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We consider IJ linear regressions 

X .. = TB .. + U .. 
~1J ~1J ~1J 

j =1 ' ••• 'J , 

where x .. 
~lJ 

is the vecto:J.., of o-bservations of the dependent variable, 

B .. 
~1J 

the vector of regression coefficients and 

vector of disturbru1ces in the regression labelled 

u .. 
""'lJ 
(i,j) • 

the 

The 

design matrix X is common for all regressions, the situation 

being a typical experimental one. 

form 

B .. = ~ + C. + D. . , 
~1J ~ ""'l ~lJ 

The vectors ;§ .. 1J are of the 

where the C.'s are i.i.d. with zero mean and independent of the 
r.J1 

D .. 's which are also i.i.d. with zero mean and ~ = EB ..• 
~1J N ~1J 

Typically the subscript i represents individuals and subscript 

j represents repetitions of the experiment, and the Qi's and 

~ij~s represent inter- and intraindividual variations of the 

regression coefficients. Estimation ru1d test procedures are 

derived under normality assumptions. Asymptotic minimum variance 

Fisherconsistent estimates are found for the parameters. For 

testing hypotheses concerning ~ a simult8lleous test procedure 

ru1alogous to Scheffe's S-method is employed. Hypotheses concerning 

the covariance matrices are tested under various assumptions 

a·bout the covariance structure. The derived tests are shown to 

be UN:P unbiased when B .. 
("JlJ 

is one-dimensional. 
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In the following 1-1 denotes Le.besgue measure on the 

Borel class of sets in a euclidean space, the dimension of which 

will ·be clear from the context. OthervJise greek letters denote 

su·bsets, points or components of points ina parameter space 0 • 

As a rule random variables are denoted by capital latin 

letters. However, an estimator of a parameter o. , say, is 

denoted by a.* 
1\ 

or a. • 

liJ:atrices are underlined with a tilde, and their order 

may ·be indicated by a top-script. Exam.ple: Q,PxQ is a P >< Q-

matrix. If Q=1 i.e. Q is a column vector, we may write Gp 
rv 

GPx1 1.. Gp instead of • IIQII = (G'G) 2 is the euclidean norm of • ....., rv rv ....., 

We write Gpq ' 
or occasionally (Q)pq ' 

for the element in the 

p '·th row and q' th colunm of Q • If G is a vector, (P=1 or Q=1), 

we nrunber its elements by a single subscript. If the matrix or 

vector itself is numbered by a suoscript, we place the element 

subscript after the matrix subscript. Example: The h'th element 

of the column vector B~. 
rvlJ 

or (B .. )h • 
r-->lJ 

is denoted I 
rv 

is 

the identity matrix, and 0 is the null matrix. 

We introduce special symbols for some distri·bution laws: 

NpC,~,' _k) is the P-variate mul tinormal distribution with mean 

vector s and covariance matrix L: , 
....., rv 

2 Xm is the chi-square 

distribution with m degrees of freedom, F m,n is the F-distri-

bution with m and n degrees of freedom and TID is the 

t-distri·bution with Ll degrees of freedom. vle do not distinguish 

:notationally between a law and its distribution function. The 

(lower) e- points in 2 
Xm' Fm n 

' 
and are denoted by 



- 3 -

2 
'X.e ;m ' f e ;m and te;m respectively. That X is·distributed 

according to the law · F is written X~ F • 

A dot in the place of a subscript denotes averaging with 

respect to that subscript. 

Examples: 
N 

x. = N-1 r x. , x .• = 
_ 1 M 1 N M 

M r x .. and x .• = (MN)- r r x .. · . 
"' . 1rvl rvl l= j=1rvlJ rv i=1j=1~lJ 

Uniformly most powerful is w.ci tten UIYJJ?. 

1 A. In standard regression theory the regression 

coefficients are unknovvn, fixed parameters. A random coefficient 

regression (RCR) model was first studied by Wald (1947). 

Swaii1Y ( 1971) gives a survey of the vwrk done so far on RCR models. 

In this paper we conside:c the situation where the vector of 

regression coefficients is of the form 

( 1 .1 ) 

where and have zero expectations, are uncorrelated 

and typically represent inter- and intraindividual variations 

respectively. We give tv10 examples of this situation. 

1 B. Fluor washing. As a caries-preventing measure 

childrens teeth are washed with dissolui:ed natriumfluorid. The 

concentration CN of natriurnfluorid in the plaque, (i.e. the coating 

on the teeth), after washi.LJ.g is a measure of the effect of the 

washing. CN is assumed to depend proportionally on the c01·1Cen-

tration of natriumfluorid in the concentration, t • 
' 

CN = Bt • 

The coefficient B depends on nutritional factors~ oral hygiene 

and strains of bacteria i:n the mouth, which vary between persons 
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and also from day to day for each person. Consider a person who 

is chosen at random from the population on a random day. By the 

line of argument in Scheffe (1959), pp. 221-223 and pp. 238-242, 

his B-value is composed of ~ 1 C and D as in (1.1) • ~ is 

the average of all B-values taken over all persons and days. 

~ + C is the individual mea~ B-value of the chosen person, and 

his mean deviation C from the total mean thus represents inter­

Cor 'between-) individual variations. On the selected day his 

B-val ue differs from the individual 111ean by a random term D , 

which represents intra- (or within-) individual variations. 

CN cannot be observed directly, but is measured by a chemical 

method with a random error U • The measured ON-value corres-

ponding to concentration t is then 

X = Bt + U • 

Knowledge of the distri"bution of B is i.L"lportant in connection with 

large scale production and sale o:t' the preparation. For the 

purpose of drawing inference concerning 13 and the distributions 

of C and D the X-values corresponding to the concentrations 

t 1 , ••• ,tK are measured on I persons on J different days. 

The resulting o·bservations are 

X. 'k = (~+C.+D .. )t-~ +U .. 1 , lJ - l l.J -K lJ:C 

i=1, ••• ,I ; j=1, ••• ,J ; 

k=1, ••• , K • 

C , C. , D. . and 
' l. lJ u. "l l. J c 

are uno-bserva-ble. C. is the C-value 
l. 

( 1. 2) 

of the i''th person, D .. 
l.J 

his D-value on the j'th day and u. "k l.J 

the measurement error in his k'th washli1g on that day. 
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1 C. Variations in absorption and excretion of drugs. 

When a medical preparation is taken non-intravenously the active 

drug is absorbed and spread in the body. For many drugs the 

plasma concentration (i.e. the concentration of active drug in 

the blood) at time t after ingestion of the dose, C(t) , is a 

reliable measure of the effect of tho -dose at time t • It may 

·oe sho·wn theoretically, (see e.g. ·wagner, (1961 )), that for certain 

simple preparations C(t) is determined ·by the relation 

C(t) dR = V(R-E) {exp(-Et) - exp(-Rt)l , t > 0 

where d is the dose of active drug, V is the "distribution 

voltl.IDe" in the body which is accessible for the drug , R is the 

rate of a·bsorpti.on and E is the rate of excretion of the drug. 

