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ABSTRACT

A multiple testprocedure for comparison of any set of two-way
convingency tables is proposed. The comparison-method is a
generalization of a method for independent tables presented

earlier by the author in [27.
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1. INTRODUCTION

In [27]the author proposed several methods for comparing independent
two-way contingency tables by use of measures of association. In
this paper we consider comparison of two-way tables generally,
allowing dependence, and generalize a method given in [2] to

this case. TFurther we define precisely the notion of two inde-
pendent contingency taples, and show that this definition is
consistent with the one formulated in [2] and [3]. At last a
very simple proof of theorem 3 in [2]ffnr general linear functions
is presented, and we state some more properties of that method.
Before we consider the general situation with several independent
of dependent contingency tables, we first look at a general model

for two contingency tables and present the main theorem.

2. A MULTINOMIAT MODEL FOR TWO CONTINGENCY TABLES. THE

MAIN THEOREM.

The situation with two tables can be described as a multinomial
model with two dependent sequences as follows. In sequence
J s rj events can occur with probabilities

p1j’...’Prj:j

.

J

for j=1,2 . TE..=1 . Let »=r_ +r, .
’ ca=q 1 T2

We assume all Pij positive. Let kn be the total number of
independent trials, and let nj be the total number of trials
in sequence Jj , for Jj=1,2 . Let n=n,+n, . It is assumed that

n>k . I.e. some of the trials may give observations in both

sequences.




Let I denote this set of trials and m=#(I) . Then

k = m+(n1-m) + (nz-m) = n-m . TFor the trials in I we let b
be the proﬁability of class 1 in sequence 1 and class J in
sequence 2 , for i=1,...,r1 and j=1,...,r2 . Nij is the
numper of observations in cell 1 of sequence j , for J=1,2

and i=1,...,rj . Then nj = igj N.. « The relative frequences
are denoted by q; 5= N../n. . Let 7 =nmn/n, ™= n1/n and
o= n2/n . T,M,,T, are considered as constants as n tends to
infinity, and mw >0 , h1>0 and > o -
We use the following notations:

Py = (p11""’Pr11)’

P2 = (P12""’Pr22)'

4 = (q11"'°’qr11)'

- ]
Ao = (q12”"’qr22)

(2 )

Let 21 = {aij} be the covariance matrix of quq%ﬂ and let
= ’ Ean =¥ - 3 -3 If—‘
T, = {Tij} be the covariance matrix of +u,q, . Then

P4 (1=p44)  for i=]
i3 S
-pl1PJ1 for l%a

P12(1-1}12) for l=3
Tij=1 for idi
“PizPjo ox 1%
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Further we let A = {pij} where

Pij = Pij - PiqPyp O I=Theee,Ty 3 =100, Tp o

We see that

= T
cov (q34,955) = i, Pij

The first result concerns the simultaneous asymptotic distribution

of - -
e T TR

M2l = ToPp

IEMMA 1. i
m,(g,-p,)
No | 1T Ei W, (0,%) (1)
T (4 P5f
where

LIPPY TA
2{11
™A ﬂzz .

N (0,5) denotes the r-dimensional normal distribution with

mean zero and covariance matrix % .

Proof.

K —_— 1 ~ ?
Let N, = (N1i""’Nrii> for i=1,2 .

Let us first consider the trials from the set I , and deiine

}c PR . . a f OllOW 4

%50 otherwise

v = [ if event no.i in sequence 2 occur in trial no.j
ij L0  otherwise



The m observations in I can be formulated as

U. = (X,ljg.no,Xr -9 Y ”“’YI‘ .)' fOI‘ 3;"1,00t,n1 3

dJ 19 13 od
m m
1 = = V[ = ]
Let I, By Xij and I, =z Yij M (Mﬂ,...,lVLr 1) )
J=1 J=1 1
—_ 1 . . .
M, = (M12,...,IVL_E22) » U,y...,U, are independent and identi

cally distributed with mean p and covariance matrix

T o= 521 Al
(.
A E)

