STATISTICAL RESEARCH REPORT No 5
 Institute of Mathematics
 august 1975
 University of Oslo

COMPARISON OF CONTINGENCY TABLES.
II: GENERAL CASE.
by

Jan F. Bjørnstad

```
ABSTRACT
A multiple testprocedure for comparison of any set of two-way contingency tables is proposed. The comparison-method is a generalization of a method for independent tables presented earlier by the author in [2].
Key words: Contingency table, measure of association, multiple comparison procedure.
```


CONTENTS

Page

1. Introduction 1
2. A multinomial model for two contingency tables. The main theorem 1
3. Multiple GN-tests for differences in measures of association 10
a) Assumptions and notations 10
b) Comparison of two tables 12
c) Comparison of k tables 21
4. Comparison of k independent tables 24
References 28

1. INTRODUCTION

In [2]the author proposed several methods for comparing independent two-way contingency tables by use of measures of association. In this paper we consider comparison of two-way tables generally, ailowing dependence, and generalize a method given in [2] to this case. Further we define precisely the notion of two independent contingency tables, and show that this definition is consistent with the one formulated in [2] and [3]. At last a very simple proof of theorem 3 in [2] for general linear functions is presented, and we state some more properties of that method. Before we consider the general situation with several independent of dependent contingency tables, we first look at a general model for two contingency tables and present the main theorem.
2. A MULTINOMIAT MODEL FOR TWO CONTINGENCY TABLES. THE MAIN THEOREN.

The situation with two tables can be described as a multinomial model with two dependent sequences as follows. In sequence j, r_{j} events can occur with probabilities

$$
p_{1 j}, \ldots, p_{r_{j}}, j
$$

for $j=1,2$. $\sum_{i=1}^{r}{ }_{i} P_{i j}=1$. Let $r=r_{1}+r_{2}$.
We assume all $p_{i j}$ positive. Let k_{n} be the total number of independent trials, and let n_{j} be the total number of trials in sequence j, for $j=1,2$. Let $n=n_{1}+n_{2}$. It is assumed that $n \geq k_{n}$. I.e. some of the triais may give observations in both sequences.

Let I denote this set of triais and $m=\#(I)$. Then $k_{n}=m+\left(n_{1}-m\right)+\left(n_{2}-m\right)=n-m$. For the trials in I we let $\mu_{i j}$ be the probability of class i in sequence 1 and class j in sequence 2 , for $i=1, \ldots, r_{1}$ and $j=1, \ldots, r_{2}, N_{i j}$ is the number of observations in cell i of sequence j, for $j=1,2$ and $i=1, \ldots, r_{j}$. Then $n_{j}=\sum_{i=1}^{r} N_{i j}$. The relative frequences are denoted by $q_{i j}=N_{i j} / n_{j}$. Let $\pi=m / n, \pi_{1}=n_{1} / n$ and $\pi_{2}=n_{2} / n$. π, π_{1}, π_{2} are considered as constants as n tends to infinity, and $\pi \geq 0, \pi_{1}>0$ and $\pi_{2}>0$.
We use the following notations:

$$
\begin{aligned}
& p_{1}=\left(p_{11}, \ldots, p_{r_{1} 1}\right)^{\prime} \\
& p_{2}=\left(p_{12}, \ldots, p_{r_{2} 2}\right)^{\prime} \\
& q_{1}=\left(q_{11}, \ldots, q_{r_{1} 1}\right)^{\prime} \\
& q_{2}=\left(q_{12}, \ldots, q_{r_{2} 2}\right)^{\prime} \\
& q=\binom{q_{1}}{q_{2}}, \quad p=\binom{p_{1}}{p_{2}} .
\end{aligned}
$$

Let $\Sigma_{1}=\left\{\sigma_{i j}\right\}$ be the covariance matrix of $\sqrt{n_{1} q q_{i}}$ and Let $\Sigma_{2}=\left\{\tau_{i j}\right\}$ be the covariance matrix of $\sqrt{n_{2}} q_{2}$. Then

$$
\begin{aligned}
& \sigma_{i j}= \begin{cases}p_{i 1}\left(1-p_{i 1}\right) & \text { for } i=j \\
-p_{i 1} p_{j 1} & \text { for } i \neq j\end{cases} \\
& \tau_{i j}= \begin{cases}p_{i 2}\left(1-p_{i 2}\right) & \text { for } i=j \\
-p_{i 2} p_{j 2} & \text { for } i \neq j\end{cases}
\end{aligned}
$$

Further we let $\Lambda=\left\{\rho_{i j}\right\}$ where

$$
\rho_{i j}=\mu_{i j}-p_{i 1}^{p} j 2 \quad \text { for } \quad i=1, \ldots, r_{1} ; j=1, \ldots, r_{2}
$$

We see that

$$
\operatorname{cov}\left(q_{i f}, q_{j 2}\right)=\frac{\pi}{\pi_{1} \pi_{2}} \quad \rho_{i j} .
$$

The first result concerns the simultaneous asymptotic distribution of

$$
\sqrt{n}\left[\begin{array}{l}
\pi_{1} q_{1}-\pi_{1} p_{1} \\
\pi_{2} q_{2}-\pi_{2} p_{2}
\end{array}\right]
$$

IENDTA 1.

$$
\sqrt{n}\left[\begin{array}{l}
\pi_{1}\left(q_{1}-p_{1}\right) \tag{1}\\
\pi_{2}\left(q_{2}-p_{2}\right)
\end{array}\right] \xrightarrow{D} \quad N_{r}(0, \Sigma)
$$

where

$$
\Sigma=\left[\begin{array}{ll}
\pi_{1} \Sigma_{1} & \pi \Lambda \\
\pi \Lambda^{\prime} & \pi_{2} \Sigma_{2}
\end{array}\right] \text {. }
$$

$N_{n}(0, \Sigma)$ denotes the r-dimensional nomal distribution with mean zero and covariance matrix Σ.

Prooi.
Let $N_{i}=\left(N_{1 i}, \ldots, N_{r_{i} i}\right)^{\prime}$ for $i=1,2$.
Let us first consider the trials from the set I, and deine $X_{i j}, Y_{i j}$ as follows:

$$
\begin{aligned}
& X_{i j}= \begin{cases}1 & \text { if event no.j in sequence } 1 \text { occur in trial no.j } \\
0 & \text { otherwise }\end{cases} \\
& Y_{i j}= \begin{cases}1 & \text { if event no.i in sequence } 2 \text { occur in trial no.j } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The m observations in I can be formulated as

$$
U_{j}=\left(X_{1 j}, \ldots, X_{r_{1} j}, Y_{1 j}, \ldots, Y_{r_{2} j}\right)^{\prime} \text { for } j=1, \ldots, m \text {. }
$$

Let $M_{i 1}=\sum_{j=1}^{m} X_{i j}$ and $M_{i 2}=\sum_{j=1}^{m} Y_{i j}, \quad M_{1}=\left(M_{11}, \ldots, M_{r_{1} 1}\right)^{\prime}$, $M_{2}=\left(M_{12}, \ldots, M_{r_{2} 2}\right)^{\prime} \quad . \quad U_{1}, \ldots, U_{m}$ are independent and identically distributed with mean p and covariance matrix

$$
I=\left[\begin{array}{ll}
\Sigma_{1} & \Lambda \\
\Lambda^{\prime} & \Sigma_{2}
\end{array}\right]
$$

From the muitivariate central limit theorem we then have that

$$
\sqrt{m}\left[\begin{array}{l}
M_{1} / m-p_{1} \tag{2}\\
M_{2} / m-p_{2}
\end{array}\right] \xrightarrow{D} N_{r}(0, \Gamma) \quad \text { as } m \rightarrow \infty \quad
$$

For the rest of the trials in sequence 1 we let $I_{i 1}$ be the number of observations in cell i. For the rest of the trials in sequence 2 we let $L_{i 2}$ be number of observations in cell i . Iet

$$
\begin{aligned}
& I_{1}=\left(I_{11}, \ldots, I_{r_{1}, 1}\right) \\
& I_{2}=\left(I_{12}, \ldots, I_{r_{2}, 2}\right) \\
& n_{1}^{\prime}=n_{1}-m, n_{2}^{\prime}=n_{2}-m
\end{aligned}
$$

Assume now that $\pi_{i}>\pi$ for $i=1,2$ such that $n_{1}^{\prime}, n_{2}^{\prime} \rightarrow \infty$ as $n \rightarrow \infty$.