By the mean value theorem for derivatives t.rl.e expression on the right 

~ide is equal to (dRtv-1 )exp{B(t)l, where -B(t) is a number 

bet·vreen Et and Rt for each t • We consider a preparation 

for which E and R are not too much different. Then B(t) 

is approximately linear, 

we get (approximately) 

B(t) ~ B2t , and putting B = ln(RV'1 ) 
1 

( 1. 3) 

At time t a blood sample is taken from the patient. The 

measured value of the plasma concentration is 

C*(t) = C(t) + U*(t) , 

where the random error U*(t) is due to the fact that the drug 

is not ideally distri-buted in the vol1.m1e V • 
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It seems reasonable to assm11e that U*( t) is of the forrn 

U*(t) :::: C(t)U , where U has expectation zero and variance 
2 a , say. Then we have 

C*(t) = C(t)(1+U) • 

We now substitute (1.3) in (1.4), divide by dt and truce 

logarithms on both sides and get (approximately) 

( 1. 5) 

having assumed that a<< 1 so that ln(1+U) ~ U with large 

probability. Pharrnaceutists speal;: of R , E and V as 

"pharrnacokinetic constants". However, Frislid et.al. (1973) 

and many others have pointed at the possi.ble existence of great 

inter- and intraindividual variations in the ability to absor-b 

and excrete drugs. Thus R , E and V , and hence also B1 

and B2 , should rather -be considered as random variables. We now 

proceed as in example 1 Band decompose the vector )3 = (B1 ,B2 )' 

as in (1.1) • Before mass production and marketing of a pre­

paration its physiological availa"bili·i;y is investigated in clinical 

trials. The following observational plan is standard. Equal 

closes of the preparation are given to I persons and blood 

SBJ.ilples are taken from each person at times t 1 , t 2 , ••• , tK 

after ingestion. This experiment is performed with the same I 

persons on J different days. By (1.5) the resulting observations 

can be written in the form 



- 7 -

i.•rhere 

(
lB. '1 \ 

B .. = lJ } = 
rvJ_J 13 I 

ij2 / 
+ 

in accordance with (1.1). On the basis of these observations we 

want to draw inference concerning p ru~d the distributions of 
;-..., 

C and D • "' ~ 

2.!..-. The model. =--==========-= 
2 A. Nested (or hierarchical) classification. Our 

observations are of the form 

X~1 = _K)(H -Hx .. 1 + uKx .. 1 . 1 I . 1 J "-'lJ ~-- ~ ~lJ ' J.= , ••• , ; J= , ••• , • (2 .1) 

The "design matrixn is known and has full rank H ( <K) • The 

vector of regression coefficients B .. 
rvJ_J 

is an unobservable random 

vector of the form 

where _@,H is constant , Si ""' NH(~,' k.c) and Dij "" NH(£, kD) • 

The vector of disturbances U.. is distributed according to 
'"'-'lJ 

(2.2) 

NK(Q,,cr 2~) • All C. , D. . and U. . are unobservable, and they 
·- ,_ Nl rvlJ rvlJ 

are uncorrelated and hence independent. 
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2 B. One-wal classification. If J=1 in the model 

above , we can drop the subscript j and put x.1 r-~]_ 
= x. 

rvl 

B.1 = B. and so forth. We introduce rv]. rvl 

~B = ~C + kD • 

Then our o·bservations are of the form 

X. = TB. + U. 1 
rv]_ r-.f'J]. rv]. i=1, ••• , I 

and u. ""NTr{o,a2I) • This model has ·been 
r..;]. .t\. ,....., rv 

studied by Rao (1965) • 

2 c. In the s:pec;j.a.l case when B is scalar (H=1) 

and T = (1, 1, ••• , 1)' , the models 2 A and 2 B reduce to the 

welllmown models II with nested and one-way classification, which 

are treated by Lehmann (1959), pp. 286-293. 

3 A. Let the colu.ro.s of EKx(K-H) form an orthonormal 

·basis for the 

spam1ed by the 

transform x .. 
rvlJ 

"H 
;§ij 

orthocomplement 

colums of ~H ,....., 

to 

VK-H , =EX .. 
"" rvlJ • 

r-.J 

of the H-dimens ional linear 

• For each i and j we 

~ .. 
rvlJ 

is the ordinary least squares estimator of B .. • 
rvJ.J 

space 

(3 .1) 
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from (2.1) in these expressions and get 

V. . = E' ( TB. . +U . . ) = E 'U . . • 
""l.J "" """"l.J ""~J "" ""l.J 

su·bsti tuting 

(3.2) 

and B .. 
I"Jl.J 

from (2.2) in (3.2) , we arrive at the following form 

of our transformed observations. 

~~. = R + C . + D. . + W. . , t"J]_J ~ ~"J]_ I"Jl.J I"Jl.J 

' i=1, ••• ,r; j=1, ••• ,J • 

~ , C. , D .. 
"" I"Jl I"Jl.J 

are as explained in su-bsection 2 A. Straight-

forward calculations show that W .. rV NL1(o,cr2M __ ) , with 
rvl.J .[ N rv-w 

and All C. , D .. , 11 . . 1 W.. . are i:nd:ep:el'lclen t 
I"Jl. ""lJ ~l.J ""l.J 

and unobservable. 

3 B. Now let be an orthogonal matrix 

:t 

with the first column eg_ual to J-2- ( 1,. .. , 1)' , and for each 

i transform the A r I B .. s to Y .. s given by 
""l. J ""l. J 
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The h'th component in 

J 
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/\ A 
= (B. 1 , ••• ,B.J)G rvl "-'1 ,...... 

Y .. rvlJ is 

J J 
Y. "h = l: ~. hG . lJ p=1 1p PJ 

= 1: (~h+C.h)G . + l: (D. h + W. h)G . 
p=1 l PJ p=1 lP lp PJ 

1 J J 
= J~(~h+C.h) l: G 1~ . + l: (D. h + W. h)G . 

l p=1 P PJ p=1 1p lp PJ 

1 J 
= 0 J"1 J~(~h+C11.h) + l: (D. h + W. h)G . p=1 lp lp PJ 

(oj 1 is the Kroenecker delta). Thus we get 

(3.4) 

(Y. 1 , ••• ,Y.J) 
""'l ·rvl 

..l. 
= (J 2 (A + c.),o, ••• ,o) + (Y~1 , •• -,Y~J) , 

~ rvl rv rv rvl rvl 

where (Y~1 , ••• ,Y~J) = (D. 1+vl. 1 , ••• ,D.J+W.J)G is distributed rvl rvl rvl rvl r-.Jl rvl "-' 

as (D. 1+W. 1 , ••• ,D.J+\v.J). (For a proof of the last assertion, rvl rvl rvl ,......1 

see Anderson (1958), pp. 51-52). Our observations are now on 

the form 

Y.1 rv 

rvl 

Y .. "' rvlJ 

v. "k f"oJ lJ 

where 

i 
NH(J £'Ez) 

NH(£,~y) 

N1(£,cr2) 

i=1, ••• , I , 

i=1, ••• ,I ; j=2, ••• ,J 

i=1 , ••• , I ; j -=1 , ••• , J ; 

k=1 , • •. ,K-H, 

All variables in (3.5) are independent. 

(3. 5) 

(3.6) 
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3 c. Let H~<I be an orthogonal matrix with the first 
rV 

column equal to 

Z. 1 s ·by 
.-vl 

.l. 
I- 2 (1, ••• ,1) 1 , and transform the Y. 1's to 

"-'l 

By the line of argument in last subsection we find that 

where the Z~'s are independent and identically distributed 
"-'l 

Thus we have arrived at the 

following form of our observations. 

Y .. '"'"' NH(O, L:y) 
.-vlJ - ,.... '"'"' 

i=2, ••• , I, 

i=1 , ••• , I ; j =2, ••• , J , 

i=1, ••• ,I; j=1, ••• ,J; 
k= 1, ••• ,K-H. 

All these variables are independent. 

The joint density of the transformed o·bservations in (3. 7) is 

given by 

dPw = (2n)-!IH\~I-I/2exp[-!l~1-(IJ)i~} 'Ez1{~1-(IJ)t~l 
rv 

1 I '"-1 J -2 L: z.L.r.z z. 
• l)rVli"JLf l 
l=c. 

(2n)-iiJ(K-H)cr-IJ(K-H)exr:{-(2cr2)-1 ~ ~ K~Hv?.:kldlJ. • 
. 1 . 1 k=1 lJ l= J= 

(3.8) 
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The components of the parameter w aTe 
rv 

13h ' h=1, ••• 1 H , 

<kz)hhJ , 1 < h < h' < H , 

C~y)hh, , 1 < h < h' < H , 

2 
cr • 

The domain of variation of w is the parameter space 0 
"' 

given by 

13h E (- ro,ro) , h=1, ••. ,H , 

~z-~y(=J~0 ) and ky- cr 2tiw<=~n) are positive 

definite, 

0"2 > 0 • 

(3.9) 

u.J (and 0) is of dimension H +1 +iH(H+1) + ~H(H+1) = (H+1 ) 2 • 
"' 

3 D. One-way classification. In subsection 2 B we 

regarded one-way classification as a special case of nested clas-

sification. Putting J=1 we get the following version of the 

canonical form (3.5). 