From the multivariate central 1imit theorem we then have that

;—M1/m - p,ﬁ D

m e e | & .
EI.L2/1 P@j > Nr(O,T) as m»> o . (2)

A

For the rest of the trials in sequence 7 we let

L. be the number of observations in cell i .

i1
For the rest of the trials in sequence 2 we let Li2 be number

of observations in cell i . Let

L, = (L

] L 1)

11,‘.., _C,i’

L2 = (L12,...,Lr2’2)

n! =n,-m n! = n,-m
! 2 2

1

— -

Assume now that > for i=1,2 such that n1' 5 né > oo as
n =>co ,

We know that
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' L
“ﬁafl(ﬁi -~ P1) - Nr1(0,21) as n; - O (3)
and  Ant’ (112 - ) -» N_ (&3%,) as n) > (4)
2 'aT, Po T2 2 '

We see that

_ Ji B A i _ ek oy
Jﬂ(ﬂiqi-ﬂipi) = Jﬁjﬁi( o p;) =& e ( 5T p;) + I Pile

for i=1,2 .
.en ! .
1 1

n _ Jo it i o :
and Y, = Nn I (m pi) for i=1,2 .
/nﬂi ' . n? - I e fowen ol Ll 9
X? =V jﬁ =T A‘/Tri-ﬂ'\/ni (EI -Pi) > Nri(O’(”i-”) Zi)
n;.(=—)

from (3) and (4) .

&
1) "

a 7% =

( 2 an 2 \

Let z? =

= Z? + 72 H Z? and Zg are independent for
all n .

. Then ane1 and bnf 1

n n, 0, N, DT
and y
a, ; M, /m-p
ZE = A n\. n O J ,\']-_51—' “_ 1 1 ]
< 0O b Mz/m-p2

D

Hence Zg = Nr(O,n T) .
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>\ .
Let now )\ = (X1) be a fixed X1 <vVector
2

is r, X1 . Then

is r,X1 and A\ o

A 1 2

1
il Ny _ 5 PP s R v el
A (z1 + Z2) = z1 + A 22 = x1X1 +* x2X2 + z2

Let Vy = MX] and W' = )'Z; . Then V) , V, , W' are independent

2 1 2
and n g)
' -
& :
vg = N(0, M} (m=m)T, )
P
Wh = N(O,A'HTA) .
Hence

1®

(2 + 23) S N(0,0°)

where 02 = x;(w1-n)z1x1 + xé(nz-n)zzxz + Al .

2 — 1 ] 1 1 ?
We see that o = X1ﬂ121k1 + k2n222X2 + k1ﬁAX2 + xgﬂA X1
= \'ZN .
. n . .n 9
This gives Ly + T, = N.(0,%) .

We have now proved (1) when m; > for i=1,2,
If one ™ or both are equal to 1 , we can put one or both of
(X? , Xg) equal to zero and the result follows.

Q.I.D.
Let Mij be the number of observations from I that falls
in cell i of sequence 1 and cell J of sequence 2, and let
mij= Mij/m-. Further we assume that £ is a function in r
variables with continuous partial derivatives.



Let
_ oot
fi(p) T X, |x=Dp
i
A
fi = fi(Q)
- f’l
tp = ¢ p.,f.(p)
1 121 i17i
T = (p)
D = $° p.,L. P
2 1= i2 1+r1
_ T, A
fq = 5 q;.f.
1 121 i17i
i A
Ta, = % aipfy,.
i=1 I
Turther we define
5
r r
2 1 1 - 2 1 2 - - 2
6 == 3 p.,(f.(p)-Ip,)° + — 2., (£, . (p)-Tp,)
£ Ty = i1 i 1 ﬁz 121 i2 1+r1 2
r r
21 1 2 p )
+ = % rp..f.(p)E,  .(P) . (5)
™2 i=1 j=1 *3 77 7
We will from now on use the notations
by = (p1i""’pr.i) i=1,2
i
q’l = (q1i""’qr.i) i=1,2
i
p = (p;»p,) and q = (q,,9,)
Lernina 1 states that
. . - D
N m - !
| (m,a,9M8)= (myp,mp0,) | = 1.(0,5) (6)

We have the following fundamental result.



