiency. If, however, we restrict attention to
loss functions which do not depend on 0 then they found that

c could be weakened to:

1
There is a set B so that the conditional distri-

- bution of X given X, does not depend on 8 when

01. Xo € B while the conditional distribution of Y given

X, does not depend on ¢ when X § B .



Roughly the argument in [5] runs as follows: ILet the loss
L be determined by Y and the decision taken,and let & be a
decision rule based on X . Choose & = Es |X, when X € B and
such that EL|X  is small when X 4 B and 5 is used. Then,
with obvious notations: E_(L|X ) = E;(L|X ) when X € B and
EN(L!XO) is not much larggr than Eé(L\XO) when X ¢ B . As
aﬁparticular case consider prediction with squared error loss of

some square integrable real valued function YO of X, If

g(X) is any predictor with finite risk then E (XO) given bys

Eg(X)|X, when X € B

EY, |X, when X, 4 B
is at least as good.

Consider now a fixed, finite and non trivial decision
space T . Denote by J; the class of loss functions I = L(Y,t)
which depends only on Y and the decision taken. If XO is

Imsufficient for X wer.t Y for all L € 4. then we shall say
that XO is 5;-sufficient for X werst. Y .

We shall see in the next section that the conditions C1
and 02 can't be reduced without violating J;-sufficiency.
Situations where we do have cl;-sufficiency may thus be classified
according to the set B appearing in condition 51 « Prediction
suffiéiency cprresponds to the case where B may be chosen
as the whole range of XO « If the conditional distribution of
Y given X depends on (X,e) only through X, » then 61 and
C, holds with B =@ . As an example of the intermediate situa-

2
tion consider random variaples X and Y whose joint distribution



is given by the following table of Pr(X =x, Y = ylo)

e {

~ i
N\

1 G )Uepdrg | (e (1-p)(=10) | ey (i=y,)
2 | (1-ay) BT, (1=qq B (1=7,) GgY,

Here a,y and 1T are functions from ©® to [0,1] while
g € [0,1] is a constant. Simple calculations show that
X, = mex(X,2) is cL—sufficient for X wer.t. Y } i.e. @1 and

C are satisfied. XO is, however, not prediction sufficient

2
for x weret Y unless T is constant on {e:ae< 1.

J;-sufficiency is closely related to conditional inde-
pendence for prior distributions. It will be shown that Xo is
4;-sufficient for X we.rete Y if and only if X and Y are
conditionally independent for all prior distributions with finite
support. Actually it suffices to consider the prior distributions
which are either degenerate or %piform two point distributions.
Utilizing this we prove the exié?ence of "minimum" é:- sufficient
statistics. }

As is usual in this type of discussion, the functional
form of the random variables is of mincr importance. ‘We shall
thereforeexpress our results in terms of algebras of events

rather than in terms of random variables.
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2e Sufficiency and conditional independence,

Our discussion will be carried out within the following
framework. There is given a family (X,J¥,Pe) t g €E® of pro-
bability spaces and three su’b ¢ algebras, %o’ gb and 6 s, . of

J* e« The set © is the parameter set of our model. It will
be assumed that 550 597 and that {Pe: p € @} is dominated.

Referring to the introduction, Sbo’ S5 and i? may be
interpreted as the ¢ algebras of events induced by, respectively,
X,» X and Y .

We will also assume that we are given a finite set T ,
with at least two elements, containing all possible decisions.

A decision rule & 1is a family 6t tt €T of non nega-
tive measurable variables such that T 6t =1 + The inter-
pretation of & is the usualj i.e. ét(;) is the probability
of taking decision t given that we have observed x .

A loss function is a non negative function on
@ X X X T which is é: measurable in x for fixed (p,t) in
® X T . Denote by J; the class of loss functions which does
not depend on 9 .

The risk function rb' of a decision rule & WereTe

a loss function L 1is given by |

1,6(9) =B %I‘e(”t)ét

8

where Ee denotes expectaticn we.r.t. P9 .
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The set of all prior distributions on ® with finite
supporf will be denoted by A « The sub set of A consisting
of the prior distributions which are either degenerate or uniform
two point distributions will be denoted by 'AO .

If M € A then Pk = g le P@ and Ek = % Xe E0 .

By Halmos and Savage [2] there is a non negative function
c on @ so that @, = {6 + c(p) > 0} is countable, gc(e) = 1 and
m= Zc(e)Pe dominates {Pe: 0 € ® » Put for each @9 € ® and
each A € A, fe= dPe/dﬂ and fl = dP)/dn . Expectation w.r.t.
m will be denoted by T .