(3.11) 
i=1, ••• ,I; k=1, ••• ,K-H. 

Corresponding to the canonical form (3.7) we now get 

z. 
""'~ 

(3.12) 

i=1, ••• ,I, k=1, ••• ,K-H • 

.All variables in (3.11) are independent, and so are the variables 

in (3.12) • 
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4 A. The likelihood function of the observations (3.7) 

is given ·by (3.8) and is seen to be of the form 

(4 .. 1) 

with 

1\ 
The maximum likelihood estimator ~ is the point in 0 which 

1\ 
maximizes L • w may be difficult to find because 0 is re­

stricted by the positive definiteness of ~C and ~D .. We easily 

obtain a modified maximmn likelihood estimator by maximizing L 

in the wider region 0 ' 

defined by 

~h E (- 00-P) , h=1 , ••• , H l 

fz and ~y are positive definite, (4.2) 

2 a > 0 • 

0 co 1 since the sum of any two positive de.finite matrices 

is j_ tself positive definite. 0' is the direct product of the 

(£, fz )-space, the fy-space and the a 2-space, and hence v.re find 

the maximum of L as w varies in 0' ·by maximizing each of the , . ._, 

factors L1 ,L2 and L3 in (4.1) separately with respect to the 

parameter occuring in it. Let w* be the point in O' defined 
rv 

by 



---- --- --------------- --------

A = B •• 
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I -1 ~ z. z '· -1 I (" A ) (6. 1\ ) ' ~* = ~ = JI ~ B .• -B •• ~ .• -B •• evL, • 2,....l.f"...l. • 1 rvl. rv ""1. ,...., 1.= 1.= 

L* = {I(J-1)}-1 f ~ Y .. Y!. 
~r i=1 j=2 rvl.Jrvl.J 

= { I ( J -1 ) } - 1 ~ ~ & . . -~ .. ) (~. . -~ .• )' , 
i=1 j=1 "-'l.J 1. r-vl.J ~1. 

2* 1 I J K-H I J 2 
cr -={IJ(K-H)}- L L: L: i?-.k ={IJ(K-H)}""1L: L: S .. , 

i=1 j=1 k=1 l.J i=1 j=1 l.J 

2 
where Sij is the sum of squared residuals in the regression 

labelled (i,j) , i.e. 

2 K H A 2 
S1. J. = L: (X .. k- L t 1r..,B .. h) • 

k=1 l.J ._ h=1 U.L l.J 

' 
The relations stated in (4.3) between ~riginal variables and 

canonical variables will b~ proved in subsection 4 B • 

(4.4) 

From theorem (3.2.1) ru1d its proof in Anderson (1958), we obtain 

~gmm§~~~=~~ (Almost surely) the point w* defined by (4.3) ...... 

maximizes L in O' and is the unique solution of the first 

order equations of a local extremum, i.e. 

blnL/bwp\w=w* = 0 , 
"" "" 

p=1, ••• ,(H+1)2 • 

,~e* :possesses the following optimuu1 property. 

~~~~~~=~1~~~ (a) ~* given by (4.3) is a Fisherconsistent 

estimator of ~ , (see Sverdrup (1965)) • For each 

p=1, ••• ,(H+1)2 , w* has uniformly minimum asymptotic variance p 

among all Fisherconsistent esti~ators of wp as 
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(b) w* is asymptotic maximum likelihood estimator in the 

sense that lim P ( 
r~ co~ 

maximizes L in o) = 1 fo:r all 

w E 0 • 
rV 

Proof. The proof of (a) goes in several steps. We first prove 

that 

0 and 0 1 are open sets. 

To prove that O' is open we need only prove that the space 

M of symmetric and positive definite nXn-matrices is open, 

since then E,y-space and ~z-space are open. A nXn-matrix 

~ = {aijl , which is symmetric (i.e. aij =aji), may be regarded 

as the point (a11 , a 21 , a22 , a 31 , ••• ,ann) in the euclidean 

in(n+1)-space Assu.rne A E M • That A is positive definite 

means that x'Ax > 0 
rv ~ 

for all xn><i =f OnXi , or equivalently that 
f"V rv 

x'Ax > 0 
rv r-.rv 

for all ~ E S0 = {:_s 11!~11=1}, which is seen by replacing 

~ with Since x'Ax 
rv rvf"V 

is continuous regarded as a 

function of ~ and S0 is compact, there is a ;:l:S0 E S0 such 

that ~~!::Jso = inf fS '!;$ • 
X E s 
f"V 0 

~~~0 > 0 since For any 

CD-><n d E S 
rV an any ~ o we have x'Cx = v'~v + x'(C-A)x 

,.....; f'.T'V N ~ rw r-.J r..J rv 

> X 1 Ax. + L; L; ( C .. -a .. )X· X · • - rvo~~o i j lJ lJ l J 
that the distance between C 

Let 

and A 

c ·be symmetric and assume 

in the euclidean in(n+1) 

space is < e • Then !cij-aij I < e for all i and j , and 

noting that ''l,llen X E s \ ,-...., 0 

By choosing e < (2n2 )-1x'.A:x we rvO.--.rvO 

hence Q E M which proves that M 

O' is open. Consider the mapping 

into (~ ,J~c '~D ' 
o-2) • Let r ... 

we get x'Cx rv f'-T".J 

2 > x'Ax - n e • "'0,..__,..._,0 

get X 1 C X > ..l.x 1 .A_.v;. > 0 
rv rv "' = 2 rv01'V"V0 ' 

and 

is open. We conclude that 

f which takes (~ t~ 'J;y' a2) 

be the su-bset of the range 
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of f defined by the conditions in (3.10). 0 is the inverse 

image of r under f • By the above reasoning we know that r 
is open, and the continuity of f then implies that 0 is open. 

(Note that in lemma (4.5) it was tacitly assumed that O' is open). 

We now return to the form (3.5) of our observations. The 

simultaneous density of the observations corresponding to a fixed 

i is 

= 
J 

1,. I -1 
2 I: y. ·Ly ;l·. 

j=2f'.ll.Jrv l.J 

2 1 J K-H 2 
-(2a )- 2:: 2:: v .. 1J, 

j=1 k=1 lJ '-

where c(w) is independent of the observations. This density can 
f',J 

-be written on Darmois-Koopman form (Sverdrup ( 1965), p. 206) as 

(H+1) 2 d~ 
exp{'l' (w) + l:; T (w) U._ (x)}~(x) 

o ,....... p=i P ~ J.P a~ 
(4. 7) 

= --1cr.:1 - r) 
~ r-.J 11 ui,H+1 

2 = yi11, ••• ,etc. 
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We see that 

the functions rp(~) have continuous second order 

derivatives. (4.8) 

Since the functions r (w) p ('.J 

are bicrontinuous and O' is open, 

we also conclude that 

the region of convergence of fH+1) 2 
Sexp L: rp U ·p (x)}iP (x) 

1 ·~ 0 p= 

contains all the points of the range of (4. 9) 

{r1 (w), ••• ,r. ·2 (w)} as inner points • 
.-v (H+1 ) .-v 

The results (4.8) and {4.9) are exactly the assumptions (i) and 

(ii) in Sverdrup (1965), appendix B • Assumption (iii) there 

follo:ws from lemma (4.5) and the fact that plim w* = w , which 
I -7 oo rv ,...., 

is easy to check. Point (a) of theorem (4.6) follows from the 

conclusion in Sverdrup (1965), p. 211. 