We know that

$$
\begin{equation*}
\sqrt{n_{1}^{\prime}}\left(\frac{I_{1}}{n_{1}^{1}}-p_{1}\right) \rightarrow N_{r_{1}}\left(0, \Sigma_{1}\right) \text { as } n_{1}^{\prime} \rightarrow \infty \tag{3}
\end{equation*}
$$

and $\sqrt{n_{2}^{\prime}}\left(\frac{I_{2}}{n^{1}}-p_{2}\right) \rightarrow N_{r_{2}}\left(\Leftrightarrow, \Sigma_{2}\right)$ as $n_{2}^{\prime} \rightarrow \infty$
We see that
$\sqrt{n}\left(\pi_{i} q_{i}-\pi_{i} p_{i}\right)=\sqrt{n} \pi_{i}\left(\frac{\mathbb{N}_{i}}{n_{i}}-p_{i}\right)=\sqrt{n} \cdot \frac{\pi_{i} \cdot n_{i}^{\prime}}{n_{i}}\left(\frac{L_{i}}{n_{i}}-p_{i}\right)+\sqrt{n} \frac{\pi_{j} \cdot m}{n_{i}}\left(\frac{M_{i}}{m}-p_{i}\right)$.
for $i=1,2$.
Let $\quad X_{i}^{n}=\sqrt{n} \frac{\pi_{i} \cdot n_{i}^{\prime}}{n_{i}}\left(\frac{L_{i}}{n_{i}^{\prime}}-p_{i}\right)$ for $i=1,2$
and $\quad Y_{i}^{n}=\sqrt{n^{n}} \frac{\pi_{i} \cdot m}{n_{i}}\left(\frac{M_{i}}{m}-p_{i}\right) \quad$ for $i=1,2$.
$x_{i}^{n}=\sqrt{\frac{n \pi_{i}}{n_{i}}} \cdot \sqrt{\frac{n_{i}^{\top}}{n_{i} \cdot\left(\frac{\pi_{i}-\pi}{\pi_{i}}\right)}} \cdot \sqrt{\pi_{i}-\pi \sqrt{n_{i}^{\prime}}}\left(\frac{I_{i}}{n_{i}^{\top}}-p_{i}\right) \xrightarrow{\mathscr{D}} \mathbb{N}_{r_{i}}\left(0,\left(\pi_{i}-\pi\right) \Sigma_{i}\right)$
from (3) and (4).
Let $\quad z_{1}^{n}=\binom{x_{1}^{n}}{x_{2}^{n}}$ and $z_{2}^{n}=\binom{Y_{1}^{n}}{Y_{2}^{n}}$. Then

$$
\sqrt{n}\binom{\pi_{1} q_{1}-\pi_{1} p_{1}}{\pi_{2} q_{2}-\pi_{2} p_{2}}=z_{1}^{n}+z_{2}^{n} ; \quad z_{1}^{n} \text { and } z_{2}^{n} \text { are independent for }
$$

Let $\quad a_{n}=\left(\frac{n \pi_{1}}{n_{1}} \cdot \frac{m \pi_{1}}{n_{1} \pi}\right)^{\frac{1}{2}} \quad b_{n}=\left(\frac{n \pi_{2}}{n_{2}} \cdot \frac{m \pi_{2}}{n_{2} \pi}\right)^{\frac{1}{2}}$. Then $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 1$
and

$$
z_{2}^{n}=\sqrt{n}\left[\begin{array}{cc}
a_{n} & 0 \\
0 & b_{n}
\end{array}\right] \sqrt{m}\left[\begin{array}{l}
M_{1} / m-p_{1} \\
M_{2} / m-p_{2}
\end{array}\right]
$$

Hence $\quad z_{2}^{n} \xrightarrow{D} \mathbb{N}_{r}(0, \pi I)$.

Let now $\lambda=\binom{\lambda_{1}}{\lambda_{2}}$ be a fixed $n \times 1$ vector λ_{1} is $r_{1} \times 1$ and λ_{2} is $r_{2} \times 1$. Then
$\lambda^{\prime}\left(Z_{1}^{n}+Z_{2}^{n}\right)=\lambda^{\prime} z_{1}^{n}+\lambda^{\prime} z_{2}^{n}=\lambda_{1}^{\prime} X_{1}^{n}+\lambda_{2}^{\prime} X_{2}^{n}+\lambda^{\prime} Z_{2}^{n}$

Let $V_{i}^{n}=\lambda_{i}^{\prime} X_{i}^{n}$ and $W^{n}=\lambda^{\prime} Z_{2}^{n}$. Then $V_{1}^{n}, V_{2}^{n}, W^{n}$ are independent and

$$
\begin{aligned}
& \mathrm{V}_{1}^{\mathrm{n}} \xrightarrow{D} N\left(0, \lambda_{1}^{\prime}\left(\pi_{1}-\pi\right) \Sigma_{1} \lambda_{1}\right) \\
& \mathrm{V}_{2}^{\mathrm{n}} \xrightarrow{D} N\left(0, \lambda_{2}^{\prime}\left(\pi_{2}-\pi\right) \Sigma_{2} \lambda_{2}\right) \\
& W^{n} \xrightarrow{D} \mathbb{N}\left(0, \lambda^{\prime} \pi I \lambda\right) .
\end{aligned}
$$

Hence

$$
\lambda^{\prime}\left(z_{1}^{n}+z_{2}^{n}\right) \xrightarrow{Ð} N\left(0, \sigma^{2}\right)
$$

where $\sigma^{2}=\lambda_{1}^{\prime}\left(\pi_{1}-\pi\right) \Sigma_{1} \lambda_{1}+\lambda_{2}^{\prime}\left(\pi_{2}-\pi\right) \Sigma_{2} \lambda_{2}+\lambda^{\prime} \pi^{\prime} \lambda$.
We see that $\sigma^{2}=\lambda_{1}^{\prime} \pi_{1} \Sigma_{1} \lambda_{1}+\lambda_{2}^{\prime} \pi_{2} \Sigma_{2} \lambda_{2}+\lambda_{1}^{\prime} \pi \Lambda \lambda_{2}+\lambda_{2}^{\prime} \pi^{\prime} \Lambda^{\prime} \lambda_{1}$

$$
=\lambda^{\prime} \Sigma \lambda .
$$

This gives $\quad z_{1}^{n}+z_{2}^{n} \xrightarrow{\Phi} N_{N}(0, \Sigma)$.
We have now proved (1) when $\pi_{i}>\pi$ for $i=1,2$. If one π_{i} or both are equal to π, we can put one or both of $\left(X_{1}^{n}, X_{2}^{n}\right)$ equal to zero and the result follows.
Q.T.D.

Let $\mathbb{M}_{i j}$ be the number of observations from I that fails in cell i of sequence 1 and cell j of sequence 2 , and let $m_{i j}=M_{i j} / n$. Further we assume that I is a function in r variables with continuous partial derivatives.

Let

$$
\begin{aligned}
f_{i}(p) & \left.=\frac{i f}{\partial x_{i}} \right\rvert\, x=p \\
\hat{f}_{i} & =f_{i}(q) \\
\bar{f}_{p_{1}} & =\sum_{i=1}^{\sum_{i}} p_{i 1} f_{i}(p) \\
\bar{f}_{2} & =\sum_{i=1}^{r} p_{i 2^{f}}{ }_{i+r_{1}}(p) \\
\bar{f}_{1} & =\sum_{i=1}^{r} q_{i 1} \hat{f}_{i} \\
\bar{f}_{q_{2}} & =\sum_{i=1}^{2} q_{i 2^{i}}{ }_{i+r_{1}}
\end{aligned}
$$

Further we define

$$
\begin{align*}
\sigma_{f}^{2} & =\frac{1}{\pi_{1}} \sum_{i=1}^{r} p_{i 1}\left(f_{i}(p)-\bar{f} p_{1}\right)^{2}+\frac{1}{\pi_{2}} \sum_{i=1}^{r} p_{i 2}\left(f_{i+r_{1}}(p)-\bar{f} p_{2}\right)^{2} \\
& +\frac{2 \pi}{\pi_{1} \pi_{2}} \sum_{i=1}^{r} \sum_{j=1}^{r} \rho_{i j} f_{i}(p) f_{r_{1}+j}(p) \tag{5}
\end{align*}
$$

We will from now on use the notations

$$
\begin{aligned}
& p_{i}=\left(p_{1 i}, \ldots, p_{r_{i} i}\right) \quad i=1,2 \\
& q_{i}=\left(q_{1 i}, \ldots, q_{r_{i} i}\right) \quad i=1,2 \\
& p=\left(p_{1}, p_{2}\right) \text { and } q=\left(q_{1}, q_{2}\right)
\end{aligned}
$$

Lemina 1 states that

$$
\begin{equation*}
\sqrt{n}\left[\left(\pi_{1} q_{1}, \pi_{2} q_{2}\right)-\left(\pi_{1} p_{1}, \pi_{2} p_{2}\right)\right] \xrightarrow{\mathcal{D}} N_{r}(0, \Sigma) \tag{6}
\end{equation*}
$$

We have the following fundamental result.

