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ABSTRACT,

This paper is divided into two parts. The first part gives a
review on the measures of association which have been suggested
in the literature. The aim of this review has been to guide an
investigator in his choice of a measure in a given situation.
It is strongly emphasized that one should only choose between
measures which can be given a probabilistic interpretation.

The second part deals with testing of independence in a
two-way table when the number of observations is large. The
hypothesis "exact independence” will then nearly always be re-
jected. It is consequently a need for defining a notion "almost
independence"” and develop tests for this hypothesis. This is
done by first considering testing of approximately exact hypo-
theses in the general multinomical case. Secondly we treat the
problem of choosing an "almost independence' hypothesis by using
an appropriate measure of association as a basis. Thirdly the
theory for the general multinomial case is applied to such

measures.
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PART ONE:

A REVIEW ON MEASURES OF
ASSOCIATION IN CONTINGENCY TABLES




I. INTRODUCTION.

I.1. Some situations where measures of association are used.

The problem of choosing a measure of association appears when
one wishes to examine the association between two factors or attri-
butes in one or several contingency tables. There are especially
two situations where measures of association can be of interest.
One is comparison of dependence in several tables, and the other
is testing for independence in one table,

It has become apparent that when testing for independence in a
large datasample the exact independence hypothesis will nearly
always be rejected, even in situations where the dependence evi-
dently is very little. What one really wants to do is to accept
independence between two factors even when there exist a slight
degree of association. We then say that the factors are almost
independent. So, instead of testing exact independence we want to
test almost independence. When determinating the almost indepen-
dence hypothasis, we have the problem of choosing a measure of
association.

Part one is meant as a guidance as to which measure one ought to
choose. In part two we consider the problem of testing almost inde-

pendence, For comparison of tables we refer to [1].

I.2. An introductory discussion on measures of association,

The conception of association between two attributes will often
be vague and not precise. Usually there are, however, special
features of the association which we want to measure in a given
situation. These relevant features of association can some times

be specified as a part of the purpose of an investigation. A




measure of association should in consequence be constructed from
a relevant model for the particular case, so that it renders as
much information as possible about the interesting features of
association. So the desire is, that for a given situation the
measure of association measures the features which are interesting
to that particular situation. I.e., we sharpen the definition of
association when constructing relevanf, suitable measures.

If several measures are constructed for the same situation, one
ought to choose the measure one believes gives the most evident
expression for the relevant features of association. In addition
it is required that the measures can be given a simple operational
(probabilistic) interpretation such that, for one thing, values of
a measure for different tables can be compared.

It seems natural when looking at measures of association, to

seperate between the following five cases:

1) Ordered case.

There exists for each factor an underlying ordering between
the categories .

One example can be : A; level of education and B: incomelevel.

2) Unordered symmetrical case.

There is no natural or relevant ordering. Moreover the factors
appear symmetrically; there is no reason to give one factor

precedence to the other.

3) Unordered asymmetrical case.

This situation occurs when one of the factors, say B, is of
primary interest and there is no ordering in the two factors.
This can happen if the factor A '"precedes" B chronologically

or causally. Cne example can be A: occupation and

B: attitude to a certain problem.




4) Reliability-case.

This situation appears when Vv = w , and A and B assume the
same categories but refer to two different methods. Let for
instance A and B be two psychological tests both of which
classify deranged individuals as to the type of mental disorder

from which they suffer.

5) Mixed case.

The categories of one of the factors possess a natural, rele-
vant ordering, the other do not. One example of this situation

can be A: level of income and B: geographical classification.

Outside of these five cases we treat the 2Xx2-situation separately.
Most of the measures which is considered in the cases 1) -4) can be
found in [5] and [6]. The ordered situation is treated with special
thoroughness, since it seems to occur quite frequently. The mea-
sures discussed there will all vary in the interval [-1,1]. As a
measure for the degree of association in the ordered case, one can

use the square of these measures.

II. THE INDEPENDENCE-SITUATION IN A TWO-WAY CONTINGENCY TABLE.

The following situation is considered. Two factors (later,
also called attributes), A and B, can naturally be divided in re-
spectively v and w categories A1’°°°’AV and B,l,...,Bw . At
each trial one and only one of the categories Ai & Bj will occur.
Let Y, Z be two random variables defined by:

Y=1 if Ai occur for 1 = Tye40,V

%

Z =] if Bj occur for J = TyeeeyW

The number of trials being executed is n . The outcome of each



of the n +trials is stochastically independent of the outcome
from the other trials. At each traal the probability for occurence

of A, &B. is p,. . The probability for A, then becomes

J iJ
W v
p; = qupij , and the probability for Bj becomes p_j = iiqpij'
I.e. Pis = P(Y=in 2=j) , p; = P(Y=i) and P.j = P(z=j) , for

i=/|,oov and j=/|-_ocWo

The factors A and B are said to be exact independent if Y and
Z are stochastically independent. I.e. the hypothesis of exact
independence between A and B can be expressed as

H: p;: =Dp; p,s for i=1,...v and j=71,... w. (2

ij °J

Let Xij be the observed frequency in class Ai & Bj during the

n trials, and let 45 = Xij/ . Let further q;, = I a5 and
q 5= z qij . The statistical data can be arranged in a two-way
° i

contingency table:

B
A B/I B2 @ 0 @ 000 b e o0 BW S.lm
A/l X/l/] X/|2 ® @ 0O 000 00 0@ X/IW X/]c
A2 Xz/‘ X22 © 0 ® 6 ©o© 0 002 oe X2W X2.
Av X‘I/I Xv2 o @ 00 000 e 0o XW Xv°
Sllm X‘/\ X.2 o e ® e o0 0.. e o X‘w n
v r _ )
Here is X; = jinij and X-j = iiﬂxij, that is X;  is the
number of occurences of Ai and X-j is the number of occurences
of B. .

J



III. Ordered case,

ITIT.1. Three ordinally invariant measures.

The situation under consideration is a relevant ordering between
the categories within both factors. Let us first hive a definition

of an ordinally invariant measure.

Definition 1 A measure g is said to be ordinally invariant

if it is unchanged under similar types of monotone transformations

of Y and 7 , and if the sigh of g switches under unlike types

of transformations. This means that g(Y,Z) = g(£(Y¥),h(Z)) if

f and h are both strictly increasing or both strictly decreasing

functions, and g(Y¥,Z) = -g(£f(¥),h(Z)) if one of the functions is

strictly decreasing, and the other is strictly increasing.

Since Y and Z are measured on an ordinal scale, such that
the succession of the their possible values, but not the distance
between them, has meaning, we require that a measure for this
situation is ordinally invariant. In addition the measure g
ought to satisfy two demands:

(1) -1

(ii) A,B exact independent => g =0 .

If the range of g 1is bounded and g is symmetric in origo (i)
can always be fulfilled by norming the measure.

We will describe three ordinally invariant measures, satisfying
(i) and (ii), which are all modifications of a fundamental quantity.
They are denoted by
1) Yy , proposed by Goodman & Kruskal ([5],p.748).

2) Ty 3 Kendall's rank-correlation coefficient modified to
contingency tables.

3) T, s suggested by Stuart, 177.



The measure Y 1is also discussed in [11]. Later we will see that
there are reasons for prefering Yy to the others.
A1l the measures, but especially Yy , have a simple probabilistic

interpretation. We consider this measure first.

ITT.2. Construction of a natural measure, Y.

Let (Y,,2,) and (Yg,Zé) be two independent random variables
with the same distribution as (Y,Z) .

Yy 1is defined by

vy = P{(Y,-Y,)(2,-2,) > 0|1, {:Yg N z,,{:zz}
- P{(Y,=Y,)(2,-25) <0y, 4Y, n 2,42} .
It is immediately seen that y is ordinally invariant.
Let m, = P(Y,|=Y2 U Z,'=Z2) .
P{(¥4-Y,)(2,-2,) >0} .
P{(Y,-Y,)(Z,~2,) < O} .

Ms

Mg
That is, Ty is the probability that the variables are concordant,
and md 1is the probability that they are discordant.

In this case we find it natural to extend the definition of exact

independence to:

Definition 2 Two factors A and B are said to be

ordering-independent (o0,i.) if m_ = Ty -

(a)
(=]

Y can be expressed as follows:

m., -1
= (%)

Besides, since My + Mg+ Ty = 1y = ns-nd//ns-rnd .

Hence it is seen that y € [-1,1] , such that (i) is satisfied.

One finds that




v w v w
Trt= Zp2 4 Zp?.— = Zp?..
i=1 "t g=1 9 i1 =11
v-1 w-1 { }
m, =2 ¥ I DPs. z L p .
S 1= j= 1J it> J'>J l'J'
v-1 w
My = 2 'Z .Z’p.. { = z pi,j,},

i=1 j=2 1 i'>i §r<j

Further it can be shown that A, B exact independent implies that
My = Mg, such that definition 2 actually is an extension of exact
independence.

Hence Yy satisfies (i) and (ii). In addition (see [5]), Yy has
the following properties:

(iii) A, B exact independent => y = O , but the converse need

not hold except in the 2Xx2- case.

(iv) vy 1is well-defined provided not all of the positive all-

probabilities are concentrated in one single row or column.
In the 2x2- table the measure reduces to

D41PopPqoP i}
, o DanPea®azPen 4 1 )
P1Po2*Pq2P2q  AF

where A = pqqug/pqugq is the cross-product ratio.

Measures of association in the 2x2 - table will be discussed

later in VIIT.

I, 2. Two alternative measures, T, and 1T, .

Let us first consider the following situation.
Let U,V be continuous random variables. Kendall's rankcorre-

lation coefficient T for (U,V) is defined by:
T = P{(U,|~U2)(V,]~V2) > O} - P{(U/"'Ué)(vz]“vg) < O} (5)

where (Uq,vq) and (UE’VE) are two independent random variables



distributed as (U,V) ([11], p.822).

T can be considered as the correlation coefficient between the
signs of U,l--U2 and Vq--V2 .