Point (b) is now easy to prove. If w* E 0 , then w* 
r...J ,...., 

maximizes L in 0 since it also maximizes L in the larger 

region 0' • Thus v;e need only prove that liffi P (w* E o) = 1 • 
I-7 co'~ ,...., 

Since 0 is open, there is an e > 0 such that 

Lw' I II~' -~II < e} c o , and hence 

By the Fisherconsistency of w* r...J , 

P (w* E 0) :;;:: 
~rv -

P,...CII w*-wll < E:) • w ,..... ,....., ,...., 

the right side and hence also 

the left side of this inequality tend to 1 as I -7 co • This 

completes the proof of theorem (4.6) • 
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4 B. The estimator w* 
("V 

expressed by the original obser-

vations. There exists a matrix · FHxH such that the colunms of 

T(T 1 T)-1F form an orthonormal ·basis for the space spanned by 
rvr-..Jrv rv 

the columns of T • By (3.1) and the orthogonality of the 

matrix 

where E is defined in subsection 3 A, we get 
"' 

1\ 

IIX- -II = ll ("V rvl.J II 2 ( F
1
B. ·1 2 1\ 1\ 

rvl.J \ V .. 
= B! . FF I B. . + v! . v. . • 

r-vl.Jr-vrv r-vl.J rvl.J"'l.J 
r-vl.J 

Again clue to orthonormality we have 

= F 1 (T 1 T)-1F , or equivalently that T1 T = FF 1 • Hence 
rv rvrv rv ~r-...J ~ 

~ 1 • . FF 1 ~ . • = ~ ! . T 1 T~ . . • 
r-v l.J~ rvl.J "'l.Jrv ~l.J 

We also have 

~! .T' T~ .. 
"'l.Jrv ~l.J 

=X! .T(T'T)-1 (T 1 T)~ .. =X!-~· .• 
r-vl.J"' r-v "' ~ r-v r-vl.J "'l.J rvl.J 

Combining (4.10), (4.11) and (4.12) we get 

I\ 1\ 1\ 
V! . V. . = X! . X. . - B ! . FF 1 B . . = X! . X. . - 2~' . . TB . . 
rvl.Jrvl.J rvl.Jrvl.J r-vl.J~ rvl.J "'lJ("Vl.J l.J~l.J 

1\ 1\ 
+(TB .. ) '(TB .. ) 

1"-t--J l. J ,-vrvl. J 

1\ 2 
= ll!ij - ~ij II 1 

which by (4.4) may be written 

(4.10) 

(4 .11 ) 

(4.12) 
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k=1 lJK 
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(4.13) 

The first column of G in subsection 3 B is -i I J ( 1 , ••• , 1 ) , and 
"" 

by (3.4) we have 

2./\ 
y "1 = J2 B. • • 
"-'l '""'l 

By lemma 3.3.1 on p. 52 in Anderson (1958) we have 

J 
I: y .. Y! . = 

j =1""lJ""lJ 

Com.bining (4.14) and (4.15) we get 

JA A ,fj A 
= 2:: (B .. -B .• )LB .. -B .• )• • 

j=1 ""lJ ""l ""lJ f"Vl 

The first column of H in subsection 3 Cis I-!(1, ••• ,1) 

a.11d hence 

• 

By repeating the arguments leading to (4.16) we also find 

I 
2: Z.Z! 

. z""l"-'l l= 

I /\ A A /\ 
= J 2: (B .• -B •• ) (B .• -B •• ) ' • 

• 1 "-'l rv "'l rv l= 

(4.14) 

(4.15) 

(4 .16) 

(4.17) 

(4.18) 

(4.13), (4.16), (4.17) and (4.18) establishes the relations given 

in (4. 3) between canonical and original variables. 
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The modified maximum likelihood estimators ~~ and z~ 

are now determined by the relation (3.6). 

4 C • By application of theorem 3.3.2 on p. 53 in 

Anderson (1958) we find that E~~ = ~Y and Ef*z = (I-1)I-1fz. 
2 2 2 We also have E~* = ~ and Ecr * = a • Hence ~* ,a * and ~~ 

are illlbiased estimators. An unbiased estimator of Ec is 

• It follows from elementary limit theorems 

that even if we drop the normality assumptions, ,!:!!,* is a consistent 

estimator in the sense that plim(l3* , ~~) = ()2, , k,z) as I -? oo , 

plim k,~ = ~y as I(J-1) ~ oo and plim cr2* = a 2 as IJ(K-H) -7 co • 

In the one-way classification situation J=1 and 2::* is not NY 
1\ 1\ 

defined. ~1 ' 
with J=1 and B. 

rvl• = B. 
rvl 

is now the estimator 

of 2 and the estimators of ,@, and 0"2 remain illlchanged. E:a+ a ~w ' 
( 1965) 

1\ 
Rao studied the case J=1 and found that B. is a BLU 

"'l 

estimator of Q based on X. 
J<J rvl 

and a BLU predictor of B. • 
"'l 

5 A. The observations are now 

Xl. J'k = ((3+C. +D .. )t1 + U .. 1 , 
l lJ c lJ c 

i=1p •• ,I; j=1, ••• ~J; (5.1) 
k=1, ••• ,K , 

where l3 is a constant, c. 
l rv ~ ( 0, cr~) ' 

D .. 
lJ 

"'N1 (0,cr~) a:n.d 

uijk rv N1 (o,cr2 ) • All ci ' D .. 
lJ 

and uijk are independent. 

The design matrix is T = ( t1' ••• tl) ' 
and the matrix ~w rv 

in (3.3) reduces to the scalar 
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The canonical form (3.7) "becomes 

z1 "' 
i N1 { ( IJ) !3, 

z. N1 (o, 2 
"' cr z) 1 

Yij"' N1 (0, cri) 

vijk"'N1(o, a2) 

, 

where, analogous to (3.6), 

2 2 a2m cry = crD + 

(3.8) reduces to 

a~l ' /.J 

i==2, ••• ,I 

i==1, ••• ,I i j=2, ••• ,J, 

i=1 , ••• , I ; j =1 , ••• , J ; 
k==1, ••• ,K-1 • 

and 

dP~e = A'exp( -(2u~l- 1 [!z 1 -(u)k~l 2\tziJ 

' 

I J 2 I J K-1 2 
-(2cry2 )-1 L: L: y .. - (2a2 )-1L: L: L: v .. k)clf-1 

i=1 j=2 lJ i=1 j=1 k=1 lJ 

where A' is an analytic function of 

parameter space is 

2 2 ( 2) a y -a m =cr D > 0 

0 : 

and 

- co < ~ .< cP , a~ -

2 a > 0 • 

(5.2) 

(5. 3) 

(5. 4) 

The 

5 B. We want to test hypotheses concerning the parameters 

~ , iL , h and cr2 , where 

~ = 2( 2 + 2m)-1 " oc aD a 
2; 2 and A= aD a • (5. 5) 

In exarnpl e 1 B 1t expresses interinclividual variations, as measured 

-by 2 ac ' in fractions of intrainclividual variations and measure-

ment error variations, as measured ·by a~ + a2m • 
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A expresses intraindividual variations in fractions of measure-

ment error variations. From (5.3) and (5.5) we get 

and a~= (Jx+1)(A+m)a2 • (5.6) 

For testing the hypotheses and 

it is convenient to rewrite (5.4) by substituting (5.6) , adding 

and su'btracting (IJ)fap 0 in the term {z1-(IJ)i!3} 2 and dividing 

and multiplying by the density dP0 /df.-t corresponding to the 

parameter point defined by and 

After collecting all constant factors in one factor A and 

reordering the remaining factors in a straightforward way, we 

finally get 

where 

and 

+ T3{(JK0+1)-1[fz1-(IJ)ip0}2+u] +v} 

+ T4{(Jxo+1)-1(~o+m)-1[fz1-(IJ)i!3o}2+u] 

+ (A +m)-1v+w} )dP 
0 0 

,.1 = 

1 ( 1 1 ) 
T3 = -2 2 r+ill - i+Tii 

a o 
and 

I I J 2 u = 2:: z? , v = 2:: 2:: Y .. 
i=2 l i=1 j=2 lJ 

and W = 
I J K-1 2 
2:: 2:: 2:: V. -1 

i=1 j=1 k=1 lJ,:C 

(5 .8) 

(5. 9) 
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The distri"butions p 
Ul 

given by (5.7) constitute a multiparameter 

exponential family. We see that P0 corresponds to the value 

0 of the exponential parruneter T • 
,-.., r..J 

5 c. Testing the ;hy-pothesis. f3 ~ !3 0 • This hypothesis 

may be expressed equivalently as T1 ~ 0 • Let 

~ = ({~1-(IJ)i~o}2+ U , (J)to+1)-1[{~-(IJ)if3o}2+U] + V' 

{ (J'x0 +1 )(A0 +m)} - 1 ( { z1- (IJ)1z-f3 0 } 2.r tu] + (A 0 +m)-1 V+W) • 

According to Lehmann (1959), theorem 3 on p. 136, a Ul•1P un"bia~ed 

level 

to 1 

e: test has the critical function cp which is equal 
[3 

y (r) or 0 as { z1- ( IJ) if3 l is > ' = or < c I (r)' 
rv 0 ,-.., 

with y and c 1 determined by 

E =O{~~(z 1 ,U,V,W)lR = r} = e: T1 !-' rv rv 
for all r 

"' 
(5.10) 

(In the referred theorem it is assumed that the domain of vari-

ation of T is a convex space uf dimension equal to the number 
r..J 

of components in T • This assumption is used only to establish 
rv 

that the domain of variation of (T 1,T2 ,T 3) on the boundary 

{~; T1 = 0} contains a non-degenerate rectatgl~,which is 

satisfied here). 

