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We consider 1IJ 1linear regressions

f)\‘(ij =2@ij +’Qij 9 i=1y.I',I; j=1,0..,J ’
where Xij is the vector of observations of the dependent variable,
Eij the vector of regression coefficlients and Eij the

vector of disturbances in the regression labelled (i,j) . The
design matrix T is common for all regressions, the situation
being a typical experimental one, The vectors gij are of the
form

. =8 + gi + Qij ’
where the gi‘s are i.i.d. with zero mean and independent of the

D

Typically the subscript 1 represents individuals and subscript

's which are also i,i.d., with zero mean and B = Egij .

Jj represents repetitions of the experiment, and the gi's and
Qij‘s represent inter- and intraindividual variations of the
regression coefficients. ZEstimation and test procedures are
derived under normality assumptions. Asymptotic minimum variance
Fisherconsistent estimates are found for the parameters. For
testing hypotheses concerning § a simultaneous test procedure
analogous to Scheffé's S-method is employed. Hypotheses concerning
the covariance matrices are tested under various assumptions

about the covariance structure. The derived tests are shown to

be UMP unbiased when gij is one-dimensional.



O, Notatiogs and terminology.

In the following p denotes Lebesgue measure on the
Borel class of sets in a euclidean space, the dimension of which
will be clear from the context. Otherwise greek letters denote
subsets, points or components of pointsinaparameter space Q .

As a rule random variables are denoted by capital latin

letters. However, an estimator of a parameter o , say, is
denoted by o* or 3 .
Matrices are underlined with a tilde, and their oxrder

may be indicated by a top-script. ZExample: QPXQ isa P X Q-

matrix. If Q=1 , i.e. G is a column vector, we may write gP

1
B = (G'G)® is the euclidean norm of ot .

~J

instead of G

We write qu , or occasionally (g)Pq , for the element in the

p*th row and q'th colum of G » If G is a vector, (P=1 or Q=1),

~J

we number its elements by a single subscript. If the matrix or
vector itself is numbered by a subscript, we place the element

subscript after the matrix subscript. Example: The h'th element

. H . .
of the column vector Eij is denoted Bijh or (gij)h . I is

the identity matrix, and Q is the null matrix.

We introduce special symbols for some distribution laws:
NP(g,g) is the P-variate multinormal distribution with mean
vector E and covariance matrix % ’ Xé is the chi-square

~Y

distribution with m degrees of freedon, Fm n is the F-distri-
9

bution with m and n degrees of freedom and Tm is the
t-distribution with wm degrees of freedom. We do not distinguish
notationally between a law and its distribution function. The

(Lower) e- points in x2

m? Fm,n and Tm are denoted by
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2

Xegm ? fe;m respectively. That X is distributed

and te;m

according to the law -F 1is written X ~ F .

A dot in the place of a subscript denotes averaging with

respect to that subscript.

N M

-1
X.. and X..= (MN) X,
~1] ~ i=1 j=1NlJ

o=

..1N
Examples: X. =N r X X

1 j=1

Uniformly most powerful is written UMP.

le__Introductory exampies

2
= =

1 A, In standard regression theory the regression
coefficients are unknown, fixed parameters. A random coefficient
regression (RCR) model was first studied by Wald (1947).

Swanmy (1971) gives a survey of the work done so far on RCR models.
In this paper we consider the situation where the vector of

regression coefficients is of the rform

E=E+C+2, (1'1)

I

where 8 Eg Y and Q have zero expectations, are uncorrelated
and typically represent inter- and intraindividual variations

respectively. We give two examples of this situation.

1 B. Fluor washing. As a caries-preventing measure

childrens teeth are washed with dissoluted natriumfluorid. The
concentration CN of natriumfluorid in the plaque, (i.e. the coating
on the teeth), after washing is a measure of the effect of the
washing. CN is assumed to depend proportionally on the concen-

tration of natriumfluorid in the concentration, t 3
CN = Bt .

The coefficient B depends on nutritional factors, oral hygiene

and strains of bacteria in the mouth, which vary between persons
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and also from day to day for each person. Consider a person who
is chosen at random from the population on a random day. By the
line of argument in Scherffé (1959), pp. 221-223 and pp. 238-242,
his B-value is composed of 8 , C and D as in (1.1) « p is
the average of all B-values taken over all persons and days.

B + C is the individual mean B-value of the chosen person, and
his mean deviation C from the total mean thus represenis inter-—
(or between-) individual variations. On the selected day his
B-value differs from the individual mean by a random term D ,
which represents intra- (or within-) individual variations.

CN cannot be observed directly, but is measured by a chemical
method with a random error U . The measured OCN-value corres-

ponding to concentration +t 1is then
X = Bt + U .

Knowledge of the distribution of B is important in connection with
large scale production and sale orf the preparation. TFor the

purpose of drawing inference concerning g and the distributions

of C and D +the X-values corresponding to the concentrations
t1,...,tK are measured on I persons on J different days.

The resulting observations are

i=1’-oc,I H j=19lID,J H ( 2)
;g0 = (B+C3+D; )04, 51 Te

{=190009K .

£ 50 » Djy and T,y

of the i'th person, D

are unobservable, Ci is the C-value

- .' 1
13 his D-value on the j'th day and Uijk
the measurement error in his k'th washing on that day.



1 C. Variations in absorption and excretion of drugs.

When a medical preparation is taken non-intravenously the active
drug is absorbed and spread in the body. For many drugs the
plasma concentration (i.e. the concentration of active drug in

the blood) at time +t after ingestion of the dose, C(t) , is a
reliable measure of the effect of the dose at time +t . It may

be shown theoretically, (see e.g. Wagner, (1961)),that for certain
simple preparations C(t) is determined by the relation

c(t) = VT%%ET {exp(-Et) - exp(-Rt)} , t>0,

where d 1is the dose of active drug, V 1is the "distribution
volume" in the body which is accessible for the drug » R is the
rate of absorption and E 1is the rate of excretion of the drug.

By the mean value theorem for derivatives the expression on the right
gide is equal to (thV”1)eXp{B(t)}, where -B(t) is a number
between Et and Rt for each t . We consider a preparation

for which B and R are not too much different. Then B(t)

is approximately linear, B(t) ~ B,t , and putting B, = 1n (R 1)

we get (approximately)
c(t) = dt exp(B1+B2t) . (1.3)

At time t a blood sample is taken from the patient. The

measured value of the plasma concentration is
c*¥(t) = C(t) + U*(%) ,

where the random error U%(t) is due to the fact that the drug

is not ideally distributed in the volume V .



