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ABSTRACT 

A multiple testprocedure for comparison of any set of two-way 

contingency tables is proposed. The comparison-method is a 

generalization of a method for independent tables presented 

earlier by the author in [2]. 
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1. INTRODUCTION 

In r2Jthe author proposed several methods for comparing independent 

-Q.·10-way contingency tables by use of measures of association. In 

this paper we consider comparison of two-way tables generally, 

allowing dependence, and generalize a method given in [2] to 

this case. Further we define precisely the notion of two inde-

pendent contingency taoles, and show that this definition is 

consistent with the one formulated in [2] and [3]. At last a 

very simple proof of theorem 3 in [2 Jcfor general linear fmlCtions 

is presented, and we state some more properties of that method. 

Before we consider the general situation with several independent 

of dependent contingency tables, we first look at a general model 

for two contingency tables and present the main theorem. 

2. A MULTINOMI~ J.VIODEL FOR TWO CONTTiifGENCY TABLES. THE -
IviAIN THEOREH. 

The situation with two tables can ·be described as a multinomial 

model with two dependent sequences as follows. 

j , r. events can occur with probabilities 
J 

for j=1,2 • 

P1j'"""'Pr .• ,j 
J 

rj 
L: p- .. = 1 • Let 

. i:~=1 lJ 

vve assume all :pij positive. Let kn ·be the 

In sequence 

total number of 

independent trials, and let nj be the total number of trials 

in sequence j 
' for j=1,2 Let n=n1+n2 • It is assumed that 

n 2: kn • I.e. some of the trials may give observations in ·both 

sequences. 
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Let I denote this set of trials and m=#(I) • Then 

kn= m+(n1-m) + (n2-m) = n-m • For the trials in I we let 

be the probability o:f class i in sequence 1 and class j 

1-lij 

in 

sequence 2, for i=1, ••• ,r1 and j=1, ••• ,r2 • N.. is the lJ 
mD.moer of observations in cell i of sequence j , for j=1, 2 

r. 
and i=1 , ••• , r j Then n. = L:J N .. • The relative frequences 

J i=1 lJ 

are denoted by q .. = N .. /n. 
lJ lJ J • Let 1T = m/n 

' n1= n1/n and 

n2= n2/n • n,rr1 ,n2 are considered as constants c:.s n tends to 

infinity, and TT ;::::: 0 , 1r1>0 and TI;i> 0 • 

We use the following notations: 

p1 = (p 11 ' • • • 'Pr 1 ) ·' 
1 

p2 = (p12'''''Pr 2)' 
2 

q1 = ( q11 ' • • • 'qr 1 ) ' 
1 

q2 = ( q 1 2 ' • • • ' qr 2 2 ) ' 

q = ( ~~ ), p 1' ) =(p~ . 

Let L:1 = { cr ij l be the covariance matrix of J;;; Ci'f.i and let 

2.:2 = { T ij} be the covariance matrix of •,/n2q2 .. Then 

a .. =f pi1(1-Pi1) for i=j 

lJ '· for i=fj -pi1pj1 

Jp . , ( 1-P . 2 ) for i=j 
1.:::. l 

'f.·= l lJ ·. for i=fj -p. ,.,p "2 1<::. J 
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Ft:trther we let A = f p .. } where 
~J 

for 

We see that 

i=1 , ••• , r 1 ; j =1 , ••• , r 2 • 

• 

The first result concerns the simultaneous asymptotic distribution 

of 
& ;n1q1- iT1P'1~ 

l_TT2q2 - TT2P?_j 

LE.Ml>'I.A 1 • 

vrhere 

N:f'" (0,2:) denotes the r-dimensional normal distribution with 

mean zero and covariance matrix 2: • 

Proof. 

Let N. = (N1 . , ••• , N . ) ' 
~ ~ r.~ 

~ 

for i=1,2 • 

Let us first consider the trials from the set I , and define 

xij ' yij as follows: 

( 1 ) 

if event no. j_ 

othervvise 

in sequence 1 occur in trial no.j 
x .. 
~J 

Y .. 
~J 

if event no.i 
otherwise 

in sequence 2 occur in trial no.j 
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The m observations in I can be formulated as 

Let 

u . = (X1 . ' ••• 'X . ' y1 . ' ••• 'y . ) I 
J J r1J J r2J 

for ;p:.1, ••• ,m. 

m 
r-11. 1 = 2:: x .. 

j=1 lJ 
and 

m 
= l: Y .. 