THEOREM 1.
If $\sigma_{f} \geq 0$ then
1)

$$
\begin{equation*}
\frac{\sqrt{n}(f(q)-f(p))}{\sigma_{f}} \xrightarrow{f} N(0,1) \tag{7}
\end{equation*}
$$

2)

$$
\begin{equation*}
\frac{\sqrt{n}(f(q)-f(p))}{\hat{\sigma}_{f}} \stackrel{D}{\rightarrow} N(0,1) \tag{8}
\end{equation*}
$$

$\underline{\text { where } \quad \hat{\sigma}_{\dot{f}}^{2}=\frac{1}{\pi_{1}} \sum_{i=1}^{\sum_{1}} q_{i 1}\left(\hat{f}_{i}-\overline{\mathrm{I}} q_{1}\right)^{2}+\frac{1}{\pi_{2}} \sum_{i=1}^{\sum_{i}} q_{i 2}\left(\hat{r}_{i+r_{1}}(q)-\bar{f}_{q_{2}}\right)^{2}}$

$$
\begin{equation*}
+\frac{2 \pi}{\pi_{1} \pi_{2}} \sum_{i=1}^{r_{1}} \sum_{j=1}^{r_{2}}\left(m_{i j}-q_{i 1} q_{j 2}\right){\hat{f_{i}}}_{i}^{\wedge}{ }_{j+i_{i}} \tag{9}
\end{equation*}
$$

Proof.
Let g be a function in i variables defined by

$$
g\left(x_{1}, \ldots, x_{r}\right)=\Gamma\left(\frac{x_{1}}{\pi_{1}}, \ldots, \frac{x_{r_{1}}}{\pi_{1}}, \frac{x_{r_{1}+1}}{\pi_{2}}, \ldots, \frac{x_{r}}{\pi_{2}}\right)
$$

Then from lemma 1 and Rad, [5],p. 321 we have that

$$
\begin{gathered}
\sqrt{n}\left(g\left(\pi_{1} q_{1}, \pi_{2} q_{2}\right)-g\left(\pi_{1} p_{1}, \pi_{2} p_{2}\right)\right) \xrightarrow{\mathscr{D}} \mathbb{N}\left(0, \sigma_{g}^{2}\right) \\
\text { provided } \sigma_{g}^{2}>0
\end{gathered}
$$

Let $\theta=\left(\pi_{1} p_{1}, \pi_{2} p_{2}\right)$. Then

$$
\left.\sigma_{g}^{2}=\sum_{i=1}^{r} \sum_{j=1}^{r} \Sigma_{i j}{\stackrel{\partial g}{\partial x_{i}} \mid x=0}^{r} \frac{\partial g}{\partial x_{j}} \right\rvert\, x=\theta
$$

where

$$
\Sigma=\left\{\Sigma_{i j}\right\}
$$

Now from the definition of g,

$$
g\left(\pi_{1} q_{1}, \pi_{2} q_{2}\right)=f(q)
$$

and

$$
g\left(\pi_{1} p_{1}, \pi_{2} p_{2}\right)=f(p)
$$

Hence

$$
\sqrt{n}(f(q)-f(p)) \xrightarrow{\varnothing} N\left(0, \sigma_{g}^{2}\right)
$$

$$
\frac{\partial g}{\partial x_{i}}=\frac{\partial I}{\partial y_{i}} \cdot \frac{1}{\pi_{1}} \text { for } i=1, \ldots, r_{1} \text { and } \frac{\partial \xi}{\partial x_{i}}=\frac{\partial f}{\partial y_{i}} \cdot \frac{1}{\pi_{2}} \text { for } i=r_{1}+1, \ldots, r \text {. }
$$

This gives
and

$$
\frac{\partial g}{\partial x_{i \mid x=\theta}}=\hat{r}_{i}(p) \frac{1}{\pi_{1}} \quad \text { for } \quad i \leq r_{1},
$$

and

$$
\frac{\partial g}{\partial x_{i \mid x=\theta}}=i_{i}(p) \frac{1}{\pi_{2}} \quad \text { for } \quad r_{1}<i \leq r
$$

Hence

Hence $\sigma_{g}^{2}=\sigma_{f}^{2}$ defined by (5) and 1) is proved.
2) follows from the fact that ${\underset{\sigma}{~}}_{\underset{ \pm}{2}}$ is a consistent estimator of σ_{f}^{2}.

$$
\begin{aligned}
& \sigma_{g}^{2}=\sum_{i=1}^{\sum_{1}} \sum_{j=1}^{\sum_{1}} \pi_{1} \sigma_{i j} \cdot \dot{f}_{i}(p){\underset{j}{j}}(p)\left(\frac{1}{\pi_{1}}\right)^{2} \\
& +\sum_{i=r_{1}+1}^{r} \sum_{j=r_{1}+1}^{r} \pi_{2} \tau_{i-r_{1}}, j-r_{1} f_{i}(p) I_{j}(p)\left(\frac{1}{\pi_{2}}\right)^{2} \\
& +2 \sum_{i=1}^{r} \sum_{j=r_{1}+1}^{r} \pi \rho_{i, j-r_{1}} \frac{1}{\pi_{1} \pi_{2}} I_{i}(p) I_{j}(p) \\
& =\frac{1}{\pi_{1}}\left[\sum_{i=1}^{r} p_{i 1} f_{i}^{2}(p)-\left(\overline{f_{p}}\right)^{2}\right]+\frac{1}{\pi_{2}}\left[\sum_{i=1}^{r} p_{i 2^{f}}{ }_{i+r_{1}}^{2}(p)-\left(\bar{f} p_{2}\right)^{2}\right] \\
& +\frac{2 \pi}{\pi_{1} \pi_{2}} \sum_{i=1}^{r} \sum_{j=1}^{r} \rho_{i j} f_{i}(p) r_{j+r_{1}}(p) .
\end{aligned}
$$

The next chapter presents first the general situation with k contingency tables. Then the comparison of two tables is considered, and we apply theorem 1 to comparison of measures of association. At last comparison of k tables is discussed, and a method generalizing the multiple normal-tests in [2] is presented.

3. MULTIPLE GN-TESTS FOR DIFFERENCES IN MEASURES OF ASSOCIATION.

3a) Assumptions and notations.

k two-way contingency tables are considered. The number of row- and column-classes in table no. i are respectively v_{i} and w_{i}, for $i=1, \ldots, k$. Let $r_{i}=v_{i} \cdot w_{i}$. Let $p_{i j h}$ denote the cell-probabilities in table h with $p_{i j h}>0$ and

$$
\sum_{i=1}^{\sum_{i} h} \sum_{j=1}^{V} p_{i j h}=1 \quad \text { for } \quad h=1, \ldots, k
$$

$q_{i j h}$ is the relative frequency in cell (i,j) of table h. Let n_{h} be the number of observations in table h. We let $n=$ $\sum_{h=1}^{k} n_{h}$ and $\pi_{h}=n_{h} / n$. For each pair (i, j) of tables we Let $I_{i j}$ be the set of trials that gives observations in both table i and table j, and let $n_{i j}=\#\left(I_{i j}\right)$ and $\pi_{i j}=n_{i j} / n$. For the trials in $I_{r t}, \mu_{j j h l}^{r t}$ is the probability of falling in cell (i, j) of table r and cell (h, I) or table t. All $\Pi_{j j}$ and π_{h} are considered as constants as n tends to infinity. $\pi_{i j} \geq 0$ and $\pi_{h}>0$.

