A GENERAL PRINCIPLE FOR A MULTIPLE COMPARISON PROCEDURE
FOR LINEAR CONTRASTS, AND SOME APPLICATIONS.

by

Jan F. Bjørnstad.
ABSTRACT

In this paper multiple comparison methods for linear contrasts of a set of parameters $\theta_1, \ldots, \theta_k$ is considered in a general context. A linear contrast is a linear function $\sum c_i \theta_i$ with $\sum c_i = 0$. It is shown that a test for the hypothesis $\theta_1 = \cdots = \theta_k$ rejects if and only if a proposed procedure for linear contrasts states at least one contrast greater than zero. Within a set of very wide asymptotic assumptions it is shown that the proposed procedure for contrasts satisfy that the probability of at least one false statement is asymptotically less than or equal to a fixed ϵ. Also simultaneous confidence intervals for all contrasts are given in the asymptotic case. The general result is applied to comparison of contingency tables, the one-way layout in the analysis of variance with unknown group variances, and to comparison of binomial probabilities. The usual "analysis of variance" situation is also considered.

Key words: linear contrast, multiple test procedure, simultaneous significance level.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. A principle for constructing methods for linear contrasts</td>
<td>3</td>
</tr>
<tr>
<td>3. The "analysis of variance" situation. Normal case</td>
<td>9</td>
</tr>
<tr>
<td>4. The asymptotic case</td>
<td>12</td>
</tr>
<tr>
<td>5. Comparison of independent contingency tables</td>
<td>19</td>
</tr>
<tr>
<td>6. One-way layout with unequal group variances. Non-parametric case</td>
<td>23</td>
</tr>
<tr>
<td>7. Comparison of binomial distributions</td>
<td>26</td>
</tr>
<tr>
<td>References</td>
<td>29</td>
</tr>
</tbody>
</table>
1. Introduction.

We are given a set of unknown parameters $\theta_1, \ldots, \theta_k$ which we want to compare. Our task is to find out which of the linear contrasts $\sum c_i \theta_i$, $\sum c_i = 0$, that are greater than zero. The difference $\theta_i - \theta_j$ is of course a contrast, but we will not restrict ourselves to such comparisons only. It could be that other contrasts are equally or more interesting to us. Therefore we consider a comparison rule which allow us to "look at" all contrasts.

A general principle for constructing a comparison rule for all linear contrasts will be given. Under very wide asymptotic assumptions it is shown that a comparison rule based on the principle will satisfy that the probability of at least one false statement among all contrasts is asymptotically less than or equal to a fixed quantity ε. In special cases, as in the analysis of variance, a comparison rule based on the principle will have a simultaneous level ε also for a finite number of observations. As a matter of fact it is seen that the Scheffé method for comparing contrasts in the "analysis of variance model" follows from our principle. We also consider the one-way layout of analysis of variance where the group variances are unknown. Spjøtvoll, [5], has given a procedure for general linear functions of $\theta_1, \ldots, \theta_k$ in this case. This procedure has a natural modification to linear contrast, which we show is valid asymptotically, by applying our general asymptotic result mentioned above. Another application of this general result is to comparison of contingency tables.
As a follow-up of the author's paper [2], we give a method for judging all contrasts when comparing independent two-way contingency tables by use of measures of association. In [2] the author proposed a method for general linear functions, and the rule for linear contrasts turns out to be a natural modification of that method.

The most important aspect of our general comparison method is that it has the property of stating at least one significant contrast if and only if a relating test-statistic for the homogeneity hypothesis

\[H: \theta_1 = \cdots = \theta_k \]

is significant, i.e. the hypothesis is rejected. This is a very desirable property of a comparison rule for contrast, since

\[\sum_i c_i \theta_i = 0 \quad \text{for all contrast} \]

if and only if

\[\theta_1 = \cdots = \theta_k \]

If then we reject the homogeneity hypothesis then we also have to state at least one contrast different from zero, and vice versa. This is exactly what our proposed method does.

In the next section we state our principle of equivalence which is purely an algebraic result.

The usual notation of vector space algebra is used, so that for a matrix \(A, A' \) denotes the transpose of \(A \). If \(V \) is a vector space then by \(d(V) \) we mean the dimension of \(V \). \(\mathbb{R}^k \) denotes the \(k \)-dimensional euclidian space with real components.

First we state an algebraic result which will be the fundament of our theory. Thereafter we state the principle.

LEMMA 1. Let \(y = (y_1, \ldots, y_k)' \) be a \(k \)-dimensional vector and let \(B \) be a \(k \times t \) \((k > t)\)-dimensional matrix with rank equal to \(r \), satisfying \(B'y = 0 \). Let further \(\mathcal{L} = \{ h \in \mathbb{R}^k \mid h'B = 0 \} \).

Then

\[
 y'y \leq \frac{1}{\sqrt{\mathbb{E}}/h'h} \quad \forall h \in \mathcal{L}
\]

(2)

Proof.

Let \(V_r \) be the subspace in \(\mathbb{R}^k \) generated by the columns in \(B \). Then \(d(V_r) = r \), since \(\text{rank} \ (B) = r \). Let \(H_1, \ldots, H_r \) be an orthonormal basis for \(V_r \). Put \(H = (H_1, \ldots, H_r) \). Then \(H'H = I \), the identity matrix. Let now \(G \) be a \(k \times (k-r) \) dimensional matrix consisting of orthonormal columns so that \(K = (G, H) \) constitutes an orthonormal basis of \(\mathbb{R}^k \). Then \(K'K = I \) and \(KK' = I \).
Let for all \(h \in \mathcal{H} \): \(d = K'h \), and let \(\mathcal{D} = \{ d \in \mathbb{R}^k : d = K'h, h \in \mathcal{H} \} \). Let \(v = K'y \). \(h = Kd \) for all \(h \in \mathcal{H} \) and \(y = Kv \).

Hence

\[
h'y = d'v \quad \text{and} \quad y'y = v'v.
\]

Since \(h \perp B \) (i.e. orthogonal to the columns in \(B \)), \(h \perp V_r \), implying that \(h \perp H \), i.e. \(h'H = 0 \) for \(h \in \mathcal{H} \). This gives for \(h \in \mathcal{H} \):

\[
0 = h'H = d'K'H = (d_{k-r+1}, \ldots, d_k)
\]

so

\[
d_{k-r+1} = \cdots = d_k = 0.
\]

Let \(f_h = h'y \). Then \(f_h = d'v = \sum_{i=1}^{k-r} d_i v_i \),

and \(h'h = d'd = \sum_{i=1}^{k-r} d_i^2 \).