We shall say that Séj is J;-sufficient for 55 WeTet

Zf if to each loss function L in J; and each deciéion rule

& corresponds a 550 measurable decision rule & such that:

ry(6) s (o) ; o €0 .

Criterions for Jésufficiency are collected in

Theorem
The following conditions are equivalent:
(i) S?b is J\-sufficient for S5 w.r.t. g
(ii) Sbo is pairwise J;-sufficient for 55 WeTaste Zf
(iii) D ana gf are conditionally independent given Sﬁo
for each PX: AN E N
(171)  Dana € are conditionally independent given SZ)O

for each Px: A € AO
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(iv) §b and éf are conditionalily independent given 550
for each 6 and there is a set _BO in 550

so that:

(2) To each bounded gb measurable function g corresponds
a 350 measuraple function sg so that

Ee(g\Sbo) =S, a.e on B, for each 8 € ®

(b) To each bounded Z; measurablie function h corresponds

a Sﬁ) measurable function th so that

c
E6011§QQ = t, a.e Ib on B, for each @ € O .

The implication (iv) => (i) is, essentially, proved in Takeuchi
and Akahira [5), while the implication (i) => (iii), and thus

(ii) => (ifi) , follows easily from theorem 2 in their paper.

Proof of the theorem.

The structure of the proof is
(i) = (ii) => (i1i) = (iv) = (i)

I A
I

| =mm== >(iii)
(i) = (ii): PFollows directly from the definition of

A,—sufficiency.

(i) => (iii): Comnsider a particular X € A and a particular
loss function L € doo If & is a decision rule then, by (i),
there is a §bo measurable decision rule o so that

Jr%dx < Jrédk.
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Thus Sbo is 4;—suffioient for S%) WeTleta z: when the under-

lying distribution is known to be Ph » In this case, however,
J; consists of all non negative loss functions. By theorem 2
in [57, Sﬁb is prediction sufficient for 59 w.r.t. & in this

situation. Thus Sb and ?Z are conditionally independent

given 550 under Pk‘

(ii) => (iTi) : This is just a particular case of the statement
"{ii) => (iii)": proved above.

(iv) = (i): This is essentially proved in theorem 3 in Takeuchi's
and Akahira's paper [5]. For the sake of completeness, however,

we include the arguﬁent heres Take L € J;, as loss function and
let & ©be a decision function. By (iv) there are for, for each
teT, Sbo measurable funcfions P and M(.,t) on, respectively,
B, and B_ so that Py = Ee(étlgb) 5 6€0 on B, while

M(e,t) = Bo(L(e,t) | ) 5 0 €0 onm B, . Define § by & =g,

on B, while &, =1 on Bg where M(*,T) = min M(*,t). Then:
t

r. () =E, I, L+E, I L = (by conditional independence)
) B 6,0 gC

6,678,

o]

E I, L+E I M >E I.L+EI M(,v) = (by conditional
~"B ~"B a] BC

9,07 xc =
6,5 "0 BO 0s9 "0 o

independence) E Jdg B+ E I L=r(e)« Itremains to prove:
8,06 ~0 0,0 BO )

(iT1) = (iv): We will in this part of the proof use the notation
i to denote the restriction of a measure B to QSO .

Suppose (iii) holds. We must prove the existence of a set

Bo' with the desired properties. The crucial result needed is:




(§) [E91 (g ‘ SSO)_EeO(g l%o)][E91 (h lgo)-Eeo(h ‘S“’)O)] =0

almost everywhere B. A P *)
SIS 91
when 90,91 € @ and g and h are bounded functions on X

which are, respectively, SB measurable and gf measurable.

As only two values, 8, and e1 , of 0 are involved we may

in the proof of (§) assume that @ = {0,1} , 6, =0,8, =1 and

0
T = %(PO+P1) « Then **)

~ 1 ~ ~J
E(f;| D) = aBlan ; i = 0,1 and iioE(fi|S3o) = a[® A B an .

It follows that we must show that (§) holds a.e. m on the set
1
[ A E(fi|§5o) > 0] + We restrict ourselves to this set for
i=0

the remaining part of the proof of "(iii) => (iv)" . The quali-
fication "a.e. " will be omitted.