-i-1 lJ 
t.l-

H1 = ( M11 ' ••• ' ~ 1 ) I ' 

1 

M2 = (M12 , ••• ,1\. 2 )' • u1 , ••• ,um are independent and ic1enti-
2 

cally distributed with mean p and covariance matrix 

- Al r = i 2::1 
I 

i A I 2::~ 

From the multivariate central limit theorem we then have that 

as m~ co • (2) 

For the rest of the trials in sequence 1 we let 

L. A 

ll 
be the num-ber of observations in cell i • 

For the rest t' o_ the trials in sequence 2 we let Li2 be n'W.11ber 

of observations in cell i • Let 

L1 = (L11, ••• ,L_~ .. ) 
.1. ,, ' l 

J 

L2 = (L1 2' • • • 'Lr 2, 2) 

.As sur:.1e nov.r that for i=1,2 such that n 1 n 1 -+ co as 
1 ' 2 

n-+co. 

Vve know that 
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as 11 t ~ CD 
1 

(3) 

and as n' -?o:> 
2 

(4) 

We see that 

for i=1,2 • 
. I 

TT •• n. L. xr:-Let = .Jll' l l <n+ -pi) l n. 
l 

for i=1,2 

M. · rr .• m 
and y!}- = {lll ...,2;_ (..2:. 

J.. n. m 

tnrr. ' :r- = 'IJ---2=. • 
J.. n. 

J.. 

J.. 

r n. 
'1/- J.. 

,. . -rr 
n .• (2-) 

J.. ,.. 
J.. 

from (3) and (4) • 

xn) 
Let z~ = (~ 

Let 

and 

a = n 

and 

J.. 

-p.) 
J.. 

for i=1,2 • 

. L. ~ 

• "J rr . -r?Jn T' (~ -p . ) ~ N ( 0' (,. . -rr) L: . ) 
J.. J.. n. 1 r. J.. J.. 

I~) 
z~ =\yn . 

2 

J.. J.. 

Then 

z~~ and z~ are independent for 
all n • 

. :m 2 ) i . Then a ~1 
n rr n 2 

8l'ld b ~ 1 
n 

Hence Z11
2 ~ N ( o rr r ) . 

r ' 
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A 

Let now A == ( 1 ) be a i'ixed rx1 vector 
A2 

A1 is r 1x1 and A2 is r 2x1 • Then 

''(Zn + zn) =, 'Zn + ~ rzn = ~ 'Xn ~ 'Xn , 'Zn 
h 1 2 ~ 1 " 2 ~1 1 + "2 2 + ~ 2 

Let and Then v~ ~ ~ ' v.f are independent 

and 

Hence 

where 

V~ ~ N(O,A.1(n 1 -~)L 1 A 1 ) 

~ ~ N(O?A.2(n2-TI)L2A. 2 ) 

[i) 
vP ~ N ( o? x 'nrA.) • 

A 1 (Z~ + Z~) ~ N(O,a 2 ) 

2 
a = A1(,.1-TI)L1A_i + A.2(n2-TT)L2t.. 2 + A'TTfA • 

We see that 

= A.'Lf.. • 

This gives 

We have now proved (1) when TT· > rr 
l 

f'o:r i=1?2. 

If one TT· or both are equal to 1T , we can put one or both of 
l 

(X~ , X~) equal to zero and the result follows. 

Let 1'-'I. . lJ be the number of observations from I 

Q.E.D. 

that falls 

in cell i of sequence 1 ru1d cell j of sequence 2~ and let 

m .. = N .. /m· lJ lJ Further we assume that f is a function in r 

variables with continuous 1)artial derivatives. 
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Let 

fi (p) 
(Jf 

= bxi jx=:p 
[\ 

f. 
1. 

= fi(q) 

"' .L, 

fp = L:' pi 1fi (p) 1 i=1 

r 
fp2 = L:2 

Pi2fi+r1 
(p) 

i=1 

r1 /\ 

fq1 = 2:: q.1f. 
i=1 1. 1. 

-,--; A 

fq2 
.L2 

q.2f. = L: 
i=1 1. J..+:r • 1 

Further we define 

(5) 

Vfe will from now on use the notations 

p. = (p 1 i' • • • 'Pr . i) i=1,2 
1. 