Further we have that

\[
v = (G'y) = (G'y) , \quad \text{since} \quad B'y = 0 \quad \text{and therefore} \quad H'y = 0.
\]

This implies

\[
v_{k-r+1} = \cdots = v_k = 0 \quad \text{and} \quad y'y = \sum_{i=1}^{k-r} v_i^2 .
\]

Now

\[
f_h \leq \sqrt{h'H} \quad \forall h \in \mathcal{H}
\]

(1)

\[
\sum_{i=1}^{k-r} d_i v_i \leq \sqrt{\mathcal{D}} \sum_{i=1}^{k-r} d_i^2 \quad \forall d \in \mathcal{D}
\]

(2)

\[
\sum_{i=1}^{k-r} v_i^2 \leq z.
\]
(1) follows from the definition of \mathcal{D}.

(2) follows from Schwartz inequality which states that

$$
(\sum_{i=1}^{k-r} d_i v_i)^2 \leq \sum_{i=1}^{k-r} d_i^2 \cdot \sum_{i=1}^{k-r} v_i^2 .
$$

Hence

$$
\sum_{i=1}^{k-r} v_i^2 \leq z \iff \sum_{i=1}^{k-r} d_i^2 \cdot \sum_{i=1}^{k-r} v_i^2 \leq z \sum_{i=1}^{k-r} d_i^2 \Rightarrow
$$

$$
(\sum_{i=1}^{k-r} d_i v_i)^2 \leq z \sum_{i=1}^{k-r} d_i^2 , \forall d \in \mathcal{D} .
$$

The other way: Assume

$$
\sum_{i=1}^{k-r} d_i v_i \leq \sqrt{z} \sum_{i=1}^{k-r} d_i^2 \forall d \in \mathcal{D} .
$$

Now $v \in \mathcal{D}$, since $v = K'y$ and $y \in \mathcal{L}$. Hence

$$
\sum_{i=1}^{k-r} v_i^2 \leq \sqrt{z} \sum_{i=1}^{k-r} v_i^2 \iff \sum_{i=1}^{k-r} v_i^2 \leq z .
$$

Now, since $y'y = \sum_{i=1}^{k-r} v_i^2$ the result follows.

Q.E.D.

To be able to state the principle of equivalence we introduce $\hat{\theta}_1, \ldots, \hat{\theta}_k$ as estimators of $\theta_1, \ldots, \theta_k$ respectively. Further W_1, \ldots, W_k is a set of positive weights to $\hat{\theta}_1, \ldots, \hat{\theta}_k$ respectively, which can be either random variables or just known numbers.

Now we want to estimate the joint value θ of $\theta_1, \ldots, \theta_k$ under the homogeneity hypothesis (1). Our estimation method is then to minimize

$$
Q = \sum_{i=1}^{k} \frac{(\hat{\theta}_i - \theta)^2}{W_i}
$$

(3)

The estimator minimizing θ is denoted by $\hat{\theta}$. I.e. θ satisfies
$$\sum_{i=1}^{k} \frac{(\hat{\theta}_i - \theta)}{W_i} = 0$$

This gives
$$\bar{\theta} = \frac{\sum_{i=1}^{k} \frac{\hat{\theta}_i}{W_i}}{\sum_{i=1}^{k} W_i^{-1}}$$

Let
$$U = \min_{H} Q = \frac{k}{\sum_{i=1}^{k} (\frac{\hat{\theta}_i - \theta}{W_i})^2}$$

U is now a natural test-statistic for the hypothesis (1). The equivalence with a comparison procedure for contrasts follows in the next result.

THEOREM 1.

Let $\bar{\theta}$ and U be as defined in (4) and (5). Then

$$U \leq \frac{\Lambda \sqrt{\sum_i c_i^2}}{V}$$

for all $c = (c_1, \ldots, c_k)'$ such that $\sum_i c_i = 0$.

Proof.

Let (t, w) be observed values of $(\hat{\theta}, W) = (\hat{\theta}_1, \ldots, \hat{\theta}_k, W_1, \ldots, W_k)$. Let \bar{t} denote the corresponding value of $\bar{\theta}$.
Let further A be the event

$$A = \{(t,w) \mid \sum_{i} w_i (t_i - \bar{t})^2 \leq z\},$$

and let

$$B = \{(t,w) \mid \sum_{i} c_i t_i \leq \sqrt{z \sum_{i} c_i^2} \}, \text{ all } c \text{ with } \sum_{i} c_i = 0.$$

We shall show that $A = B$ or rather

$$\sum_{i} w_i (t_i - \bar{t})^2 \leq z \iff \sum_{i} c_i t_i \leq \sqrt{z \sum_{i} c_i^2}, \forall c, \sum_{i} c_i = 0.$$

Let now $y = (y_1, \ldots, y_k)'$, where $y_1 = \sqrt{w_1} (t_i - \bar{t})$ such that $U = y'y$.

Put $B = (\sqrt{w_1}, \ldots, \sqrt{w_k})'$. In this case $t=r=1$ in lemma 1.

Then

$$B'y = \sum_{i=1}^{k} \frac{t_i}{w_i} - \bar{t} \sum_{i=1}^{k} \frac{1}{w_i} = 0.$$

Let $\mathcal{H} = \{h \in \mathbb{R}^k : h'B = 0\}$. \mathcal{H} is a subspace of \mathbb{R}^k.

Let now $\mathcal{H}_1 = \{h \in \mathbb{R}^k : h_1 = c_1 \sqrt{w_1}, \sum_{i} c_i = 0\}$. Here $h = (h_1, \ldots, h_k)'$.

It will now be shown that $\mathcal{H} = \mathcal{H}_1$.

Let us assume that $h \in \mathcal{H}_1 \implies h'B = \sum_{i} c_i = 0$. Hence $\mathcal{H}_1 \subseteq \mathcal{H}$.

\mathcal{H} is the set of vectors orthogonal to the space spanned by B.

Then $d(\mathcal{H}) + \text{rank } (B) = k \implies d(\mathcal{H}) = k - 1$.

We return to \mathcal{H}_1. A basis for \mathcal{H}_1 is given by

$$e_1 = (\sqrt{w_1}, 0, \ldots, 0, -\sqrt{w_k})',$$

$$e_i = (0, \ldots, 0, \sqrt{w_1}, \ldots, 0, -\sqrt{w_k})',$$

$$e_{k-1} = (0, \ldots, 0, \sqrt{w_{k-1}}, -\sqrt{w_k})'$$
Hence, \(d(\mathcal{K}_1) = k-1 \), giving \(\mathcal{K}_1 = \mathcal{K} \).

We now have from lemma 1:

\[
U \leq z
\]

\[
\sum_{i} \mathcal{V}_i \leq \sqrt{\sum_{i} \mathcal{V}_i^2} \quad \forall \mathcal{V} \in \mathcal{K}_1.
\]

\[
\sum_{i} (t_i - \bar{t}) \leq \sqrt{\sum_{i} \mathcal{W}_i^2} \quad \forall \mathcal{W}, \mathcal{W}_i = 0
\]

\[
\sum_{i} t_i \leq \sqrt{\sum_{i} \mathcal{W}_i^2} \quad \forall \mathcal{W}, \mathcal{W}_i = 0.
\]

Q.E.D.