Let $M_{i j h i}^{r t}$ be the absolute frequency from the set $I_{\text {rt }}$ that fails in cell (i, j) of table r and cell (h, I) of table t. The relative frequencies are denoted by
$m_{i j h I}^{r t}=M_{i j h I}^{r t} / n_{r t}$.
The following notations are used

$$
\begin{aligned}
p_{h} & =\left(p_{11 h}, \ldots, p_{v_{h} w_{h}, h}\right) \text { for } h=1, \ldots, k \\
q_{h} & =\left(q_{11 h}, \ldots, q_{v_{h} w_{h}, h}\right) \text { for } h=1, \ldots, k \cdot \\
p & =\left(p_{1}, \ldots, p_{k}\right) \\
q & =\left(q_{1}, \ldots, q_{k}\right) \cdot \\
m^{r t} & =\left(m_{1111}^{r t}, \ldots, m_{v_{r} w_{r n}, v_{t} w_{t}}\right) \quad . \\
m & =\left\{m^{r t}\right\} \text { for } r=1, \ldots, k \quad t=1, \ldots, k ; r<t . \\
\mu^{r t} & =\left(\mu_{1111}^{r t}, \ldots, \mu_{v_{r} w_{r}, v_{t} w_{t}}^{r t}\right) \\
\mu & =\left\{\mu^{r t}\right\} \text { for } r=1, \ldots, k, t=1, \ldots, k ; r<t
\end{aligned}
$$

Let d be the chosen measure of association with continuous partial derivatives as function of the cell-probabilities. For a presentation of measures of association we refer to the author's review in [1], part 1 and the original paper [4] by Goodman and Kruskal.

Let d_{i} be the measure d in table i. Then d_{i} is a function of r_{i} variables with continuous partial derivatives. I.e. $d_{i}=d_{i}\left(p_{i}\right)$. A consistent estimator of d_{i} is $\hat{d}_{i}=d_{i}\left(q_{i}\right)$.

Let

$$
\begin{equation*}
\sigma_{h}^{2}=\sum_{i=1}^{v_{h}} \sum_{j=1}^{w_{h}} p_{i j h}\left(d_{i j h}-d_{h}^{*}\right)^{2} \quad, h=1, \ldots, k . \tag{10}
\end{equation*}
$$

where

$$
d_{i j h}=\frac{\partial d_{h}}{\partial p_{i j h}} \quad \text { and } \quad d_{h}^{*}=\sum_{i=1}^{v_{h}} \sum_{j=1}^{w_{h}} d_{i j h} p_{i j h}
$$

A consistent estimator of σ_{h}^{2} is

$$
\begin{equation*}
\hat{\sigma}_{h}^{2}=\sum_{i=1}^{v_{h}} \sum_{j=1}^{w_{h}} q_{i j h}\left(\hat{d}_{i j h}-\hat{d}_{h}^{*}\right)^{2} \tag{11}
\end{equation*}
$$

where

$$
\hat{d}_{i j h}=\hat{d}_{i j h}\left(q_{h}\right) \quad \text { and } \quad \hat{d}_{h}^{*}=\sum_{i=1}^{\sum_{h}} \sum_{j=1}^{w_{h}} \hat{d}_{i j h} q_{i j h}
$$

Let further

$$
\begin{equation*}
\rho_{r t}=\sum_{i=1}^{V_{r}} \sum_{j=1}^{W_{r}} \sum_{h=1}^{V_{t}} \sum_{I=1}^{W_{t}} \mu_{i j h I}^{I T} d_{i j 工} d_{h I t}-d_{r}^{*} \cdot d_{t}^{*} . \tag{12}
\end{equation*}
$$

It is later seen that $\frac{\pi_{r t}}{\sqrt{\pi_{r} \pi_{t}^{\prime}}} \rho_{r t}$ can be considered as the asymptotic covariance of $\left(\sqrt{n_{r}} \hat{\mathrm{a}}_{r}, \sqrt{n_{t}} \hat{\mathrm{a}}_{t}\right)$.

A consistent estimator of $\rho_{r t}$ is

$$
\begin{equation*}
\hat{\rho}_{r t}=\sum_{i=1}^{V_{r}} \sum_{j=1}^{W_{h=1}^{r}} \sum_{l=1}^{V_{i}} \sum_{i j h I}^{W} m_{i j r}^{r i} \hat{\mathrm{~d}}_{h l t}-\hat{\mathrm{d}}_{r}^{*} \hat{\mathrm{~d}}_{t}^{*} . \tag{13}
\end{equation*}
$$

We will now first consider the case $k=2$, i.e. comparison of two measures d_{1} and d_{2}.

3 b). Comparison of two tables.

We simplify our notation for this case, letting $\rho=\rho_{12}, \hat{\rho}=\rho_{12}$, $m_{i j h I}=m_{i j h I}^{12}, m=m^{12}, \mu_{i j h I}^{12}, \mu=\mu^{12}, I=I_{12}$ and $n_{12}=\#(I), \pi=\pi_{12}$. We see that the situation is exactly as in section 2. The result for comparing d_{1} and d_{2} can now be stated.

THEOREM 2.
Let $\sigma^{2}=\frac{1}{\pi_{1}} \sigma_{1}^{2}+\frac{1}{\pi_{2}} \sigma_{2}^{2}-\frac{2 \pi}{\pi_{1} \pi_{2}} \rho$, and assume $\sigma^{2}>0$.

Then
1)

2)

where

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{1}{\pi_{1}} \hat{\sigma}_{1}^{2}+\frac{1}{\pi_{2}} \hat{\sigma}_{2}^{2}-\frac{2 \pi}{\pi_{1} \pi_{2}} \hat{\rho} \tag{16}
\end{equation*}
$$

Proof.

Theorem 1 is applied by letting

$$
f(p)=d_{1}\left(p_{1}\right)-d_{2}\left(p_{2}\right)
$$

In order to facilitate the notation we replace (i,j) by a single letter i, such that $p_{i j h}$ is replaced by $p_{i n}, i=1, \ldots, r_{h}$ and $d_{i j h}$ is replaced by $d_{i h}, i=1, \ldots, r_{h}$. Similar changes for $q_{i j h}$ and $\hat{d}_{i j h}$, and $\mu_{i j h l}$ is replaced by $\mu_{i j}$. We find

$$
f_{i}(p)= \begin{cases}d_{i 1}\left(p_{1}\right) & \text { for } \quad i=1, \ldots, r_{1} \\ -d_{i-r_{1}}\left(p_{2}\right) \text { for } & i=r_{1}+1, \ldots, r\end{cases}
$$

Hence $\quad \overline{\mathrm{I}} p_{1}=\mathrm{d}_{1}^{*}$ and $\overline{\mathrm{S}} \mathrm{p}_{2}=-\mathrm{d}_{2}^{*}$.
In this case we get from (5)

$$
\begin{aligned}
\sigma_{f}^{2} & =\frac{1}{\pi_{1}} \sum_{i=1}^{r} p_{i 1}\left(d_{i 1}-d_{1}^{*}\right)^{2}+\frac{1}{\pi_{2}} \sum_{i=1}^{r_{i}^{2}} p_{i 2}\left(d_{i 2}-d_{2}^{*}\right)^{2} \\
& +\frac{2 \pi}{\pi_{1} \pi_{2}} \sum_{i=1}^{r} 1 \sum_{j=1}^{r}\left(\mu_{i j}-p_{i 1} p_{i 2}\right) d_{i 1}\left(-d_{j 2}\right)
\end{aligned}
$$

Hence $\quad \sigma_{f}^{2}=\frac{1}{\pi_{1}} \sigma_{1}^{2}+\frac{1}{\pi_{2}} \sigma_{2}^{2}-\frac{2 \pi}{\pi_{1} \pi_{2}}\left(\sum_{i=1}^{\sum_{1}} \sum_{j=1}^{r_{2}} \mu_{i 1} d_{i 1} d_{j 2}-d_{1}^{*} d_{2}^{*}\right)=\sigma^{2}$.

Result 1) follows now from theorem 1.
Result 2) is proved by seeing that $\hat{\sigma}^{2} \xrightarrow[\rightarrow]{\mathrm{p}} \sigma^{2}$.
Q.E.D.