Since z1-(IJ)if3 0 ~ c 1 (;) <=> {z 1 -(IJ)ip 0 }//l-~~-=-(-~~)i~:}2+u1 ~ c"(;s) 

<=> {z1-(IJ)if3o}u-! ~ c u 1 (r) , 
rv 

we have 
l_ 

z1-(IJ)2f3o ..l. 
1 when (I-1) 2 > c(r) 

u2 rv 

cpf3 = y(r) II II -- = -"-r..J 
(5 .11 ) 

0 otherwise 
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I 2 2 Now U and z1 are independent, U crz "' x1_1 and when 

'T 1 = 0, {Z 1 -(IJ)i~ 0 }/crz,...., N1(o,1). Hence, on the boundary we 

have T = {z 1 -(IJ)i~ 0 l (I-1)iu-i,...., T1_1 , which is independent 

of 1 • R is sufficient on the boundary, and according to Lehmaru1 ,... "' 
(1959), theorem 1 on p. 132, R is also complete on the ·boundary. 

"' 
Then according to a theorem of Basu (1955) Rand ,..._, T are inde-

pendent on the boundary, and hence (5.10) is satisfied by the 

choice y(tz.) = 0 and c(£) = t 1_ 8 , 1_ 1 • The one-dimensional 
1/\ 

versions of (4.17) and (4.18) are z1 = (IJ)2 B •• and 

l " " 2 U = J ~ (B .• -B •• ) , and our result can therefore be expressed 
. 1 1 1= 

as follows. 

~b,QQ;J;:§.JlL..C.2.·12l.!.. A ID1P unbiased level e: test for the hypothesis ----------=---
~ ~ ~0 is given ·oy the critical function 

\vhen 
ri(b •. -p. ) 

0 
t 1-e: ;I-1 

otherwise. 

5 D • Testing the hypothesi.,s a5 ~ x0 (cr~+a2m). This 

hypothesis may be expressed equivalently as x ~ x0 or as 

'T2 ~ 0. Let ~ = (z 1 ,(Jx 0 +1)- 1 [{z 1 -(IJ)i~ 0 } 2+U] + V, 

t (Jx 0 +1 )(A 0 +m)} - 1[{ z 1 -(IJ)~~ 0 J 2 +U] + (~ 0+m)- 1 V + W) • 
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Again according to Lehmann (1959), theorem 3 on p. 136, a UMP 

unbiased level e: test has the critical function ere which is 

equal to 1 ' y (;~) or 0 as {z1-(IJ)~~o}2+u is >, =or< c(s) 
' rv 

with y and c' determined by 

E _0 {cp0 (Z..,,U,V,W)JS=s}= e: for all~ 
'T" 2- I rv rv 

(5 .13) 

Since {z 1 -(IJ)~~0 } 2 and V are functions of ~ , 

{z 1 -(IJ)"~~ 0 } 2+u ~ c' (~) <=> u ~ c 11 (~) <=> u v-1 ~ 
and hence 

I 

we have 

c'"(s) rv 

l 1 
! 

when ~ I(J-1 ) 
v I-1 

1 
Jx +1 

0 
> c (k,) , 

cpa = ) y (,€'.) = - II = 

~0 othel--wise • 

By (5.2), (5.6) and (5.9) U and V are independent, 

Therefore 

U{(J1t+1)(A+m)cr2}-1 

V{ (.6+m) o-2!-1 

= ~ I(J-1) 
v f-1 

1 
J1t+1 "'FI-1,I(J-1) • 

• 

Thus the distribution of UV-1 is independent of ~ on the 

(5.14) 

bo1.-mdary, where it = 1t. • 
0 

is sufficient and complete on the 

boundary, and usil1g the theorem of Basu (1955) we conclude that 

uv-1 and R, are independent on the boundary. vle may put 

y(~) = 0 since uv-1 has a continuous distribution. (5.13) 

then becomes 
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P 1Luv- 1 {I(J-1)l {(I~1)(Jx. +1)!-1 > c(S)IS=s] ~ e for all 
ft =1-l 0 rv N ,...., 

0 

and by (5.14) and the independence of uv-1 and R. when 

we may choose c(~) = f 1_8 ;I-1 ,I(J-1 ) for all ~. The power 

function is obtained from (5.14). ~1e one-dimensional versions 
I A 1\ 2 

of (4.18) and (4.16) imply U = J ~ (B .• -B •• ) and 
. 1 l l= 

I J~ I\ 2 
V = ~ ~ (B.J.-B .• ) , and oy substitution of these expressions 

. 1 . 1 l l l= ::J= 
we arrive at the following result • 

Theorem 12.~12.2. A UMP unbiased level e test for the hypothesis =======--==--= 
n < x. is ~::;·iven ·by the cri ticaJ. ::L'unction = 0 0 

r 
1 

I A 1\ 2 
J I ('b .• -b •• ) 

. 1 l l= when 
I J f\ 1\ 2 
~ ~ (b .. -b .• ) 

. 1 . 1 lJ l l= J= 

otherwise. 

The power function of the test is 

Jx. +1 
~C(rt) = 1 - FI-1, I(J-1) (Jx.~1 

5 E • Testing the hypothesis 

may be expressed equivalently as 

+' .L1 • -8, 

D. < A = 0 

1 
Jtt +1 

0 

I-1,I(J-1)) • 

This hypothesis 

or as ,.3 -;; 0 • By 

reasoning along the same lines as in the preceding two subsections 

we get the following theorem. 
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!~~g~~~=1.2.:!:d:~k A UMP un·biased level e test for the hypothesis 

A< ~ is given by the critical function = 0 

I J 
1: ~ c'\ 1\ )2 . 1 .£..01 b .. -b .• 

l= J= lJ l 
:1 when · ' I j · 2 
1 l: L: s .. 

i=1 j=1 lJ 

otherwise, 

J}K-1) 1 > f 
-1 A0 +m = 1-e;I(J-1),IJ(K-1) , 

The power function of the test is 

A +m 
~D(~) = 1-FI(J-1 ),IJ(K-1 )(6~m f1-e;I(J-1 ),IJ(K-1 )) ,. 

5 F Th h th . 2 < ~2 . . al t t < 0 . • e ypo es1s c = v 0 lS equ1 v en o T 4 = • 

By the same kind of reasoning as a·bove we find that a UMP 

un·biased level € test of this hypothesis rejects when 
J 

-2 I J 2 
cro I: I: s .. ~ 

i=1 j=1 ~J 

2 x1_1q IJ.(K-.i) .. We easily find UMP un·biased 

level e tests of the reversed hypotheses ~ ~ ~ 0 , x ~ x0 , 

and Their critical functions may be specified 

by reversing the inequalities and replacing upper e-points ·by 

lower e-points in the critical functions defined above. Each 

test statistic considered in this section has the property of 

being a strictly monotonic function of the boundary value which 

defines the corresponding hypothesis. Thus one- and two-sided 

confidence intervals may ·be obtained in an obvious way. 