THEOREM 1.
If 0,.>0 then
1) ,
Un(f(g) = £(®)) B y(0,1)
Of ’
2)
N -
\n(f(qlz f(P)) _;@, N(O,’l)
Of
A “
A2 1 5y = 2 1 Ip . = N2
where o0- = =— Y Q. (f--iq )C + =— % Q. , (£, (Q) - fq )
i T 521 i1 i 1 upy =1 i2 1+r1 2
r, r A A
21 1 22 e g .
+ =— T % (m"-qi1qj2)*ifj+r« '

MM i=1j=1 *9 1

Proof.
Let g ©vpe a function in 1 variables defined by
X b

o kA Xy
g(X geee 33X )=_L("—",oo-,'—'—, ,ooo,_)
1 r us ™ Mo To

Then from lemma 1 and Rao,[5],p.321 we have that

=2 2
AT (g(ﬂ1q19ﬂ2q2) - g(ﬁ1p19ﬂ2P2)) - N(O’O'g)

provided 02 >0 .

Let o= (n1p1,ﬂ2p2) .« Then

where T 52

(7)

(8)

(9)



Now from the definition of g ,

g(ma,,mya,) = £(q)
and

g(mpysmop,) = £(p)
Hence

"ot (£(q)-£(p)) éi N(O,og)

bg _ oL, 1 - b _ of 1 .
<~ = By, = f = see and ==, = T =r,+ eo e .
83 Sji ™ or 1i=1, Ty ox, = by T, or i=r,+1, s T

This gives

g‘;‘;l ‘X=G~Li(l))%1 for 1< T,
and
%')gc'i \x.—..-e-;Li(p)%Z for r<igr.
Hence
02 = 31 3lmo . 1) ()E )P
8 52q goq 10i3T TN
: P £, ())& )?
i=r +1 =T, +1 2 i~T, ,j-r, iv\ ] »
v 23l B £, () ()
i=1 j=r,+1 i3 T 1T1TT2

1

= l[ Z11311 l(P) (fp,) 2J+ _[ Z p12i1+r (p)- (fpz‘)z—‘

Mti= 1
21T !
+ = % z 0. L. (p)L (p) &
ﬁ1n2 i=1 j=1 ij 3+r1
Hence Gé = o% defined by (5) and 1) is proved.
2) iFollows from the fact that é% is a consistent estimator

N

of Of . QuE.Do
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The next chapter presents first the general situation with k
contingency tables. Then the comparison of two tables is
considered, and we apply theorem 1 to comparison of measures of
association. At last comparison of Ik “tables is discussed, and
a method generalizing the multiple normal-tests in [2] is

presented.

3. MULTIPLE GN-TESTS FOR DIFFERENCES IN MEASURES OF ASSOCIATION,

3a) Assumptions and notations.

k two-way contingency tables are considered. The number of

row- and column-classes in table no. 1 are respectively A and

Wi o for i=1,...,kK « Let TSVieW, Let pijh denote the
cell-probabilities in table h with Pijh > 0 and

v, V

Zh thl;]h =1 for h=1,...,k &

i=1 j=1

d; 5n is the relative frequency in cell (i,j) of table h .

Let n be the number of observations in table h « We let n =

h

k
Lmy and m = nh/n . For each pair (i,j) of tables we let
h=1

Iij be the set of trials that gives observations in both table
i and table Jj , and let ngy = #(Iij) and Ty = nij/n . For

s - . rt . e ay s . . .
the quéLs in Irt_’ “ijhl is the probability of falling in cell
(i,3) of table r and cell (h,l) of table t . ALl m 4 and
are considered as constants as n tends to infinity.