Let (uq,vq),...,(un,vn) be n observations of (U,V) . We say
that there are no ties if uy # uy and vy # vy for 1 #£J and
1 ="T500e30y J = Ty0ee,n = In a contingency table there will occur
ties if at least two obseervations fall in the same row or column,
something that always will happen if n > min(v,w) .

In the event of no ties y is reduced to T . In other words Yy
is a modification of T %o the situation with ties. We will now
consider two other modifications to the situation with ties.

Let the situation be as in III.Z2.

Dendall's rank correlation coeffisient for contingency tables is

defined by (our definition):

T
s-ﬂd

'T.b = e 4 (6)
A P(Y, A1, )P(2,42,
Motice that vy = (ﬂs—nd)/P(Y1£Y2r121#Z2). )
TLet e = P(Y,];éYg) end T, = P(Z,l;ézz).
v
2
= 1= % . o
"y RCREE
w
2
mn, =1- ¥ p~. .
z 521 3
In the 2x2~case we have
P44Poo = P1oP
S (7)
YPq.P2.P 4P 2
LN satisfies (i) and (ii) in III.1., since T, =0 <> My =Ty e

In addition T has the following properties:

b
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(iii) T is well-defined provided not all positj’.ve cellprobabili-

ties are concentrated in one single row or columm.
(iv) T, is ordinally invariant.

With regard to (i) it should be mentioned that the limits X1 are
v

never attained except in a v Xv-table where z Pi; = T .
i=1

It is also worth noticing that T% can be considered as a generali-

. 2
sation of B = (P/|/|P22‘P12P21) / P4 P P 4P o to a vXw ordered

situation, while the traditional chi-square measure

2
2_ ¥ ow (P34p P5)
i=1 j=1 P;.P.3

is a generalisation of B to the situation with no relevant order-
ing. For other traditional measures in that situation we refer to
Iv. 3.
The third measure To is defined by:

Te = F:TEW;% (&)
where m = min(v,w).

The norming factor m/m~1 is a consequence of lemma 1.

rmma 1. -2l <o <21 | The limits are attained in the

case all the cellprobabilities are equal to O outside a longest

diagonal of the table, and equal to 1/m in the diagonal.,

Proof. The number of cells in a longest diagonal is equal to m.

m

Assume first that v = m. Then max(rrs-rrd) occur when i€’lpi’i+k=q

. 1 . -
for a given k, 0 <k <w-m and pi,i+k =0 for 1—”!,...,111..
Hence:
-1
o _ m~]
max(ﬂs-nd)_-—g- z z ’I_T.

m~ i=1 i'>1
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Correspondingly, min(m g= T d) occur when

m~"1
ifo Pooi k+i = 17 for a given k, 1 <k < w-m+
1 .
and pm-i,k+i == for i =0,1ye0.,m~1 .,

This gives that

m-"1
min(rrs-nd) = -2 2 z ’]/mg = -%1 .
i=1 i'>m-i

In case w = min(v,w), the proof is completely analoguous. The

difference is only that max(m -my) occur when 0 <k <v-m,
m
= _ /I .

ji’l Pi+x,j = 1 end Psik,j = /m, eand min(m -my) occur when
by 1

. o.o=1 T -1 < < v—m--] o=
jE’] Py_k-3, j for <k <v-m and Py k-3, = @

Q.EoDo

Lemma 1 gives that (i) is fulfilled, where now the limits -1 and
+71 can be attained also when Vv £ w. Condition (ii) also holds,
and moreover, T c is ordinally invariant and always well defined.

In the 2x2-case T, = 4(p 1 Ppos=DPyoPsq) -

Let now ?b be the estimator for ™ obtained when substituting

the relative frequencies qij instead of Pi,j in the expression
for Tp * T.e.
Ps-Py
t = S04 9)

\/Py.PZ

where Py = rry( g), P

(Stuart [17] shows a similar result for P ,-P; as we have done

g = ﬂZ(Q), PS = ﬂS(Q) and Pd = ﬂd(Q) .

for ﬂs-—nd).

?b can be considered as a special case of a generalized empirical

correlation coeffisient (see [10], p.19). We give a short review
of it. (y,],z,]),...,(yn,zn) are the n independent observations

that is executed. To every pair {(yi,zi),(yj,zj)} a Y- score 24 3

are assigned such that a.. = -a.. and

and a Z - score bij ij i
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bij = "bji (=>a;; =b;; =0). The general empirical corre-

lation coefficient i1s defined as:

n

z Z Db
i=1 j=1 #13°13

T moon 5> & 5
z z as Z E b:
i=1 j=1 137121 j=1 1J

(10)

For example, the usual empirical (product) correlation coefficient

E(y ~y)(z;-2)
Jz<y )2 2(z; )2

is obtained by.puttlng aij = yj-yi and bij = Zj"Zi‘
The following result shows how ?b appear as a special case of T .
LEMMA 2. Let the Y-scores aij and Z-scores bij be given by
+71 %i y; < T +1 if oz, < Z
-1 1 yi > yj -1 if z; > 2
Then T =% .
Proof.

The number of ordered pairs among X elements is K(K-1) .

This implies that the number of ordered pairs among the total

n(n-1) ordered pairs for which ;5 = 0O 1is equal to Z X, (X -1),
i=1 t°
such that T a..2 = n(n-1)=% X. (X. -1) = n°-% X.2 .
i,d ij PR R ; Tl
Similarily: £b,.° =n°-TX 2.
i, 1 J "

This implies that the denominator in T can be expressed as

2 2 % gJ 2 2 PEN 2
5 . ¥ b°.}17 = 1-3g° )(1-2q° )(1-E¢°.) = n° [P P .
{1£Ja13 1% 13} n<,/( iql.)( a3 )¢ jq.J) n Py ”

Let U= Z a..b.. =22 a,.b.. since a..b.. = a..b.. .
1,3 13713 i<j ij713°? ij71i3 Ji j1
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( £ a;.b.. is called the total score S in Kendall, [10].)
5<j 13713
After some calculation one finds that

~ v=-1 w="1 ( ) v-1l w ( )
Ta.b:s= ¢ £ X,(Z T X.)- T X,.(EX £ X.),
i<y 1913 p k=1 TKisp jok HT pog k=2 K oi>r j<k LY
which gives U = ng(PS-Pd), and hence
T - Ps-Fg
P_-P, Q.E.D.

i3 bij equal to +1 or -1,

for i £ j, and therefore completely analogous to lemma 2, We see

In the case of no ties we always have a

that T =% where % is the sample-statistic of T, defindd by (5),

That is, ?b is the natural modification of %, based on T .

IIT.4, A valuation of the measures Y, T and L

The first thing to notice is that the three measures are all modi-
fications of the difference Ty = Tg to the situation with ties.
The most natural modification is obviously Y, where one looks at
the conditional probabilities given no ties. Both ™ and To
seems to be somewhat artificial as modifications of My =Ty -
Especially LI which is only a norming of Ty =Tq o
Another thing one should take note of (regarding T ) is that origi-
nally it was the empirical rank correlation coeffisient 7% that
was modified to ?b, with starting-poimtat the generalized emperical
correlation coeffisient T given by (10) (see [10] and [17]). The
definition (g) is a result of substituting the probabilities Pij
instead of 9 5 in ?b . (Tb is not mentioned in any of the ar-
ticles that we give references to.) Hence, we have that while vy
is the natural modification of T Dbased upon Ty =Tq» ?b is the

natural modification of % based upon I . It is the parameter
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that interests us. The correct thing to do must therefore be to
modify the parameter, and thereafter look at the estimation problem,
not to go the other way as Kendall did with *%.

The conclusion must therefore be that y is the most naturai and

suitable measure in the ordered case.

None of the suggested measures in the ordered situation are invari-
ant by permutations of rows or columns (of cell-probabilities) in
the table, naturally. In the next situation to be considered the

measures will remain unchanged under such permutations.

IV. UNORDERED SYMMETRICAL CASE.

IV, 1. A symmetrical prediction model .

Two measures of association, vy and 1, suggested by Goodman &
Kruskal, [5] and [6], will be discussed. In addition we mention
some of the traditional measures of association which, however,
cannot be given any operational interpretatioﬁ. |
The measures A and 1N will be simple functions of error-probabi-
lities within a certain model of prediction to be described. To
give the model of prediction meaning it will be assumed that the
cell-probabilities pij are known when constructing the measures
A and mn . The two measures are the same function of probabilities
for false predictions, based on two different methods of prediction.
The symmetrical prediction model the measures are constructed from
is as follows (see [5], p.743):

In a given trial one predict with probability C.5 the B -class
and with probability 0.5 the A -class. (Either A or B's class
is predicted, each factor having probability equal to 0.5 for be-

ing drawn out for prediction.) If B's class is to be guessed,
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prediction is made on the basis of
(1) no further information, and

(2) given the A-category.

Similar, if A shall be predicted.

IV, 2. The measures A and 1N based on respectively optimal

and pronortional prediction.

Goodman & Kruskal suggests two alternative methods of prediction.
a) Optimal prediction.

If B is drawn out: Predict in case (1) the class Bj with

Py = m§§ D, 5t and in case (2), given A, : Predict the class Bj
with Pij = m§¥ pij" Same method is used if A is drawn out.
Let

QU =P (correct optimal prediction in case (1))
and Q =P (correct optimal prediction in case (2)).

b) Proportional prediction,

If B is drawn out: Predict in case (1) Bj with probability
P, 59 for j =1,...,w and in case (2), given A, : Predict Bj
with probability pij/pi. for j = 1,e06e,W o Similar if A is
drawn out.
Let

P P (correct proportional prediction in case (1))

]

1
P

P (correct proportional prediction in case (2)).

The measures A and mn are now defined as
(1-Q,) - (1-Q,) Q,-Q
N = g 2 - 2 g (11)
- & -4
(/""P/])‘ (/I"Pz) Pg—P,l

n = = (12)
1-P1 1-—P1
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One notice that N and m Dboth are relative decrease in probabi-
1lity of error in prediction from unknown to known characteristic
for the factor which is not predicted.

Now Qi =% « {P (corepect optimal prediction of B's characteristic
in case (i)) + P(correct optimal prediction of A's character-
istic in case (i))}.

and similar for P.. We find the following expressions for Q,l

i
and Pi’ A and 1.