5 G. One-way classification. \tlhen J=1 , the canonical 

observations are given by (3.12) with and Liw==m • 
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Their density (vri th respect to ~-) is given by (5 .. 4) with 

2 2 2 and J=1 (Implying that the second last term in crz = G:g + G ill 

the exponent drops out) • Theorem (5 .12) is still valid, but 

the theorems (5.15) and (5.16) are not applicable when J=1 • 

However, -by the now familiar way of reasoning we easily get the 
I\ 1\ 

following result, with B. = :a. 1 l l 
and s~ = 

l 

~~or~m_.L2~1Zl~ A UMP un-biased level e test for the hypothesis 

'\ '\ h '\ 2 I 2 · · ·b th · t · 1 f ,_ · 1\. ~ 1\. 0 , w ere 1\. = aB a , lS gl ven y e crl lCa ··unc·clon 

co = ·B 

1 when 

I /\ l\ , 2 
2: (b.-b.) 

. 1 l l= 
I ') 
2: s':­

. 1 l l= 

lo otherwise. 

The power function is 

A. +m 

1 
x-+ill ~ f1-e;I-1,I(K-1) , 

0 

~B(A.) = 1 - FI-1,I(K-1)( A.~m f1-e; I-1,I(K-1)) • 

5 H. Invariance considerations. Consider the following 

groups of transformations. G1 is the translations gZ 1 = Z1+b 

G2 the orthogonal transformations of z2 , ••• ,ZI , G3 the 

orthogonal transformations of Y12 , ••• ,YIJ (when J >1) , G4 

the orthogonal transformations of the Vijk's and G5 the scale 

transformations which multiply all variables ·by the same positive 

constant. The product of any subset of these five groups is 

itself a group. (LehmaruL (1959), theorem 2 on p. 218). 
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The problem of testing ~ ~ ~ 0 remains invariant under mLy 

transformation in G' = G2 x G3 x G4 x G5 • The invariance 

principle claims that a test should depend on the observations 

only through ( {z 1 -~s0 }u-i, uv-1 , vv;-1 ], which is a maximal 

invariant with respect-to G' • From (5.11) we see that ~P is 

invariant, recalling that y = 0 and c is constant. Since 

is UMP unbiased it is also admissible, and hence there 

exists no other invariant test which dominates ~~ . It may ·be 

shown that a ill11? invariant test does not exist. 

The problems of testing X < it = 0 
and l:. < A = 0 

is a maximal invariant, and hence 

remain invariant 

and ~D are 

invariant. Being UMP rm·biased tests they are admissible, and 

hence admissi-ble in the class of invariant tests. and 

are not UMP invariant, but we shall see presently that they 

possess a weaker optimum property. (x,ll) is a maximal invariant 

with respect to the group induced in the parameter space by G11 • 

Since A appears as a nuisance pru.~ameter in the problem of testing 

x -;;; rt 0 (against K > x. 0 ) , it seems reasonable to restrict 

attention to the class 12 of invariant level e tests whose 

power functions depend only on x • Let ~' be the class of level 

e test which are similar on the bormdary x. = tt 0 • Every test 

in ~ has constant power on the boundary, and so ~ c I' • By 

theorem (5.15) ~C E ~ • From the proof of theorem 3 on p. 136 

in Lehmann (1959) it follows that cp0 is TJMJ? in the larger class 

~ 1 , and hence it is UMP in ~ • By the same kind of reasoning 

we prove an analogous result for cpD • Vie summarize the results 

as follows. 
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the test <+'c 
is U}1P in the class of invariant level e tests whose power 

function depends only on x • For testing the hypothesis 

A ~ A0 the test <+'n is U}1P in the class of invariant level 

e tests whose power function depends only on A. 

Finally we look at the one-way classification. The problem of 

testing A < A remains invariant under any transformation in = 0 

G' 'I = G1 X G2 X G4 X G5 • uw-1 is a maximal invariant with 

respect to G''' , and its distribution depends on ~ only through 

A • Therefore every invariant test must be similar. ~B is in­

variant, and it is UMP in the class of similar tests, and hence 

we get the following theorem. 

~~~g;g~l,I!=~~.~.~l.!.. For testing the hypothesis A < A0 , ~B is 

a UMP invariant level e test. 

5 I. Herbach ( 1959) established the analogues of our theorems 

(5.15) - (5.18) for the classical model II with one- and two-way 

classification. Lehmann (1959) , pp.286-293, proves the theorems 

(5.15) and (5.16) in the special case when T = 
"' 

( 1 , ••• , 1 ) , which 

is just the classical model II with nested classification. 
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in the case of more than 
=======~~===="========== 

6 A. A simultaneous test procedure for linear functions of 

Suppose we are interested in all linear functions .@; 'J2. with 
H 

a 

"belonging to the Q-diinensional space A spanned by the colunms 

of ~HxQ (Q ~ H) • In other words we are interested in all linear 

functions of !'~ . The natural thing to do is to look at the 

corresponding transformations of the individual mean least squares 
/\ 

estimators , A'B .• , i=1, ••• ,I, which constitute a sample from 
,...., "'l 

a Q-variate normal population with meaD vector equal to 

Tne sample covariance matrix of the 
1\ 

A'B .• 's 
rv rvl 

(I-1)-1 I A 1\ A 1\ 
E (A'B .• -A'B .• )(A'B .• -A'B •• )' = 

· 1 rv ""l "" "'l "" rvl ,..... ,...; l= 

is 

= (I-1)- 1 ~•{ ~(~ .• -~ •• )(~ .• -~ •• )'}A= I{J(I-1)}-1 A'L:*A, i=1 "'l "" r-J]_ "" rv ,.,_, ,.....:.:r.:; 

A' p • 
rv ""' 

the last equality following from (4.3) • According to Miller (1966), 

p. 196, with probability 1 - e: 

~'!'13 EE~'~·· + {Qfi-e:; Q,I-Q(I-1)(I-Q)-1}'i 

[ I-11 ' I { J (I -1 ) } - 1 A' L: *AI Ji 'tt'l Q • 
"" rv rvZrV'-' ' "" 

We state this result and the test procedure derived from it as a 

theorem. 
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~g~g~~~=~g!:lk Let A -be a Q -dimensional linear subspace of 

JRH • 

(a) With probability 1-e: 

g'R E a'~ •• :!" {f1 e:• Q(I-Q)-1}i(J-1a•z:*a)i, ':fa EA. 
•- N "' "' - ' Q' I-Q "' Zrv "' 

(b) The probability of one or more false statements is at mcst e: 

if we state that a'p > a'~ 
"' rV "' I"'J0 

for every R:; E A for which 

Remarlc. The constant C(I,Q) = f 1_€;Q,I-QQ(I-Q)-1 increases 

strictly when Q increases. Thus, in order to obtain short 

confidence intervals and sensitive tests in theorem (6.1), we should 

restrict attention to the smallest linear space A which generate 

all linear functions ~~~ of interest. Here is a short proof of 

the assertion. Le + X X 
v 1' 2, ••• and Y1 'Y2' • • • be independent and 

distributed according to N1 (0,1) • 

Q I-Q 
r7 L: X~ I L: y~ 

. 1 l . 1 l l= l= 
l.II,Q = 1 < Q < I • = 

Put 

and hence 

P{ZI,Q > C(I,Q)} = P{ZI,Q+I > C(I,Q+1)} • 

(Their common value is e:). Since zl,Q+1 > z1 ,Q 

we also have 

P{ZI,Q > C(I,Q)} < P{ZI,Q+1 > C(I,Q)} • 

(6.2) 

almost surely 

(6.3) 

Comparison of (6.2)and (6.3) shows that C(I,Q+1) > C(I,Q). 
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(In the same manner we may prove the o·bvious thing that C(I,Q) 

decreases when I increases) • 

6 B. If we are interested only in the functions ~1£1 , ••• , 

~p£ , and t -1 (I-1)-i < j£1-e:•Q I-QQ(I-Q)-1}i ' 
1-e(2P) ;I-1 ' ' 

then the Bonferroni-intervals, (see Miller (1966), p. 67) , 

•" a'R E a B •• 
"-'PN ,...p,... 

1. 

+ t -1 [{J(I-1)}-1~p'~~~pJ2 
1-e (2P) ;I-1 "' 

p=1, ••• ,P 

(6.4) 

are shorter than those in theorem (6.1) and have a simultaneous 

confidence level not less than 1-e , and the corresponding test 

procedure is more sensitive than that in theorem (6.1) and has a 

level not larger than e • 

6 C • vve apply these results to example 1 C. Suppose we are 

interested in the concentration of drug at a certain point of 

time , t 0 • From (6.4) we get the level 1-e: confidence interval 

, where 

effect at time to of the preparation may be compared with that 

of another preparation with known mean value f30 of B by means 
;-...,) "" 

of (6. 4) • At level € \He state that f31+f32to is > or 



- 34 -

1\ I\ 
< as B •• 1+B •• 2to is 

or By point (a) in theorem (6.1) 

we obtain a Working-Hotelling kind of level 1-e: confidence ·band~ 

b~==~~~lbn~=~~gth~~~g=£Q~g~~g~~ kc and ~D ~-th~=~~g~~~=ggg~ 