"h
Ty 2 O and m >0 .

rt . . N - ‘
Let Mijhl be the absolute frequency  from the set I, that

falls in cell (i,j) of teble r andcel (h,1) of table t . The

relative frequencies are denoted by
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rt _
Tijh1 = 13hl/n ¥
The following notations are used

ph = (P11h"",pv w. h) for h=1,000’k

h™'h’
qh = (q11k,...’qhh,ll) iOI‘ h—190¢0’k .
b = (p17""Pk)
q = (q1,ooo,qk) .
rt _ (. rt rt
me = (g e ety W by
m = {mrt} for r=1,oco,k t=19-o-,k H r<t .
Urt _ (H prt
= 90 ey
1111 VWi VW
o) = ;u ] for Ir= 19...,k ) t=1,ooo,k s T < t .

Let d ©Dbe the chosen measure of association with continuous
partial derivatives as Ifunction of the cell-probabilities. For

'a presentation of measures of association we refer to the author's
review in [1] , part 1 and the original paper [4] by Goodman

and Kruskal.

Let di be the measure d in table 1 . Then di is a function

of T variables with continuous partial derivatives. I.e.
A

di=di(pi) . A consistent estimator of di is di=di(qi) .
Let
- P g
i=1 j= th(d:jh _dﬁ) sy h=1,404,k o (10)
where
0
i, 2

W.
ijh bpijh and d* lz? 32? leh plgh
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A consistent estimator of cﬁ is

= 23 n @ gy - 11
h iz 1 J=1 ijh* " ijh h
where
a A sh b A
¥ =
din = dignle) et G = B0 Thdigagg, -
i=1 j=1
Let further
V.. W, VvV, W
r r t t rt
p = X ¥ Z T My d. L do L =d¥ , ax (12)
rt i=1 Jj=1 h=1 1=1 ijhl™ijr hlt " p £

It is later seen that 0 can be considered as the
«ﬁﬁfF rt

A

asymptotic covariance of (Vm, ar , VAL dy) .

A consistent estimator of Ppt 18
A Vo Wp Vi Weo s A A

Prg = Z Z 0 Z I5an105 50t

We will now first consider the case k=2 , i.e. comparison of

two measures d1 and d2 .

3 b)e Comparison of two tables.

A
We simplify our notation for this case, letting P=p1o + 0=Pqo »
12 12 12 12

thl— mthl » M= s Hisp1 0 M= ‘ I=I12 and n12=#(1) » T=Toe

We see that the situation is exactly as in section 2.

The result for comparing d1 and d2 can now be stated.
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THEOREM 2.
" 2 _1 2 .1 2 _ 2 2
Let o° = ﬂ101 + 1T2o2 Tyt p » and assume o~ >0 .
Then
1) Vn '[d -a o-(d,=d,5)]
- i) N(O 1) (14)
— A
2) n [d1-d (d -d )]
x N(O 1) (15)
G
where
A2 _ 1 A2 1 n2 _ 2 A
9 = ﬂ101 + ﬂ2°2 Ty b e (16)
Proof.

Theorem 1 is applied by letting

In order to faecilitate the notation we replace (i,j) by a single
letter i , such that pijh is repdiaced by Pip o i=1,...,rh

and leh is replaced by dip o 1-1,...,rh « ©Similar changes for

qiah and leh , and “13h1 is replaced by My ij * We find
di1(p1) for i=1,...,r1

£;(p) =
1 -
_di-I‘,] (P2 )fOI’ l=I’1 +1 3000yl .

Hence ?p1 = d¥ and ?@2 = -d% .

In this case we get from (5)

2 1 2 To 2
oS = = (d -&*) + L5 P (d. ~d%)
f ™ 4= 1 ﬂ2 1=1 i2 iz "2

r
_on 1
+ z Z (le 11p 2>d11( 32)

“1”2 i=1 j=1
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I r
2 1.2 152 - 2 1 2 - d%3x*) = .
Hence oy = m o1 TR Tmm, (121 321 byqdyqd5p - 4%d5) = o

Result 1) follows now from theorem 1.
Ao P
Result 2) is proved by seeing that 0°=- 0% .

Q- E.D.

Before we look at some important special cases, we will discuss
the notion of independence between two contingency tables.

For this sake we define the set of variaples X = {Xij}

N

for i=1,.44,v, 5 j=1,.0s,w, and the set Y = {YiJ

fOl“ i=1,...,V2 aIld j=1,.."W2 as fOllOWS .