1. 

q. = (q1i'""''qr.i) i=1,2 
1. 

1. 

p = (p1 'p2) and q == (q1,q2) 

Le:mma 1 states that 

(6) 

We have the following fm1damen tal result. 
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THEOREr-1 1 • 

1 ) 

2) 

whe:ce 

Proof. 

If af > 0 then 

.JnCfCg)- f(p)) 14 N(o, 1) 
af 

AJn'(f(gA - f(p)) ~ N(O, 1) 

af 

A2 1 r 1 A -;- 2 1 r 2 n 2 
aJ..~ =-- ~ ql.1(f.-fq1) +-- .~ ql.2(Il.+r (q)- fq2) 

n1 i=1 1 n2 l=1 1 

Let g be a function in :c variables defined by 

Then from lemma 1 and Rao, [5],p.)21 we have that 

where 

r 
~ 

i=1 

~= ! ~ .. } 
lJ 

r 
~ ~-. t& 1 ·. • ~ I 

j=1 lJ o.xi pc=e oxj x=e 

(7) 

(8) 

(9) 
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Now from the definition of g , 

and 

Hence 
' £) 

~:n· ( f ( q ) - f ( p ) ) ~ N ( 0 , cr ~ ) 

for i=1, ••• ,r1 and 

This gives 

~ --<' (- )1 
o~r · -.1. . g TI 

Ai lx=e 1 1 
and 

Hence 
2 r1 r1 1 2 

crg = 2:: 2:: n1cr ..• f. (p )f. (p)(- ) 
i=1 j=1 lJ l J TT1 

r 
+ L: 

i=r +1 
1 

~ ox. 
l 

of =-. by. 
l 

1 for i=r1 +1, ••• ,r. 
TT2 

Hence cr~ = cr~ defined ·by (5) and 1 ) is proved. 

2) follows from the fact that ~1~ 
2 of crf • 

is a consistent esti~mator 

Q.E.D. 
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The next chapter presents first the general situation with k 

contingency tables. Then the comparison of two tables is 

considered, and we apply theorem 1 to comparison of measures of 

association. At last comparison of 1':: taoles is discussed, and 

a method generalizing tho multiple normal-tests in [2] is 

presented. 

3. MULTIPLE GN-TESTS FOR DIFFERENCES IN MEASURES OF ASSOCIATION. 

3a) Assumptions and notations. 

k two-way contingency ta-bles are considered. The number of 

row- and column-classes in taole no. i 

w. , for 
l i=1 ' ••• 'k • Let 

cell-probabilities in table 

r.=v .• w .• 
l 1. l 

h vri th 

are respectively v. 
l 

Let 

p. "h > 0 l.J 

denote the 

and 

vh vh 
r, r, p . J"h = 1 

i=1 j=1 1. 
for h=1, ••• ,k • 

qijh is the relative frequency in cell (i,j) of table h • 

and 

Let nh be the number of observations in table h • We let n = 

k 
E nh and nh = ~/n • For each pair (i,j) of tables we let 

h=1 
I. . ·oe the set of trials that gives observations in both table l.J 
i and ta·ble j , and let nij = #(Iij) and TT·. = n .. /n • l.J l.J 

the trials in Ir-·-
rt is the proba-bility of falling 

' 1-L .•• l 
t-. l-Ji.l. 

(i' j) of ta.ble r and cell (h,l) of table t • All 1T .. lJ 
1Th are considered as constants as n tends to infinity. 

11 . . > 0 and '!ih > 0 • l.J 

Let be the absolute frequency from the set 

For 

in cell 

and 

that 

falls in cell (i, j) of taDle r ancl ceJl (h,l) of table t • The 

relative frequencies are clenoted by 
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The following notations are used 

ph= (p11h, ••• ,pvhwh,h) for h=1, ••• ,k 

qh = (q11h'''''qvhwh,h) for h=1, ••• ,k • 

p = (p1, ••• ,pk) 

q = (q1, ••• ,qk) • 

mrt ( rt rt ) = m1111 ' • • • 'mv w v vJ • 
r r' t t 

m = fmrtl for r=1, ••• ,k t=1' ••• ,k • r<t , 
rt ~t ~~ 

~ = (~~111'''''~~vw v w) 