~~~-mg~~~1h~=gng=re~E~~gg~~ 

7 A. Many hypotheses concerning '£c and ~D may be 

expressed in terms of and and tested by standard multi-

variate methods on basis of the transformed observations (3.5). 

vve give a few examples. 

The hypothesis of no interL~dividual variations, H1 :~0 = £, 
may be expressed equivalently as H1 :~z = EY . This hypothesis may 

be tested by the method in Anderson (1958), pp. 247-250. (It should 

be noted that the proposed test is designed for the alternative 

hypothesis K1:kz =f '£y, while we a:re only interested in there­

stricted alternative K1=Ez-EY is positive definit). 

The hypothesis of no intraindividual variationsj H2 :~ = 0 , 

may be expressed equivalently as H2 :E,y = o 2~w . Let 

AHxH be a nonsingular matrix such that AM-A' =I and hence 
~ ~ ~ 

AY. . N NH( 0' AL:--A t ) ' 
~lJ "' r.JN':Lr:J i=1 , ••• , I ; j=2, ••• ,J • We see that the 

hypothesis may ·be expressed as H2 : ( AY . . )1r , 
"'-'rvlJ ;.. 

i=1, ••• ,I; 

j=2, ••• ,J ; k=1, ••• ,H , a:ce independent a..."'ld distributed according 

to N1 (o,o2 ) .. A possible level e: test consists in rejecting 

I J 
vrhen 2: 2:: 

i=1 j=2 

H 2 I J K-H 2 
2: (A Y .. )1 I 2: ">' 2: V .. 1 is larger than 

k~1 r-+vlJ [ i=1 j;;11(;::1 lJ c 
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f1-e; I(J-1)H,IJ(K-H)(J-1)H{J(K-H)J-1 • 

The co~osi i:B hypothesis \vhere 

2::0 2::0 and 2 are kno;,vn, may be expressed e qui val en tly as rvC ' ....... D cro 

H3 hZ JI;o 0 2 0 2 2 2 Vie = + ~D + ao~'l ' ~y = ~D + ao~l ' a = cro • may ""c 
test H3 at a level not larger than E: -by testing at level e/3 

each component hypothesis by the method described by Anderson (1959) 

264 267 In 1- 1 c "'0 0 d 2 "b 1 ' PP• - • examp e , ~C , kD an 00 may e ong 1;0 an 

old preparation with known pharmacokinetic properties and with 

which the new preparation is to be compared. 

In the final two subsections we shall consider hypotheses 

which are analogous to those in section 5. 

7 B. Hypotheses concerning inter- and intraindividual 

variations in a certain factor point. Suppose that in exan1ple 1 C 

we axe primarily interested in the concentration dt0 exp(B1+B2t 0 ) 

of drug at time t 0 • It is then of interest to draw inference 

concerning inter- and intraindividual variations of B1+B2t 0 • 

In terms of our general model we are now interested in a particular· 

linear function a'B • 
"" "-' 

a'B 
rv "" 

is nonnally distributed with expectation 

~(a) = ~~~ and variance a'I: a + a'I:n§t "" ,.,_.a;;:; "" rv.JJ" 
where and 

a'I: a represent interindividual and intraindividual variations 
rv rvn:::: 
respectively. We now transform the vectors in the canonical form 

(3. 7) to scalar varia-bles as follows. 

z(a) = a'Z "" N {(IJ)if3(a) cr~(a)J ' 1 rv rv1 1 

z~a) = a'Z. "-' n1 (o,cr~(a)) , i=2, ••• ,I , 
l rv l 
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y~~) = 
1.J 

2 a'Y .. rv N1 (o,a (a)), 
rv rvJ..J Y 

i=1, ••• ,I; j=2, ••• ,J, 

i=1 , ••• , I ; j =1 , ••• , J ; k=1 , ••• , K- H , 

where and a~ = J~'~c,@; + ~·~Jfo + a 2~ ·~~ • 

These variables are exactly on the form (5.2), 

hypotheses ,@;'~c~ ~ Y.. 0 (~·~~ + a 2~·~w~) and 

and hence the 

a'"' a < A a 2 
"' k;n:::::; 0 

A 1\ 
may be tested by replacing ·b .. ,K-1 

1.J 
and m with a 'b .. , K- H 

'"" r-..!J..J 

and in the test criterions in the theorems (5.15) - (5.16). 

The optimum properties, which these tests possess in the case 

with one single regressor, are not carried over to the gene~al 

case. 

7 c. The case when the covariance matrices are Eroportional 

to lawvm matrices. We consider first the case J=1 , which was 

interpreted as one-way classification in subsection 2 B. We 

as SUi11e that 2 EB = a~ , where ~B is a lQlown matrix and an 

unknown positive constant. 

In example 1 C this assumption is appropriate when the 

relative significance of- and interdependence between - the dif-

ferent sources of plasma concentration variations is assumed to 

be the same for the preparation under consideration and a similar 

preparation, which has been extensively studied in clinical ti'ials, 

whereas the magnitude of the variations may ·be different for the 

two preparations. In that example the case J=1 is of special 

interest due to possible stochastic dependence between the results 

of clinical trials performed on the same person at different points 

of time. From the observational scheme with J=1 v:re can draw 
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inference concerning ~B , which expresses the variation of B 
rv 

in the patient population and hence is the relevant parameter in 

connection with large scale production of the preparation. 

We now retuxn to the general situation and consider the 

o·bservations on the form (3.12). In terms of the parameters 

A = 

their density is given by 

We will test the hypothesis Letting 

distribution corresponding to T = 0 , A. = :x and 
"" "" 0 

P0 be the 

a2 = 1 ' 

we can rewrite dPw in a way analogous to that described in sub-
"" 

section 5 B and get 

The distributions on the boundary, A = A. , constitute a multipara-a 

meter exponential family, whose parruneter space contains an open 

rectangle. Then, according to Lehmam1 (1959), theorem 1 on p. 132, 

a sufficient and complete statistic on the boundary is 
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I 
R = {z1 , 2: Z!(A J.VJ;u+~r.r)- 1 z. + W} , where 
~ ~ i=1 1 0~D YV ~1 

I K-H 
w = 2: 2: v?k 

i=1 k=1 1 
• We 

consider the alternative ~1 , defined by T = T 1, A= A1(>A 0 ) and 

a 2 = a~ • According to Sverdrup (1953), theorem 3, we have the 

following result. Among all tests which have similar power e on 

the ·ooundary, a most powerful test against the alternative ~1 has 

critical function cp~i , which is 1 , y (;£) or 0 as 

I 
1 + ( 2 2 ) -1 "' ' l (' 1\iT I~ ) -1 ( 1 M 1Vf ) -1 l l *- ( 2n- 21 ) -1 } T1 z1 (J1 L, z. A l'lu+ T - f\.1~B+;!:b,r .I ~1· + "" v 