1 if observation falls in cell (i,J) of table 1
X5 ”{o otherwise (17)

Y. . =\r1 if observation falls in cell (i,j) of table 2

d Y0 otherwise (18)
The situationis that we have P independent observations
(Xk,Yk) , k=1,...,n12 of (X,Y) , then n,-n,, independent

observations (Xk,o) . k=n12+1,...,n2 of (X,0) and

n,-n independent observations (O,Yk) ’ k=n1+1,...,n—n12

2 "2

of (0,Y) . A general formulation of the trials is then

X ]
¥ = (U,]{,Ulzc) ; k=1,.00,k, (kg =n-n,,) , where

for k < n,

1 o for k > n1

and

and k> n

. k
1 _{Y for k< Do 1

-0 otherwise .
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The following natural definition of independent tables is then:

Definition. Table 1 and 2 are said to be independent if U%

k
and U2

Our main goal is to show that this deiinition is equivalent with

are independent for k=1,...,kn o

Q4 and e stochastically independent. We first need some
simple results to prove this.

Since the observations are independent we see that if n, o= 0
then the tables are independent.

First notice that X and Y are independent if and only if
(Xij’th) are independent for all pairs (i,j) and (h,1) .
Let us now assume n,, > O + Then we have the following

results.

LEMMA 2,

Table 1 and 2 are independent <=> Bign1 = Pij4Ppio v(i,j,h,1) .

Proof.

Since n,o > O , table 1 and 2 are independent if and only if

X and Y are independent which is equivalent with (Xij,‘hl)
being independent for all (i,j,h,1) , and this again is equivalent

With papy = P(X; =1 NY =1) = P(Xij=1)P(Yh1=1) = Pjij1°Ppio ¢

iJ
Q.E.D.

From theorem 2 we see that _IL;1 p can be considered as

AT

>

_ N —
the asymptotic covariance of (Vn%d1 , VI, 2) )

and immediately from lemma 2 we get

Table 1 and 2 independent => p = 0 , (19)
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n n
LEMA 3. et Vi. = T 2%, , W, = 327,
J k=1 1J =

V =(V119000,Vv w )

11
V=W W

LR N W] )
11? VoW,

V and W are independent <=> Vij and Whl are independent

for all pairs (i,j) and (h,1).

=> : Holds generally .

<= : If Vij and Whl are independent then

0 = cov (V.j Whl) = n12(“ijhl-Pij1ph12) , implying

1
that Xij and th are independent., Hence X and Y are
indpendent, giving that X° and Y° are independent for k=1,.,n,,.

n } n
V=12, w= steyE
k=1 k=1
Tet X° = (X}eea,X®) and Y¥° = (¥',...,¥2) . It is easily
shown that X° and Y° are independent. Hence, V and W are

independente. Q.E.D.

We are now able to prove that definition of independence used
in [2] and [3] is consistent with the natural definition given

earlier,.

THEOREM 3. Table 1 and 2 are independent

I

a4 and g, are stochastically independent.
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Proof.

1) n,, = 0. Obvious,

2) n,,>0. i
91 = %1(Vij + Zij) where Zij =k=§12+1x§j
40 = % (wij+Tij) where T, = gn Y%j
2 k= 1+1
2= Byppeenly ), 1 - (Tgreeenly )
<= ¢ All pairs (qij1’qh12) are independent. Hence
0 = cov (Vij + Zij’¢h1 + Tij) = cov (Vij,Whl)
= 05 (b 411 7Ps 54Pp1 )

From lemma 2 we get that the tables are independent.

= ¢ X and Y are independent, and therefore (ng,Ygl) are

independent for all (i, j,h,l1) and K=1,000,nyp o

Let X = (le,...,xigz) Y = (Yil""’filz)' X, and Y,
are independent and therefore Vij and Whl are independent for
all (i,j) and (h,1) . From lemma 3 we know then that V and W
are independent.

q = %1(V + %) and 9, = %é(w + T) .
(V,2) are independent of (W,T) and hence q, and g, are

independent. Q.E.D.