It seems reasonable to assume that U*(t) is of the form
U*(t) = ¢(t)U , where U has expectation zero and variance

02 s, say. Then we have

cx(t) = c(t)(1+U) . (144)

We now substitute (1.3) in (1.4), divide by at and take
logarithms on both sides and get (approximately)

X(t) = 1nf{(at)"Tox(t)] = B, + Byt + U (1.5)

having assumed that g << 1 so that 1n(1+U) ~ U with large
probability. Pharmaceutists speak of R, E and V as
"pharmacokinetic constants". However, Frislid et.al. (1973)
and many others have pointed at the possible existence of great
inter- and intraindividual variations in the ability to absorb
and excrete drugge Thus R , E and V, and hence also B1
and B2’ should rather be considered as random variables. We now
proceed as in example 1 B and decompose the vector B = (B1,B2)'
as in (1.1) . Before mass production and marketing of a pre-
paration its physiological availability is investigated in clinical
trials. The following observational plan is standard., Equal
doses of the preparation are given to I persons and blood
samples are taken from each person at times t1,t2,...,tK

after ingestion. This experiment is performed with the same I

persons on J different days. By (1.5) the resulting observations

can be written in the form



X 1+B132tk+Ul:|k 3 i=1,ooo,I ’ j=1,oeo,J H k=1,ol,K ’

131~ Bij

where ' p ,
B - (Bi;n\ _ (51\ L Gy L [ Piat

~ij ,. , }
Bijo/ Bo \ Ci2 D50,

in accordance with (1.1). On the basis of these observations we
want to draw inference concerning f and the distributions of

¢ and D.

Pt
e ]

2 A, Nested (or hierarchical) classification. Our

observations are of the form

rXV§>J<1 =1;K><H B}b(1 NlJ ’ i:‘j,...’I'; j=1,...,J 'Y (201)

The "design matrix" T is lmown and has full rank H (<K) . The

vector of regression coefficients Eij is an unobservable random

vector of the form

Bij =B *+8 *Diy> (2.2)
where @Y is constant , C. ~ (Oy3,) and D,. ~ N.(0,5)
g A g\ I ij H'\S?ZD/
The vector of disturbances Hij is distributed according to
NK(Q,OZE) . All Cl ’ 213 and ElJ are unobservable, and they

are uncorrelated and hence independent.



2 B. One-way classification., If J=1 in the model

above , we can drop the subscript j and put §i1 = %i ’

Eij = Ei and so forth. We introduce

ZB=§C+ZDQ

. ~,

Then our observations are of the form

r}\(ol = ?/@l + I\J;l Iy i=1,vno,I ’

where B, ~ NH(E’EB) and U, ~ NK(g,o?g) « This model has been
studied by Rao (1965) .

2 C. In the special case when B is scalar (H=1)
and T =(1,15ees51)" , the models 2 A and 2 B reduce to the
wellknown models II with nested and one-way classification, which
are treated by Lehmann (1959), pp. 286-293.

3e_ A _canonical form of the observations,

S

K

3 A, Let the colums of E (K-H) form an orthonormal

basis for the orthocomplement of the H~dimensional linear space
\/H

spanned by the colums of T « TYor each i and Jj we
transform zij to
AH ] -1 '
Biy = T'D) LKy (3.1)
N 1D SR
~ NNlJ
%ij is the ordinary least squares estimator of gij .
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We substitute zﬁj from (2.1) in these expressions and get

B, = (o) 1o (1B, #055) = By g+ (2'D)° Tpg, TR
(3.2)
— ] -
Xﬁj =% (T§13+E ;) Eij .
Substituting
= mt -1 ]
Wiy = (Z'2)7 20,
and Eij from (2.2) in (3.2) , we arrive at the following form
of our transformed observations.
~1;J =B+ 8 * Dy Wy
NiSH ’ i=1,00¢,I H j=1,.oc,J .
B, Ci s Qij are as explained in subsection 2 A. Straight-
forward calculations show that Eij ~ NH(Q,UZMW) y with
oy = (27, (5.3)

2 . . o
and gij ~Nyp_1(Qs0 I) . A1 s Dijr Xigr ¥4 are indepandent

and unobservable.

3 B, Now let GJ“J = @Pq) be an orthogonal matrix

—
with the first column equal 10 J #(1,4se,1)' , and for each

A
i transform the gij's to ‘Xij's given by
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C(TqenenXig) = (%“,...,NlJ)G . (3.4)
The h'th component in zij is
;8 ? ( ) ( )
Y... = % B. .G v (B, +C... )G . + T (D G
ijh p=1 iph pj p=1 h “ih’"pj p=1 1ph h
3 J J
=J (Bh+clh) >3 GP1GPJ + T (Diph ph)
p=1 p=1
1 J
= 631 J (Bh+Cih) + pE1(Diph + Wiph)Gpj ’
(6j1 is the Kroenecker delta). Thus we get
1
(z- seees Y J) = (JZ(E + gi),g,...,g) + (Z§1""’X§J) ’
where (z§1,...,z§J) = (211+Hﬁ1""’21JﬁﬂiJ)g is distributed
as (R. WigseeesDis ~¢J) (For a proof of the last assertion,
see Anderson (1958), pp. 51-52). Our observations are now on
the form
L .
P 7 BN I
Xij ~ NH(Q_.’EY) 2 i=1,|..’I ; j=2y..;,J 9 (305)
Vijk~ N'l(,Q,ssz) s 1=ls0eesl 53 J=l500e,5d 3
k=1,00.,K"'H9
where
_ 2 _ 2
Sy = Ipto M,  and Iy = T 4TooM, . (3.6)

A1l wvariables

in (3.5) are independent.
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3 0. Let HUT be an orthogonal matrix with the first
L
column equal t0 I 2(1,see51)' , and transform the Y. 's to
B | -
Zi® by

(Eal"'l,gl) = (zi']"."zl'])g L4
By the line of argument in last subsection we find that
i
(ZyseeesBy) = 1(13)%6,0,00,0) + (ZFreees2%)

where the g;f’s are independent and identically distributed

according to NH(O,ZZ) . Thus we have arrived at the

following form of our observations.
5
L, ~ Nl (T3)*8, 251

zi ~ H(Q’EZ) ’ i=2,400,1,

zlJ ~ H(Q’EY) ] i=1,0e0sL 3 J=25e0esd

ViJKN N1(0:02) ’ 1=15000sl § J=1500e,d 3
k= 1y¢oo,K-Ht

A1l these variables are independent.

The joint density of the transformed observations in (3.7) is

given by
ap, = (2mFH |z, | 2expl-3ig, - (19)%0) 125 (5, - (19)7 B
1 - 11
-3 izggig zs
(2ﬂ)-%I(J’1)H|ZY|'I(J'1)/Zexp(—% % g X!'Z-1X") (3.8)
& i=] j=2 1J2Y Aij
(o) =313 (B=H) ~I3(K-E) 1 _ 502y~ ; g Kgﬁvijk W
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The components of the parameter w are

Bh s h=1,ee0,H ,

(Zghyr » 1<h<gh'<H, (3.9)
(Tydppr » 1 Shgh' <H,

2

() .

The domain of variation of ® is the parameter space Q
given by
Bh € (" OO,CO) s h=1l,ese,H ,

Ly-Ty(=0fy) end gy - 02¥W(=2D) are positive . (3.10)
definite,
02>O-

o (and Q) is of dimension H +1 +BH(H+1) + 3H(E+1) = (H+1)Z .

% De One-way classification. In subsection 2 B we

regarded one-way classification as a special case of nested clas-
gification. Putting dJ=1 we get the following version of the

canonical form (3.5).

T~ (B, T+t

(3.11)
Vi~ N, (0,6%) i=1y000sT 3 k=1,000,K-H o
Corresponding to the canonical form (3.7) we now get
2y~ H(I%E ; Tt M)
i~ N0, zpr o) 1=2,000,T (3.12)
Vi ~ N,(0,6%) 1=1,000sI 5 k=1,000,K-H .