Before we look at some important special cases, we will discuss the notion of independence between two contingency tables. For this sake we define the set of variables $X=\left\{X_{i j}\right\}$ for

$$
\begin{aligned}
& \text { for } i=1, \ldots, v_{1}, j=1, \ldots, w_{1} \text { and the set } Y=\left\{Y_{i j}\right\} \\
& \text { for } i=1, \ldots, v_{2} \text { and } j=1, \ldots, w_{2} \text { as follows. }
\end{aligned}
$$

$$
X_{i j}= \begin{cases}1 & \text { if observation falls in cell }(i, j) \text { of table } 1 \tag{17}\\ 0 & \text { otherwise }\end{cases}
$$

$$
Y_{i j}= \begin{cases}1 & \text { if observation falls in cell }(i, j) \text { of table } 2 \tag{18}\\ 0 & \text { otherwise }\end{cases}
$$

The situation is that we have n_{12} independent observations $\left(X^{k}, Y^{k}\right), k=1, \ldots, n_{12}$ of (X, Y), then $n_{1}-n_{12}$ independent observations $\left(X^{k}, 0\right), k=n_{12}+1, \ldots, n_{2}$ of $(X, 0)$ and $n_{2}-n_{12}$ independent observations $\left(0, Y^{k}\right), k=n_{1}+1, \ldots, n-n_{12}$ of (O, Y). A general formilation of the trials is then $U^{k}=\left(U_{1}^{k}, U_{2}^{k}\right) ; k=1, \ldots, k_{n}\left(k_{n}=n-n_{12}\right)$, where

$$
U_{1}^{k}= \begin{cases}X^{k} & \text { for } k \leq n_{1} \\ 0 & \text { for } k>n_{1}\end{cases}
$$

and

$$
U_{2}^{k}=\left\{\begin{array}{ll}
Y^{k} & \text { for } k \leq n_{12} \\
0 & \text { otherwise }
\end{array} \text { and } k \geq n_{1}\right.
$$

The following natural definition of independent tables is then: Definition. Table 1 and 2 are said to be independent if U_{1}^{k} and U_{2}^{k} are independent for $k=1, \ldots, k_{n}$.
Our main goal is to show that this derinition is equivalent with q_{1} and q_{2} stochastically independent. We first need some simple results to prove this.

Since the observations are independent we see that if $n_{12}=0$ then the tables are independent.

First notice that X and Y are independent if and only if $\left(X_{i j}, Y_{h l}\right)$ are independent for ail pairs (i,j) and (h,I). Let us now assume $n_{12}>0$. Then we have the following resuilts.

IEMINA 2.
Table 1 and 2 are independent $\Leftrightarrow \mu_{i j h l}=p_{i j 1} p_{h 12} \quad \forall(i, j, h, I)$.

Proof.

Since $n_{12}>0$, table 1 and 2 are independent if and only if X and Y are independent which is equivalent with $\left(X_{i j}, Y_{h I}\right)$ being independent for all (i,j,h,I) , and this again is equivalent with $\mu_{i j h I}=P\left(X_{i j}=1 \cap Y_{h I}=1\right)=P\left(X_{i j}=1\right) P\left(Y_{h I}=1\right)=p_{i j 1} \cdot p_{h I 2}$.

From theorem 2 we see that $\frac{\pi}{\sqrt{\pi_{1} \pi_{2}}} \rho$ can be considered as the asymptotic covariance oi $\left(\sqrt{n_{1}^{\prime}} \hat{\mathrm{a}}_{1}, \sqrt{\mathrm{n}_{2}^{\prime}} \hat{\mathrm{a}}_{2}\right)$, and immediately from lemma 2 we get

$$
\begin{equation*}
\text { Table } 1 \text { and } 2 \text { independent } \Rightarrow p=0 \tag{19}
\end{equation*}
$$

LEMIMA 3. Let $V_{i j}=\sum_{k=1}^{n} 12 X_{i j}^{k}, \quad W_{i j}=\sum_{k=1}^{n} 12_{Y_{i j}}^{k}$,
$V=\left(v_{11}, \ldots, v_{v_{1} W_{1}}\right)$
$\bar{W}=\left(W_{11}, \ldots, W_{V_{2} W_{2}}\right)$
V and W are independent $\Leftrightarrow V_{i j}$ and $W_{h I}$ are independent
for all pairs (i,j) and (hel).

Proof.

$$
\begin{aligned}
& \Rightarrow: H o l d s \text { generally } \\
& <=: \text { If } V_{i j} \text { and } W_{h 1} \text { are independent then } \\
& 0=\operatorname{cov}\left(V_{i j} W_{h 1}\right)=n_{12}\left(\mu_{i j h 1}-p_{i j 1} p_{h l 2}\right) \text {, implying }
\end{aligned}
$$

that $X_{i j}$ and $Y_{h I}$ are independent. Hence X and Y are indpendent, giving that X^{k} and Y^{k} are independent for $k=1, \ldots, n_{12}$.

$$
V=\sum_{k=1}^{n} 12 X^{k}, W=\sum_{k=1}^{n} 12 Y^{k}
$$

Let $X^{0}=\left(X^{1}, \ldots, X^{m}\right)$ and $Y^{0}=\left(Y^{1}, \ldots, Y^{n}\right)$. It is easily shown that X° and Y° are independent. Hence, V and W are independent.

We are now able to prove that definition of independence used in [2] and [3] is consistent with the natural definition given earlier.

THEOREM 3. Table 1 and 2 are independent

q_{1} and q_{2} are stochastically independent.

Prooi.

1) $\quad n_{12}=0$. Obvious.
2) $n_{12}>0$.

$$
\begin{aligned}
& q_{i j 1}=\frac{1}{n_{1}}\left(v_{i j}+z_{i j}\right) \quad \text { where } z_{i j}=\sum_{k=n_{12}+1}^{n} X_{i j}^{k} \\
& q_{i j 2}=\frac{1}{n_{2}}\left(w_{i j}+T_{i j}\right) \quad \text { where } T_{i j}=\sum_{k=n_{1}+1}^{k} Y_{i j}^{k} \\
& Z=\left(Z_{11}, \ldots, Z_{v_{1} w_{1}}\right), T=\left(T_{11}, \ldots, T_{v_{2} w_{2}}\right)
\end{aligned}
$$

$<=$: All pairs $\left(q_{i j 1}, q_{h i 2}\right)$ are independent. Hence

$$
\begin{aligned}
0=\operatorname{cov}\left(v_{i j}+z_{i j}, W_{h I}+T_{i j}\right) & =\operatorname{cov}\left(V_{i j}, W_{h I}\right) \\
& =n_{12}\left(\mu_{i j h I}-p_{i j 1} p_{h I 2}\right)
\end{aligned}
$$

From lemma 2 we get that the tables are independent.
$\Rightarrow: X$ and Y are independent, and therefore $\left(X_{i j}^{k}, Y_{h l}^{k}\right)$ are independent for ail (i, j, h, I) and $k=1, \ldots, n_{12}$.
Let $X_{0}=\left(X_{i j}^{1}, \ldots, X_{i j}^{n_{12}}\right) \quad Y_{o}=\left(Y_{h I}^{1}, \ldots, Y_{h l}^{n} 12\right) . X_{o}$ and Y_{o} are independent and therefore $V_{i j}$ and $W_{h I}$ are independent for $\operatorname{all}(i, j)$ and (h, I). From lemma 3 we know then that V and W are independent.

$$
q_{1}=\frac{1}{n_{1}}(v+Z) \quad \text { and } \quad q_{2}=\frac{1}{n_{2}}(W+T)
$$

(V, Z) are independent of (W, T) and hence q_{1} and q_{2} are independent. Q.E.D.

We now like to look into some important special cases, and apply theorem 2 on them.

First we consider the independence case.