• 

t r r' t t 
~ = {pr} for r=1, ••• ,k, t=1, ••• ,k; r < t 

Let d ·be the chosen measure of association with continuous 

partial derivatives as function of the cell-pro·babili ties, For 

• 

a presentation of measures of association we refer to the author's 

reviev·l in [ 1 J , part 1 and the original paper ( 4 J by Goodman 

and Kruskal • 

Let d. 
l 

be the measure d in ta·ble i • Then di is a function 

of r. variables with continuous partial derivatives. I.e. 
l A 

d.=d. (p.) • A consistent estimator of d. is d.=d. (q.) • 
l l l l l l l 

Let 

2=~v wh 2 
( ~ -dh*) crh L. P · · h C.t ~ ·n 

i=1 j=1 lJ .LJ 
' h=1 ' .... 'k • ( 10) 

where 

and dh* = ~ 3J. L:""- 2_; d i J. h 
i=1 j=1 



- 12 -

A consistent estimator of is 

A2 v. wl 1\ ~ 2 ,, ~n ~l (d _ ~) 
crh = L.. L.. q · "h · "h n i=1 j =1 lJ lJ 

where 

and 

Let further 

vh wh 1\ 
I: I: d. "hq. "h • 

i=1 j=1 lJ lJ 

( 11 ) 

Prt = • ( 12) 

It is later seen that 
rrrt 

·J*r ITt Prt 
Ca.J.'l be considered as the 

asynwtotic covariance of 

A consistent estimator of is 

1\ 
Prt = 

vr ""r vt wt rt ":. /\d 1\ 1\ 
I: L I: I: m. ·:rJJa. · hlt- d* d*t • 

i=1 j=1 h=1 1=1 lJ · lJr r 
( 13) 

We will now first consider the case k=2 , i.e. comparison of 

two measures d1 and d2 • 

3 b). Comparison of two tables. 

We simplify our notation for this case, letting 
1\ 

p=p12 , p=p12 ' 
12 12 12 , 11 ::!,12 I I d 

mijhl= mijhl ' m=m ' 1-lijhl ~r • = 12 an n12~(I) ' ~=n12" 

We see that the situation is exactly as in section 2. 

The result for comparing d1 and d2 can now be stated. 
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THEOREM 2. 

Let 2 a > 0 • 

Then -
1 ) 

( 14) 

2) 
( 15) 

a 

where 
2TT A 

p • ( 16) 

Proof. 

Theorem 1 is applied by letting 

In order to facilitate the notation we replace (i,j) by a single 

letter i , such that pijh is replaced by pih, i=1, ••• ,rh 

and dijh is replaced by dih , i=1, ••• ,rh. Similar changes for 
1\ 

qijh and dijh , and ~ ijhl is replaced by 1-lij • We find 

Hence ?p1 = df and fp 2 = -d~ • 

In this case we get from (5) 

i=1, ••• ,r1 

i=r1+1, ••• ,r 

r1 2 1 r2 2 
L p.1(d.1-d*1) +- L p.2(d.2-d2*) . 1 l l rr2 . 1 l l 

l= l= 

• 
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2 1 2 + 1 cr2 - .?.IL 
r r 2 

Hence ( r;1 r;2 ~i1di1dj2 - drd~) crf = 'IT cr 1 = cr • 
1 '!T2 2 iT1TT2 i=1 j=1 

Result 1 ) follows now from theorem 1. 

Result 2) is proved by seeing that 
l\2 p 2 cr -~ cr • 

Q.E.D. 

Before we look at some in~ortant special cases, we will discuss 

the notion of independence between two contingency tables. 

For this sa.lce we define the set of varia.bles x = tx .. } lJ 

for and the set Y= {Y .. } lJ 

for i=1, ••• ,v2 and j=1, ••• ,w2 as follows • 

if observation falls in cell (i, j) of ta-ble 1 
otherwise ( 17) 

Y .. =f1 
l.J ~o 

if o·bservation falls i:.."l cell (i, j) of table 2 
otherwise (18) 

The situation is that we have n 12 independent observations 

(xk,~c) , k=1, ••• ,n12 of (X,Y) , then n1-n12 independent 

observations (xk,o) , k=n12+1, ••• ,n2 of (X,O) and 

n 2-n12 independent observations (0, ~c) , k=n1 +1, ••• ,n-n12 

of (O,Y) • A general formulation of the trials is then 

uk = (U~, U~) ; k=1, ••• ,l:n (kn =n-n12 ) , where 

uk rxk for k s 111 = -i 

1 lo for k > n_1 

and 
1~ =_[Yk for k< n12 and k > n1 u"'· 2 to otherwise • 
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The following natural definition of independent tables is then: 

Definition. Table 1 a:n.d 2 are said to ·oe independent if u;c 
and are independent for k=1, ••• ,kn. 