The weights \(W_1, \ldots, W_k \) will usually be estimated variances of \(\hat{\theta}_1, \ldots, \hat{\theta}_k \), such that \(\sum_{i} \mathcal{W}_i^2 \) is an estimator of the variance of \(\sum_{i} \mathcal{W}_i \hat{\theta}_i \). We therefore use the notation

\[
\frac{\mathcal{W}_i^2}{\mathcal{W}_i} = \sum_{i} \mathcal{W}_i \hat{\theta}_i.
\]

(7)

In many cases with \(W_i \) as estimated variance of \(\hat{\theta}_i \), \(U \) will have an exactly or asymptotically known distribution under the hypothesis (1). Then the rejection region \(\{ U > z \} \), where \(z \) is the upper \(\epsilon \)-fractile of this distribution, will be a test for \(H \), and we have then obtained from theorem 1 a comparison rule with a simultaneous significance level exactly or asymptotically equal to \(\epsilon \) under the homogeneity hypothesis. Next we have to show that this is valid under any set of values of the parameters. This will be done later in a general way for the asymptotic case. First, however, we show that the equivalence of the S-method for linear contrasts and the F-test of homogeneity in the "analysis of variance" case is a special case of theorem 1.

The model is as follows. $\hat{\theta}_1, \ldots, \hat{\theta}_k$ are independent and normally distributed with $\text{E}\hat{\theta}_i = \theta_i$ and $\text{var} \hat{\theta}_i = b_i \sigma^2$ where b_i is known and σ^2 is unknown. Further S^2 is an estimator of σ^2 with the property that $\nu S^2 / \sigma^2$ is chi-square distributed with ν degrees of freedom. $S^2, \hat{\theta}_1, \ldots, \hat{\theta}_k$ are independent.

This model covers many of the most interesting cases in the analysis of variance. We will mention some of them.

(i) One-way layout with equal group variances.

Model: $X_{ij}, i=1,\ldots,k, j=1,\ldots,n_i$ are independent and normally distributed with $\text{E}X_{ij} = \theta_i$ and $\text{var} X_{ij} = \sigma^2$. Here is $\hat{\theta}_i = \bar{X}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{ij}$, so that $b_i = n_i^{-1}$. Let $n = \sum_{i=1}^{k} n_i$.

The estimator of σ^2 is

$$S^2 = \frac{1}{n-k} \sum_{i,j} (X_{ij}-\bar{X}_i)^2 \text{ with } \nu = n-k.$$

(ii) Two-way layout with equal numbers in the cells.

(a) Without interaction.

Model: $X_{ij}, i=1,\ldots,r, j=1,\ldots,s$ are independent and normally distributed.

$EX_{ij} = \mu + \alpha_i + \beta_j$ where $\sum_i \alpha_i = \sum_j \beta_j = 0$, $\text{var} X_{ij} = \sigma^2$.

Here

$$S^2 = \frac{1}{(r-1)(s-1)} \sum_{i,j} (X_{ij}-\bar{X}_i-\bar{X}_j+\bar{X})^2 \text{ with } \nu = (r-1)(s-1)$$

where

$$\bar{X}_j = \frac{1}{r} \sum_{i} X_{ij}, \quad \bar{X}_i = \frac{1}{s} \sum_{j} X_{ij} \quad \text{and} \quad \bar{X} = \frac{1}{rs} \sum_{i,j} X_{ij}.$$
Here we could be interested in either the row effects α_i, in which case $\theta_i = \mu + \alpha_i$, $\hat{\theta}_i = \bar{X}_{i.}$ and $b_i = s^{-1}$, or in the column effects β_j, in which case $\theta_j = \mu + \beta_j$, $\hat{\theta}_j = \bar{X}_{.j}$ and $b_i = r^{-1}$.

b) With interaction.

Model: X_{ijg}, $i=1,\ldots,r$, $j=1,\ldots,s$, $g=1,\ldots,m$ are independent, normally distributed.

$$E X_{ijg} = \mu + \alpha_i + \beta_j + \gamma_{ijg} \quad \text{where} \quad \Sigma_{i=1}^{r} \alpha_i = \Sigma_{j=1}^{s} \beta_j = \Sigma_{i=1}^{r} \gamma_i = \Sigma_{j=1}^{s} \gamma_j = 0$$

$$\text{var} \ X_{ijg} = \sigma^2$$

$$S^2 = \frac{1}{rs(m-1)} \sum_{i,j,g} (X_{ijg} - \bar{X}_{ijg})^2, \quad \nu = rs(m-1).$$

where $\bar{X}_{ijg} = \frac{1}{m} \sum_{g} X_{ijg}$.

Also in this case we would consider either row or column effects. For the row effects we would as in a) put $\theta_i = \mu + \alpha_i$ and $\hat{\theta}_i = \bar{X}_{i.}$, but $b_i = 1/m$. For the column effects we have similarly $\theta_j = \mu + \beta_j$, $\hat{\theta}_j = \bar{X}_{.j}$ and $b_i = 1/rm$.

Here $\bar{X}_{i.} = \frac{1}{s \cdot m} \sum_{j,g} X_{ijg}$ and $\bar{X}_{.j} = \frac{1}{rm} \sum_{i,g} X_{ijg}$

We now return to the general model. It is well known that the S-method in this case is to state $\Sigma_{i} c_i \hat{\theta}_i > 0$ with $\Sigma_{i} c_i = 0$ if

$$\Sigma_{i} c_i \hat{\theta}_i > \sqrt{(k-1)F} \cdot S \sqrt{\Sigma b_i c_i}$$

(8)
where F is the upper e-fractile in the F-distribution with $k-1$ and v degrees of freedom. The probability of at least one false statement is then always less than or equal to e. Now, the F-test for the homogeneity hypothesis $H : \theta_1 = \ldots = \theta_k$, is to reject H when

$$V = \frac{\sum b_i^{-1} (\hat{\theta}_i - \bar{\theta})^2}{(k-1)S^2} > F,$$

where $\bar{\theta} = \frac{\sum b_i^{-1} \hat{\theta}_i}{\sum b_i^{-1}}$.

The test has level e since V is F-distributed with $k-1$ and v degrees of freedom when $\theta_1 = \ldots = \theta_k$.

Now let $W_i = b_i S^2$, giving $\bar{\theta} = \frac{\sum W_i^{-1} \hat{\theta}_i}{\sum W_i^{-1}} = \frac{\Sigma b_i^{-1} \hat{\theta}_i}{\Sigma b_i^{-1}} = \bar{\theta}$.

and

$$\frac{\Delta^2}{S^2} = \sum_{i=1}^{k} b_i c_i^2$$

from (7).