IEMMA 4. Table 1 and 2 independent.

$$
\begin{gathered}
\Downarrow \\
\left(\frac{\sqrt{n}\left(\hat{a}_{1}-\hat{\alpha}_{2}-\left(\alpha_{1}-\alpha_{2}\right)\right)}{\left(\frac{\hat{\sigma}_{1}^{2}}{\pi_{1}}+\frac{\hat{\sigma}_{2}^{2}}{\pi_{2}}\right)^{\frac{1}{2}}} \quad \stackrel{D}{\longrightarrow} N(0,1)\right.
\end{gathered}
$$

Proof. $n_{12}=0 \Rightarrow \pi=0 \Rightarrow \hat{\sigma}^{2}=\hat{\sigma}_{1}^{2} / \pi_{1}+\hat{\sigma}_{2}^{2} / \pi_{2}$.
$n_{12}>0 \Rightarrow \rho=0 \Rightarrow \sigma^{2}=\sigma_{1}^{2} / \pi_{1}+\sigma_{2}^{2} / \pi_{2}$, and hence $\frac{\hat{\sigma}_{1}^{2}}{\pi_{1}}+\frac{\hat{\sigma}_{2}}{\pi_{2}} \xrightarrow{P} \sigma^{2}$.
This is the same result as lemma 1 in [2] for two tables. Another case that occur frequently is the situation where all the trials give observations in both tables.

IEMMA 5. Assume that $n_{1}=n_{2}=n_{12}$. Ire. the set I consists of all
the trials.
Then

$$
\frac{\sqrt{n_{12}}\left(\hat{a}_{1}-\hat{a}_{2}-\left(\alpha_{1}-\hat{a}_{2}\right)\right)}{\left(\hat{\sigma}_{1}^{2}+\hat{\sigma}_{2}-2 \hat{p}\right)^{\frac{1}{2}}} \stackrel{D}{\rightarrow} N(0,1)
$$

Proof.
The estimated asymptotic variance in this case is

$$
\hat{\sigma}^{2}=\frac{1}{2} \hat{\sigma}_{1}^{2}+\frac{1}{2} \hat{\sigma}_{2}^{2}-4 \hat{\rho}, \text { and the result follows. } \text { Q.E.D. }
$$

Another common case is considered in the next result.

IEITMA 6.

Assume that $n_{1}=n_{12}<n_{2}$. I.e. all the observations in one table come from the set I. Then

$$
\frac{\sqrt{n}\left[\left(\hat{\alpha}_{1}-\hat{\alpha}_{2}\right)-\left(\hat{\alpha}_{1}-\hat{\alpha}_{2}\right)\right]}{\left(\frac{\hat{\sigma}_{1}^{2}}{\pi_{1}}+\frac{\hat{\sigma}_{2}^{2}}{\pi_{2}}-\frac{2}{\pi_{2}} \hat{\rho}\right)^{\frac{1}{2}}} \xrightarrow{\infty} N(0,1)
$$

Proof. Obvious.
From theorem 2 we can propose the following test for comparing d_{1} and d_{2} :

$$
\begin{align*}
\text { State } & d_{i}>d_{j} \quad i f \\
& \left(\hat{d}_{i}-\hat{d}_{j}\right)>x\left(\frac{\alpha}{2}\right) \hat{\sigma} / \sqrt{n} \tag{20}
\end{align*}
$$

Here $\mathrm{x}(\epsilon)$ is the upper ϵ-fractile in the $N(0,1)$-distribution. It is easily seen that

$$
\lim _{n \rightarrow \infty} P \text { (faise statement) }=\left\{\begin{array}{lll}
a & \text { if } & d_{1}=d_{2} \tag{21}\\
0 & \text { if } & d_{1} \neq d_{2}
\end{array}\right.
$$

A confidence interval for the difference $d_{1}-d_{2}$ with asymptotic confidence level equal to $1-\alpha$ is given by

$$
\begin{equation*}
\mathrm{a}_{1}-\mathrm{a}_{2} \in\left[\hat{\mathrm{a}}_{1}-\hat{\mathrm{d}}_{2} \pm \mathrm{x}(\alpha / 2) \hat{\sigma} / \sqrt{\mathrm{n}}\right] \tag{22}
\end{equation*}
$$

Let us now consider a case that often will appear, namely that one of the factors in both tables, say the column-factors, are the same. Then the two other factors will be two possible explaining factor to the primary column factor.
σ_{1}^{2} and σ_{2}^{2} will be just as before, but there will be a different expression for ρ, since $\mu_{i j h l}=0$ for $j \neq 1$.
Hence

$$
\rho=\sum_{i=1}^{V_{1}} \sum_{j=1}^{w} \sum_{h=1}^{V_{2}} \mu_{i j h j} d_{i j 1} d_{h j 2}-d_{1}^{*} d_{2}^{*}
$$

and $\hat{\rho}=\sum_{i=1}^{V_{1}} \sum_{j=1}^{w} \sum_{h=1}^{V_{2}} m_{i j h j} \hat{\mathrm{~d}}_{i j 1} \cdot \hat{d}_{h j 2}-d_{1}^{*} d_{2}^{*} \quad ; \quad w=w_{1}=w_{2} \quad$.

Of course in this case we cannot have independence if $n_{12}>0$, since $\mu_{i j h 1}=0$ and $p_{i j 1} p_{h i 2}>0$ for $j \neq l$

At last in this section we go back to the case where $n_{1}=n_{2}=n_{12}$. In this case the asymptotic variance of $\sqrt{n_{12}}\left(\hat{a}_{1}-\hat{d}_{2}\right)$ was found to be

$$
\tau^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}-2 p
$$

After some calculations we find

$$
\begin{aligned}
\tau^{2} & =\sum_{i=1}^{V_{1}} \sum_{j=1}^{W_{1}} \sum_{h=1}^{V_{2}} \sum_{j=1}^{W_{2}} \mu_{i j h l}\left(d_{i j 1}-d_{h l 2}\right)^{2}-\left(d_{1}^{*}-d_{2}^{*}\right)^{2} \\
& =\sum_{i} \sum_{j} \sum_{h} \sum_{l} \mu_{i j h I}\left[\left(d_{i j 1}-d_{h l 2}\right)-\left(d_{1}^{*}-d_{2}^{*}\right)\right]^{2}
\end{aligned}
$$

Here all observations in both tables are results of the same triais, so we can consider the two-tables as one four-way (possibly three-way) table. If we let $D=d_{1}-d_{2}$, we see that

$$
T^{2}=\sum_{i} \sum_{j} \sum_{h} \sum_{l} \mu_{i j h I}\left[\frac{\partial D}{\partial \mu_{i j h I}}-\left(\sum_{i, j} \sum_{h, I} \mu_{i j h I} \frac{\partial D}{\partial \mu_{i j h l}}\right)\right]^{2} .(23)
$$

In the next section we will consider the general case, comparison of several tables. The multiple N-tests for differences proposed in [2] for independent tables will be generalized to this case.

3 c). Comparison of k tables.
The situation is given in 3 a).
The result we need is a direct consequence of theorem 2 .

THEOREM 4.
Let $\sigma_{i j}^{2}=\frac{1}{\pi_{i}} \sigma_{i}^{2}+\frac{1}{\pi_{j}} \sigma_{j}^{2}-\frac{2 \pi_{i j}}{\pi_{i} \pi_{j}} \rho_{i j}$, and assume $\sigma_{i j}^{2}>0$.

Then

$$
\sqrt{\sqrt{n} \frac{\left[\hat{\alpha}_{i}-\hat{\alpha}_{j}-\left(\alpha_{i}-\alpha_{j}\right)\right]}{\hat{\sigma}_{i j}}} \stackrel{D}{\rightarrow} N(0,1)
$$

where

$$
\hat{\sigma}_{i j}^{2}=\frac{\hat{\sigma}_{i}^{2}}{\pi_{i}}+\frac{\hat{\sigma}_{j}^{2}}{\pi_{j}}-\frac{2 \pi_{i j}}{\pi_{i} \pi_{j}} \hat{\rho}_{i j}
$$

Proof.
Let $n^{\prime}=n_{i}+n_{j}$ and $\quad \lambda_{1}=\frac{n_{i}}{n^{\top}}, \lambda_{2}=\frac{n_{j}}{n^{1}}$ and $\quad \lambda=\frac{n_{i j}}{n^{\top}}$.