Our main goal is to show that this definition is equivalent with 

q1 and q2 stochastically independent. We first need some 

simple results to prove this. 

Since the observations are independent we see that if n12= 0 

then the tables are independent. 

First notice that X and Y are independent if and only if 

(Xij'Yh1 ) are independent for all pairs (i,j) and (h,l) • 

Let us now assume n 12 > 0 • Then we have the following 

results. 

LEMiviA 2. 

Table 1 and 2 are independent <=> l-1-ijhl = pij 1ph12 'f(i,j,h,l) • 

Proof, 

Since n12 > 0 , ta.ble 1 and 2 are independent if and only if 

X and Y are independent which is equivalent with (Xij'Yh1 ) 

being independent for all (i,j,h,l) , and this again is equivalent 

with ~ijhl = P(Xij=1 nYhl =1) = P(Xij=1 )P(Yhl =1) = pij 1 .p1112 • 

From theorem 2 we see that Ti. 
tJ''IT 1 'IT~ 

p can ·be considered as 

( /- I\ ·- A ) the asymptotic covariance of \ n'1 d1 , '\in2d2 

and immediately from lemma 2 we get 

Table 1 and 2 independent => p = 0 • 

Q.E.D. 

( 19) 
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Let v . . = ~12Jf.. 
~J k=1 ~J 

W == (W 11 ' • • • 'Wv \v ) 
2 2 

~12yl:=. 
wij = k=1 ~J 

V and w are independent <=> v .. 
~J 

and are independent 

for all pairs (i,j) and (h,l). 

Proof. 

that 

=> Holds generally • 

<= If Vij and Whl are independent then 

0 = cov (Vij Whl) = n12 (~ijhl-pij 1 phl2 ) , implying 

x .. 
~J 

and are independent. Hence X and y are 

indpendent, giving that xk and are independent for k=1,. ,n12 • 

• 

• It is easily 

shown that X0 and Y0 are independent. Hence, V and W are 

independent. Q.E.D. 

We are now able to prove that definition of independence used 

in [2] and [3] is consistent with the natural definition given 

earlier. 

THEORID1 3. Table 1 and 2 are independent 

and are stochastically independent. 
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Proof. 

1) n12 = 0. Obvious, 

2) n 12 > 0 • 

1 
q i j 1 = n:1 c v . . + z . . ) 

lJ lJ where z .. 
lJ 

k 
q . -2 = 1 (W .. +T .. ) where T .. = L:n 
lJ n 2 lJ lJ lJ k=n1 +1 

Z = (Z11'''''z ) T- (T T ) v1w1 , - 11''''' v w 
2 2 

<= All pairs (qij 1 ,qh12 ) are independent. Hence 

0 = cov (V .. + Z .. ,Whl- + T .. ) = cov (V .. ,Whl) lJ lJ lJ lJ 

= n12(~ijhl-pij1phl2) 

From lemma 2 we get that the tables are independent. 

=;::.. : X andY are independent, and therefore (X~j'Y~1 ) are 

independent for all (i,j,h,l) and k=1, ••• ,n12 • 

Let 1 n12 X0 = (X. . , , •• , X . . ) 
lJ lJ 

1 n12 
yo= (Yhl'''''yhl ). Xo and yo 

are independent and therefore vij and whl are independent for 

all (i, j) and (h ,1) • From lemma 3 we know then that V and W 

are independent. 

q1 = ~1 (V + Z) and q2 = ~2 (W + T) • 

(V, Z) are independent oi' (W, T) and hence q1 and q2 are 

independent. Q.E.D. 

We now like to look into some important special cases, and apply 

theorem 2 on them. 

First we consider the independence case, 
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LEMMA 4. Table 1 and 2 independent. 

~ 
~ N(0,1) 

2 
cr • 

This is the same result as lemma 1 in [2] for two tables. 