.
LY w
QQ = ?(if’]plm-‘_ jE’]PmJ) ’
where p . = mg}x P.joPp. = WX D;,Pip = m:cju'c p; 41 and ppy =mAX D1 5
v W
lg,]pim'raz,lpmj P .n"Pn
M= (13)
2=P y~ Py,
v W
P, =+ Tp + Tp°) .
i=1 =1 °9
v oW
2 1
P = %’ Z E p. .(——- + ) -
2 i=1 j=/l lJ pl. p‘a
It is easily seen that mn can be formulated as follows:
v ¥ 1.4
T 2 (pjs-p;. P 3)2(3-—-+-—)
I e e i. P
n = (14)
vy.2 w2
2- & Py - z p-.
i=1 ** j=1 9
Some properties of A\
(1) A is welldefined, except when one iy = 1

(ii) o0<x <1
(iii) A,B exact independent => A =0

(iv) A is unchanged by permutations of rows and columns
(of cell-probabilities) in the contingency table.
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Some properties of n:
(i) m is well-defined, except when one P;ij = 1
(ii) 0<n<1
(iii) A,B exact independent <=> m =0

(iv) m is unchanged by permutations of rows and columns

In the 2x2-case M equals B. That is, n equals the chi-

sequare measure wg, and T%, in the 2x2- table.

Which of the measures that is best suited for a given situation will
depend on the method of prediction that is relevant for the situ-
ation. Usually it is perhaps most interesting to guess the most
likely Y or 2Z-value, that is optimal prediction. One should,
however, notice that X 1is a somewhat "coarser'" measure than n.
By that we mean that if the association between A and B changes

slightly, then A will not necessarily reveal it.

IV, 3. Traditional mesures of association.

The most usual traditional measures of association are based on the

chi-square measure, already mentioned:
2 2
v oW . <=Da ) Vv W Do
2 5 5 (Pla pl.p.J - 5 > plg -1

a) Q = =
i=13=1  py P i=13=1p; P j

9
.J
(@lso called the mean square contingency in the literature.)

Three variations of this measure are mentioned in [5], p.739-740.

2
b) K = JLE_E (suggested by K. Pearson).
T+
2 ¥
c) T = 2 ) (suggested by Tschuprow).
2 [ - ’
d) C=o0 /ﬁln(v-ﬂ,w-ﬂ) (suggested by Cramér).
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It is readily seen that K,T,C € [0,1] and that:

A,B exact independent <=> 9= =K =T = C = 0 . Tt is difficult

to give a probabilistic interpretation of these measures. Measures

based on mg are in other words not particularily meaningful .

Goodman & Kruskal, [5], give a wider account of such measures with-

out interpretation.

A measure not based on mg was suggested by J.F. Steffensen in 1933.

(8ee [6], p.140.)
2
2 v w (pij-Pi.P.j)

e) \]J = X ZP.
i=1 j=1 33 Py U-p ;)P _501-p 5)

Some properties:
(a) ¢2 =0 <= A and B exact independent, and
() 0<y°<1.

¢2 is a weighed average (with pjj as weights) of all 2x2

mean square contingencies formed from each of the vw cells and
its complement.
Teo simple measures are

£) =

1l

max | p

.s-Ds P sl
i, i3]

/I

|

p-.
g) np =mex|s=d-p .|
i,j Fi. *d

It seems that #, 1is a more elucidating measure that o (because,
for one thing one usually set up tables with qij/qi. and consider
the difference qij/qi.-q'j when valuating the association in the
table).

Let us now consider the case where one factor is of primary interest.
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V. UNORDERED ASYIMMETRICAL CASE.

Vele An asymmetrical prediction model.

Let us assume that the factor B is of primary interest. Two
measures, A, and T, , suggested by Goodman & Kruskal, [5], are
to be considered. The measures xb and Ty corresponds to A
and mn in IV, with the difference that they are constructed in an
asymmetrical model of prediction. For the model to have meaning
we will assume, as in IV.1., that the pij's are known when we
construct the measures hb and Ty o The asymmetrical model, given

in [5], p.741, is as follows:

In a given trial the B-class is to be predicted, on the basis
of
1) No further information, and

2) Given the A-category.

Now, since B is the vital factor the relevant features of associ-
ation are essentially of the type: "The difference’ between correct
B-prediction given A and correct B-prediction given no informa-
tion., Accordingly the asymmetrical prediction model described above

is a relevant model for constructing measures of association.

V.2. The measures Ay —and N based on respectively optimal and

proportional prediction.

Optimal and proportional prediction for B are completely ana-
logous to the definitions a) and b) in IV.2. That is
a) Optimal prediction means that one predict the most probable

B-class in case(1), given no information, and (2) given Ai.

b) Proportional prediction means that one in case (1) predict

Bj with probability p 3 for j = 1ye..,w, and in case (2),
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given Ai’ predict Bj with probability pijlpi. for

J = TyeceyWe _

The definition of », and m, are the same as the defini-
tion of A and mn in (11 and (12).

Let QE = P (correct optimal prediction of B in case (i)) for

i=1,2, and ?E = P (correct proportional prediction of B in

case (1)) for i = 1,2.
Then:
. (1-07)® = (1-Q,)P ) Q- ah (159
b = 5 = 5
1-94 1 -
_ (1-B)P - (1-,)P _ D -5 | (169
T p -Pﬁ 1-F

Both xb and n, are relative decrease in probability of error in
prediction from unknown to known A . The measures can be expressed

in the following form:

v
r P;:..—P
o = S (17)
v ) w 2 v w (pi‘i-pi b j')2
I IPis/py - TPy LT g
- i=" j:" * j=/| * - i=1 Jj=/] la (/]8)
"o v 2 g 2
T- 2 p~. 1 - D
j="1 °dJ 3=1 ed

Some properties of kb:
(i) A, is indeterminate if and only if one p j = 1
(ii) Of_hbf_’l
(iii) A,B exact independent => My = O

(iv) hb is invariant under permutation of rows and columns.

The properties (i), (ii), and (iv) are valid also for My« In
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addition we have:

(iii)':s A,B exact independent <=> T = 0.

If A 1is the primary factor the measures will be completely corre-

sponding:
W
jiqpmj'Pm.
o = AT, (19)
v v o5
.Zq qulg/P - Eqpl.
'ﬂa = 25 = L . (20)
1- z ps
/l O

As to which of the measures kb or nb that are most suitable in

a given situation we refer to the discussion in IV.2, about Aand n.

VI. RELIABILITY - CASE.

VI.1. The unordered symmetrical case.

The situation is described in I.1. (see also [5], p.756). The
characteristical thing in this case is that Ai = Bi TOr 1 =7 weVs
In this situation one is often interested in the degree of agreement
between the two methods which A and B generally refer to. For
the case where the categories does not hold a relevant ordering,
Goodman & Kruskal, [5], construct a measure based on the symmetrical
model of predicfion given in IV.1. The prediction method is as
follows:

In case (1) predict that B, with p; +p ; = Dy, +DP y =

max(p;+ +p_ ;1) . Similar if A is drawn out.
it .
In case (2), given A;, predict B;. Correspondingly if A 1is

to be predicted.

Let Ay =P (correct prediction in case (i)) for i = 1,2,
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The proposed measure is defined analogous to A, N, Xb and T $

(1-8,) = (1-h5)  Ay= A,
A, = T=T, = (21)

One finds that:

Ay = 2oy 2 )

such that

1
A = - (22)

Some properties: i) -1 <A 2
_ ii) hr assumes no particular value in case
A and B are exact independent, but as Goodman & Kruskal argue
a measure as hr would only be used where there is known to be
dependence between the methods A and B, so this undesirable

quality is not so important.

VI.2. The ordered casee.

In this situation it has been customary to use measures of the

type

! for a chosen k .

= z p-.
B il T

v

For example, T (= % Pii ) is the probability that the methods
i=1

"agree" (that is give the same result).

VII. MIXED SITUATION.

A case which has not been discussed in any of the articles which
we refer to is the situation where we have a nominal level for one
of the variables (Y,Z) and an ordinal level for the other. We

shall here try to forward some suggestions for measures of associ-
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ation in this case. Let us for the sake of simplicity suppose
that Y holds an ordinal level. The kind of measure one ought to
choose will depend on the features of dependence one is mainly in-
terested in. It seems natural to separate between the following
three situations.

a) Asymmetrical situation. B 1is of primary interest.

b) Asymmetrical situation. A is of primary interest.

¢) Symmetrical situation.

a) B has primary interest.

There 1S no interesting ordering in B's classes, so it seems
reasonable that an asymmetrical prediction model as in V.1 is re-
levant here. Consequently the measure should be constructed from

that model. xb and nb are therefore suitable measures.

b) A has primary interest.

Since the classes for the primary factor hold a relevant ordering
it would be reasonable to require that the measure in any case is
not invariant under permutation of rows in the contingency tables.
This implies that all measures in the unordered case are noteligible.
A suitable measure then seems to be a measure constructed for the
ordered case, which means Yy since this measure was found to be

the most natural of three measures valuated in IITI.

c) Symmetrical situation.

As mentioned earlier, this situation appears when there is no
reason to give one factor priority in preference to the other.
Intuitively it seems natural that a measure of association in this
case 1s a function of two measures Dy, D2, where Dq is a measure
for the ordered situation (41511L§1), and D2 is a measure con-

structed for the unordered situation (0< D, < 1)
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Such a function h(Dq,Dz) should idealistically have the following
properties:
1) Invariant under permutation of columns

2) Not invariant under permutation of rows.

It seems however, that this is amuch too ambitious assumption.
A more unprecise condition is:
h shoulgutilize the information from D1 and D2 to
"the same amount'.
Besides it can be desirable that

h(D,;,Dy) =0 <=> Dy =D, =0 (23)

Examples of such measures are:

i) b(D,,D,) = a(|D,4}+D,)

ii) n(D,,D,) =b(D5+D,) ; a and b are constants.
The measures 1) and ii) will be non-negative. If it is believed
that the condition (23) is immaterial other measures of the form
c(D14-D2) and d(Dq-D2) can be used, where ¢ and d are con-
stants.