The equivalence of the F-test with the S-method follows now directly from theorem 1, which gives

$$\sum_{i=1}^{k} (\hat{\theta}_i - \bar{\theta})^2 b_i^{-1} s^{-2} \leq z \iff \sum_{i=1}^{k} c_i \hat{\theta}_i \leq \sqrt{z} S \sqrt{\sum b_i c_i^2}, \forall c, \sum_{i=1}^{k} c_i = 0$$

With $z = (k-1)F$, we get

$$V \leq F \iff \sum_{i=1}^{k} c_i \hat{\theta}_i \leq \sqrt{(k-1)F} S \sqrt{\sum b_i c_i^2}, \forall c, \sum_{i=1}^{k} c_i = 0$$

Now, the result (10) is well known. In the next section, however, we will consider the asymptotic situation. Here only the asymptotic distribution of the estimators is needed. A main theorem will be given.
Thereafter, in section 5 and 6, we apply the theorem to contingency tables and the non-parametric one-way layout with unequal, unknown group variances. In these situations we find interesting methods for linear contrasts which turn out to be natural modifications of the methods proposed for general linear functions by the author, [2], for contingency tables, and by Spjøtvoll, [5], for the one-way layout. At last we consider in section 7 the comparison of binomial probabilities.

4. The asymptotic case.

As in section 2 we let \(\hat{\theta}_1, \ldots, \hat{\theta}_k \) be independent estimators of \(\theta_1, \ldots, \theta_k \) respectively, \(\hat{\theta}_i \) is based on \(n_i \) observations.

Let \(n = \sum_{i=1}^{k} n_i \). Throughout this section we assume that the following four assumptions hold.

A I. \(n_i/n = \pi_i > 0 \) is constant as \(n \) tends to infinity.

A II. The asymptotic distribution of \(\sqrt{n_i}(\hat{\theta}_i - \theta_i) \) is \(N(0, \sigma_i^2) \), denoted by \(\sqrt{n_i}(\hat{\theta}_i - \theta_i) \overset{\mathcal{D}}{\rightarrow} N(0, \sigma_i^2) \).

A III. \(W_1, \ldots, W_k \) are independent random variables satisfying \(n_i W_i \overset{P}{\rightarrow} \sigma_i^2 \), i.e. \(n_i W_i \) is a consistent estimator of the asymptotic variance \(\sigma_i^2 \).

A IV. \(W_i \) and \(\hat{\theta}_j \) are independent for \(i \neq j \).

Then we have the following result.
LEMMA 2. Let \(\bar{\theta} \) be defined by (4). Then the asymptotic distribution of \(U = \sum_{i=1}^{k} \frac{(\hat{\theta}_i - \bar{\theta})^2}{n_1 W_i} \) is chi-square with \((k-1)\) degrees of freedom when \(\theta_1 = \cdots = \theta_k \). We denote this by

\[U \equiv \chi^2(k-1) \text{ under the hypothesis (1).} \]

Proof. From Rao, [4], result 6a.2(v) the asymptotic distribution of \(U \) follows directly. The only difference here is that \(n_1 W_i \) is not a continuous function of \(\hat{\theta}_i \). What we need, however, is that \(n_1 W_i \to \sigma_i^2 \) which is true by A III, and hence the result follows by letting \(S^2_i \) in Rao's result be equal to \(n_1 W_i \).

Q.E.D.

Let \(z = z(k-1, \varepsilon) \) be the upper \(\varepsilon \)-fractile in the chi-square distribution with \(k-1 \) degrees of freedom. Then a test for the hypothesis (1) is to reject \(H \) when \(U > z \). We propose now the following method for linear contrasts.

State \(\sum c_i \theta_i > 0 \) if \(\sum c_i (\hat{\theta}_i - \bar{\theta}) > \sqrt{z} \sigma_{\varepsilon} \hat{\theta} \) \(\hat{\theta} \) is given by (7).

Then from theorem 1 we see that

\[U \text{ is not significant if and only if we can find no significant contrasts.} \]

Let \(\varepsilon(\theta_1, \ldots, \theta_k) \) be the probability of at least one false statement when \((\theta_1, \ldots, \theta_k) \) is the true values of the parameters. Then we have already shown, using lemma 2 and theorem 1, that \(\lim_{n \to \infty} \varepsilon(\theta, \ldots, \theta) = \varepsilon \). The next result shows that \(\varepsilon \) is an upper bound for \(\limsup \varepsilon(\theta_1, \ldots, \theta_k) \) for any set of values \(\theta_1, \ldots, \theta_k \).
The next theorem also states simultaneous confidence intervals for all contrasts
\[\sum_i c_i \theta_i, \sum_i c_i = 0. \]

THEOREM 2. Let \((11)\) be the comparison procedure for linear contrasts. Then \(\limsup \varepsilon(\theta_1, \ldots, \theta_k) \leq \varepsilon \) for all \((\theta_1, \ldots, \theta_k)\).

Simultaneous confidence intervals for \(\sum_i c_i \theta_i, \sum_i c_i = 0 \), are given by
\[\lim_{n \to \infty} P(\sum_{i=1}^k c_i \hat{\theta}_i - \sqrt{z(k-1, \varepsilon)} \sqrt{\sum_i \sigma_i^2} \leq \sum_{i=1}^k c_i \theta_i \leq \sum_{i=1}^k c_i \hat{\theta}_i + \sqrt{z(k-1, \varepsilon)} \sqrt{\sum_i \sigma_i^2}) = 1 - \varepsilon. \]

Proof.
\[\varepsilon(\theta_1, \ldots, \theta_k) = P \left(\bigcup_{i=1}^k \sigma_{c_i} \hat{\theta}_i > \sqrt{z(k-1, \varepsilon)} \sqrt{\sum_i \sigma_i^2} \bigg| \sum_{i=1}^k c_i \theta_i \leq 0, \sum_{i=1}^k c_i \theta_i = 0 \right) \]
where \(z_0 = z(k-1, \varepsilon) \).

Let \(Z_i = \frac{\hat{\theta}_i - \theta_i}{\sqrt{W_{i}^{\prime}}} ; Z_i \sim X_i \sim N(0, 1) \).