A1l variables in (3.11) are independent, and so are the variables

in (3.12) .



—13—-

4, _Point estimates_of the parameters,

—— s e

=

4 A. The likelihood function of the observations (3.7)

is given by (3.8) and is seen to be of the form
L0323, L) = Ly (5,3758)L, (s DT (6551 (4.1)

with .-% = (g,lg-o‘,r%l) ) X = (Y121""YIJ) and X=(V111"’.'VIJ,K"H)-.

The maximum likelihood estimator Q is the point in Q which
maximizes L . 3 may be difficult to find because Q 1is re=-
stricted by the positivedefiniteness of EC and ED « We easily
obtain a modified maximum likelihood estimator by maximizing L
in the wider region '

defined by

Bhe (—m,oo) s h=1,.4.,H,

I, and Fy are positive definite, (4.2)
02 >0 .
QcOr since the sum of any two positive definite matrices

is itself positive definite. Q' 1is the direct product of the
(E,gz)—space, the Z,-space and the oz—space, and hence we find
the maximum of L as & varies in Q' by maximizing each of the
factors I,,L, and Ly in (4.1) separately with respect to the
parameter occuring in it. Let g* be the point in Q' defined

by



- A
R-x- = (IJ) %fzﬂ = E" ,
v¥ = I % 7.7} = JI"] % (% B )(% -B..)!
N% i=2~i~i i=1 Ni. I'\J. L ] ) L LN § b}
5% = {I(3-1)}"1 z ¢ v .y, (4.3)
~ i=1 j_2 ~1 j~l ]
3 _ -1 I A A A _ ,
T RS Gh G
I J X-H I J
2% - -
o=IIE-BTs z » v =wEmTls oz,
i=1 j=1 k=1 *J i=1 j=1 *d

where Sij is the sum of squared residuals in the regression

labelled (i,3) , iees

s2. = g (X. .. - g 6. B )2 | (4.4)
15 7 2, Y, 2 P e : .

The relations stated in (4.3) betweén original variables and

canonical variables will be proved in subsection 4 B .

From theorem (3.2.1) and its proof in Anderson (1958), we obtain

Lemma_(4.5 ). (Almost surely) the point w*  defined by (4.3)

maximizes L in Q' and is the unique solution of the first

order equations of a local extremum, i.e.

blnL/bw = 0 5 p=19900,(H+1)2 .

p |w=u
w¥*  possesses the following optimum property.

Theorem (4.6). (a) w* given by (4.3) is a Fisherconsistent

B

estimator of  , (see Sverdrup (1965)) . For each

p=1,...,(H+1)2 ’ w% has uniformly minimum asymptotic variance

AL

among all Fisherconsistent estimators of wp ag I -»co,
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(b) w* is asymptotic maximum likelihood estimator in the
sense that 1im P ( ¥ maximizes L in Q) =1 <for all
Irc0o ¥ ~
wen.
Proof. The proof of (a) goes in several steps. We first prove
that

Q0 and Q' are open sets.

To prove that Q' is open we need only prove that the space

M of symmetric and positive definite nXn-matrices is open,
since then I —-space and gz—space are open. A nXn-matrix

A = {aijl , which is symmetric (i.e. aij==aji), may be regarded

as the point (a11, 8541 Bpos a31,...,ann) in the euclidean

Zn(n+1)-space . Assume A € M. That A is positive definite

]

means that x'Ax > 0 for all §?X1 = gnx1 s Oor equivalently that
x'Ax > 0 for all x € S, {
1

x with |[xl"*% . Since x'Ax is continuous regarded as a

Y,

LM

|lixll=1}, which is seen by replacing

4

function of x and SO is compact, there is a x € SO such

)
- ! = 3 | 1 ] a
that x’Ax = Xlgfs x'Ax . xlAx >0 since x, 30 . For any
~ 0
Qéxn and any X € So we have x'Cx = x'"Ax + %'(S'é)ﬁ

1 - .
> xihx + ? }J;(cij aij)xixj . Let C be symmetric and assume
that the distance between C and A in the euclidean in(n+1) -

space is < € . Then a <€ forall i and j , and

\Cij' ij‘
noting that \xil <1 when x € S, we get x'Cx = §5A§O- n%e .

By choosing e < (2n2)—1§5£50 we get X'C X 2 %%5é§0> 0, and
hence ¢ € M which proves that M is open. We conclude that
Q' is open. Consider the mapping £ which takes (g ’Ez ’ZY’GZ)

into (E ,Jgo ’ZD ) 02) e« Let T 'be the subset of the range
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of f defined by the conditions in (3.10). Q is the inverse
image of I’ under f . By the above reasoning we know that T
is open, and the continuity of f +then implies that (Q is cpen.

(Note that in lemma (4.5) it was tacitly assumed that Q' is open).
y

We now return to the form (3.5) of our observations., The
simultaneous density of the observations corresponding to a fixed
i is

-3H L 1 -1 1

(2m) ™% |z, | Rexp{-3(y; 1-9%8) "5, (v44-7°B)}

1(To4 ) £(J- 1 J
(om)~2 0 1)hl§YT2(J Vexp(-2 322~13”Y zla}

-%J (K-H) -J (X~ J K-H
(211) 3J (K-H) -J (K H)exp{ (262)"] o
jo1 kmp 0K
= C(w)exp{J%a'z‘7x _ 1o -1 _ g

~ R iy T R aadp Lag T EE zllgNY'Ilg

J K-H
“(202) 1 T 3 vfay}

J=1 k=1

where c(w) is independent of the observations. This density can
~J

be written on Darmois-Koopman form (Sverdrup (1965), p.20G) as

(H+1)% ap,
expir (u) + §_1fp(g) Uil g (x) (4.7)
where PO corresponds To E = 2’ Ty = EY = ’ 02 =1 and

(6) = 1ne (W) 5 7,(u) = I35 g (5
Tol\B/) = ~? ! T1 8/ = h§1 h“\&7

o W

v Uiq = Tiqpoeees Ty (8)

= i(s=1 _ ~ Ve
= 3lg - Dyq v Ui T Yigqeeresetes
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We see that

the functions Tp(%) have continuous second order

derivatives. (4.8)

Since the functions Tp(g) are bicontinuous and Q' is open,

we also conclude that

2
H+1) :
the region of convergence of Iexp§ r or U, (x)BP (x)
contains all the points of the range of (4.9)

{71(g),...,T } as inner points.