At last we will consider the 2 x2-case.

VIII. THE 2x2- TABLE.

VITI. 1. Deducement of a measure of association.

The 2x2 - contingency table can be described in the following

manner:
B B
Al pgq | P (24)
A1 Poq | Py

We want to measure the association between the two attributes A

and B. A and B are their negations (complements).
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It is readily seen that the cell-probabilities can be expressed in
the following way:

Paq = Pq P 4+ (A=DpyoPpy

Pz = P12 o= (A=1)pqoPpy
Ppq = Pp,P 4= (8=1)PqoPpy
Pop = Pp,P o+ (8=T)pqoppy
Here A = P11P22/p12p21 is the cross-product ratio.

The exact independence hypothesis can be formulated as

H: PqqPoo = P4oPo4 (<=> a=1). (25)

There are certain reasonable requirements a measure of association
for (A,B) should satisfy in the 2x2-table (see [2] and [13],p.4).
In most cases the following three demands are reasonable:

1) The measure must be a function of the conditional probability
of B given A , pqq/p11+p12, and the conditional probability of
B given K, qu/qu+P22a or, alternatively, of the conditional
probability of A given B, pqq/p11+p24 , and the conditional
probability of A given B, p42/p12+p22.

2) The alternative measures in 1) must be equal.

3) The measure must change monotonically, for a given set of

marginals P, and p ,, as the association becomes stronger.

The demands 1), 2) and %) implies that the measure of association
must be aone-to-one function H of the cross-product ratio A .
(From Edwards, [2].)

H(A) is invariant under multiplication of rows and/or columns.
That is, H(A) gives the same value to table (24) and the table:

l B B

A | Tycqpag T1CoP12 (26)

A | ToePpq THCoPop
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for all non-negative T49T55C1sCo such that
TACAP4q + TqCpPqp + TpCqPpq + TpCpPpp = 1.
It is with this shown that the natural choice of a measure of asso-

ciation in the 2Xx2-table essentially is the cross-product ratio

A .

We now mention four measures which are one-to-one functions of A.

Yule's coefficient of association:

_PaaPoo " Pa2Poq _A-a1 _ 2 (27)
T PP+ PopPpq A+ A+

(d,l is the ordinal measure Yy 1in the 2Xx2 - case).

Yule's coefficient of colligation:

_fP1P2o AP1oP21 5o

2
a, = S = (28)
2 T ) r" .
VD 14P2o HP12Po1 S Ja+
p =1n A (29)

and of course A itself.
Yule's two measures are strictly increasing when A 1increases.
Let us now define what we mean by positive and negative association

between A and B in the table (24).

Definition 3. If A > 1 (p11£2? > p12224) we say there are posi-

tive association (p.a.) between A and B . If A <1 A and B

are negative associated (n.a.).

Some properties on Yule's two measures:
() -1<4 <1, and d; >0 if p.a., d; <O if n.a.;
for i = 1,2.
(ii) d; = 0 <=> Exact independence
Gidi) d; assumes the value -1 when p,; =0 or p,,=0, for i=1,2,

di assumes the value +1 when Pqo =0 or“ Po =0, for i=1,2.
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If we are not interested in the direction of dependence, but only
in the degree of association, we can use one of the measures

2 2 2
dq, d2 or p~ .

VIII. 2. An alternative measure of association.

It can of course occur situations where other measures than

those based on A can be applicable. Here we mention one:

~ P1qPo2 T P10P2q

) JP1.P2.P P o

or T% if we are only interested in the degree of association.

Kendall's rank correlation coefficient: Tb

(For other measures see [2] and [6].)

IX. CONCLUDING COMMENTS.

As we have seen, most of the measures constructed from a given
model have the property of being zero if there is no association
relatively to the relevant features of association the measure is
constructed for, even if other types of association possibly are
present. This is what we had to expect, since we sharpen the
‘definition" of association in the different cases. Notice that
for all situations, except VI, exact independence will imply that
the measure is zero.

Finally we will again, as in I.Z2., strongly emphasize that when

determining a measure of association for a given contingency table,

one shoul? choose that measure which gives the best information

about the interesting features of association.
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PART TWO:

TESTING ALMOST INDEPENDENCE




I. INTRODUCTION.

I.7. Some practical problems in larger investigations.

On testing for independence in a two-way contingency tabie it
has been customary to use a chi-square test on the hypothesis of
exact independence. As mentioned in part one, it is well known
that when the number of observations is large the power of the chi-
square test is so high that the hypothesis describing exact inde-
pendence nearly always will be rejected. At larger investigations,
say in the Central Bureav. of Statistics of Norway in Oslo, the pur-
pose of using tests for independence can be to decide which tables
that are to be published from the investigation. If two factors
are not associated, the value of the corresponding two-way table
is too little to be published, because one can then be content with
the marginal distribution for each factor's classification. Because
of the high power of the chi-square test it is then not suitable as

an assitance for setting up the tables in a large investigation.

As mentioned in part one, one should instead accept independence
even if the factors are only almost independent, by which we mean
that the degree of dependence is not materially signigicant with

respect to the subject investigated.

This problem can be solved by extending the exact hypothesis to

|
include cases where the degree of association is less than a certain |
' !
limit, and thereafter develop tests for the extended independence- |

hypothesis.

/

Let us first give an ecample to show how the classical test can be
less suitable for the purpose described above, when there are many

observations.
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Example 1, from [15],

We shall examine if there was significant association between
participation and occupation at the Storting elections in Norway
in 1969. The number of persons being interviewed was 2702. There
are eight occupational groups. With participation we mean whether
the interview-object has voted or not (according to the object's

own statement). The result is given in the table below.

Table 1.
Occupational
group
parti- 1 2 3 4 5 © 7 8 Total
cipation
Voters 169 | 141 1429 618 | 45 268 | 753 16 2439
Non-voters 19 16 43 56 | 14 36 75 4 263
Total 188 | 157 | 472 | 674 | 59 | 304 | 828 20 | 2702

Source: [15], table 17 and 19

For each occupational group we can calculate the relative frequency

that voted/not voted. It gives the following teble:

Table 2.

Occupational group Voters Non-Voters Number of respondents
1 0.90 0.10 » 188
2 0.90 0.10 157
3 0.91 0.09 472
4 0.92 0.08 ] 674
5 0.76 0.24 59
© 0.88 0.12 204
7 0.91 0.09 828
8 0.80 0.20 20

All occupations 0.90 0.10 ] ' 2702
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It seems likely to believe that the dependence between occupation
and participation is very little. (There are few observations

from the occupational groups, 5 and 8, which shows significant de-
parture.) However, the usual chi-square test rejects the exact
independence~hypothesis for significance levels greater than 0.005.
The test gives therefore a result in contradiction to what we find
reasonable by inspection of table 2 above.i (We shall later see
that the new tests proposed in this paper will lead us to accept

the independence hypothesis.)

I.2. The multinomial situation.

The situation given below covers several of the cases where a
chi-square test usually has been used, for instance
a) Testing of goodness of fit for a specified distribution to
certain variables.

b) Testing of independence between two factors.

As mentioned earlier, we are particulariy interested in case b).
We consider the following situation: A sequence of n independent

trials is executed. At each trial one and only one of r charac-

teristics
Aﬂ’AZ""’Ar
can appear with probabilities PqsPpseessDy o
r
where Z p. =1
i=1 %

Let Xﬁ be the number of appearences of Ai in the sequence, and
let Un = Xi/n, for 1 ="1,00e, &
A priori we assume that the probabilities Pqsee«,p,, are unknown,
aIld pi>o fOI‘ i =/|,...,ro
The general hypothesis to be tested is

H :p; = @i(e) for i =1,c0e.,T (1)




-3 -

where 6 = (e,],.., em) €Q and Q includes a non-degenerate
intverval of a m-dimensional real space R .

Each function ?; is assumed to have continuous partial derivatives.
The number of observations n is assumed to be large.

-1 9up;
Further the matrix M = {q)i? a—ce'ﬁ'-} of order rxm is of rank m
S

at the true value of 6 . Let 8 = (@,I,.. ﬁm) be an efficient esti~

mator of 6 in the sense of Rao ([16] p.285), and let

r (¥;-ng; (8))°
z o
=1 ne;(8)

7 = (2)

2

The asymptotic distribution of Z is ¥~ with r» - 1-m degrees

of freedom (Rao [16] p.325).

Let us in addition to the above conditions assume that for § > O

there exists € > 0 such that

inf s 5 (8°)1 P (0 > (3)
in . 1 €
16260 [>5 i1 % p; () =

where 6° is the true value of 8 and |6-6°] is the distance
between 8 and 8°.
We then have that the maximum likelihood (m.l.) estimator % is
efficient and can be used in (2). For this result we refer to Rao,
(16] p.296). B is the value of 6 which maximizes

r Q. ,
A CD el

i=1
With approximate level € we now reject HO when

Z > z(r-1-m,e) 4)

where z(r-1-m,¢) is (1-c¢)-fractile in the chi-square distri-
bution with r-1-m degrees of freedom, This test is called the
chi-square test for goodness of fit. The approximation to the chi-

square distribution is usually applicable when nmi(é) > 5 for

i = /],2,000 T .
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Let us consider case b). The situation is described in part 1,
ch.IT, and we have a multinomial sequence of trials with vew
categories. The exact independence hypothesis is

H: p for i =100 v and j = 1,.. w (5)

i “Pi. Pj
We see that the hypothesis (5) has the same form as (1), with

9 = (p/]"on pv-/l.,p./l,.co,p.w_/]) and m = V+W—2 ° II]. this Sitll-
ation the conditions above are satisfied and the m.l. estimators
for 6 are efficient and equal to Xi/n‘ and X.j/n for < and

P respectively.

eJ
Hence, from (2) we have that

v w nXi‘ E‘—J-)2 v X2
o o =])m——r w . s

7 = T zlﬂx_nxn =n( X T —=2d— _1) (6)
i=1 j=1 ,.24 ﬁj i=1 j=1 Xi.X.j

is approximately chi-square distributed with (r-1)(w-1) degrees
of freedom. The chi-square test for H now becomes

Reject H when Z > z((v-1)(w=-1),¢) (7)

I.3. Statistical hypotheses as idealized theory of ''reality.