\(Z_1, \ldots, Z_k \) are independent. Then
\[\sum_{i=1}^k c_i \hat{\theta}_i = \sum_{i=1}^k c_i \sqrt{W_i^2} \hat{Z}_i + \sum_{i=1}^k c_i \theta_i. \]
Let \(h_i = c_i \sqrt{W_i} \). Then
\[\varepsilon(\theta_1, \ldots, \theta_k) = P \left(\bigcup_{i=1}^k h_i Z_i + \sum_{i=1}^k c_i \theta_i > \sqrt{z(k-1, \varepsilon)} \sqrt{\sum_i \sigma_i^2} \bigg| \sum_{i=1}^k c_i \theta_i \leq 0, \sum_{i=1}^k c_i \theta_i = 0 \right) \]
\[
= \mathbb{P} \left(\cup_{\sum_{i=0}^{\infty} \sigma_i \leq 0} \left(\sum_{i=0}^{\infty} \epsilon_i \sigma_i + \sqrt{\sigma_{\infty}^{\infty}} \sigma_i \theta_i > \sqrt{\sigma_{0}^{\infty}} \sqrt{\sigma_{\infty}^{\infty}} \sigma_i \theta_i \right) \right)
\leq \mathbb{P} \left(\cup_{\sum_{i=0}^{\infty} \sigma_i \leq 0} \left(\sum_{i=0}^{\infty} \epsilon_i \sigma_i + \sqrt{\sigma_{\infty}^{\infty}} \sigma_i \theta_i > \sqrt{\sigma_{0}^{\infty}} \sqrt{\sigma_{\infty}^{\infty}} \sigma_i \theta_i \right) \right)
\leq \mathbb{P} \left(\cup_{\sum_{i=0}^{\infty} \sigma_i \leq 0} \left(\sum_{i=0}^{\infty} \epsilon_i \sigma_i + \sqrt{\sigma_{\infty}^{\infty}} \sigma_i \theta_i > \sqrt{\sigma_{0}^{\infty}} \sqrt{\sigma_{\infty}^{\infty}} \sigma_i \theta_i \right) \right)
\]

Now let \(\hat{\sigma}_i = \sqrt{\sigma_i} h_i \), for \(i = 1, \ldots, k \). \(\hat{\sigma}_i \to \sigma_i \sigma_i / \sqrt{\sigma_i} \).

Let \(\hat{\sigma} = (\hat{\sigma}_1, \ldots, \hat{\sigma}_k) \) and \(Z = (Z_1, \ldots, Z_k) \). Then

\[
\limsup_{n} \epsilon(\sigma_1, \ldots, \sigma_k) \leq \limsup_{n} \mathbb{P} \left(\cup_{\sum_{i=0}^{\infty} \sigma_i \leq 0} (\hat{\sigma}_i Z > \sqrt{\sigma_{0}^{\infty}} \sqrt{\sigma_{\infty}^{\infty}} \hat{\sigma}_i \theta_i) \right)
\]

Let \(A = \cup_{\sum_{i=0}^{\infty} \sigma_i = 0} (\hat{\sigma}_i Z > \sqrt{\sigma_{0}^{\infty}} \sqrt{\sigma_{\infty}^{\infty}} \hat{\sigma}_i \theta_i) \). The complement of \(A, A^c \), is then

\[
A^c = \cap_{\sum_{i=0}^{\infty} \sigma_i = 0} (\hat{\sigma}_i Z \leq \sqrt{\sigma_{0}^{\infty}} \sqrt{\sigma_{\infty}^{\infty}} \hat{\sigma}_i \theta_i)
\]

Let \((z,w) = (z_1, \ldots, z_k, w_1, \ldots, w_k) \) be observed value of \(Z_1, \ldots, Z_k, W_1, \ldots, W_k \). For observed \((z,w)\) we let \(g_i = \sqrt{\sigma_i} c_i / \sqrt{w_i} \) and \(g = (g_1, \ldots, g_k) \) . I.e. \(g \) is the observed value of \(\hat{\sigma} \). Then

\[
A^c = \{ (z,w) : g_i z \leq \sqrt{\sigma_{0}^{\infty}} \sqrt{\sigma_{\infty}^{\infty}} \hat{\sigma}_i \theta_i \} \quad \forall \sigma_i, \sum_{i=0}^{\infty} \sigma_i = 0 \}
\]

Consider for a given \((z,w)\) the following subspace of \(\mathbb{R}^k \):

\[
\mathbb{V}_{k-1}(w) = \{ g : g_i = \sqrt{\sigma_i} c_i / \sqrt{w_i} ; \sum_{i=0}^{\infty} \sigma_i = 0 \}.
\]
As in the proof of theorem 1 we see that \(d(V_{k-1}(w)) = k-1 \).

\(A_c \) can now be expressed as follows.

\[
A_c = \{(z,w) : g'z \leq \sqrt{z_0}(g'_g), \forall g \in V_{k-1}(w) \}.
\]

Let \(G_1, \ldots, G_{k-1} \) be an orthonormal basis for \(V_{k-1}(w) \), i.e.
\(G_i'G_i = 1 \) and \(G_i'G_j = 0 \) for \(i \neq j \). Hence

\[
V_{k-1}(w) = \{g \in \mathbb{R}^k : g = \sum_{i=1}^{k-1} \beta_i G_i, \ \forall \beta = (\beta_1, \ldots, \beta_{k-1})' \in \mathbb{R}^{k-1} \}.
\]

This gives
\[
(z,w) \in A_c \iff (\sum_{i=1}^{k-1} \beta_i G_i)'z \leq \sqrt{z_0}(\sum_{i=1}^{k-1} \beta_i G_i)'(\sum_{i=1}^{k-1} \beta_i G_i) \ \forall \beta \in \mathbb{R}^{k-1}
\]
\[
\iff \sum_{i=1}^{k-1} \beta_i (G_i'z) \leq \sqrt{z_0}(\beta'\beta) \ \forall \beta \in \mathbb{R}^{k-1}.
\]

Now, let \(Y_i \) be the random variable given by the transformation

\[
y_i = G_i'z \text{ for } i = 1, \ldots, k-1.
\]

Then

\[
(z,w) \in A_c \iff \sum_{i=1}^{k-1} \beta_i Y_i \leq \sqrt{z_0}(\beta'\beta) \ \forall \beta \in \mathbb{R}^{k-1}.
\]

As in the proof of lemma 1 we see that this is equivalent with

\[
\sum_{i=1}^{k-1} Y_i^2 \leq z_0.
\]

Hence

\[
A_c = \{Y'Y \leq z_0\}, \text{ where}
\]

\[
Y' = (Y_1, \ldots, Y_{k-1}).
\]
Now we need a general result from asymptotic distribution theory. It states that if \(X_n = (X_{1n}, \ldots, X_{kn})' \rightarrow X = (X_1, \ldots, X_k)' \) and \(f \) is a continuous function from \(\mathbb{R}^k \) to \(\mathbb{R}^m \) then \(f(X_n) \Rightarrow f(X) \).

Let us first consider the asymptotic distribution of \(Y \) given \(W = w \). Then \(Y = G'Z \) is a continuous function of \(Z \), where \(G = (G_1, \ldots, G_{k-1}) \) and \(G_i = G_i(w) \), \(i=1, \ldots, k-1 \) is an orthonormal basis of \(V_{k-1}(w) \). Now \(Z \Rightarrow X = (X_1, \ldots, X_k)' \sim N_k(0, I) \).

Hence the conditional distribution of \(Y \) given \(W = w \) converges to the distribution of \(V = G'X \).

Let \(V = (V_1, \ldots, V_{k-1}) \). Then \(V_i = G_i'X \sim N(0, 1) \) for \(i=1, \ldots, k-1 \) and \(\text{cov}(V_i, V_j) = 0 \), i.e. \(V_1, \ldots, V_{k-1} \) are independent and \(N(0, 1) \). This imply that the conditional distribution of \(Y \) given \(W = w \) converges to \(N_{k-1}(0, I) \) which is independent of \(w \).