5 (w)
(H+1)°
The results (4.8) and (4.9) are exactly the assumptions (i) and
(ii) in Sverdrup (1965), appendix B . Assumption (iii) there

follows from lemma (4.%5) and the fact that plim w* = w , which
> o™ ~

is easy to check. Point (a) of theorem (4.6) follows from the

conciusion in Sverdrup (1965), p. 211,

Point (b) is now easy to prove. If w* € O, then g*
maximizes L 1in Q since it also maximizes L in the larger

region Q' . Thus we need only prove that 1im P (g* €Q)=1.
}ecdﬂg

Since ( is open, there is an € > 0O such that

v lw'-wll < e} € Q , and hence ?w(g* €Q) > P@(“ﬁ*‘%“ <€) .
By the Fisheréonsistency of w* , the right side ggd hence also
the left side of this inequality tend to 1 as I -+ . This

completes the proof of theorem (4.6) .
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4 B. The estimator gf expressed by the original obser-

H<H

vations. There exists a matrix F such that the columns of

E(T'E)—1E form an orthonormal basis for the space spanned by
the columns of T . By (3.1) and the orthogonality of the

matrix

where g is defined in subsection % A, we get

A
2 PR e
= ~ ! '
H%lal = || v 2 = B JTF B, ij * Vis¥iye (4.10)
i

Again due to orthonormality we have I = {E(T'T)-1E}’{g(g'g)'1g}

~ ~~N

= F'(E'T)_1E , or equivalently that I'T = FEF' . Hence

~J

~ lJrEYE ~ij NlJN r[\[lx%j_a . (4.11)

Il

We also have

%iama B = EaenTe@nd; - X148 - (4.12)
Combining (4.10), (4.11) and (4.12) we get
E13X13 = §i3§13 - EiJEE Elj = Xia~13_2£'13-13
+(28; )7 (18, )
= 1%y - D407

which by (4.4) may be written
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K-H

_ a2

The first column of G in subsection 3 B is J-%(1,...,1)' , and

by (3.4) we have

N

Y., =Jd

N
~i1 E.. ¢ (4014)

By lemma 3.3.1 on p. 52 in Anderson (1958) we have

J 24 4 (4.15)
T Y..Y'. = ¥ B..BY. . 4415
j2q~LISA T 52PN

J 1 J | ] 1 J A\ o N A
LY Y= %Y Y- Y. Y s B..B!.-JB..B!. ,
j=2 ij~i] j=1~1gm¢3 ~1i1~i1 j=1N13~13 i*~i
J A A A
= - - 1

The first column of H in subsection 3 C is I-%(1,...,1) s
and hence
I%

a1
X.1 = (IJ)E%CO . (4“17)

By repeating the arguments leading to (4.16) we also find

I
s Z.

A A A A
2o .1/%:'1. = J 21 (Eii.—g..)(gi.-g..)' . (4—018)
1

(4413), (4.16), (4.17) and (4.18) establishes the relations given

in (4.3) between canonical and original variables.
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The modified maximum likelihood estimators ¥ and Z¥

are now determined by the relation (3.6).

4 C ., By application of theorem 3.3.2 on p. 53 in

Anderson (1958) we find that Ex§ = y and Ex¥, = (1—1)1-122 .

We also have Eg* = E and Ecz* = 02 « Hence B* ,02* and gf

are unbiased estimators. An unbiased estimator of ZC is

I{(I~1)J}’1§§ - 3§ . It follows from elementary limit theorems

that even if we drop the normality assumptions, w¥ 1s a consistent

estimator in the sense that plim(p¥* , g%) = (8 , gz) as I »o,
plin 5§ = 5y as I(J-1) »< and plinm o°% = o as IJ(K-H) - .

In the one-way classification situation J=1 and 2¥ is not
A N =
defined. g% , with J=1 and Ei- = gi , 18 now the estimator

of §B+ on » and the estimators of B and 02 remain unchanged.

~Y

A
Rao (1965) studied the case J=1 and found that B; is a BIU

estimator of B based on gi and a BLU predictor of Ei‘

5 A, The observations are now

X; 5 = (B+Ci+Dij)tk * Uy g0 i:;:::::é f j=1,00e,d 3 (5.1)

; . N 2 N 2y .
where B is a constant, C; ~N(0,03) , D; 4 N,(0,03) end

2 A . . N
Uijk N1(O,0 ) . ALl Ci Dij and Uijk are 1ndepepdenb.
The design matrix is T = (t1,...ty) » and the matrix M,

in (3.3) reduces to the scalar
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The canonical form (3.7) becomes

1
7, ~ W {(1)%, o3} ,
Zi ~ N,](O; 0'%) » i=2,o¢',I ]
YijN N1(07 G%‘) ) 1=T,e0051 3 j=2:00-5J9 (5'2)
2 . .
V-- NN (O, (e) ) ) l=1,o.o,I ; J=1’000,J ;
le L k=1,-003K"1 .
where, analogous to (3.6),
0% = o% + ¢“m and c% = ch+o%+02m . (5.3)
(3.8) reduces to
2\-1 1.2 I »
de = A'exp( —(Zoz) {{21—(IJ) 8} +‘Zzzi]
~ ’ 1=
I g I J K (5.4)
-1
24=1 2 2v=~1 2
~(265)" 'y Tz ysi - (20%)7 'y £ T ovisddu
0 i g=p i=1 j=1 k=1 T

where A' is an analytic function of v = (B,o%,cg,cz) . The

parameter space is Q : ~®< B<®, c;% - o% (=J§G) >0,
a% —02m (=c%) > 0 and 62 >0 .
5 B. We want to test hypotheses concerning the parameters

B, »n, A and 02 , where
n = 05(0% + 0'2111)-1 and A= 0'12)/02 . (505)

In example 1 B # expresses interindividual variations, as measured

by og , in fractions of intraindividual variations and measure-

ment error variations, as measured by 0% + czm .
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A expresses intraindividual variations in fractions of measure~

ment error variations. ZFrom (5.3) and (5.5) we get

o% = (A + m)02 and c% = (Ju+1)(A+m)02 . (5.6)

For testing the hypotheses B < Bo » NS X A< AO and 02 < 0§

it is convenient to rewrite (5.4) by substituting (5.6) , adding
1 1

and subtracting (IT)?p, in the term {21—(IJ)§B}2 and dividing

and multiplying by the density dPO/dp corresponding to the

parameter point defined by B =B, , n =n, , A = Ao and 02 = 02 .

o)
After collecting all constant factors in one factor A and
reordering the remaining factors in a straightforward way, we
finally get
AP = Aexp( T,z,+7,[{z -(IJ)%B }2+u]
W 1712 1 0

~

* TB{ (Jxo+1 )"‘1 [{21"(1'3-)%50} 2+u] v

(5.7)
- — L
+ 1,1 (Tng+1)7T (2 4m) [ {z,~(13)%B,} 2+u]
+ (A0+m)-1v+w})dPo ,
where
5
(13)=(g-,) 1 1 ]
'1‘1 = Pl ’ T2 = Pl ( = ) ’
(J+1) (a+m)o 2(04m)o”  Jn +1 Ji+
(5.8)
_ 1 1 1 a1 1
Tz = 5 2 (A | A+m ) and Ty = 7(f§ - “5) ’
[e) 0} UO (s)
and
I o I J 5 I J K-1 o
U= $2,V= 3 $Y. end W= 3 3 =TV (5.9)
i=2 i=1 j=2 *J i=1 j=1 k=1 I
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The distributions P, given by (5.7) constitute a multiparameter
exponential family. We see that Po corresponds to the value
O of the exponential parameter T .