We now like to look into some important special cases, and apply
theorem 2 on them.

First we consider the independence case,
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LEMMA 4. Table 1 and 2 independent.

{

— N A
Vo(d,-dy-(d,-d,)) g

RENVAT = N(0,1)
up o
o _ _ __ N2 _ A2 A2
Proof. n12 =0 =>nmn=0=0" = 01/111 + 02/ﬂ2 .
N, >0 =29 =0= 02=02/n +02/n and hence
12 P 1/ T0o/ Mo
A
é?_+o§ P
— — — o
T T

This is the same result as lemma 1 in [2] for two tables.
Another case that occur frequently is the situation where

all the trials give observations in both tables.

LEMMA 5, Assume that n1=n2=n12 e LTecs the set I consists

2

*

Q.E.D.

of all

the trials.

Then
A A
Wn, L (d,-d, -(a,-d,))
12\ 172 1A 2 O, N(0,1) .
A A
(c$ + cg - 2p)%
Proof.

The estimated asymptotic variance in this case is
A

A A
QQ = %o? + %og - 4p , and the result follows.

Another common case is considered in the next result.

Q.E.D.
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LEMMA 6.

Assume that n1=n12< N, . T.e. all the observations in one

taple come from the set I . Then

A A .
V] (4-,) - (4-0,)] 9

N2 A2 3
(fl To2 2 /9

N(0,1) .

+ [ .
Proof. Obvious.

From theorem 2 we can propose the following test for comparing

d1 and d2 :

State di > dj if

@, - 9 > x@bnm . | (20)
Here x(e) is the upper e -fractile in the N(0,1)-distribution.
It is easily seen that
ifr 4

1=d5

' o
lim P (false statement) ={;
| iT 4,44,

n-> co

(21)

A confidence interval for the difference d1-d2 with asymptotic

confidence level equal to 1 - ¢ 1is given by
A A A
d,-a, €[d,~d, + x(a/2) o/ (22)

Let us now consider a case that often will appear, namely that
ocne of the factors in both tables, say the column-~factors , are
the same. Then the two other factors will be two possible

explaining facteor to the primary column factor.
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02 and 02 will be just as before, but there will be a different
1 2
expression for o , since Hign1 = O for j#1.
Hence
ML
= - d¥ ax
P 51 321 h21 rl13h3 ij1 hjZ 1 72
v, W V
A— 1 2 A ) -~ ¥ * ° —
and 0 = 121 321 h21 mijhjdij1 . ﬁhjz d1 d2 PoWSW, S, .

Of course in this case we cannot have independence if n12 >0,

since Hi5n1= 0O and le1ph12.> 0O for J#1

ny=no=i o

In this case the asymptotic variance of Jn12(d d ) was found

At last in this section we go back to the case where

to be

2

T 2+

2
0'2—2p.
After some calculations we find

w

2 _ 71 ¥ Y2 T2 2 2
=3z £ ¥ fu (d;54=8y15) (a% - ax)
i=1 j=1 h=1 j=1 ijhl hl?2 1 2
_ 3 3 o 172
RS Migna [ (8 54-app) - (@F -8 )]

Here all observations in both tables are results of the same
trials, so we can consider the two-tables as one four-way

D=4d4,-d

If we let ’ s we see that

ﬂ 2

(possibly three-way) table. >

_0D
ijhl b“lghl

02D
thllE“thl

2

T ~-(zx =zTwu .(23)

i,j h,1

= 2L XN
ijh1l
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In the next section we will consider the general case,
comparison of several tables. The multiple N-tests for
differences proposed in [2] for independent tables will be

generalized to this case.

3 ¢)., Comparison of k tables.

The situation is given in 3 a).

The result we need is a direct consequence of theorem 2.