~ rv i: 1'"'1 0~-'-' rv -'~V 

I 
{ 2: z!(b. MB+MM)- 1z. + w} is >, = or< c'(r) with y and . 1 rvl orv ~vv "'"'1 rv 
1= 

c' determined by 

for. all r • 

Define the statistic FA by 
i 

I I ( F )-1 2:: Z. A1 r·ln+rJf_T Z. + W 
· ~"'-'1 ~D NV rv1 
1=2 

I I ( )-1 2: z . A r1D +Rr z . + w 
. ~1 OrvD N~ rv1 
1=.:: 

rv 
(7. 1) 

(7. 2) 

After simple rearrangements in the test criterion we find that 

t:pw 
"'! 

where 

is 

y 

1 , y (r) 
rv 

and c 

or 0 as is < 

is determined ·by (7 .1 ) • 

independent, and on the boundary we have 

= or> c (r) 
rv 

2 -2 2 i= , ••• , I and a W rv 'X. I (K-H) • Hence, by dividing m.unerator 

and denominator in (7.2) by cr 2 , we see that the dist:;ribution of 
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FA 
1 

is independent of ~ on the ·boundary. Then by the earlier 

mentioned result of Basu (1955), FA 
1 

is independent of R on 

the ·boundary. Since FA 
1 

has a continuous distribution, we can 

put y(~) = 0. Then (7.1) ·becomes PA.=A
0

{FA1 :S c(,E)I,!S=;d = e 

for all ;s , which by independence reduces to 

is a constant. (7. 3) 

The test depends on the alternative only through the parameter 

A1 , and we therefore write ~A instead of ~U.J • By dividing 
""1 1 

numeJ.:ator and denominator in (7. 2) ny 2 
G we see that the power 

function pA1 depends on ~ only through A • 

According to Lehmann (1959), lemrua 1 on p. 126, ~A 
1 

is most 

powerful unbiased against the alternative A=A 1 
if it is a level 

E: test. We shall prove that ~A (A) increases with increasing 
1 

A , which ensures that cpA has level E: • By theorem 3 on p. 341 
1 

in Anderson (1958) there exists a (nonsingular) matrix LID<H 
"" 

such that ~:sk' = ~ = diag(p1 , ••• ,pH) and ~· = ~ • Thus 

£or any A.' > 0 we have 

= 
I H I 
E (LZ.)'(A'P+I)-1 (LZ.) = E (A'p +1)-1E (LZ.) 2 

i=2 """"~ "" ~ ~~ h=1 h i=2 ~~ h 

Now i=2, ••• ,I , and hence 

we may vrri te 
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I H 1 2 
~ Z!(A'~+K-)- 1 z. = ~ (Aph+1)(A'p,n+1)- R_cr , 

i=2~l NH NW ~l h=1 -n (7.4) 

2 where Rh "'XI_1 h=1, ••• ,H. In the expression on the right 

side of (7.2) we substitute (7.4-) with A'= A1 in the nrnnerator 

2 -1 and with A' = A0 in the denominator, put Qh = ~cr W &"ld get 

= 

Th; power function may be -v;ri tten f3 \ (A) == P:r ! g ( Q1 , ••• , QH; A ) ~ c} • 
''1 ~ 

Since the distribution of (Q1 , ••• , QH) is independent of ), , we 

need only prove that g(Q1 , ••• ,QH;A) decreases with increasb1g 

A in order to esta-blish that p,A is an increasing function of 
1 

A • By differentiation of the a·bove e:A--pression we find 

og/o A. = 
denominator 

• 
denominator 

The denominator is a squa:red nuniber and hence positive. Straight-

forvrard calculations sho·w that the numerator is equal to 
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are positive, and -by the positive de£ini teness of p 
rv 

also All 

all are positive. Vle conclude that the numerator in 

is negative, and so og/o~ is negative. We summarize these 

results as follows. 

~~~g~~*=~1~~~ The most powerful unbiased level e test for the 

2; 2 hypothesis A-;;; A0 , where ~ = crB a , against the alternatives 

A ;::: t.. 1 (> A0 ) is given by the critical function 

=C 
when 

otherv1ise 
' 

\!here FA. is defined by (7.2) and c is determined by (7.3) • 
1 

Invariance considerations. The problem of testing H is 

invariant under translations g~1 = ~1 +~ , orthogonal trru1sformations 

of all V il~ 1 s and common change of scale of all variables. 

( -1 -1 ) w z2 , ••• ,w zH is a maximal invariant under the group of these 

transformations. Its distribution depends only on A , and hence 

any invariant test must be similar. vle see that the test cpt.. 
1 

depends on the observatio11s only through the maximal invariant, 

ru1d hence it is invariant. Since cp~ is most powerful against 
1 

the alternatives A=A1 among similar level E: tests, it is also 

most powerful against these alternatives in the smaller class of 

invariant level E: tests. We easily show that cpA is a maximin 
1 

test of the hypothesis ~ ~ A. 0 against A ~ ~ 1 • The problem 

remains invariant under the group of transformations mentioned aboveo 

~1e conditions of the Hunt-Stein theorem are satisfied, (Lehmrulll 

(1959), theorem 2 on p. 336), and hence there exists an invariant 

maximin test. (Any almost invaria."lt test is equivalent with an 
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invariant test in this case according to Lebmann (1959), theorem 4 

on p. 225). Assume $ is an invariant ma."'Cimin test. Then 

The second inequality is due to the fact that cpA is most power-
1 

ful inva:r..~iant test against the alternatives A=A 1 , and the last 

inequality follows from the monotonicity of ~A. • 
1 

We have proved 

The test cpA 
1 

of the theorem (7.5) is most power-

ft.ll among invariant lGvel e test for the hypothesis ).. < A 
= 0 

against the alternatives A=A 1 • It is a maximin test against 

the alternatives A ~ ~- 1 • 

We finally express the test statistic by the original varia-bles. 

For an arbitrary matrix ~H><H = (r-1hk) we have 

I I H H 
L: z !}1Z. = L: L: L: Mhkz .hz ·1 . 2rvlr"J'o'l i=2 h=1 k=1 l l c l= 

H H I 
= L: L: Mhk L: z .hz ·1- • 

h=1 k=1 i=2 l l '-

/\ /\ 
By ( 4 • 18) , with J=1 al1.d B . • = B . , we have 

""l "-'l 

I 
L: Z!MZ. = 

i=i"'l""""l 

I 1\ 1\ /\ 1\ 
L: (B.-B.)'M(B.-B.) • 

i=1 I'Vl N I'V "-'l N 

I 
L: z. hz. k . 2 l l l= 

(7. 7) 

(7 .8) 
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By (4.13) vre have 

w 
I 

= I: 
i=1 

s? 
l 

(7. 9) 

where s? 
l 

is the smn of squared residuals in regression no. l • 

We now substitute (7.8) and (7.9) in (7.2) and get 

I 1\ I 1\ '' I 2 
.L (]l.-].)'(A.1~B+~--)-1(£l.-~.) + L S. 
l=1 Nw i=1 l F, = ~~----------·------------------~~I~-

1\ I 1\ 1\ 1 6 1\ 2 
1 . L (~l· -].)' C\o~B+~- -)- (r8l· -].) + L S. 

l=1 Nw i=1 l 

The problem of testing A. ~ "-o is essentially the same as that 

studied by Spj0tvoll (1967) in connection with unbalanced classical 

model II • He found results analogous to our theorems {7 .5) and 

(7.6). 

Now consider the case J > 1 , nested classification, when 

and 2 
~D = ai}jD , where and are known matrices. 

The above technique may be applied vri thout es3en tial changes if the 

is known a priol1 i and we want to test the 

When 2 2 a claD is unknown, we can find no 

optimal test procedures, but of course we can apply the tests derived 

in subsection 7 B • 

8 .A • In the present paper we have mainly been concerned 

with inference problems which possess an (in some sense) optimal 

solution. numerous estimation and test problems which are not 

treated here may be attacked by l"rell lmown multi variate techniques. 
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~ve mention in particular the pro-blem o.:t· comparing several samples, 

(e.g. corresponding to different preparations in example 1 c). 

Like the classical model II , the present model may be extended 

to higher levels of nesting, and the results in this paper may 

be generalized correspondingly. 
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