~Y

5 C. Testing the hypothesis 8 ¢ B, » This hypothesis

may be expressed equivalently as Ty <0 .+ Let

R = ({51—(IJ)%BO!2+ U, (Jx0+1)’1[131—(IJ)%BOF%U] +V,

(I 1) (B g+m)} 112~ (20)%0 13 407 + (& +m) " Tvaw)

According to Lehmann (1959), theorem 3 on p. 136, a UMP unbiased

level € test has the critical function o which is equal

B
to 1, y(z) or O as {21—(IJ)%BO} iss> s=or < c'(g),

with y and c¢' determined by
ET1=O{¢B(Z1,U,V,W)|5 =r} = e forall r . (5.10)

(In the referred theorem it is assumed that the domain of vari-
ation of T 1is a coavex space of dimension equal to the number
of components in T . This assumption is used only to establish
that the domain of variation of (71,T2,T3) on the boundary

{1 3 Ty = 0} contains a non-degenerate rectamgle, which is

satisfied here).

1 1 i i '
Since z1—(IJ)2BO g c'(;) <=> {z1—(IJ)zgo}/J{z1—(IJ)§BO}2+u E c"(£)
< % '% = it
= {21-(IJ) Bolu s c (5) , we have
1
: z,~(IJ)=p 2
[ 1 when =1 —2 (I-1)% > c(z)
u= ~
ch = < Y(E) ] _— e = =l (5.11)
KO otherwise
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Now U and %, are independent, U/cg ~ X§_1 and when

1
T, =0, ¥Z1-(IJ)2BO}/OZ ~ N1(o,1) . Hence, on the boundary we

1
i i 1
have T = {Z,-(1J)%B }(I-1)*0"% ~ T;_, , which is independent

of T . E is sufficient on the boundary, and according to Lehmann
(1959), theorem 1 on p. 132, R is also complete on the boundary.
Then according to a theorem of Basu  (1955) R and T are inde-
pendent on the boundary, and hence (5.10) is satisfied by the
choice y(r) =0 and c(g) = t1_6,1~1 « The one-dimensional

AN
2/
versions of (4.17) and (4.18) are Z, = (1J)®B.. and

1 A
=J 3 (B .—B..)2 and our result can therefore be expressed

i=1
as follows.

Theorem (5.12). A UMP unbiased level ¢ test for the hypothesis

s

™
A

BO is given by the critical function

13 (b =g

O
J-92 %

O otherwise,

1 when

[
= |/
®q |

\

: X 2 2, 2 .
5D . Desting the hypothesis oy < no(oD+o m). This
hypothesis may be expressed equivalently as x < K, OT as

- 1
T, 50 . Iet §= (2,,(In+1) 1[{21-(IJ)2BO}2+U] + T,

{(ang+1) (04w} T 2,-(10)%p 1 240) + (24m) 7V + W)
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Again according to Lehmann (1959), theorem 3 on p; 136, a TUMP
unbiased level € test has the critical function Pa which is

1
equal to 1, y(g) or 0O as {z1—(IJ)2BO}2+u is >, = or < c(g) ,

with vy and c' determined by

E_ =O{¢C(z,,U,v,w)|§=s}= e for all g . (5.13)
2 |
1
Since {Z,-(IJ)% }2 and V are functions of § , we have
-, :
{21—(IJ)§BO}2+u % c'(g) <=>u 2 c"(g) <=>u v % c'''(g)
and hence
{ 1 when =2 I(%:%) Jn1+1 > c(s) ,
CPC = J\ Y(,,SV) i = - 1 = ,

\‘O otherwise .

By (5.2), (5.6) and (5.9) U and V are independent,

0f @) (aom)o?} T~ od L, ama Vi )e?t T v gy

Therefore

U{(Ju+1)(A+m)o?}—1 I(J-1)
vi(a+m) o2} -1

U I(J-1) T p
v -1 TH+1 I-1,I(J-1) .

(5.14)

Thus the distribution of UV | is independent of T, on the
boundary, where =« = Ny o S 1is sufficient and complete on the
boundary, and using the theorem of Basu (1955) we conclude that
ov 1 ana S are independent on the boundary. We may put

y(g) = 0 since UV™' has a continuous distribution. (5.13)

then becomes



[ 11 _ -1 2
Pn=nOLUV {I(J 1)}{(1*1)(J%0+1)} > c(§)]§—§] e for all g ,
and by (5.14) and the independence of UV | and § when n=n_
we may choose c(g) = f1—e;I—1,I(J—1) for all g « The power
function is obtained from (5.14). The one-dimensional versions

A
of (4.18) and (4.16) imply U = J 2 (B B..)2 and
=1

I
V= 3 Z (% —B ) , and by substitution of these expressions

i=1 j=1
we arrive at the following result .

Theorem (5.15). A UMP unbiased level e test for the hypothesis

<K is given by the critical Function

0
I A N
/ J Z (bbio"bon)2 ( )
i=1 I(J-1 1
Twhen —f—g————"" T T Z F1-¢;1-1,1(3-1),
2 2 (by4-B54)
=1 J=1

] i
£Ooﬂmnmsm
The power function of the test is

Jn_+1
Ba() =1 - I(J—1)(3%?7‘ f1oe; 1-1,10-1))

5 E . Testing the hypothesis o7 < 4 0° . This hypothesis

A g

may be expressed equivalently as A A or as T3 <0 . By

o)
reasoning along the same lines as in the preceding two subsections

we get the following theorem.,
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e

4 2
~b;.) JK-1) 1
> J-1 A_m = 1=€3I(J=1),IJ(K-1) ,

1}
hO otherwise,

The power function of the test is

A _+m
= - = _ r
Bpld) = 1Fr(5q),15x-1)Tom T1-c;1(0-1),15(x-1))
5 Fe The hypothesis 02 < cg is equivalent to Ty <0 .
By the same kind of reasoning as above we find that a TUMP
unbiased level € test of this hypothesis rejects when

4

I J
2 ¥ gg°

2 . .~ o L.
O i1 j=1 2 Xq-_e;II(K-1) ° We easily find UMP unbiased

ij =

level € tests of the reversed hypotheses 8 > Bo y 2 Ho s

A xA  and 02 > cg « Their critical functions may be specified
by reversing the inequalities and replacing upper e=-points by
lower e=-points 1in the critical functions defined above. Each
test statistic considered in this section has the property of
being a strictly monotonic function of the boundary value which

defines the corresponding hypothesis. Thus one- and two-sided

confidence intervals may be obtained in an obvious way.,

5 G« One-way classgification. When J=1 , the canonical

observations are given by (3.12) with H=1 , ZB=0§ and Mw=m .
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Their density (with respect to p) is given by (5.4) with

o% = 0% + 02m and J=1 (Implying that the second last term in
the exponent drops out) . Theorem (5.12) is still valid, but
the theorems (5.15) and (5.16) are not applicable when J=1 .

However, by the now familiar way of reasoning we easily get the

A AN

P . _ 2 _ g2
following result, with Bi = Bi1 and Si = Si1 .