As mentioned parlier it seems that, where the data sample is
extensive the chi-square test nearly always reject the exact inde-
pendence-hypothesis.

We will now look further into this matter.

There are many situations where the mull-hypothesis only can be
expected to be approximately true. In such situations one can say
the statistical hypothesis is an "idealizing of reality', and will
therefore be called an idealized hypothesis. An idealized hypothesis
is then a hypothesis that cannot be expected to be exact true. Such

a situation occur, for instance, usually when we test whether some
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gariables are normally distributed. Often it also seems reasonable
to believe that two factors can be almost independent, but not ex-
actly independent. If this is the case it can explain, to a certain
extent, why the usual independence test rejects the exact hypothesis
for large n .
Before looking closer at this, let us consider the following general
situation.

Let Xh be a random variable with distribution depgnding on n
and on a parameter 6 which apriori lies in a set Q . Let
w, < 0 represent an idealized hypothesis as described above, & 1is
a test for

Ho : B € W (8)

with critical region L

Definition 3. & is called consistent if Peggnfijn)—'q as n=- O

for all 8 € Q-w, .o

It is readily shown that the chi-square test (4) for the hypothesis
(1) is consistent. Especially the chi-square test for the exact
independence hypothesis is consistent. This leads to the fact that in
a very large sample, small and unimportant departures from the hypo-
thesis (1) are almost certain to be detected. If then the hypothesis
is an idealized hypothesis, the chi-square test will reject it nearly
always when there are many observations. This of course is not a
particular feature of the chi-square tests, but will apply to any
consistent test for an idealized hypothesis.

When testing an idealized hypothesis we are generally interested in
rejecting the hypothesis only when it is considerably wrong. This
is, as mentioned in I.1., the case when we test for independence.

The usual test for independence will however as we have given an




- 3 -

example of, reject the exact hypothesis even in cases of almost
independence.

One way of'avoiding this difficulty, suggested by Hodges jr. &
Lehmann, [9], is to extend the region of hypothesis to include situ-
ations close enough to the hypothesis so that the difference is not
materially significant with regard to the specific problem we are
investigating.

Let us in this connection turn back to the general situation with
the idealized hypothesis (8). The extended region of hypothesis is

represented by the set Wy 2w If we know 6 € w, we will still

o L
accept the idealized hypothesis H0 . Let &' be a test for the
extended hypothesis

Hq : 0 € w4

The significance level of the test willbe maxB(6) where B(6) is
B Ew
the power function of &' . 1
What we are doing is to keep the power under a level a in situa-

tions unsignificantly different from HO which means that

max B(8) < a . For consistent tests (for H ) the power will converge

6€w1
to 1 as n - © in the set wq-wo °

Following the idea of Hodges jr. & Lehmann [9], one way to extend
the region of hypothesis is to introduce into the parameterspace

a measure, say A(8), of the "distance” of 6 from Ho reflecting
at least roughly the materiality of departures from HO . H,I is
then defined as the set of 6 for which A(8) does not exceed a
specified value by - The choice of A, will present problems
similar to those encountered in choosing the alternative at which

specified power is to be obtained.
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I. 4. The independence prodlem,

We will treat the exact hypothesis of independence as described
in I.4., that is, we intend to enlarge the exact hypothesis to si-
tuations indicating almost independence (abbreviated a.i.).

As Hodges jr. & Lehmann suggest we aré going to do this by means
of a measure for the "distance" to the true parameter point from
the exact hypothesis of independence. This will then be a measure
for degrée of association. The extended hypothesis is then defined
to be the set of parameters for which this measure does not exceed
a specified value c¢ . The first problem to handle is to choose a
measure of association. This is done in part one. We are thus

left with two problems to be considered in this part.

(a) Extension of the region of hypothesis

This extension will of course depend on the measure of associ-

ation that is chosen for the actual situation.

(b) Development of tests for the extended hypothesis satisfying

at least approximately a given level a .

Besides proposing tests for almost independence we shall in
chapter IIT develop confidence intervals for the various measures

of association mentioned in [5]. Also in chapter III we discuss

natural extensions to a.i. for the most important measures. First,
however, we consider in chapter II the problem (b) for general ex-

tended hypotheses in the multinomial case. The conditions given in
I.2., are assumed to hold in II. The theory developed in chapter II
will be applied to testing and interval-estimation for measures of

association. A three-decision procedure for the problem is also

considered.
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IT. TESTS FOR EXTENDED HYPOTHESESe

ITI. 1. General case,

IT.1. (i) The main theoremn.

Consider a multinomial sequence of n trials with T classes
described in I.2. The following notations will be used.
Xn 9 X: Xh converges in distribution to X.

Xh E X: :Xn converges in probability to X .

x(p) ¢+ upper p- fractile in N(0,1).

z(k,p) : upper p- fractile in xe(k) where x2(k) denotes the

chi-square distribution with k degrees of freedom.

$(x) : the distribution function for N(0,1).

Let now d be a function in r variables admitting continuous

partial derivatives of the first order. Let further

2 _ 3 -
oy = I pi(ai-a)2 (9)
i="1 _
where
dd .
ai(p) = "é:—p;: fOI‘ 1l = /l,ont,r Y
and

T
a(p) = I a.p: .

Consistent estimators (called C-estimators) for d(p) and o3
are given by respectively

A

i =d(q) and scg1

a. (B -3)7 (10)
Z q. a, =34 ' 10
joq in i

where

X,
qin = l/n aIld qn (q/]n,.ec ,qrn) 9
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a; = ai(qn) and a = a(qn) .

The main result for our problem can now be stated as follows.

THEOREM 1., Assume o, >0 , i.e. there exists an i such that

a
a; () # a(p) 1)

Then

Nu(d -4) p An(d_-d)
o_d -t -

To be able to prove the theorem we need a result which follows

from Rao ([16], p.321).

LEMIA 3. Let T be a k-dimensional statistic (Tﬂn""’Tkn)

Jam=8) = [T, =8.),.en, BT, -0, )} 2 N, (0,E)

such that

where ¥ 1is a covariance-matrix with elements oij(e). Let further

g be a function of k variables with continuous partial deriva-

tives of the first order. Then
D
1) JEv, = 0 lem) - ()] 2 x(0,/v(e))

provided v(8) # O where

k k

vid) = £ % (9)38- )
5= j:’l a8y 5%3

2) If Oij is a continuous function of 6 and v(8) # O then

s 'a D N(0,1) .
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Proof of theorem 1.

Let D = (Pqyeee,Dp)
We define the following r-dimensional random variable:
Un = (U/In,cdo,Urn) WheI‘e
- (1 if 1i'th characteristic appear in trial number n.

in L 0 otherwise.

E(Uin> = Py var(Uin) = cii(p) = pi(1~pi) and cov(Uin,an)==oij(p)

= _pi.p.j .
That is, Uq,U2,... are independent identically distributed

(i.i.d.) random variables with expection p and covariancematrix

L = {Oij(P)} .

n X.

Further we see that U, = H'quUik === = Q5. »

d

and With it Un = (Tj/ln,coo,_rn) = (q/]n,.'.,qm) = q.n .

From the multivariate central limit theorem for i.i.d. random vari-

ables (see for example Rao [16], 2c.) it follows that

BT ) = [alamp) = (falag D), e sfnla P L)) 2 N(0,E) .

The conditions in lemma 3 are now fulfilled with Tn

i
o)
B
@
I
Lo

and g =4d. In addition we find that

v(p) = § E 0._(p)EEL .24 g (1-p )a?-— L psp.a.a
=1 o1 13T08g T By T g PITTRLIAL T 4PN
Simple calculation gives
=2 2
vip) = % pi(al-a) = 9%,

i=1
Since o4 > 0, we have v(p) >0 .

Then, from lemma 3 :
1)o@~ /0, B w(0,1) .

In addition oij is a continuous function of p so that lemma 3-2)
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can be applied, giving

2) [fo(d;-a)/[v(a) = n(d,-a)/s, 2 m(0,1) - om

Tet us assume that d(x) € [Mq,MZJ for x € 8 = {(p,I yeeesD, )|
Pi >O92Pi =1}.

Then it is seen that condition (11) in theorem 1 implies

a(x) € (Mq,Mg), x € S. Especially if d is non-negativ, (11)

implies that d(p) > O.

II.1. (ii). The N-test for an extended hypothesis,

We return to the problem of extended, approximately idealized
hypotheses. Since E p; =1, the point p = (pq,...,pr) lies on
a hyperplane in the r-dimensional euclidean space. The standard
hypothesis can be formulated as follows (see [9]).

H: p lies on a specified surface ¢ .

(Usually this will be an idealized hypothesis as defined in I.3.).
Instead of testing H , we are interested in testing an extended
hypothesis that p 1lies in a region close enough to ( such that
¢ "almost is true' .

Let now d be a non-negativ function of p, considered as a
measure of the distance to p from ¢ .

In the contingency table, d 1is a measure of association. A natural
assumption should then be: d(p) =0 <=>p € { . Unfortunately as
shown in part 1 this is not true for a number of measures of asso-
ciation. On the other hand we will always have p € { => d(p) =0,
where ( now denotes the exact hypothesis of independence.

We must assume in order to use theorem 1, that d possesses con-
tinuous partial derivatives of the first order. The extended hypo-

thesis can now be formulated as follows.
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H*: d(p) < ¢ (12)

Here c¢ 1is chosen so that "H is almost true" under H* . We pro-
pose the following test, called the normal-test (N-test), for
H* ¢ Reject H* when

Ja(@,-e) /s, > x(a) (1)

The powerfunction Bn(p) for the N-test has the following asymp-

totical property:

THEOREM 2., Assume Od > 0O . Then

0 if da(p) < c

lim B (p) =< a if d(p) =c¢
n-Oo

1 if dlp) > ¢

n— o

Proof.
a) d(p) =
(d -c)
lim B (p) = 1lim P (“"7§““——'> x(a)) = 1=-8(x(a)) =

from theorem 1.

b) d(p) <c .

d is continuous giving

>

n E d(p) which is equivalent with

AN

if x <O

lim P(dn-d> xX) = {

n—+oo O if x>0

This gives

0< lim B _(p) < lim P, (d -¢>0) = lim B, (d -d>c-d) =
n—oo n—oo n—oo

c) d(p)>c .