This means that
\[Y \Rightarrow V \sim N_{k-1}(0, I). \]

Now \(Y'Y = \sum_{i=1}^{k-1} Y_i^2 \) is a continuous function of \(Y \) implying that
\[Y'Y \Rightarrow V'V \sim \chi^2(k-1). \tag{14} \]

From (14) we get
\[\limsup_{n \to \infty} \epsilon(\theta) \leq \limsup_{n \to \infty} (A) = 1 - \lim_{n} P(A^c) = 1 - \lim_{n} P(Y'Y \leq z) = \epsilon, \]
and (12) is shown.

To construct simultaneous confidence intervals for \(\sum_{i=1}^{k-1} \theta_i \) with \(\sum_{i=1}^{k-1} \theta_i = 0 \) we make use of the fact that
\[A^c = \bigcap_{\sum_{i=1}^{k-1} \theta_i =0} (g'Z \leq \sqrt{n} \sum_{i=1}^{k-1} \theta_i \sigma_i \theta_i^*) \text{ and } \lim_{n} P(A^c) = 1-\epsilon. \]
\[\sum_{i=1}^{k} g_i Z_i = \sum_{i=1}^{k} \frac{(\hat{\theta}_i - \theta_i)}{\sqrt{W_i}} = \sqrt{n} \sum_{i=1}^{k} (\hat{\theta}_i - \theta_i). \]

This gives \[A^c = \bigcap_{i=1}^{\Sigma c_i=0} (\sum_{i=1}^{\Sigma c_i=0} (\hat{\theta}_i - \theta_i) \leq \sqrt{Z_0 \sigma_c \theta}). \]

Now it is obvious that
\[\sum_{i=1}^{\Sigma c_i=0} (\hat{\theta}_i - \theta_i) \leq \sqrt{Z_0 \sigma_c \theta} \text{ for all } c \text{ with } \Sigma c_i=0. \]
\[|\sum_{i=1}^{\Sigma c_i=0} (\hat{\theta}_i - \theta_i)| \leq \sqrt{Z_0 \sigma_c \theta} \text{ for all } c \text{ with } \Sigma c_i=0. \]

Hence
\[\lim_{n \to \infty} P \left(\bigcap_{i=1}^{\Sigma c_i=0} |\sum_{i=1}^{\Sigma c_i=0} (\hat{\theta}_i - \theta_i)| \leq \sqrt{Z_0 \sigma_c \theta} \right) = 1-\epsilon, \text{ and (13) is proved.} \]

Q.E.D.

The equivalence between the chi-square test of homogenity and the multiple comparison procedure (11) provides us with a useful tool for judging contrasts. Accordingly we should always first find out if \(U \) is significant. If we don't reject the homogenity hypothesis we would not have to bother about looking for significant contrasts, because we know we will not find any.

On the other hand, if \(U \) is significant we know there are significant contrasts too. Notice that if we want to test a specific contrast, i.e. a specific hypothesis

\[H_c : \sum_{i=1}^{k} c_i \theta_i = 0 \] (15)

the test will be to state \(\sum_{i=1}^{k} c_i \theta_i > 0 \) if

\[\sum_{i=1}^{\Sigma c_i} \hat{\theta}_i > x(\epsilon) \sigma_c \theta \] (16)
where $x(e)$ is the upper e-fractile in the $N(0,1)$.

The test has asymptotic level e, since

$$
\frac{\sum_{i=1}^{n} (\hat{\theta}_i - \theta_i)}{\hat{\sigma}_c} \overset{\text{d}}{\rightarrow} \sqrt{n} \sum_{i=1}^{n} (\hat{\theta}_i - \theta_i) \overset{\text{d}}{\rightarrow} N(0,1).
$$

So the method (11) for contrasts is essentially the same as (16). The only thing we have to do is to adjust the critical level from $x(e)$ to $\sqrt{z(k-1,e)}$. As mentioned above the rule for judging contrasts should be used as described below.

Multiple test for contrasts.

Step 1. Let $H : \theta_1 = \ldots = \theta_k$.

Test for H : Reject if $U = \sum_{i=1}^{k} (\hat{\theta}_i - \theta_i)^2 > z(k-1,e)$

If we do reject we continue to step 2.

If $U \leq z(k-1,e)$ we stop.

Step 2.

State $\sum_{i=1}^{k} \hat{\theta}_i > 0$, $\sum_{i=1}^{k} \hat{\theta}_i = 0$ if

$$
\sum_{i=1}^{k} \hat{\theta}_i > \sqrt{z(k-1,e)} \hat{\sigma}_c.
$$

We now go on to discuss some applications of this method.

5. **Comparison of independent contingency tables.**

The situation is described in [2]. We give a brief abstract of it. We want to compare k independent two-way contingency tables by using a measure of association. For a presentation of measures of association we refer to [1], part 1 or [3].
Let \(p_{ijr} \), \(i=1,\ldots,v_r \) and \(j=1,\ldots,w_r \) be the cell-probabilities in table \(r \), for \(r=1,\ldots,k \). I.e. we have \(v_r=p_r \cdot w_r \) cells in table \(r \). \(X_{ijr} \) is the number of observations in cell \((i,j)\) and \(n_r \) is the total number of observations in table \(r \). The relative frequencies are denoted by \(q_{ijr} = \frac{X_{ijr}}{n_r} \). Let
\[
 n = \sum_{r=1}^{k} n_r \quad \text{and} \quad \pi_r = \frac{n_r}{n}.
\]
The \(\pi_r \)'s are considered as constants as \(n \) tends to infinity.

We now let
\[
p_r = (p_{11r}, \ldots, p_{v_r1r}, \ldots, p_{v_r1r}, w_r, r)
\]
\[
q_r = (q_{11r}, \ldots, q_{v_r1r}, \ldots, q_{v_r1r}, w_r, r)
\]
for \(r=1,\ldots,k \). We assume that the tables are independent, i.e. \(q_1, \ldots, q_k \) are independent random variables.

Let \(p=(p_1, \ldots, p_k) \) and \(q=(q_1, \ldots, q_k) \).

All \(\{p_{ijr}\} \) are assumed to be positive.

Assume we have chosen \(d \) as a suitable measure of association. \(d \) is assumed to have continuous partial derivatives as a function of the cell-probabilities. We let \(d_i \) be the measure \(d \) in table \(i \), for \(i=1,\ldots,k \). Then \(d_i = d_i(p_i) \) is a function of \(v_i \) variables with continuous partial derivatives. We want to consider linear contrasts in the \(d_i \)'s, \(\sum c_i d_i \) with \(\sum c_i = 0 \).

Consistent estimators \(\hat{d}_i \) are obtained by letting
\[
\hat{d}_i = d_i(q_i) \quad \text{for} \quad i=1,\ldots,k
\]
Then \(\hat{d}_1, \ldots, \hat{d}_k \) are independent by assumption.