Theorem (5.17). A TUMP unbiased level € test for the hypothesis

— e S
—_———====

A< xo , where )\ = c%/o2 s 1s given by the critical function

r E (5,52
1 when =1 T !1%5%2 Xolm 2 foe;1-1,1(x-1)
PE= 1 iz'lSi
O otherwise,

\

The power function is

A _+m
=1 - e
(M) =1 = Ty 1-1) W Time; 1-1,1(k-1))

5 H. Invariance considerations. Consider the following

groups of transformations, G is the translations gZ1 = Z,+b ,

1

G2 the orthogonal transformations of Z2,...,ZI ’ G3

orthogonal transformations of Y12,...,YIJ (when J >1) , G4

1
the

the orthogonal transformations of the VT k's and G5 the scale

i3]
transformations which multiply all variables by the same positive
constant. The product of any subselt of these five groups is

itself a group. (Lehmann (1959), theorem 2 on p. 218).
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The problem of testing B g B, remains invariant under any
transformation in G' = G2 X G3 X G4 X G5 . The invariance
principle claims that a test should depend on the observations
only through [{21-GE%BO}U—%,UVF1,VWP1], which is a maximal
invariant with respect to G' . From (5.1%) we see that g is
invariant, recalling that y =0 and c¢ is constant. Since
@B is TUMP wunbiased it is alsc admissible, and hence there
exists no other invariant test which dominates @5 « It may be
shown that a UMP invariant test does not exist.

The problems of testing n < "o and A < Ao remain invariant
under any transformation in G = G1 X G2 X G3 X G4 X G5 .

(UV'1, v 1) is a maximal invariant, and hence ¢, and ¢ are
invariant. Being UMP unbiased tests they are admissible, and
hence admissible in the class of invariant tests. P and 97

aré not UMP invariant, but we shall see presently that they
possess a weaker optimum property. (#,A) is a maximal invariant
with respect to the group induced in the parameter space by G" .
Since A appears as a nulsance parameter in the problem of testing
no< g (against =« > uo) , it seems reasonable to restrict
attention to the class & of invariant level € tests whose

power functions depend only on % . ZLet &' be the class of level
€ test which are similar on the boundary «n = Ny o Every test

in & has constant power on the boundary, and so & c 3' . By
theorem (5.15) 9o € & » From the proof of theorem 3 on p. 136

in Lehmann (1959) it follows that ¢, is UMP in the larger class
', and hence it is UMP in ¢ , By the same kind of reasoning
we prove an analogous result for Pp o We summarize the results

as follows.
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eorem (5.18), For testing the hypothesis n < &  the test o
is TUMP in the class of invariant level ¢€ tests whose power
function depends only on * . For testing the hypothesis
A <A, the test ¢p 1is UMP in the class of invariant level

€ tests whose power function depends only on 4.

Finally we look at the one-way classification. The problem of
testing A < Xo remains invariant under any transformation in
G''' =G, X Gy X G X G . UW ' is a maximal invariant with
respect to G''' , and its distribution depends on W only through
A « Therefore every invariant test must be similar. %3 is in-
variant, and it is UMP in the class of similar tests, and hence

we get the following theorem.

Theorem (5,19)., For testing the hypothesis X < A, , op is

3} =

a UMP invariant level € test.

5 I, Herbach (1959) established the analogues of our theorems
(5.15) = (5.18) for the classical model II with one- and two-way
classification. Lehmann (1959) , pp.286-293, proves the theorems
(5.15) and (5.16) in the special case when T = (1,444,1) , which

is Jjust the classical model II with nested classification.
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6.__Testing hypotheses_concerning B _in the case of more thanl

e e e

6 A A simultaneous test procedure for linear functions of E‘~
H

Suppose we are interested in all linear functions %'g with a
belonging to the Q-dimensional space A gspanned by the columns
of AFXQ (Q £ H) » In other words we are interested in all linear
functions of A'8 . The natural thing to do is to look at the
corresponding transformations of the individual mean least squares
estimators , A'%i' s 1=1,eves1l y Wwhich constitute a sample from

a Q-variate normal population with mean vector equal to A'C .

A
The sample covariance matrix of the A'Ei.'s is
-1 I A A
(1_1) E (A"B‘-.-A'B-O)(A'B-.-A'B.I)' =

BB )@ o-Be)ia = o@D A

= (=174 1

1

N

the last equality following from (4.3) . According to Miller (1966),
Pe. 196, with probability 1 - €

1
3

e erard tofar, oo 1 o(3-1)(1-Q)7

~J

A

1

[Ty rfo(-1 " Tarsra)® , vl .

We state this result and the test procedure derived from it as a

theorem,
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Theorem (6,1). ILet A be a Q ~@imensional linear subspace of
R,

(a) With probability 1-¢

N -y L, - 1
a'peaBe. T UE oo 0 1 E-TE( e sga)%, va e A

(b) The probability of one or more false statements isaf most €

if we state that ' > a'g =~ for every g € A for which

-, L, - 1
a'Bes > a'8, + 11, ¢ 0, 1-qQ(I-) (3 ars70)*

Remark, The constant C(I,Q) = £, . Q(I-Q)~" increases
—_— 1-¢;Q,I-Q

strictly when Q increases. Thus, in order to obtain short
confidence intervals and sensitive tests in theorem (6.1), we should
restrict attention to the smallest linear space A which generate
all linear functions %'Q of interest. Here is a short proof of
the assertion. Let X1,X2,... and Y1,Y2,... be independent and

distributed according *o N1(O,1) .

I-Q
7 - 2 2 _ N
Put Zp o i§1Xi / i=1Yi , 1£Q<I. 27 o(I-Q/Q~Fy 14 >
and hence
P{zy o > C(LQ)} = P{Z o, > O(L,Q+1)} . (6.2)

(Their common value is ¢€). Since ZI,Q+1 > ZI,Q almost surely

we also have
P{z1 o > (L} < B{zg o, > C(LQ} . (6.3)

Comparison of (6.2)and (6.3) shows that C(I,Q+1) > C(I,Q) .
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(In the same manner we may prove the obvious thing that ¢(1,Q)

decreases when I increases) .

6 B« If we are interested only in the functions 3;21"“’

1 1
8! end 1t (I-1)"% < {£,__, Q(I-)" 1} ® ,
PE' ! 1-6 (ZP)—1 ;I_.l 1_€}Q’ I_Q

then the Bonferroni-intervals, (see Miller (1966), p. 67) ,

i

A ) -1 * 2
a8 € a'Bee + © [HI(T-1 2§§Z%p]£ ,  (6.4)

NPT e (2B) 7T T4

p=1,0009P 9

are shorter than those in ‘theorem (6.1) and have a simultaneous
confidence level not less +than 1-¢ , and the corresponding test
procedure is more sensitive than that in theorem (6.1) and has a

level not larger than ¢ .

6 C . We apply these results to example 1 C. Suppose we are
interested in the concentration of drug at a certain point of
time , t, . From (6.4) we get the level 1-¢ confidence interval

A A :
B1+B2to € B..1+B..2tO + t1_%€;1_1 o s Where

I A I A A A
*2 - (1o1)~1 - 2 - S
o} (I-1) {121(31.1 %..1) + 2ti§1C%i.1 B..1)(Bi.2 B..z)

i*27 72 .

From this interval we get an interval for dtoexp(B1+tho) « The

effect at time to of the preparation may be compared with that

o]

of another preparation with known mean value E of E by means

of (6.4) » At level € we state that B *Byt, is > or
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—

o o A A . . 0,.0 *
< B1+p2to as Boo1+B!'2to 1s > B1+52t0+t1"%€;1-10t01

-0 0] - ¥* A
or < B+t t1_%e;1_10t01 2 . By point (a) in theorem (6.1)

we obtain a Working-Hotelling kind of level 1-€ confidence band,

. A A - -1 % * + 0
By*Bot € Bev #Beust {f1_€;2,1_22(1—2) } of,7 * VE>0 .