Another case that occur frequently is the situation where 

all the trials give observations in both ta·bles. 

Q.E.D. 

LEr1J:1.A 5. Assume that n1=n2=n12 • I.e. the set I consists of all 

Then 

Proof. 

the trials. 

~r;;;-2 <~1-a2- (d1-d2)) 

1\2 1\2 1\ i (cr1 + cr 2 - 2p) 

g) 
~N(0,1). 

The estimated asymptotic variance in this case is 
A2 ~A2 ~~2 1\ cr = ~1 + 20 2 - 4p , and the result follows. 

Another common case is considered in the next result. 

Q.E.D. 
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LEMMA 6. 

Assume that n1=n12< n2 • I.e. all the observations in one 

table come from the set I • Then 

N(0,1). 

Proof. Obvious. 

From theorem 2 we can propose the following test f'or comparing 

d1 and d2 . • 

State d. >d. 
~ J 

if 

1\ /\ /\ : 

(di - d.) > x (~ )cr /'vll' • J 2 

Here x(e) is the upper e -fractile 

It is easily seen that 

lim P (f'alse statement) 
n~ co 

if 

if 

(20) 

in the N(0,1)-distribution. 

(21) 

A confidence interval for the difference d1-d2 with asymptotic 

confidence level equal to 1 - a is given by 

(22) 

Let us now consider a case that often will appear, namely that 

one of the factors in ·both ta.bles, say the column-factors , are 

the same. Then the two other factors will be two possible 

explaining factor to the primary column factor. 
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2 and 2 will be just as before, -but there will be a different cr1 cr2 

expression for p ' 
since 1-lijhl = 0 for j + 1 • 

Hence 

v1 w v2 
p = I: I: I: l-lijhjdij1dhj2 - d* d* 

i=1 j=1 h==1 1 2 

/\ v1 w v2 1\ 

{il1j 2 and p = I: I: I: mijhjdij1 - d* d* • w=w1 =w2 • 1 2 
, • 

i=1 j=1 h=1 

Of course in this case -.. ve ca.'1Ilot have independence if n 12 > 0 _, 

fo:r j + 1 

At last in this section we go back to the case where n 1=n2=n12 • 

In this case the asymptotic variance of ~n.-~--;_ca 1 -~2 ) was found 

to be 

After some calculations vre find 

= I: I: I: I: 1-l· "ll[(d-: "1-dh-l2) - (d* -d* )l2 
i j h 1 lJ 1 .LJ 1 2 -' 

Here all o-bservations in both tables are results of the same 

trials, so we can consider the two-tables as one four-way 

(possibly three-way) table. If we let D = d1-d2 , we see that 

2 
rr = I: I: r: I: 1-l· "hl I~ oD - (I: I: 1-l· "hl ...l1L )1 2 • (23) 

i j h l lJ r:~1 ijhl i, j h,l lJ bl-lijhl 'j 
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In the next section we will consider the general case, 

comparison of several tables. The multiple N-tests for 

differences proposed in [2] for independent t~bles will be 

generalized to this case. 

3 c). Comparison of k tables. 

The situation is given in 3 a). 

The result we need is a direct consequence of theorem 2. 

THEOREM 4. 

Let 2 
aij > 0 • 

1\ 1\ 
,_, [d.-d .-(d.-d.)] .~ 

'1/n 1 J 1 J '!::',. X - N(O, 1) 
a .. 
lJ 

where A2 A2 
/\2 ai cr. 2n .. 1\ 

+.:..J.. ....:.u 0·. =- p .. • lJ TTi iTj iT·iT· lJ l J 

Proof. 
n. n. n .. 

Let n' = n. + nj and "-1 
l 

A.2 =~ and A = ntJ l =nr , n 

Then from theorem 2 

T = 
r• A A 
~n' (d.-d.-(d.-d.)) 

l J l J N(O, 1) 

Now 8l'ld 

iT .. 
A = lJ , hence 

n.+n. 
l J 

• 
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-----AT (/\ 1\ ( ) ) 
(IT·+TI·)-1 d.-d.- d.-d. T _ 1 'J 1 J 1 J 

- /\2 1\2 i and the result follows. 