THEOREM 4.
21T
2 _1 2 1 2 _ ij - 2
Let GiJ = ﬂ'io-i + ﬂ-oj T . pla 9 aIld- assume ciJ > O .
J 1]
Then A
—1[d.-d.-(d —d.)]
(A B e LERE Y TOID
Oij
where gz 92 o
- - A
62, =t 4 L ALG
Proof,
n. n. n, .
. ' _ _ _
Let n' =n, + nj and k1 ==r kz = 54 and \ = 57l
Then from theorem 2
- N A
o’ (d;-d.-(a,-a)) 9
T= 3% /'2 ’“J/\ — = N(0,1)
(—-o-_#lo'z_—dx p)z
s T T -
Now )\, = —= Ay = —— and )\ = —=d— | hence

. ’ -
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. LN A
) Jn'(“i*ﬁj)‘1 (di-qj-(di-dj))

T and the result follows.

N2 A2 z

o= . 21T, .

(_}.“iﬂ.‘__&ﬂ.g,)j Q.E.D.
'\Ti ‘\Tj TTiTl'j 1

From now on we assume that cij >0 for all i< j .

A method for testing all differences di--dj y 1 < j, that is
similar to multiple normal~-tests presented in [2] will be proposed.

Let then A
— A

ij : (24)

Q>

i3

For a fixed sample (n1,...,nk) we see that Tij can be

expressed as

(25)

The following testprodecure for comparing d1""’dk is proposed:

Multiple generalized normal-tests (GN-test).

State d; >-dj if Tij > x(a/k(k-1)). (26)

Let d = (dqseeerdy) and g =(o;,e0es0y) - For a set (d,5,)

of values of the parameter we let a(d,g.) be the probability

of at least one false statement "di > dj“ « We shall consider

a(g,gd) generally and apply the same approach as in [2] .

Let then the index sets Vi for i=1,es.,t be as follows:
Vﬁci1,...,k} 3V, end vj are disjoint for i % j and
t

Y

V' = {1900- 1{} .
i=1 = ’
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Let further \f be the number of elements in Vi , such that

t
ZV-=ko
i=1 *
w(V1,...,V£) is the parameter set of all (g,gd) such that

d; =d; if 4,5 €V and 4; $4y if (1i,3) belongsto different

Vﬁ,s ¢« The following result is valid.
THEOREIM 5.

If (droq) € w(Vy5000,V,) then

vimsup a(d ,o,) < (1 - DG - e o (27)
n
Proof,
— AP
Now, since d, - dy =>d; - dy , it inplies that
lim P(Tij > x(a/k(k=1)) | di<dj) = 0 , and hence
n
1im P(U U U p- o _
0 g4hicy jevh(¢aise statement "di>dj")) =0 (28)

g

The theorem is therefore proved for +t=k .
Assume t < k .

t
a(g,gd) =P(u U (state di+dj)) , from (28) .

h=1 i<j
isJEVh
Hence _
t .

limsup q(d,g;) = Llimsup P( U U |T. . |> x(—fE:—T)

n = n n=1 i<j 13 k(k-1

i,jEVh

; ( (r2—y)
< % bY 1im P(|T..| > x
= h=1 i<j n | 13l k(k-1)



-

t vy, (v =1) rt
T_(Tg—( _ ) 2h k(%{_1)! = Vl,zl - k .
h 1 l<J E[E )~k h 1 Ih

sJEVh

t
In [2] we showed that % v& < (k-t+1)° + (t-1) . This implies
h=1
. 2 1 t=1 $=1
timsup a(d,gq) < P (k=t+1)° = (k=t+1) | = (1- ==) (1= 7=F)as
n aa) < gy | | X =
Q.E.D.

The upper bound in (27) is the same as the one given in [2]
for multiple normal-tests for independent tables. Theorem 5
is therefore a generalization of the result in [2] 5 it is valid

for any set of tables. The upper bound on limsup a(g,gd)
n

increases as t decreases and has maximum for +t=1 , such that

limsup a(d,o0;) < a for all (d,o.) (29)
n

Simultaneous confidence intervals for all differences
di-dj are given by the following relation
. A A o A —
llgsup P(di-dj_x(ETE:T)) cij/Vn < d. -d < ﬁ -4, +X(ETE——ﬂQ' AT

for all i % j) > 1-a

The last section in this paper deals with independent contingency
tables. A very simple proof of theorem 3 on [2] is given, and

we present some properties of the method for linear functions

in d,yees,d) , DOt given in [2] .