Sd is a continuous function in aQ, implying Sd E 94 >0 .
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We therefore have:

d—cgg;c-=a>o

V_ = 5

n

Let Y = ,/aV_ . V,-a=(-fa)//a 2o.

Letnow O<e<a, and b =a-¢ .,

Qﬂb

(Yn_ﬁa)/AE >-e <=> Yn > ﬁb which imply

lim P(Y > b) = 1.
HREL >

Since b > O +the result follows.
Q.E.D.
By applying theorem 1 we can construct confidence intervals for
a chosen measure d(p) with confidence level equal to 1-0 asymp-
totically. Assume that 11, < d(p) < M, and that oy >0 . From
theorem 1
S S
. A d a A ol Qa

lim P(4_ - x(=x)<d<d_+ x(=)) =1-0a .

o Bldy - *(z nt TR X2
A confidence interval for d(p) with asymptotic confidence level

equal to 1-a is hereby given:
r 53 _a L
Ap) € (max (11, - 75 x(3)) , min (,d +5m x(ZN . (1)

In the next shapter we shall consider two-way contingency tables.
Usually then M,l is equal to O , but situations where it is na-
tural to separate between directions of association will occur fre-
Quently. In such cases the measures can take negative values.
They will vary from -1 to 1 . Onesided confidence intervals for
positive d(p) is deduced from the following equality:

lim P(\/—‘ —d) <x(a)) =1-a,

n-co

which gives a (1-a) confidence interval of the form
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. S |
a(p) € <max (0,3, - v%x(an,m (16)

if d(p) < M.
Let now k(qn) =d - Sd X(G)/VZ? and assume k(qn) >0 .
For c¢ < k(qn), the hypothesis
H*: d(p) <c
will be rejected by N-test at level a , since

¢ < k(qy) <=> o (3,-c)/s; > x(a) .

In other words, the set {4 < k(qn)} , is the maximum extended
region of hypothesis that will be rejected when observing a, -
If then k(qn) < O then all hypotheses H: d(p) <c, ¢ >0 is

accepted (at level a ).

II. 2. A special case.

Under certain conditions we can apply the theory from Neyman
(€141, ch.4) on the hypothesis
H': d(p) =c .

Let us assume that the distance measure d is given., To use the
theory of Neyman it is sufficient (it seems likely to believe that
in view of the theory in II.1. it is not necessary), to find

61,...,6r_2 and functions fqa‘--’fr such that

p; = £:(d,845004,8. 5) for i =1,...,r (17)

In addition the functions fi must have continuous partial deri-
vatives of second order.

This is the case that Hodges jr. & Lehmann, [9], consider, though
it seems that they have not been aware of the problem of finding
such functions fq,...,f . Tor testing independence in a two-way

T
- contingency table we have not succeeded, with our choice of measures
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of association, in finding G,I,.,.,Gr_g so that (17) holds.
Therefore, the theory in this section will not be used when testing
almost independence. One of the situations where (17) is satisfied
is the case where ( consists of a single point po and d% is

the euclidean distance from po to p .

r
ILEMMA 4., Let d(p) = .21_(23._:_13_:?_12. Then there exists (polar coordi-
1=

nates) 0422248 ~ and functions f,,...,f  so that (17) is ful-

T
filled.
Proof.
o . T 2 =
Let M; = Py =DP; for i =100, . Then d = i)E’l My and iE’Iuj':O.

There exists polar coordinates 9,6,,,...,6]:__2 so that we have:

Mg =ﬁsin eo

My = Jd cos 80 sin 6,] (*)

Mg = ﬁcos 6, cos 64.... cos er__5 sin 8., 5

M, = ﬁcos 6, cos 04.... coOs er__5 cos 6, »

where —g-f_ eof_% so cos 6, >0.

Define a(8,,...8,_5) = sin 6, + cos 8, sin f te +COSO ... cOS 6._zsin_,

+ COS Bjees. 8, 5, and let 8 = (G,I,...,Br_z) . Assume first that
a(8) #0 and 4 > 0.

T :
Now using the fact '21“i= O and cos eo > 0 we see that
1=

1/ﬁ+a2(8)

3(9)/«/’l+a2(8)

cos 6
o)

(**)

in
si GO
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This holds trivially when a(8) =0, so (**) is valid for all
a(B8) and 4 >0 .

Let now f,,...,f, be functions of (a,8) given by

po - J; a(6)

/l -
1+a2(6)

/ d .

f (de ocoe e ) =po+ ———Slne

fr_/|<d,e/l,o-,er_2) =pg_/| + _d"': CcOoSs e,l...COS er.—2
V1+a2(8)

r-1
fr(d,eq,...,er_2> = 1= Z
i="1

£4(8,0,5000,0, 5)

£5(d,84500050, 5)

We see that p; = pg4~ui

fi(d,e) fOI‘ i = /],c..,r °
— -— O —
If d =0 then P; =P = fi so we have
p; = fi(d,e) y 1 ="T,00e,7 for all values of 6 and 4 > 0.

Q.E.D.

In this chapter we will assume that (17) is true and that d has
continuous partial derivatives of second order.
The next section gives a short review of Neyman's  BAN-estimators

under the condition of (17) and H': d =c¢ .

IT. 2 (i). BAN-estimators.

Neyman introduced the term BAN-estimater, where BAN is an abbre-

viation of '"best asymptotically normal' .

Definition 4. A function @b of q_  not depending directly on n

pely

is called a BAN-estimator of the parameter 6 if it satisfies the

1
AN

following four conditions:

1) 8§ % e

2




Qll) .«\/;(31,-— e'l,-> P’ N(Ozog

(iii) Let v be another function satisfying (i) and (ii) with

02 equal to the asymptotical variance of,jg\». Then ckiga

(iv) 6, possess continuous partial derivatives with respect to

each qin 9 i = 4,..99r

Neyman  shows that the following three types of estimators are BAN,
A) Mi-estimator 8, . ILet 8 = (8,,...,8. ). Then B, =f.(c,6).

B) Minimum chi-square estimator Ek-ﬁ = (§1’°"’§r—2)‘ §i==fi(c,§).

C) Modified minimum chi-square estimator GE-G* = (6?,...,8;_2).
‘ . .
Pi = fi(c,e )o
In this case we have that:
1) ? meximizes [ g f.(c,8 6 )]qin]n
i=1 i ,U,aao, r_2

2) p minimizes n T (qin—pi)g/pi under the condition d(p)=c

5) p* minimizes n T (q;,-p;)°/q; under the condition da(p)=c

A fourth type of BAN-estimator is also given by Neyman (see [14],
theorem 5 and 6). Let p' = (PqsesesPn_q), and let us assume there

are y vrestrictions on DPaseessD (in this case u=1).

-1

E%(pf) 0 for t =1,2,ee0,n (U < r-1) (18)

Let Q = (Xi—npi)g/Xi ' (19)

|
n My

i=1

F_ 1is assumed to have continuous partial derivatives of second

t
order. Let now

r-1
ﬁ* — —
ﬁt(p"qn') = Ft(qn'> +i§1bt,i(pi qin) (20)
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where q ' = <qin""’qr-4,n) and bt,i = (aFt/Bpi)hf = qn' .

n

Neyman shows that minimizing of @ wunder the linear restrictions

Fe(p'yq,') =0 (21)
leads to BAN-estimators ﬁi of p; when p' satisfy (18).
r-1
Let ﬁr =1=- Z ﬁi . The fourth type, D, of BAN-estimators for p
i="1

is now equal to P = (B4,-..,B.) o
Let D = (51,...,55) be a BAN-estimator of p under H' of type
A, B, Cor D, and assume that d has continuous partial derivatives

of second order. Then we have from ([14], lemma 12, p.268) :

IEMMA 5 Under H': d(p) =c:

~ N2
r (g;,~P;)
xg = n T I Dy
i1 P
~s 2
r (q,,-D:)
and xg = 11'21 a? i~ D x2(1).
1= 1in

IT.2 (ii). Asymptotically equivalent tests for an extended hypothesis.

Hodges jr. & Lehmann ([9], p.267) suggests the following tests
for the extended hypothesis H*, (which now can be applied since
(17) is assumed to hold) : |

TEST T
Reject H* if
an > c (21a)
~ 2
and Il.§ EE;%:EEE— > z(1,2a) . (21p)
i=1 P;
TEST IT:

Reject H* if



o\ 2
r (q;,~P)
and n % & > z(1,2a) . (22b)
| i=1 %n
r-1 a@n
o _ - 1Yy
Let now & = d.(qin,..,,qr_q,n,ﬂ iiﬂqin>’ and let bi(qn )-aqin,

for 1 =1,.eey7-1 . BAN-estimators under H' of type D are

obtained by minimizing @ given by (19) under the restrictions

r-1
Pn * ii,‘bi(qn)(Pi‘qin) -c=0
(23)
-1
p = 1 - X P
F i=1t

We must have G,y O for i =171e0.,vr, otherwise Q 1is undefined.
This means that qn' is a inner point in the set 8 given in IT.1@)

and hence bi(qn') = &, - &, so that the restrictions (23) are

equivalent with

(24)

The following interesting result is now true.