( ~ + ~ - 2'Ti i j 1\ J p .. 
IT· TI· TT·TT· 1 

Q.E.D. 
1 J 1 J 

From now on we assume that 2 a . . > 0 
l.J 

A method for testing all differences 

for all i < j • 

d.-d. , i < j, that is 
1 J 

similar to multiple normal-tests presented in [2] will be proposed. 

Let then 
..) . ...., 1\ 1\ 

T .. = n (d.-d.) 
1 J • 1J 1\ (24) 

a . . 
1J 

For a fixed sample (n1, ••• ,nk) we see that Tij can be 

expressed as 

(~.-~.) 
T .. = l. ,] r 1J ("2 A2 

~+::i-
2n .. 1\ --2:..J. p .. 

n. n. n.n. 1 J 
1 J 1 J 

(25) 

The following testprodecure for comparing d1 , ••• ,dk is proposed: 

Multiple generalized normal-tests ( GN-test). 

State if Tij > x(~/k(k-1)). 

For a set (d,u.) 
-\1 

(26) 

Let d = (d1 , ••• ,dk) and £.a_=(cr1 , ••• ,ck) • 

of values of the paramete~ we let ~(£,Qu) be the pro·babili ty 

of at least one false statement 11 d. > d. 11 • We shall consider 
1 J 

~(£,£Q) generally and apply the same approach as in [2] • 

Let then the index sets Vi for i=1, ••• ,t be as follows: 

Vicl1, ••• ,k!; 

t 

v. 
1 

u v. - {1, ••• ,kl • 
. 1 1 1= 

and are disjoint for i ~ j and 
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Let further vi be the number of elements in Vi , such that 

t 
:E v. = k • 

. 1 1. 1.= 

w(V1, ••• , V t) is the parameter set of all (£,g_d) such that 

d. = d. 
1. J if i,j E vh and d. J.d. 

1. 1 J if (i,j) belong,sto different 

vh1s • The following result is valid. 

TI-IEOREl11 5 • 

If (£,£d) E w(V1 , ••• ,Vt) then 

( ) ( t-1)( t-1) limsup a. d ,g_d < 1 - k 1 - k=T a. • 
n 

Proof. 
/':, 1\ p 

Now, since d. -d. ->d. -d. 
1. J 1. J 

, it liuplies that 

lim P(Tij > x(a/k(k-1))1 
n 

d.<d.) = 0 , and hence 
1. J 

(27) 

lim P( U u U ( nal t t .t "d d ")) 0 (28) n gthiEVgjEVh I se s a emen . i> j = 

The theorem is therefore proved for t=k • 

Assume t < k • 
t 

P( u u (state 
h=1 i<j 

i, jEVh 

Hence 
t 

from (28) • 

limsup c(d,~) = limsup P( U U ITij I> x(k(~- 1 )) 
n n h=1 i<j 

i, jEVh 



t 
= 2:: 

h=1 

t 
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In [2] we showed that ~ v2 < (k-t+1) 2 + (t-1) • 
h=1 h-

This implies 

a [c )2 ( )'j ( t-1)( t-1) limsup a(~,Sl.d) ~ k(k-1 ) _ k-t+1 - k-t+1 = 1- '"k 1- k-1 O:• 
n 

The upper bormd in (27) is the same as the one given in [2] 

for multiple normal-tests for independent tables. Theorem 5 

Q.E.D. 

is therefore a generalization of the result in [2] ; it is valid 

for any set of tables. ~1e upper bow~d on limsup a(d,~) 
n 

increases as t decreases and has maximum for t=1 , such that 

limsup ~(£,£Q) ~ a for all (d,£u) 
n 

Simultaneous co1liidence intervals for all differences 

are given by the following relation 

(29) 

limsup 
n 

( A 1\ a. ) A j· 1--. /1, A a. ~·\_ . 1--. P d.-d.-x(k(k 1 ) cr .. ~n <d.-d.< d.-d.+x(k(k 1 a . . /~n 
~ J - ~J - ~ J - ~ J - ~J 

for all i =!= j) > 1-a. • 

The last section in this paper deals with independent contingency 

tables. A very simple proof of theorem 3 on (2] is given, and 

we present some properties of the method for linear functions 

in d1 , ••• ,dk, not given in [2]. 

4. Comparison of k independent ta-bles. 

Since t~o tables are independent if and only if q1 and q2 are 

independent we say that k tables are independent if and only 
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if q1 , ••• ,qk are independent, as we did in [2] and [3] • We 

will now give another, simpler proof of theorem 3 in [2] • 

First, however, we need an algebraic result. 