From the main theorem in [1], part 1 we have that
\[\sqrt{n_i} (\hat{a}_i - d_i) \overset{D}{\to} N(0, \sigma_{d,i}) \]

(18)

where

\[\sigma_{d,r}^2 = \sum_i \sum_j w_{ij} (d_{ij,r} - \hat{d}_r)^2, \text{ provided } \sigma_{d,r}^2 > 0. \]

(19)

Here

\[d_{ij,r} = \delta_{d,r} / \delta p_{ijr} \]

and

\[d_r^* = \sum_i \sum_j d_{ij,r} \cdot p_{ijr}. \]

Consistent estimators of the asymptotic variances \[\sigma_{d,r}^2 \] of \[\sqrt{n_r} \hat{d}_r \]

are given by

\[S_{d,r}^2 = \sum_i \sum_j d_{ij,r} (\hat{d}_{ij,r} - \hat{d}_r)^2 \]

where

\[\hat{d}_{ij,r} = d_{ij,r} (q_r) \]

and

\[\hat{d}_r^* = \sum_i \sum_j d_{ij,r} \hat{d}_{ijr} \]

I.e.

\[S_{d,r}^2 = \sigma_{d,r}^2 (q_r). \]

An estimator of the variance of \[c_i \hat{d} = \sum_i c_i \hat{d}_i \] is given by

\[\sigma_{c_i \hat{d}}^2 = \sum_{i=1}^{k} \frac{c_i^2 S_{d,i}^2}{n_i} \]

(21)

In [2] the author gave a method for general linear functions as follows. State \[\Sigma c_i d_i > 0 \] if

\[\sum_i c_i \hat{d}_i > \sqrt{z(k, \epsilon)} \sigma_{c_i \hat{d}} \]

(22)
It is readily seen from theorem 3 in [2] that
\[\limsup_{n \to \infty} P(\text{at least one false statement}) \leq \epsilon \]
for all values of \(d_1, \ldots, d_k \).

By letting \(W_i = S^2_{d_i}/n \) we see that the assumptions AI - AIV in section 4 are fulfilled. We are now interested in modifying the rule (22) to linear contrasts. From (11), the only thing we have to do then is to substitute \(z(k, \epsilon) \) with \(z(k-1, \epsilon) \) which is the natural modification we would expect. Hence for all contrasts we state \(\sum c_i d_i > 0 \) if

\[\sum c_i \hat{d}_i > \sqrt{z(k-1, \epsilon)} \frac{\hat{\sigma}}{c_i d} \] (23)

To be exact the method consists of two steps:

Step 1. Test the hypothesis \(H : d_1 = \ldots = d_k \)

Reject if \(U = \sum_{i} \frac{n_i (\hat{d}_i - \overline{d})^2}{S^2_{d_i}} > z(k-1, \epsilon) \)

where \(\overline{d} = (\sum_{i} \frac{n_i}{S^2_{d_i}})^{-1} \sum_{i} \frac{n_i \hat{d}_i}{S^2_{d_i}} \).

If we reject we go to step 2, if not the procedure stops.

Step 2.

State \(\sum c_i d_i > 0 \) if

\[\sum c_i \hat{d}_i > \sqrt{z(k-1, \epsilon)} \frac{\hat{\sigma}}{c_i d} \]

From theorem 2: \(\limsup_{n \to \infty} P(\text{at least one false statement}) \leq \epsilon \).
Simultaneous confidence intervals for all linear contrasts in the measures \(d_1, \ldots, d_k \) are given by:

\[
\sum_{i} c_i d_i \in \left[\sum_{i} \hat{c}_i \hat{d}_i \pm \sqrt{z(k-1, \epsilon)} \frac{\hat{\sigma}_c}{\hat{\sigma}_d} \right]
\]

(24)

Spjøtvoll proposed in [5] a method for all linear functions of the means in the one-way layout with unequal group variances, for the normal model. We consider now a more general situation, not assuming normality, and derive from theorem 2 a method for testing all linear contrasts of the means. This method will asymptotically be the natural modification of Spjøtvoll's procedure for all linear functions. Our model is as follows.

Let the random variables \(X_{ij}, i = 1, \ldots, k \), \(j = 1, \ldots, n_i \) be independent with

\[
E X_{ij} = \mu_i \quad \text{and} \quad \text{var} X_{ij} = \sigma_i^2.
\]

For each \(i \), \(X_{i1}, \ldots, X_{in_i} \) are identically distributed with finite third and fourth order moments, i.e. \(E X_{ij}^3 \) and \(E X_{ij}^4 \) are finite.

Let \(n = \sum_{i=1}^{k} n_i \). We assume \(\pi_i = n_i/n > 0 \) and constant as \(n \to \infty \).

Let

\[
\hat{\mu}_i = \frac{1}{n} \sum_{j=1}^{n_i} X_{ij} \quad \text{for} \quad i = 1, \ldots, k.
\]

\(\hat{\mu}_1, \ldots, \hat{\mu}_k \) are independent and

\[
\sqrt{n_i}(\hat{\mu}_i - \mu_i) \overset{\mathcal{D}}{\to} N(0, \sigma_i),
\]

from the central limit theorem for independent, identically distributed random variables.
Hence the assumptions A I and A II in section 4 are satisfied. We have left to find a consistent estimator for σ_i^2, $i=1,\ldots,k$.

Let now

$$S_i^2 = \frac{1}{n_i-1} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2.$$ \hspace{1cm} (25)

S_i^2 and $\overline{\mu}_j$ are of course independent for $i \neq j$.

$$ES_i^2 = \sigma_i^2,$$ for $i=1,\ldots,k$.

We shall show that S_i^2 is a consistent estimator of σ_i^2, i.e.

that $\text{var} \ S_i^2 \to 0$ as $n \to \infty$.

$$\text{var} (S_i^2) = ES_i^4 - \sigma_i^4,$$ and

$$ES_i^4 = (n_i-1)^{-2} \sum_{j \neq 1} E(X_{ij} - \overline{X}_i)^2(x_{i1} - \overline{X}_i)^2 + (n_i-1)^{-2} \sum_j E(X_{ij} - \overline{X}_i)^4$$

$$E(X_{ij} - \overline{X}_i)^2(x_{i1} - \overline{X}_i)^2 = \rho_i,$$ independent of $j \neq 1$.

$$E(X_{ij} - \overline{X}_i)^4 = \xi_i,$$ independent of j. Hence

$$ES_i^4 = \frac{n_i}{n_i-1} \rho_i + \frac{n_i}{(n_i-1)^2} \xi_i.$$

After some calculations we find that

$$\rho_i \to \infty (\sigma_i^2 + \mu_i^2)^2 - 2 \mu_i^2 (\sigma_i^2 + \mu_i^2) + \mu_i^4 = \sigma_i^4$$

It is readily seen that $\frac{n_i}{(n_i-1)^2} \xi_i \to 0$ as $n \to \infty$.