Then from theorem 2

$$
T=\frac{\sqrt{n}\left(\hat{\alpha}_{i}-\hat{\alpha}_{j}-\left(\alpha_{i}-\alpha_{j}\right)\right)}{\left(\frac{1}{\lambda_{1}} \hat{\sigma}_{i}^{2}+\frac{1}{\lambda_{2}} \hat{\sigma}_{j}^{2}-\frac{2 \lambda}{\lambda_{1} \lambda_{2}} \hat{\rho}_{i j}\right)^{\frac{1}{2}}} \stackrel{\mathcal{D}}{\rightarrow} N(0,1)
$$

Now $\quad \lambda_{1}=\frac{\pi_{i}}{\pi_{i}+\pi_{j}}, \quad \lambda_{2}=\frac{\pi_{j}}{\pi_{i}+\pi_{j}}$ and $\lambda=\frac{\pi_{i j}}{\pi_{i}+\pi_{j}}$, hence

$$
T=\frac{\sqrt{n^{\prime}\left(\pi_{i}+\pi_{j}\right)^{-1}}\left(\hat{\alpha}_{i}-\hat{\alpha}_{j}-\left(\alpha_{i}-\alpha_{j}\right)\right)}{\left(\frac{\hat{\sigma}_{i}^{2}}{\pi_{i}}+\frac{\sigma_{j}}{\pi_{j}}-\frac{2 \pi_{i j}}{\pi_{i} \pi_{j}} \hat{\rho}_{i j}\right)^{\frac{1}{2}}} \quad \text { and the result follows. }
$$

From now on we assume that $\sigma_{i j}^{2}>0$ for all $i<j$.
A method for testing all differences $d_{i}-d_{j}$, $i<j$, that is similar to multiple normal-tests presented in [2] will be proposed. Let then

$$
\begin{equation*}
T_{i j}=\frac{\sqrt{n}\left(\hat{\alpha}_{i}-\hat{\alpha}_{j}\right)}{\hat{\sigma}_{i j}} \tag{24}
\end{equation*}
$$

For a fixed sample $\left(n_{1}, \ldots, n_{k}\right)$ we see that $T_{i j}$ can be expressed as

$$
\begin{equation*}
T_{i j}=\frac{\left(\hat{d}_{i}-\hat{d}_{j}\right)}{\left(\frac{\hat{\sigma}_{i}^{2}}{n_{i}}+\frac{\hat{\sigma}_{j}^{2}}{n_{j}}-\frac{2 n_{i j}}{n_{i} n_{j}} \hat{\rho}_{i j}\right)^{\frac{1}{2}}} \tag{25}
\end{equation*}
$$

The following testprodecure for comparing d_{1}, \ldots, d_{k} is proposed: Multiple generalized normal-tests (GN-test).

$$
\begin{equation*}
\text { State } d_{i}>d_{j} \text { if } T_{i j}>x(\alpha / k(k-1)) \tag{26}
\end{equation*}
$$

 of values of the parameter we let $\alpha\left(\underline{d}, \underline{\sigma}_{\alpha}\right)$ be the probability of at least one false statement $" d_{i}>d_{j} "$. We shall consider $\alpha\left(\underline{d}, \underline{\sigma}_{d}\right)$ generaily and apply the same approach as in [2]. Let then the index sets V_{i} for $i=1, \ldots, t$ be as follows:

$$
\begin{aligned}
& V_{i} c\{1, \ldots, k\} ; V_{i} \text { and } V_{j} \text { are disjoint for } i \neq j \text { and } \\
& t \\
& i=1 \\
& V_{i}=\{1, \ldots, k\} \text {. }
\end{aligned}
$$

Let further V_{i} be the number of elements in V_{i}, such that

$$
\begin{aligned}
& \sum_{i=1}^{t} v_{i}=k \quad \\
& \text { is the parameter set of ail }\left(\underline{\alpha}_{i}, \underline{\sigma}_{d}\right) \text { such that }
\end{aligned}
$$

$d_{i}=d_{j}$ if $i, j \in V_{h}$ and $d_{i} \neq d_{j}$ if (i,j) belongs to different $V_{h_{2}}$. . The following result is valid.

THEOREM 5.

If $\quad\left(\underline{\alpha}_{\alpha}, \underline{\sigma}_{d}\right) \in \omega\left(V_{1}, \ldots, V_{t}\right)$ then

$$
\begin{equation*}
\underset{n}{\operatorname{Iimsup}} \alpha\left(\underline{d}^{\underline{\sigma}} \underline{-}_{\alpha}\right) \leq\left(1-\frac{t-1}{k}\right)\left(1-\frac{t-1}{k-1}\right) \alpha . \tag{27}
\end{equation*}
$$

Proof.

Now, since $\hat{d}_{i}-\hat{d}_{j} \xrightarrow{P} \alpha_{i}-d_{j}$, it implies that

$$
\lim _{n} P\left(T_{i j}>x(\alpha / k(k-1)) \mid d_{i}<\alpha_{j}\right)=0 \text {, and hence }
$$

$$
\begin{equation*}
\operatorname{Iim}_{n} P\left(\underset{g \neq h i \in V_{g} j \in V_{h}}{U}\left(\text { false statement } " d_{i}>d_{j} "\right)\right)=0 \tag{28}
\end{equation*}
$$

The theorem is therefore proved for $t=k$.
Assume $\quad t<k$.

Hence

$$
\begin{aligned}
& \underset{n}{\limsup } \alpha\left(\underline{\alpha}, \underline{\sigma}_{d}\right)=\underset{n}{\operatorname{Limsup}} P\left({\underset{h=1}{U}}_{\substack{i<j \\
i, j \in V_{h}}}^{U}\left|T_{i j}\right|>x\left(\frac{\alpha}{k(k-1)}\right)\right. \\
& \leq \sum_{h=1}^{t} \sum_{i<j}^{i, j \in V_{h}} \underset{n}{\lim } P\left(\left|T_{i j}\right|>x\left(\frac{\alpha}{k(k-1)}\right)\right.
\end{aligned}
$$

$$
=\sum_{h=1}^{t} \sum_{\substack{i<j \\ i, j \in v_{h}}} \frac{2 \alpha}{k(k-1)}=\frac{2 \alpha}{k(k-1)} \sum_{h=1}^{t} \frac{v_{h}\left(v_{h}-1\right)}{2}=\frac{\alpha}{k(k-1)}\left[\sum_{h=1}^{t} v_{h}^{2}-k\right] .
$$

In [2] we showed that $\sum_{h=1}^{t} v_{h}^{2} \leq(k-t+1)^{2}+(t-1)$. This implies
$\limsup _{n} \alpha\left(\underline{\alpha}, q_{d}\right) \leq \frac{a}{k(k-1)}\left[(k-t+1)^{2}-(k-t+1)\right]=\left(1-\frac{t-1}{k}\right)\left(1-\frac{t-1}{k-1}\right) \alpha$. Q.E.D.

The upper bound in (27) is the same as the one given in [2] for multiple normal-tests for independent tables. Theorem 5 is therefore a generalization of the result in [2] ; it is valid for any set of tables. The upper bound on $\limsup \alpha\left(\underline{\alpha}_{\mathrm{d}}, \underline{\sigma}_{d}\right)$ increases as t decreases and has maximum for $t=1$, such that

$$
\begin{equation*}
\underset{n}{\limsup } a\left(\underline{\alpha}^{\alpha}, \underline{\sigma}_{\alpha}\right) \leq a \text { for all }\left(\underline{\alpha}, \underline{\sigma}_{\alpha}\right) \tag{29}
\end{equation*}
$$

Simultaneous confidence intervals for all differences $d_{i}-d_{j}$ are given by the following relation
$\underset{n}{\operatorname{Iimsup}} P\left(\hat{\alpha}_{i}-\hat{\alpha}_{j}-x\left(\frac{\alpha}{k(k-1)}\right) \hat{\sigma}_{i j} / \sqrt{n} \leq \alpha_{i}-\hat{\alpha}_{j} \leq \hat{d}_{i}-\hat{\alpha}_{j}+x\left(\frac{\alpha}{k(k-1}\right)\right) \hat{\sigma}_{i j} / \sqrt{n}$ for ail $i \neq j) \geq 1-\alpha$.

The last section in this paper deals with independent contingency tables. A very simple proof of theorem 3 on [2] is given, and we present some properties of the method for linear functions in d_{1}, \ldots, d_{k}, not given in [2].

4. Comparison of k independent tables.

Since two tables are independent if and only if q_{1} and q_{2} are independent we say that k tables are independent if and only
if q_{1}, \ldots, q_{k} are independent, as we did in [2] and [3]. We will now give another, simpler proof of theorem 3 in [2]. First, however, we need an algebraic result.