Tse__Testing hypotheses_concerning Zo and Zp in_the_general case
8 o 8248

with more_than _one regressor.

7 A. Many hypotheses concerning Za and Tp may be
expressed in terms of L7 and Zy and tested by standard multi-
variate methods on basis of the transformed observations (3.5).

We give a few examples.

The hypothesis of no interindividuvual variations, H1:NC = g s
may be expressed equivalently as H1:§Z = Zy - This hypothesis may
be tested by the method in Anderson (1958), pp. 247-250. (It should
be noted that the proposed test is designed for the alternative
hypothesis K1:§Z 3 Iy o while we are only interested in the re-
stricted alternative K;:gz—gy is positive definit).

The hypothesis of no intraindividual variations, H2:§D =0,
may be expressed equivalently as HZ:EX = 02% « Let

AHXH be a nonsingular matrix such that gﬂwé' = 5 , and hence

]
AV, 5 ~ Ng(0,A5A") 5 iy .. T3 5=2,..4,7 . We see that the

hypothesis may be expressed as HZ:(AXij)k y, i=1,e0e51

J=2seee3d 3 k=1,4e.,H , are independent and distributed according
to H1(o,02) . A possible level € test consists in rejecting

I J H o I J K-H o
when ¥ £ % CAY..)y/ s oy ¥ VS

i=1 j=2 k=1 R0y goqiey LK s larger than



-1)H ) 1
fioe; T(3-1)H,15(k-g) (T~ DEIE-E)}7" .
The composite hypothesis H3:20=28 , §D=Z% , 02=c§ . where
§8 ’ g% and cg are known, may be expressed equivalently as

. = T© 0 2, o 2 2 2
Hy 3 %y =Jdgg+EZptolly s Zy=Zp+ oMy » 07 =0, . Wemay

test Hy at a level not larger than ¢ by testing at level e/3
each component hypothesis by the method described by Anderson (1959)
Ppe 264-267., In example 1 C, §8 , Z% and og may belong to an
old preparation with known pharmacokinetic properties and with
which the new preparation is to be compared.

In the final two subsections we shall consider hypotheses

which are amalogous to those in section 5.

7 Be Hypotheses concerning inter- and intraindividual

variations in a certain factor point. Suppose that in example 1 C

we are primarily interested in the concentration dtoexp(B1+B2to)
of drug at time to « It is then of interest to draw inference
concerning inter- and intraindividual variations of B1+B2’cO .

In terms of our general model we are now interested in a particular
linear function %'E . a'B is normally distributed with expectation

~ o
(a) = ! 7 4 1 1< ]
B =a 8 and variance g EC% +a'zsa where g LG% and
%'ZDE represent interindividual and intraindividual variations
~.
respectively. We now transform the vectors in the canonical form

(3.7) to scalar variables as follows.

zga)

2, ~ a2,

zﬁa) =

W

"7, ~ N1(O,o§(a)) , 122, .00, ,
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Y.(a.') = a'Y- . Y N (O 0'2 ) i=1 oao,I ; j=2,Ql0pJ 9
ij S Ay TP (a)’ ’

V.

2 . .
ljk~N1(O,G ) 9 l=1,oto,I H J:‘],..,,J H k=1,‘..’1(~.H’

2_| ZIV‘ 2— J ' 2'
where oy = a'Spa +o°2'la  and oy =Ja'fea + 3'zpg + oa'la .

These variables are exactly on the form (5.2), and hence the

=

hypotheses %'EC% < no(%'§£% + Ozé'EW%) and %'ZD% < Ao

A
j,K-1 alld m With %"b}- ~,K"‘H

and g'M.a in the test criterions in the theorems (5.15) - (5.16).

may be tested by replacing bi
The optimum properties, which these tests possess in the case
with one single regressor, are not carried over to the general

casSe.

7 C« The case when the covariance matrices are proportional

to known matrices. We consider first the case J=1 , which was

interpreted as one-way classification in subsection 2 B. We
2

assume that EB = o%ﬂ@ , Where y@ is a known matrix and op an
unknown positive constante.

In example 1 C +this assumption is appropriate when the
relative significance of- and interdependence between - tThe dif-
ferent sources of plasma concentration variations is assumed to
be the same for the preparation under consideration and a similar
preparation, which has been extensively studied in clinical +trials,
whereas the magnitude of the variations ﬁay be different for the
two preparations. In that example the case J=1 is of special
interest due to possible stochastic dependence between the results

of clinical trials performed on the same person at different points

of time. From the observational scheme with dJ=1 we can draw
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inference concerning 5B ¢ which expresses the variation of E
in the patient population and hence is the relevant parameter in
connection with large scale production of the preparation.

We now return to the general situation and consider the

observations on the form (3.12)¢ In terms of the parameters

\ = 0%/02 and IFX1 - (QB + CTZ%M)—‘IE-
their density is given by

I
e ' _ 24y=1 ' -1
dB, = A expi{T Z (20°) i§1£i(xEBﬁMW) Ri

IKH |
zv dp .
Sy kg ik

- (262)71

We will test the hypothesis A

A

ko « Letting PO be the

distribution corresponding to T = Q y A = 2o and 02 =1,
we can rewrite de in a way analogous to that described in sub-

section 5 B and get

I
- ' 2y~1 _
dIQ = Aexp[T Zq * (26°)" l§1gi{(x M%+MW) (A\M +MW) } z;
g 1 I K-H
+ {3-(26°) } >: z! (A %*W) Z;+ z1kz Ve k} ]dP .

The distributions on the boundary, A = ko , constitute a multipara-
meter exponential family, whose parameter space contains an open
rectangle. Then, according to Lehmann (1959), theorem 1 on p. 132,

a sufficient and complete statistic on the boundary is




- 38 =~

» I KH,
1 I =
1Zi(xOM®+MW) Z, +W , where W= T TV,

R = {%1 ’

™M

i
consider the alternative w,, defined by T =T, A = h1(>ﬁo) and
02 = o? . According to Sverdrup (1953), theorem 3, we have the

following result. Among all tests which have similar power € on

the boundary, a most powertful test against the alternative 21 has

critical funetion o, , which is 1 , y(r) or 0O as

N

Tz, + (20%) 11: 2O ) - ) g, + 13-(205)7T)

2l (A M)z +wl is >, = or< c'(zr), with y and

¢! determined by

E)\=>\O{cp%1 (Bys00es87 W) |R=z} =€ for all z. (7.1)
Define the statistic Fx by
1

I
lzzz (O MpHg,) ™ g +
FA.'] (’%2350095:[,]"”)- I (7'2)

= 2t (\ M+ y~1 Z;
jeot &

After simple rearrangements in the test criterion we find that

o) is 1, y(r) or O as F is <, = or> c(r) ,

where y and c¢ is determined by (7.1) . ZoseessBy » W are
independent, and on the boundary we have o"1gi ~ H(g’koﬂBﬁ%W)

i=2,¢4e,1 and 0—2W ~ X%(K-H) . Hence, by dividing numerator

and denominator in (7.2) by 02 , we see that the distribution of



FK is independent of w on the boundary. Then by the earlier

1

mentioned result of Basu (1955), F,  is independent of R on

1
the boundary. Since F has a continuous distribution, we can

A
1
put v(z) =0 . Then (7.1) becomes P,_, {F, < c(R)|B=z! =¢

}\“_‘}\O )\1
for all r , which by independence reduces to

PO(F c) =c¢ , ¢ is a constant. (7.3)

UA

Ay

The test depends on the alternative only through the parameter
x1, and we therefore write Py instead of Py o By dividing
nunerator and denominator in (7.2) by o2 we s;; that the power
function Bk depends on  only through X .