This gives that

$$ES_i^4 \to \sigma_i^4$$ and $\text{var}(S_i^2) \to 0$ as $n \to \infty$.

I.e. S_i^2 is unbiased and consistent estimator of σ_i^2.

Let $W_i = \frac{S_i^2}{n_i}$, and we see that also conditions A III and A IV are fulfilled. We shall now consider linear contrasts, $\sum_i c_i \mu_i$ with $\sum_i c_i = 0$.

An unbiased estimator of $\text{var}(\sum_i \hat{\mu}_i)$ is given by

$$\frac{\hat{\sigma}^2}{\sigma_i^2} = \frac{k}{\sum i=1^n \frac{c_i^2 S_i^2}{n_i}}$$

From (11) we have the following test for linear contrasts:

State $\sum_i c_i \mu_i > 0$ if

$$\sum_i \frac{c_i \hat{\mu}_i}{\sigma_i^2} > \sqrt{z(k-1, \epsilon)} \hat{\sigma}^2$$

Let

$$U = \sum \frac{n_i (\hat{\mu}_i - \mu)^2}{S_i^2}$$

where

$$\bar{\mu} = (\sum \frac{n_i}{S_i^2})^{-1} \sum \frac{n_i \hat{\mu}_i}{S_i^2}.$$

From lemma 2:

$$U \overset{D}{\sim} \chi^2(k-1) \quad \text{when} \quad \mu_1 = \ldots = \mu_k$$

A test for the hypothesis $H : \mu_1 = \ldots = \mu_k$ is then to reject if

$$U > z(k-1, \epsilon).$$

From theorem 1, the test-criterion (28) is equivalent with stating at least one contrast $\sum_i c_i \mu_i > 0$ with the procedure (27). From theorem 2 we have

$$\limsup \frac{P}{n} (\text{at least one false statement}) \leq \epsilon,$$

for all values of μ_1, \ldots, μ_k.
The asymptotic distribution of \(\sum_{i} S_{i}^{-2} (\hat{\theta}_{i} - \theta_{i})^{2} \) is chi-square with \(k \) degrees of freedom. It follows that Spjøtvoll's method for general linear functions in this asymptotic case would be to state \(\hat{\Sigma}_{c_i \theta_i} > 0 \) if

\[
\hat{\Sigma}_{c_i \theta_i} > \sqrt{z(k,e)} \hat{\Sigma}_{c_i \mu}
\]

(29)

I.e. \(z(k,e) \) replaces \(A^{2} \) given in [5]. We see that our method (27) for contrasts is the natural modification of (29).

Simultaneous confidence intervals for all linear contrasts are given by

\[
\hat{\Sigma}_{c_i \theta_i} \in \left[\hat{\Sigma}_{c_i \theta_i} \pm \sqrt{z(k-1,e)} \hat{\Sigma}_{c_i \mu} \right]
\]

(30)

It should be noticed that the non-parametric model in this section covers the usual normal-model for unequal group variances, so that the method for contrasts proposed in (27) are asymptotically correct also in the normal model.

As a last application we consider comparison of \(k \) independent binomial sequences.

7. Comparison of binomial distributions.

The model is as follows. \(X_{1}, \ldots, X_{k} \) are independent. \(X_{i} \) is binomially distributed with parameters \((n_{i}, p_{i}) \), i.e.

\[
P(X_{i} = x) = \binom{n_{i}}{x} p_{i}^{x}(1-p_{i})^{n_{i}-x} \quad \text{for} \quad x=0, \ldots, n_{i}.
\]

\(p_{i} \) is assumed to be positive for all \(i \). We are interested in \(\sum_{i=1}^{k} c_{i} p_{i} \), \(\Sigma c_{i} = 0 \), and also in testing the hypothesis
Let \(n \rightarrow \infty \), where \(n = \Sigma_{i} n_{i} \). The \(n_{i} \)'s are assumed to be positive constants as \(n \) tends to infinities. Let \(\hat{p}_{i} = x_{i}/n_{i} \). Then

\[
\sqrt{n_{i}}(\hat{p}_{i} - p_{i}) \xrightarrow{d} N(0, \sigma_{i}^{2}), \quad \text{where} \quad \sigma_{i}^{2} = p_{i}(1-p_{i}) .
\]

A consistent estimator of \(\sigma_{i}^{2} \) is

\[
S_{i}^{2} = \hat{p}_{i}(1-\hat{p}_{i}) . \quad \text{Let then} \quad W_{i} = S_{i}^{2}/n_{i} .
\]

Then all the assumptions A I - A IV are satisfied. From lemma 2 we find that

\[
Z = \sum_{i} \frac{n_{i}(\hat{p}_{i} - \overline{p})^{2}}{\hat{p}_{i}(1-\hat{p}_{i})}
\]

is asymptotically \(\chi^{2}(k-1) \) when \(p_{i} = \cdots = p_{k} \). Here

\[
\overline{p} = \frac{\hat{p}_{i} n_{i}}{\hat{p}(1-\hat{p})} / \sum_{i} \frac{n_{i}}{\hat{p}_{i}(1-\hat{p}_{i})}
\]

is the modified chi-square minimum estimator, since \(\overline{p} \) minimizes

\[
Q = \sum_{i} \frac{n_{i}(\hat{p}_{i} - \overline{p})^{2}}{\hat{p}_{i}(1-\hat{p}_{i})} = \sum_{i} \left[\frac{(X_{i} - n_{i} \overline{p})^{2}}{X_{i}} + \frac{(n_{i} - X_{i} - n_{i}(1-p))^{2}}{n_{i} - X_{i}} \right] .
\]

The test for the hypothesis (31) is then to reject \(H \) if

\[
Z > z(k-1, \epsilon)
\]

This test is well known as one of the usual chi-square tests for (31).
An estimator of the variance of $\hat{c}'\hat{\theta} = \sum_i c_i \hat{\theta}_i$ is given by

$$\hat{\sigma}_{c'\theta}^2 = \sum_i \frac{\hat{\theta}_i (1 - \hat{\theta}_i)}{n_i} \tag{35}$$

From (11) we have now the following test for linear contrasts.

State $\sum_i c_i p_i > 0$ if $\sum_i \frac{\hat{c}_i \hat{p}_i}{\hat{\theta}_i} > z(k-1, \epsilon) \sqrt{\sum_i \hat{\theta}_i}$

Now, from theorem 1 the chi-square test-criterion (34) is equivalent with stating at least one false statement with test (36). Simultaneous confidence intervals for linear contrasts are given by

$$\sum_i c_i p_i \in \left[\sum_i \frac{\hat{c}_i \hat{p}_i}{\hat{\theta}_i} \pm z(k-1, \epsilon) \sqrt{\sum_i \hat{\theta}_i} \right] \tag{37}$$
References.