IEMMA 7. Let y be a (kx1)-vector. Then
$y^{\prime} y \leq z \stackrel{(1)}{\Leftrightarrow} h^{\prime} y \leq \sqrt{z^{\prime}} \sqrt{h^{\prime} h} \quad \forall h=\left(h_{1}, \ldots, h_{k}\right)^{\prime} \stackrel{(2)}{\Rightarrow}\left|h^{\prime} y\right| \leq \sqrt{z} \sqrt{h^{\prime} h^{7}}$,

$$
\text { Here } \quad z>0 . \quad \forall h=\left(h_{1}, \ldots, h_{k}\right)^{\prime}
$$

Proof.

(1) : $y^{\prime} y \leq z \Leftrightarrow \Sigma y_{i}^{2} \leq z \Leftrightarrow \sum h_{i}^{2} \Sigma y_{i}^{2} \leq z \Sigma h_{i}^{2} \quad \forall h=\left(h_{1}, \ldots, h_{k}\right)$: From Schwartz inequality we get $\Sigma h_{i}^{2} \Sigma y_{i}^{2} \geq\left(\Sigma h_{i} \ddot{y}_{i}\right)^{2}$

Hence $y^{\prime} y \leq z \Rightarrow\left(\Sigma h_{i} y_{i}\right)^{2} \leq z \Sigma h_{i}^{2} \Leftrightarrow\left(h^{\prime} y\right)^{2} \leq z h^{\prime} h \Rightarrow h^{\prime} y \leq \sqrt{z^{\prime}} \sqrt{h^{\prime} h}$ The other way. Let $h=y$ and the resuit follows.
(2) is obvious.
Q.E.D.

If now Y is a ($k \times 1$) - random variable, it follows from Iemma 7 that

THEOREM 3 FROM [2].

Simultaneous confidence intervals for all linear functions

$$
\sum_{i=1}^{k} c_{i} d_{i} \text { are }
$$

$$
\sum_{i=1}^{k} c_{i} \alpha_{i} \in\left[\sum_{i=1}^{k} c_{i} \hat{d}_{i} \pm \sqrt{z(k, \alpha)} \hat{\sigma}_{c} \cdot \hat{d} \quad \text {, where } \hat{\sigma}_{c}^{2} \cdot \hat{d}=\sum_{i=1}^{k} \frac{c_{i}^{2 \wedge} \sigma_{i}^{2}}{n_{i}} .\right.
$$

Here $z(k, \alpha)$ is the upper α-fractile in the chi-square distribution with k degrees of freedom. Asymptotically the probability is equal to
(1-a) that (31) is true for all (c_{1}, \ldots, c_{k}).
Proof.

$$
\text { Let } Y_{i}=\frac{\hat{\alpha}_{i}-d_{i}}{\hat{\sigma}_{i}} \sqrt{n_{i}} \text { and } Y=\left(Y, \ldots, Y_{k}\right) i
$$

Then $\lim _{n} P\left(Y^{\prime} Y \leq z(k, a)\right)=1-a$.
From (30) we see that

$$
\begin{aligned}
1-\alpha & =\lim _{n} P\left(\left|\Sigma h_{i} Y_{i}\right| \leq \sqrt{z(k, \alpha)} \sqrt{\Sigma h_{i}^{2}} ; \forall h\right) \\
& =\lim _{n} P\left(\left|\Sigma \frac{h_{i} \sqrt{h_{i}}}{\hat{\sigma}_{i}}\left(\hat{a}_{i}-d_{i}\right)\right| \leq \sqrt{z(k, \alpha)} \sqrt{\Sigma h_{i}^{2}} ; \forall h\right) \\
& \text { Let } \hat{\underline{a}}=\left(\hat{d}_{1}, \ldots, \hat{a}_{k}\right) \text { and } \hat{\sigma}_{d}=\left(\hat{\sigma}_{1}, \ldots, \hat{\sigma}_{k}\right) .
\end{aligned}
$$

Let further

$$
\begin{aligned}
& A=\left\{\underline{\hat{a}}, \left.\hat{\alpha}_{d}| | \Sigma \frac{h_{i} \sqrt{n_{i}}}{\hat{\sigma}_{i}}\left(\hat{d}_{i}-d_{i}\right) \right\rvert\, \leq \sqrt{z(k, \alpha)} \sqrt{\Sigma h_{i}^{2}} ; \forall h\right\} \\
& B=\left\{\hat{a}^{\prime}, \hat{\sigma}_{d}| | \Sigma c_{i}\left(\hat{d}_{i}-d_{i}\right) \mid \leq \sqrt{z(k, \alpha)} \hat{\sigma}_{c}, \hat{d} \quad \forall c\right\} .
\end{aligned}
$$

Now it is easily seen that $A=B$, and the result follows.
Q.E.D.

From (30) we also get the following result:
$\lim _{n} P\left(\Sigma c_{i} \hat{d}_{i}>\Sigma c_{i} \hat{\mathrm{a}}_{i}-\sqrt{z(k, \alpha)} \hat{o}_{c}, \hat{d} \quad, \quad \forall c\right)=1-a$.
The test for linear functions is then to
state

$$
\begin{equation*}
\Sigma c_{i} \mathrm{a}_{i}>0 \text { if } \sum c_{i} \hat{\mathrm{a}}_{i}>\sqrt{z(k, \alpha)} \hat{\sigma}_{c} \cdot \hat{d} \tag{33}
\end{equation*}
$$

Then we have the following result, not shown in [2].

IENIMA 8.
$\underset{n}{\limsup P}\left(\right.$ at least one false statement: $\left.\Sigma c_{i} \alpha_{i}>0\right)=\left\{\begin{array}{r}\alpha \text { if } \underline{d}=0 \\ \leq \alpha \text { if } \underline{\alpha} \neq 0 .\end{array}\right.$

Proof.

$$
P(\text { no false statement })=P\left(\hat{N}_{i} \hat{d}_{i} \leq 0 \quad \sum c_{i} \hat{\mathrm{a}}_{i} \leq \sqrt{z(k, \alpha)} \hat{\sigma}_{c} \cdot \hat{d}\right)
$$

Assume first $\underline{d}=0$. Then $\Sigma c_{i} \alpha_{i}=0$ and hence
$P($ no false statement $)=P\left(\cap_{\forall c} \Sigma c_{i} \hat{d}_{i} \leq \sqrt{z(k, \alpha)} \hat{\sigma}_{c} \hat{d}^{\prime}\right) \underset{n \rightarrow \infty}{\rightarrow} 1-\alpha$, from (32) .
If $\underline{d} \neq 0$ then
$\underset{n}{\limsup } P($ no false statement $) \geq \underset{n}{\limsup } P\left(\underset{\sum c_{i} d_{i} \leq 0}{n} \Sigma c_{i} \hat{d}_{i}-\Sigma c_{i} d_{i}\right.$ $\left.\leq \sqrt{z(k, \alpha)} \hat{\sigma}_{c}, \hat{d}\right)$

$$
\geq \lim _{n} P\left(\cap \sum c_{i} \hat{\mathrm{~d}}_{i}-\Sigma c_{i} \alpha_{i} \leq \sqrt{z(k, a)} \hat{\sigma}_{c}, \hat{d}\right)=1-\alpha, \text { from }(32)
$$

In [3], section 5 the author presents similar methods as (33) for ail linear contrasts, ie. Linear functions $\Sigma c_{i}{ }_{i}{ }_{i}$ with $\Sigma \mathrm{c}_{i}=0$. The difference from (33) is that we substitute $z(k, \alpha)$ with $z(k-1, \alpha)$. The testprocedure for Linear contrasts has the same property as the one stated in Lama 8 for the method (33).

References.

[1] Bjørnstad, J.F. : "Inference theory in contingency tables", Statistical Research Report, No. 2-1975, Univ. of Oslo,
[2] Bjørnstad, J.F.: "Comparison of contingency tables", Statistical Research Report, No. 3-1975, Univ. of Oslo.
[3] Bjernstad, J.F.: "A general principle for multiple comparison procedure for linear contrasts, and some applications", Statistical Research Report, No. 4-1975, Univ. of Osio.
[4] Goodman, I.A. \& Kruskal, W.H.: "Measures of association for cross classifications", J.Am. Statist.Ass. Vol.49, 732-764, (1954).
[5] Rao, C.R.: "Linear Statistical Inference and Its Applications", John Wiley \& Sons, Inc. (1965).