Note first that
E;(s1S5,) = E(s£, |9, )/E(£,198,) 5 i =0,1 and

E(s|%,)

]

3 2(£, 1B )5, (519,)
1

for any bounded measurable s « It follows, using the Markov

property that

¥) If pu and v are finite measures on J¥  then WAV is

the largest measure < p and < v for the set wise ordering

of measures. See Neveu [3 page 107] .

¥%¥) If a and b are numbers then a A b = min(a,b) .
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B, (gh|Sh) = B (g S3)B; (0| D) 5 i = 0,1
and

B(gn| o) = Elg|9,)s(n|D,) .
The last equation may, using the first equation, be written:
! =
! a;B. (g]%,) = 0

where

a, = E(£; | o) [B; (1 10) -%;Ej(h\SEO)E(fj\SQO)]
J

%Ly =2 imply
i

(o]

a, = - a, = 3B(£, | B, )E(L, |H) (B, (8| D,) - B (2]33)) .

(§) follows now by inserting these expressions for a, ; i=0,1

We must now return to the general situation with a

dominated family {P :p € @} .

&)
We shall first show that

(@) [E, (2|, )-E (g|B)E, M]|B)-E, 1|D)]1=0 a.e.
64 0 6o 6 0 8o o

3~
AP . when g Ezﬁ, h € 9{

i=0 e:L
and 64 €® ; i=0,1,2,3 . We may - since
3 ~ 3
a A ?9./dn = A E(filﬁ%) - restrict attention to the set

i=0 ¥i i=0
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B = EiEOE(fi‘SSO) > 0] + We omit the qualification "a.e. T" in
the proof of (a) . By (§) we have:

E -E, (g E |5 )-E (m|SS]=0.
() 15, (61B)-5, (619102, (155,)-5, (a1}

Put:
B - “B’n[Ee1(glS%O)-Eeo(g\S”bo))(EGB(hISEO)—EGO(hlSBO)) # 0]
By = (B, (e195,)-, (6155,0)(5, (219)-5, (1]%)) # 0]

(a) will be proved if we can show that T(E ) = Tf('§1) =0 .
~ On %o we have -~ by (B)

By (B159) = By (2] 3;) and Eea(g\5%0> = By _(e]%,) -

On the set gon[EBB(g]Sbo) # EB1(g\S%O)] we will also have
EGB(hISBO) = Eeq(h|5$o) = Eeo(hleo)

which is impossible on %o . It follows that Eg (g\S&o) =

3
Ee1(g}s5o) = Eeo(g]gbo) which is also (T) impossible'on B, -
Hence W(ﬁo) =0 , Similarily ﬂ(§1) =0 . Thus (@) is proved.

Note next that (a) may be rewritten as
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(') [E(gfe11€bo)E(feo\Sbo)
- E(gfeO|SBO)E(fe1lﬁbo)][E(hfeg\SbO)E(fezlgbo)
- E(hfez]SSO)E(fGB\SbO)] =0 ; a.e. T.

Multiplying with c(e )c(p5) and swming over 6.,85 € 8, we

get:
() [E(ety \SBO)—E(g\SbO)E(fe11550)][E(hf921550)
- E(h|SBO)E(f62‘SbO)] =0 ; a.e. 7.

Put Ve,g

]
i

[E(efy |D,) = E(e| D )E(E, | 5,)]

Il
]

and Wy, = [E(at |SH,) E(h\gbo)E(fe\Sbo)].
Let V and W be sets in Sb_  such that

I

essinf {IV P 0 €0, g E(j} WeTete T

v 8,8

and

essinf {IW $! P EB®, N 5'36 WePete T .,
6,h

We will complete the proof by showing that (iv) holds with
c
BO=VnWQ
It follows from (y) that

[ . %
v§1,g SWp,n e T 9y €0, e
H C < "r Y o :ﬁ
ence V - W a.e. T ; 9, €0 , g€
61’g - 1
or wC g Ve1,g Qecs T 3 61 € B, g € éj

Hence W € V a.e. m 5o that T(VU W) = 1.
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Let 6 €0 and g 65. Then Ve gg V a.e. T . Hence,
,g S
by the definition of LA g,E(grb}o) is a version of B, (gl%o)
. H
on V . Similarily E(h\Sbo) is a versionof EéhlS?)o) on W .

(iv) Ffollows now since B,c V and Bg c W a.e. T

7

Remaxk 1.

Assume that SZ)O satisfies one of (and consequently all)
conditions (i)-(iv) . Suppose further that there is, for each
8y regular conditional probabilities of S?) given S’Z)O and of

Z,/ given 53 o ° Then these regular conditional probabilities
may be specified so that PG’X(BlgO) does not depend on e-
when x € B, and B € Qwhnite PG,X(C\%O) does not depend on
6 when XGBg and Ce’f.