LEMMA 7. Let y ·be a (kx1 )-vector. Then 

C 1 ) . , . ....., I ::-:-:-~ 
y 1 y :S Z < => h t y :::: '~ Z\ h f h 

Here z > 0 • 

Proof. 
2 2 2 2 (1) : y'y <_ z <=> ~y. < z<=> th-~Y· < z th. 
~ ~ ~ - ~ 

From Schwartz inequality we get 

Hence y'y <_ z ="> (~h.y. )2 < z L:h? <=>(h'y)2 < zh'h => hty <_ rz~h'hi 
~ ~ - ~ -

The other way. Let h=y and the result follows. 

(2) is obvious. 

If now Y is a (kx1)- random variable, it follows from 

lemma 7 that 

Q.E.D. 

P(Y'Y::;_ z) = P(h'Y ~ ~~h'h'; 'v'h) = P( \h'YI S ~Jh'h'; 'v'h) • 

(30) 

THEOR_EII1 3 FRON [ 2 ] • 

Simultaneous confidence intervals for all linear functions 

k 
z:: c.d. are 

. 1 ~ ~ 
~= 
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k [ k A , . 1\ 
L: c . d . E ~ c . d. .:!: ".} z tk, CL )' cr , Ad 
"1~1 "11~ c 1= 1= 

, where 
k 

= L: 
i=1 

Here z(k,a.) is the upper CL-fractile in the chi-square 

distribution with k degrees of freedom. Asymptotically the 

proba.bili ty is equal to 

(1-o.) that (31) is true for all (c 1 , •••. ,ck) • 

Proof. 

Let and Y = ( Y, ••• , Yk ) ·• 

Then lim P(Y'Y ~ z(k,a)) = 1~ • 
n 

From {30) we see that 

• 

=lim P( IE hi~ (ai-di) 1 ::: .Jz(k,a) ~Th~ '; \>'h) 
n a. 

1 

Let a= (~ 1 , ••• ~~k) and &d = (~ 1 , ••• ,~k) • 

Let further 
~ 1\ h . .[;;.~ 

A = {£,£<1 II L ~ 1 

cri 

A I i--=-; 
(d.-d.) I < '\ z (k,a. )tJLh? ; Vh} 

1 1 - 1 

'fc} • 

Now it is easily seen that A= B , and the result follows. 

• 

(31) 

Q.E.D. 
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From (30) we also get the following result: 

/\ . '/\ 
limP( I;c.d. > I:c.d. - A.}z(k,a.) a 1 A 

n 1 1 1 1 c a 'Ito) = 1 - a.. (32) 

The test for linear functions is then to 

state I;c.d. > 0 
1 1 

if (33) 

Then 'I!Ie have the following result, not shovm. in [ 2 J. 

LEMMA 8 • 
r a. if £. = o 

li~sup P (at least one false statement: I:cidi> 0) = l~ a. if d + o. 

Proof. 

P(no false statement) = P( n I:ci~i ~ ~z(k,a.) ~c'~) 
I:c.d.<O 

1 1-

Assume first d = 0 • Then I:c.d. = 0 
1 1 

and hence 

P(no false statement) = 1\ .I 1\ :P( n z:::c.d. < '\IZ(k,a.) cr ,Ad) 
'VC 1 1 - C 

-7 1 
n ... co 

- a ' 

from (32) • 

If d 1: 0 then 

limsup P(no false statement) ~ limsup P( n 
n n I;c.d.<O 

1 1-

L:c.~. - z:::c.d. 
1 1 l 1 

; 1\ 
< ~z(k,a.) o 1A) - c d 

A • . 1\ 
>lim P(n I:c.d.- I:c.d. < ~z(k,a.) a ,~) = 1 -a. , from (32). 

n vc 1 1 1 1 - c d 

Q.E.D. 

In [3], section 5 the author presents similar methods as (33) 

for all linear contrasts, i.e. linear functions I;c.d. with 
1 l 

I;c.= 0 • The difference from (33) is that we substitute z(k,a.) 
l 

with z(k-1,a.) • The testprocedure for linear contrasts has the 

srune property as the one stated in lenm1a 8 for the method (33) • 
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