IEMMA 6 Tet D = (ﬁq,...,ﬁrj be BAN-estimator of p under H'

of type D,
Then
r (q5,-0:0° (-0
Z,I =min Q =n I ————— = 0o ——5— .
(23) i=1  Yn 8§

Note. As a result of lemmag we have, even if (17) is not explicitly

~ assumed, that under H' and (11)

D

Z, = Xg(ﬂ) , When d has continuous partial derivatives of

1
second order, which is true for most of the measures of association

considered in part 1.
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Proof.

r
Q=n X
i=1

tions (24). We apply the method of Lagrange and form the Lagrange

2 . . e ‘ .
(qin—pi) /qin is to be minimized under the restric-

function

r N r
= . Z .« = A. e = —
F(p) Q+ }/] (i=/lpl 1) + Xg(dn + iE’Ial(p'l qln) c)

The first ocrder conditions are:

_on . . s

o - at—(qin—pi)-kkq-kkzai =0 for i="1,4ee,0 « (%)
i in

Now for each p # p° we see that

r

oF
F(p)-F(®°®) > = <=| _
=" api‘P—P

o (p;-p3)
so that F is a (strictly) convex function (see [19], p.231)
Then we know ([19], p.265) that a value p of p satisfying (*)

and (24) will minimize Q wunder (24), From (*) :

A A8 Q..
A 1 2%1%in .
By = ap(Mmmg) =55 for i=1,...,r.

ol

We determine X, and ké so that P satisfies (24) :

Xﬂ X2 2
= - = = - 3 * %
Zanmp=-758 => M =-1X2 (**)
and
1T B +82 a0 =4
Zn 2, %1 %nM A inte) T 4T
P r 2 (.\ ) ( )
= A, T+ Ay I q. 85 = 2n(d_-c * kK
| 1 2 joq in7i n
(**) and (***) give
2n(ah“0) . ) = .
= ——— = - =ha r8
Ay = =2 and A, = 2 ld -c] .
d Gl
This implies the following expression of qip-ﬁi:
q _ﬁ = (dn_c) ( _ q g_}_q 'é ) - Qin(ai"a-)(dn-C)
in "~ Fi _-E;T‘— in in"i o2

d a
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Hence
2‘\ g2" 2 2 2
r q. (8.-a)°(d_-c) n(d_-c)° r ~
Z,=minQ =n % 1 T o = dhq .Z'qin(éi—é)e =
(23) i=1 40 Sd Sd i=1

n(an—c)g/s?1
Q.E.D.

It will be shown that asymptotically the eight tests I and II are
.in a certain sense equivalent. To define precisely the notion of
asymptotically equivalent tests, consider the general situation
where Xn is a random variable with distribution depending on n
and of a parameter 6 € Q . The hypothesis to be tested is

H: 6 € w, against B €Q - w,

Let m?, mg be two non-randomized tests for H . m?(x) is the

probability of rejecting the hypothesis having observed Xn =X .

Definition 5. g? and mg are called asymptotically equivalent

(a.e.) tests if for all 6 € Q

lim P, (oS A oo) = 1im P,(¢2=1N @2=0) + 1im P,(¢2=0N ¢2=1) = O
noes 8 P72 = I Fer®T T %2 oo 8- P %2

The following result will be used to show the equivalence of tests

T and II.

ILEMMA 7. The 2a-level tests in (21b) and (22b) for H':4d = ¢

are (pairwise) asymptotically equivalent.

This result follows directly from ([14], theorem 7) and from the
fact that if @?, m? are a.e. and mg, w% the same then m?, ¢g

are 8.e€.

LEMMA 8. The tests I and II for H* are asymptotically equivalent.

Proof.

Let m? and @2 be two of the tests in (27b) and (22b), arbi-



- 50 -

trarily chosen. The corresponding tests fér H* are denoted by
{5 and 4%

n . . a n
\bi-’l if and only if dn>c and cpi_ﬂ.

Hence: 1lim 2 (Y3 4£¢2/)
n —co 1 2P

= l_i.n;oP(ﬁn>cncp§,‘=1 N g5 =0/p) +1im P(d_>cN o} =0N g5 =1/p)

n n —co
< lilgoP(ml%:’lﬂcpr21=0/p)+limsoP(cpE|l=Oﬂ cp121=1/p) =0
n- n-
for all p
Q.E.D.

Now, z(1,2a) = xg(a)‘, so the N -test is the same as test II when
P 1is a BAN-estimator of type D . Hence the N-test is a.e. with
the seven other tests in I and II under the assumption of (17).

Let now Bk,n(p) , for X =1,...,8 be the power functions of the
eight tests I and II. They have the same asymptotical property as

the power function for the N-test as shown in the following result.

THEOREM 3., Assume o0d > 0 . Then for kX = 1,.0.,8 ¢

(O for d(p) < c

lim g, (p) = ia for d(p)
n-om {’n
1 for d4(p) > c

Proof.
Let the power functions for the tests I and II be denoted by

respectively Bljl and [3121 « That is,

/I ~
Bn(p) = Pp<Z’ln> Zo M dn>c>,
2 A
Bn(p) = PP(Z2n> z,Nd > c)

where B, = z(1,2a) and
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~ 2 ~ 2

r (q; -p:) r (q; -D:)
Z, =n L ———% and Z,, =n & —E—=
i="1 D; i=1 9in

a) d(p) <c

an-d?%o and c¢-d > O which implies

IS | v A . . _
0 < Lljim Bn(p) < lim Pp(dn> c) = 1131.[m Pp(dn—d>c—d) =0.

From Neyman ([14], lemma 14) we have that
lim P(Zin> ZO) =1 for d(p) # c . In this case we also
n

have that 1lim P(an> c) =1 since c¢c-4d < 0. Hence
n

lim a;(p) =1 for i =1,2.

c) da( = c

Let us return to the notations B and let 88 n be the
9

n,k
power function of test II, type D . Bs n is hence, from

2
lemma © the power function of the N-test. Therefore
BL,S(P)n-'OOG" Let now Zn = n(dn-c) /Sd and let 7, be
aryone of the other seven quantities in (21b) and (22b) with

e

i.e. B

n as the corresponding power function of the test for H*,

is anyone of Bi n for i = Tyoeay? « Now by using
k]

the asymptotical equivalence with the N-test we find that

n

. . ~ > - o) .
11#1 B]G (P) = llm P (Z > 7 H d C) = llm P (Z >z N d?(l>c ﬂ Z*>ZO)
and

— 14 13 * 3 _ 1= * 3
a -riLi%oBS,n(p) =1im Pp(Zn> zoﬂ d > c) = ILI:;mPp(Zn >Zoﬂdn>cﬂZn>z(}_

- ] .
Q.E.D.
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IT., 2(iii) Comments and an example.

As mentioned earlier we have not been able to show that (17) is
satisfied for our choice of measures of association. We‘will there-
fore use the N-test in that situation. It»is also worth noticing
that for applying Neyman's theory one of the requirements is that
the distance mezasure d has continuous partial derivatives of sec-
ond order , while it is sufficient that d only possesses contin-
uous partial derivatives of first order to apply the N-test. (For
testing almost independence, however, this is no problem with the
measures in part 1.)

Let us give an example, (from [9]) of choice of d for a completely
specified hypothesis and application of the N-test.
Let the idealized hypothesis be

/l
H-p/]=.-.=Pr ='i,'
,
and choose d = I (pi-%DZ. This is a special case of lemma 4,
i="1 A
so with this choice (17) is satisfied. The extended hypothesis is:
r
142
H*: ):(p.——) <CO
T
We find 8, = 2(q;, -2) , §=2%¢2 -2.2
i AUn =%/ o i=1qin T

so the N-test is to reject H* when

L 2
2 (qin"% -C
,n ::’[-.=/] T > X(a) °
2 \217%
2{ T q;,(a;- = a5 )7}

IT. 3. A test procedure for a three-decision problem.

Sometimes one can be interested in taking one of three decisions

of the type:
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1) Assert 4 < ¢, or 2) assert 4 > cs (02>c,|) or

3) make no inference

A test procedure for this problem is proposed:
1) Assert d <c, if J;I (&n —c,])/Sd<~X(0t) (25)
2) Assert 4 > o if ﬁ(&n —c:2)/Sd > x(a) (26)
32) If neither (25) nor (26) is valid no inference is made.

We call this procedure the NB—me’chod.
The Na-method has the following asymptotical property.

THEOREM 4. Assume that o. > 0, Then

A

. ) (a when d=c,I or d=c2
lim P (At least one false assertion) =1 .
n =0 O otherwise

Proof. Tet Pa denote the probability of at least one false asser-
tion and let U, = «/n(dn_c’i)/sd and VIl = ﬁ(dn—c2)/sd .

(i) 4 = 4
lim P, = lim P(U <=x(a)) +1im P(V_>x(a)) = a+1imP(V_>x@))
n n n
n n n - n
Now, since an Ba: o < 1lim P(V_ >x(a)) < 1im P(d >c5) = O .

n
(ii) 4 = ¢, Completely similar to (1) we get:

1lim P, = 1im P(Vn>x(cx,)) = Q .
n n

@) ¢4 <d<c,

lim P, < lim P(d -c4<0) + Lin P(d,-c,<0) =0

n n
(iv) a < Cq
lin P, = lin P(V >x(a)) < Lin P(d,>c,) =0 .
(v) d>c, |
lin P, = lin P(U;<-x(e)) < 1lim P(d,<cq) = 0. Q.E.D.
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One application of this is to the independence-problem where one
can choose Cq and Co such that 4 < Cq indicates a.i. and

a > Cs indicates strong association.

The usual a.i. hypothesis, 4 < Cq is suitable mainly when one is
interested in, if possible, to establish whether there is an asso-
ciation in the table. In cases where the interest lies in stating
either a.i. or strong association a three-desision procedure like

N5 will be suitable.

ITI. TESTS FOR ALMOST INDEPENDENCE .

IITI. 1. Assumptions and notations .,

The problems to be considered refer to the situation in a two-way

contingency table, described in part 1, ch.II. Let qij = X'ij/n,

X. . -
qi. = l./Il, q.J = X.J/l’l and q = (q,],],...,q_vw). Let further

P = (P41’°"’pvw>' We will assume that no Pij is equal to zero.
For every measure of association, d, it is in addition assumed
*)

that the following conditions are satisfied:

(a) Ad has continuous partial derivatives as function of p (27)

(b) There exists (r,s) such that

The following notations for a particular measure d are used

(if nothing else is said):

*) Three measures suggested by Goodman & Kruskal, A, xb, xr
(see part 1), do not fulfill a). There is however developed
a similar theory for these measures in [7].
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2_ 5 % e (28)
(0} = z . .(d. —~a*
d i j:ﬂle( 157"
Where d- . = ad fOI‘ i = /l oot,v and -j= /l,...,W
1J apij !
and
v w
* = % Y d..D-. e
¢ i=1 j=1lele
Further

d = alq), d is the C-estimator of d .