1
According to Lehmann (1959), lemma 1 on p. 126, ¢, 1is most

1
powerful unbiased against the alternative k=h1 if it is a level
¢ test. We shall prove that B, (\) increases with increasing

1

A , which ensures that has level € . By theorem 3 on p. 341

©®
M

in Anderson (1958) there exists a (nonsingular) matrix QH"

such that IMpL' = P = diag(pyseee,py) and IMI' =L . g0

for any A' > O we have

: ( )
% 2! (A" Mg+l 7. =
1=2 ~ i

12, ) ' [L( Mg )L ] 1(Lz )

IIMH

I H I
-1
= % (LZ.)'(A\'P+I)” '(Lz.) = z (\'p +1) ¥ (LZ )
e e R
Now Lz, ~ NH{Q ,oz(ngg)}, i=2,44s,1 , and hence

we may write




- 40 -

H

) _ H _
21 O Hgelh) 'z, =% 0pr) gy e) "R o? (7.4)
1=2" =

where Rh ~ x§_1 s h=1,.44,H ., In the expression on the right

side of (7.2) we substitute (7.4) with A' = x1 in the numerator

and with A' = A in the denominator, put Q = Ro°W ' and get

H -
LZ, 02+1) Oyp+1) 1q,+1
F = T = g(Q1:0-09QH; X) .

A -
! 2 0p+1) (O gpy+1) 1g,+1
=1

The power function may be written f, (A) = Pr{g(Q1,...,QH;X) < c}.
] I

Since the distribution of (Q1,...,QH) is independent of X\ , we
need only prove that g(Q1,...,QH;k) decreases with increasing
A in order to establish that BX is an increasing functiocn of

1
A o« By differentiation of the above expression we find

H H
-1 il
{ Oy +1) (W gpy+1) Qh+1}k§1pk(x1pk+1> Qe

de/or = 2=
denominator
H -1 H
T Py Py +1)7 Q= oy +1) (W Py +1)Qp +1)
h=1 k=1
denominator

The denominator is a squared number and hence positive. Straight-

forward calculations show that the numerator is equal to
2 -1
(ko-kggk(pk-ph) [Py +1) (AP +1) AP+ 1) (A Py +1)} 7 QQ

H
+ = 10gpe) T (gt Q. -
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A1l Qh are positive, and by the positive definiteness of P also
all p, are positive. We conclude that the numerator in dg/oN
is negative, and so 0?g/d)A is negative. We summarize these

results as follows.

Theorem (7.5)s The most powerful unbiased level e +test for the

hypothesis A < xo , where X = o%/o2 », against the alternatives

A= k1(> AO) is given by the critical function

1 when F < C
k1 =
P, T .
1 0 otherwise

vhere F, is defined by (7¢2) and c¢ is determined by (7.3) «
1

Invariance considerations. The problem of testing H 1is

~o

invariant under translations gg1 = g1+a s orthogonal transformations
of all Vik's and common change of scale of all variables.
(W_122,...,W-1ZH) is a maximal invariant under the group of these
transformations. Its distribution depends only on X\ , and hence

any invariant test must be similar. We see that the test ¢x1
depends on the observations only through the maximal invariant,

and hence it is invariant. ©Since $k1 is most powerful against

the alternatives k=x1 among similar level ¢ tests, it is also
most powerful against these alternatives in the smaller class of
invariant level € tests. We easily show that ¢x1 is a maximin
test of the hypothesis ) < Ao against X\ 2 x1 « The problem
remains invariant under the group of transformations mentioned aboves
The conditions of the Hunt-Stein theorem are satisfied, (Lehmann

(1959), theorem 2 on p. 336), and hence there exists an invariant

maximin test. (Any almost invariant test is equivalent with an
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invariant test in this case according to Lehmann (1959), theorenm 4

on pe. 225). Assume ¢ is an invariant maximin test. Then

inf By < inf B ¥ < B, (x ) = inf B By () .
)\2?\1 ~ k-)\1 s 1 >N ’ 1

The second inequality is due to the fact that P, is most power-
ful invariant test against the alternatives x=x1 , and the last

inequality follows from the monotonicity of Bk .
1
We have proved

Theorem (7.6). The test wx1 of the theorem (7.5) is most power-

ful among invariant lecvel € test for the hypothesis ) < Xo
against the alternatives k=k1 . It is a maximin test against

the alternatives X > k1 .

We finally express the test statistic by the original variables.

For an arbitrary matrix QFXH = (Mh{) we have

I I H H
Y Z'MZ. = % v z 5..7.
jopinel 122 h=1 k=1th ih 1k_ (7.7)
H H I
= Z M Z Z..%..
i A N I
By (4.18), with J=1 and B,. = B; ,we have lzzzlhzlk
I A A ) A A ind oy subsbitution in (7.7) _
= 121(Bih-B‘h (Bik~B.k), and by substitution in (7.7) we get
I I A A FASAN
' - - ' -
I = T (BE ) BG R - (7.8)




- 4% =

By (4.13) we have

I 2
W o= % 57 , (7.9)
i=1
where S? is the sum of squared residuals in regression no. i .

We now substitute (7.8) and (7.9) in (7.2) and get

I A A -1 I 2
z (B;=B+ )" O Mp+g,)™ (B —B ) + T 8%

P, = &7 saell
1 7AY _A ] "‘1 - 2
2 BB ) Ot B,-B.) + 255

The problem of testing X < Ao is essentially the same as that
studied by Spjetvoll (1967) in connection with unbalanced classical
model II . He found results analogous to our theorems {(7.5) and
(7.6).

Now congsider the case J > 1 , nested classification, when
Lo = oggc and I, = G%MD » where M, and M, are known matrices.
The above technique may be applied without essential changes if the
variance ratio og/c% is known a priori and we want to test the
hypothesis 0% <A 02 . TVhen cc/cD is unknown, we can find no

optimal test procedures, but of course we can apply the tests derived

in subsection T B ,

B8a__A_sketch of some further extensions of the_ theory.

e R S e e e e ——— .._.-.-—--—
e EEEEEEEEEEEE T

8 A, In the present paper we have mainly been concerned
with inference problems which possess an (in some sense) optimal
solutions, Numerous estimation and test problems which are not

treated here may be attacked by well Imown multivariate techniques.




We mention in particular the problem of comparing several samples,
(e«g. corresponding to different preparations in example {1 C).
Like the classical model II , the present model may be extended

to higher levels of nesting, and the results in this paper may

be generalized correspondingly.
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