Remaxrk 2.

Consider three arbitrary sub o algebras U A ana W7
ofl/‘} . Then I and /N are conditionally independent given A/
*
if and only if ?/{. Ar ) and Mf are conditionally independent

given /U Thus the theorem may be applied with 53 Af
93 W Afa.nd g /U It follows in particular that conditional

independence for all \ € Ay imply conditional independence for

all M € A .

*) /ZL VA] is the smallest o-algebra containing Z{a.nd AF
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Remark 3

Among the equivalence classes of J\-sufficient o—~algebras
there is a smallest element. In other words there is a sub
c-algebra ¢, of Gb such that a sub o-algebra @ of S}
is i-sufficient if and only if to each B € gb corresponds

e

a By €5h, so that BP,(B AB))=0j0c¢

Consider first an arbitrary oL -sufficient S?)O e« Let
B, €3 satisfy (iv). Then
(1) B(£,15%)

E(felg?;.o) a.e. T on B

while

(2) B (n|h) = B (n|%) a.e. P forall ieh.

[The last statement follows directly from conditional independence

and the first statement follows from the following computations:

Let B e@a » B B,. Then J E(fe |§Z:,O)dn . j Tr(BlS?)O)fedﬁ

B Bo

= (oy (1,7) [ B(BI%h,)az, = B, (B) = | m(£,|D)am .]
B B

(0]

Define for each A\ € AO and each bounded g nleasurable

function h a % measurable function r)\(h) by

(E)\(hlﬂ) when E(L)\]Sl)) >0
r)\(h) = 4 _
LE(h\SB) vhen E(f, |%) =0 .

Then the sub o-algebra @ of $5 which is induced by

these functions is "minimum" ci_—sufficient for SZ; Weleb g .
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[ By the definition | Y ana ‘6 are conditionally independent

given §; for each X € A, « Hence §5 is J_-sufficient for
SB WeTet g' « The same argument applies to any sub ¢ algebra

or S5 containing b . Iet Sb.  be another & -sufficient

o algebra. It follows then from (1) and (2) that there is, for
each (\,h) where X € A, and h is bounded and g: measurable,
a S}O measurable function ;x(h) so that r,(h) = ;X(h) Qe€e
Thus §5 is, essentially contained in Sbo]‘ The construction
of §L may be simplified by noting that we may restrict atten-
tion to smaller classes of function h . If, for example, %3

is a basis for 85 which is closed under finite intersections

then if suffices to consider indicators of sets in %f.

As an example consider the case where @ = {1,2} and
that the joint distribution of X and Y 1is given by the table
in section 1. Put 1 = %(P1+P2) , r(x) = m(¥=2|x=x) ,
re(x) = w(Y¥=2|X=x) or=r1r(x) as PG(X=X) >0 or =0,

Then re(x) =r(x) =8 when x < 2 while re(3) = vy . By
the remark above the algebra induced by T,T, and T, is

minimum & -sufficients. Thus X, = max(X,2) is "minimum®

~; -sufficient provided \z + B or Yo $ 8 . If, in particular,
T,=0,T,=1,0a,<1 and a, <1 then Pe(x=e) =0 and
m(X=8) >0 ; 8=1,2 . It follows that it is essential that

r, 1is defined as above on the P, singular set [X=0].
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Remark 4.,
It follows from ‘theorem 11.3 in Bahadur [1] (See also
Skibinsky [4]) that Sbo is prediction sufficient for 53
[isces §§0 is sufficient for S35 and, S) and % are condi-
tionally independent given $ ] if and omly if $b_ is suf-
ficient for all probability measures on S& of the form
(B,(Blc) : B €S3)  where P,(C) >0 . This yield in particular
a description of conditional independence in terms of sufficiency.
Combining this with our theorem)the relationship between prediction
sufficiency and J;—sufficiency may be described as follows:
Let.for each pair (91,92) €O X0, ke1,92 denote the
set of probability measures on Sb of the

P (BC) + P. (BC)
8y 8,
B e $ where

Pe1(c) + PGZ(C)

‘e

(
!
form i

is prediction sufficient if

B, (¢) + B, (C) >0 . Then ggo
2

9
and only if §b = is sufficient for U k , while 3 |

8,6

is J;r sufficient if and only if S}(} is sufficient for each

ke1,92 ; (91,92) EO X0 .
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