4, Comparison of k independent tables.

Since two tables are independent if and only if q, and g, are

independent we say that k tables are independent if and only
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if qqse.e,q are independent, as we did in [2] and [3] . We
will now give another, simpler proof of theorem 3 in [2] .

First, however, we need an algebraic result.

LEMMA 7. Let y ©be a (kx1)=-vector. Then

(1) . (2) o
y'y < 2 <= h'y <A vh=(h,,...,0 )<= |n'y|< VAR,
Here 2z > 0 . vh = (h1,...,hk)' .
Proof.
. 2
(1) : y'y < z <= Zyi < z<=> Ehizyi < z Zhi vh = (h1,...,hk)‘ .

From Schwartz inequality we get zhf zyﬁ > (Ehiyi

Hence y'y < z => (Ehiyi)2 < z Zh? <=>(h'y)2 < zh'h = h'¥y SAJEVh'h'
The other way. Let h=y and the result follows.

(2) is obvious. Q.E.D.

If now Y is a (kx1) - random variable, it follows from

lemma 7 +that

P(Y'¥< 2z) = P('Y < VAH'W ; vh) = P(|u'Y| <V2/h'W ; vh) .
(30)

THEOREM 3 FROM [27.

Simultaneous confidence intervals for all linear functions

k
> c.d. are
i=t * 1
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272

k k A _ A Ao k clo;
A = 1" 1 .

i§1cidi€[i§1cidi +Vz(k,a) g,14 » where o ) 121 o
(31)

Here z(k,a) is the upper a-fractile in the chi-square
distribution with k degrees of freedom. Asymptotically the
probability is equal to

(1=w) that (31) is true for all (cqseenscy) o

Proof.

Let Y. = L '\/;1‘:' and Y = (Y.ooo,Yk).’ .

Then 1im P(Y'Y < z(k,a)) = 1-a .
n

From (30) we see that

B
1=a = lim P( |Zh, ¥, _<_«}z(k,a)' \/Eh?_ ; vh)
n .

= 1im P(|z il-%7\-%-1-1- (d,-4;)| < vz(k,a) ¥Eng 5 vh)
n O,
1

A A A / N A
Let d = (dyreessdy) and Gy = (0 500050y) o

Let further i
han, - F .
A A ‘ ;
o= Q81 =t @00 < Vzlcakm? ;i)
91
A A —— A
B = {d,0q || Ze;(d;-a;) | £ valk,a) 0,44  vel .

Now it is easily seen that A = B, and the result follows.
Q.E.D.
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From (30) we also get the following result:

_ A —— A
lim P( zeid; > Tegd; - Nz (k,a) Oo1h ve) =1 - @& . (32)

The test for linear funcvions is then to

state se.d. >0 if Ye 3 >VJ"(P 33‘9 (33)
193 143 > velka) 0,49

Then we have the following result, not shown in [2].

LEMMA 8 ,

. Faifd=0
llﬁsup P (at least one false statement: zeidss 0) = l<qif d 40
PI’OOf. A )

P(no false statement) = P( n zcidi < Nz(k,a) éc-é)
ye.d.<0
iti=
Assume first d =0 . Then Zc;d; =0 and hence
A ——
P(no false statement) = P( n Zegdg <Nz(k,a) éc'g) - ] -qa ,
yve n-» o

from (32) .
If 4 #0 then

limsup P(no false statement) 2 limsup P( N Zciﬁ.

i
n n ze;4,;<0

- Zcidi

< Vz(k,a) 5504)

. A ———— A A
> 1lim P(n Teydy- Zeid. < vz (k,a) oc'ﬁ) =1 -0 , from (32).

n Ve
Q.E. D,

In [3], section 5 the author presents similar methods as (33)
-for all linear contrasts, i.e. linear functions ZCidi with
Tc;=0 . The difference from (33) is that we substitute z(k,o)
with z(k=1,a) « The testprocedure for linear contrasts has the

same property as the one stated in lemma & for the method (33) .
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