The C-estimator for Gi is given by:

Sg = ; VZ\IT Q. (a .-a*)2 = :Yr VE\:T a. ,a?__a*g (29)
i=1 j=1 td Hd i=1 j=1 1d 1J
where
“ig T a;ij p=q
~ v WA
d* = £ Iz d..q..

i=1 =1 T

From theorem 1 we see that /Eka—d) D N(0,0d) . og is therefore
called the asymptotic variance of JE& . |

At this point we like to mention that the results in Goodman &
Kruskal, [8], for multinomial sampling over the entire two-way
table is a special case of formula (28) for cg o It should also
be said that the author did not have any knowledge of the work in
[8], while working on this theory for measures of association.

Theorem 1 also gives
e d;f D o, (30)

This asymptotical proporty will be applied for testing and interval
estimation of the measures of association given in part 1. We

should emphasize that the major value of theorem 1 1lies in the:
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2
a ,
As in part 1 we will deal with measures applicable to the following

fact that it finds the asymptotic variance o

situations: 1) Ordered case - 2) Unordered symmetrical case -

3) Unordered asymmetrical case - 4) Reliability-case and 5) The
2X2-table.

In every case, except for 4) and 5) it is shown how the a.i. hypo-
thesis can be determined based on the different suggested measureé.
For each choice the estimator Sg is found. The N-test for the
a.i. hypothesis follows then from II. 1.(ii), and by applying (15)
and (16) twosided and onesided intervals can be given. The appli-

caticn of the N-s-procedure in II. 3 also follows directly when

2

Sq

is known.

ITI. 2, Ordered case and the measures Yy, T, , T .

)
s

The three measures considered in part 1 for this situation was

y = s~ Mg
B +
Trs TTd
UL 1]
S d
Tb =
T_ e 1T
y Z
- T
= Mg d
¢~ (m- m

Here is m = min (v,w), and Moy Ty T

v and m, are given in

part 1 , ch. III. 2 and III. 3.

In part 1 , chapter ITII.(iv) we discussed the three measures and
found that Yy is the most natural and suitable measure. Testing
for a.i. should consequently be based on Y2 . An a.i. hypothesis
will be determined later. (As mentioned earlier since Yy can be

negative, we apply Y2 as a measure for degree of association.)

We recall that in ITITI., 1. it is assumed that D; 5 > 0 for every
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i and J . This implies as shown in IT +that the measures vary

in the open interval <(-1,1).

IIT, 2.(i) The asymptotic variance of An ?.

We will now as in part 1 follow the notation of Goodman & Kruskal

([7]3 P°522) by letting PS = TTS(Q)a Pd

2 2
Let now P; =n -PS, P* =n"P, and Pé

d d
Let (YQ,Z4X(Y29Z2) and (Y5’25) be three independent random vari-

nd(q) and P, = ﬂt(Q).

2
=n'Pto

ables with the same distribution as (Y,Z) (see part 1 ,ch.II).

Define the following probabilites:

meg = PL(Y1=Y5)(24-25) > 0N (Y4-Y3)(Z4-25) > O]
Mg = P{(Yq-YE)(Z1—Z2) > Of\(Yq-YB)(Zq-ZB) < 0}
maq = PUY =Y5)(24-25) < ON (Y4-Y5)(24-25) < 0}
Let Pss’ Psd’ Pdd' be the following consistent estimators for

these probabilites:

1 2
P = T (q) = X, . z X, ., + z z X,y }
S8 55 no i j {i'>1 Gr>3 113 g grey 1t
1
P =m_.(q) T IX..{ = T X + T X. }x
Sd Sd -;l j lJ ll>l J'>j 'J' l|<l J'<j 1'3'
{2 T Xy + T % X0}
ll>l J'<J a i'<l J'>a 1 J
Pdd=ndd(q)_-13-zzxi.{ T f X+ D B X,
n” i j d Tivsg J'<3 J i< J'>3 J
Let further P* = n’P , P*. = n’P . and P*. = n°P The
ss ss? “sd sd dad dd *
C-estimator ? for vy now is
P ~-P P* - P*
- S d 5] d
Yy = " (31)

ST P, T o+
IS a PS+Pd
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The asymptotic variance 03 and its C-estimator Ss are given

in the following result.

LEMMA 9

2 16 2 2
GY = Eq:;fsﬁ;{ns ndd-ZnSndnSd-rndnss}
t A

The C-estimator can be expressed in two alternative ways:

2 16 2 2
R Sy = (1-P >E {PeFaq = 2PsFaPgq + dPss}
t

2 n.16 « 2o
z;éjgzs— {P* bq ~ 2PXPIPE, + PLPX ]

2) S

Proof. The expression 1) for Ss follows immediately from 03 .

The expression 2) follows from 1) since ’I--Pt = n_2(n2—P;). It

2

is left to show the expression for OY

From III. 1.

2 v 2 3y
os = & I p. (Y 5= )5 where Y.. = and
Y iaq 52171 1d 9P
v oW
* = 2 2 . L [
L O R S
We find
Yio = s {mieq. =7 _B..} .
ij (4_ﬁt)2 d "ij s"ijJ
where s o= X z + Z z d
RO R P ] j'>jpl'3' i'<i j'<jpi'3' o
B.. = = r p. + Z DI N
1J i'>i J'<jpllal il<l J‘I>JP1'J'
(see also [7], p.362).
" v v oW

Y = s {m Das s . -
(1-m, )= a5 g LIS 5 510D
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Hence
2 2 16 2 2 . 2 2
o =ZZp..Y..=—-——-——7:{Tr Tp..0f.+mS T op.LBr.-2T M. X
Y i3 ij'1id (1_ﬂt) dij 1713 Si,j ij71iJ s dij
16 2 2 PijaijBij}
= T yF MsMaa* "a"ss " 2Msqsa
t Q.E.D.

Lemma 9 is a simplification of the proof in [?7]. In ([8], p.416)
Goodman & Kruskal apply the same simplification.
A confidence interval for Yy with asymptotic confidence level equal

to 1-0o is now given by

~ S ~ S
Y € <max<-4,v-v-§x ), minm,wﬁx CIDDI (32)
2

If Y =1 or -1 then SY = 0. Goodman & Kruskal suggests then
the degenerated interval y =1 (-1 if ?::—1) when n 1is large.
Since vy € (-1,1) , 1lim P(y=21) = 0 . Hence the probability of

n =

getting a degenerated interval will be very small for large n .

For a more thorough discussion we refer to [7], p.324.

ITT, 2(ii). Determination of a.i. hypothesis based on Y .

Estimation of Y2-

When testing for a.i., the hypothesis will be that the degree
of association is less than or equal to a certain upper bound. This
means that the "direction" of the association is immaterial.

fj

We will, as mentioned earlier, use Y° as a measure for degree of

association. A criterion for a.i. is given by:

-e <y < ¢ (33)

Choice of € must necessarily be somewhat arbitrary, since the

notion almost independence hardly can be given a realistic precise
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definition. However, we know from part 1 that y is a difference
between two (conditional) probabilities. A reasonable choice of ¢
will therefore be of size 0.01 - 0.10 . It should also be observed
that the e-choice can rest on the given situation at hand. If one
from experience know that two factors always possess a certain de-
gree of association, then one possibly ought to choose € somewhat
larger than if one apriori knows the factors can be approximately
independent.

The hypothesis for a.i. can now be formulated as:

H* @ y2 <c

where ¢ is of size 0.,0001 - 0.01 .

1 A
As a matter of course one finds the asymptotic variance of Jn Y

equal to 4Y20§ and its C-estimator is equal to 4YES§

Hence:

VEKEE-Y22 D N(0,1) (or: ‘Vﬂ(YIYi(Y =y) R N(0,1)) .
YIS

The N-test for H*: Reject when

VRGP L) (or“fﬂ(Y“‘XY =€) > x(a)) . (34)
2|vls, 2|v1s,
2

(from (15)):

A twosided confidence interval for vy

5 ~ 2]Y[s 2|v|s
Y~ € (max (0,Y TV§?-.X(E)) min (q,Y -+—?7§?l' (23)) (35)

From (16) we get a onesided interval:

Y2 € (max (0,72 - —‘—ﬂ-l x(a)), 1) . (%6)

¥

. A -1
As mentioned in IT, Y2 - 2]Y|s x(a)n™? is the maximum c¢ such

that the hypothesis: Y2 < ¢ 1is rejected. The interval (36) tells
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us therefore more about the strength of the degree of association
than the result of the N-test.
In [7] it is shown that

05 < 2(1=y%)/(1-m) (37)
By using the estimator for the upper bound in (37), 2(1-“2)/(1—Pt),

2
Y

statistic. In return the test becomes more conservative, that is

instead of S, in (34) one gets a simple computation of the test-

the asymptotical level will be < a . By using 2(1-92)/(1-By)

instead of Ss

in the two given confidence intervals the corre-
sponding asymptotical confidence level becomes > T-a .

Goodman & Kruskal, [7], treats more thoroughly the use of (37) to
construct confidence interval for vy . (Notice that if we use (32)
as starting-point, we can construct another interval for Y2 . If
the limits in (32) have opposite signs, this interval will be larger

that (35).)

IIT.2. (iii) The asymptotic variances of J;w?k and J;T?m:

?b, 7. are the C-estimators of 7., T
2

The C-estimators Sb

C.
and Si for the asymptotic variances 0%
and oi of respectively . /n ?b and J£1$c are given in the fol-

lowing result.

LEMMA 10
2 ___ 1 ~ 2002 3 o3
Sy = — {4P (P +P3gq= Sd)-k(PS—Pd) (P, I Q7+
(PZPy) i="1
+P2‘W 5+2%£ Zq .d- q )+
y J_/l 'J z i 1 J =1 lJ le "o d
v
+ 4P P, (P~Py) (P, z b a3 595, (&4 5 la)+

i=1 j=1
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L 5. B 2(p_+P_)?}
P Y g..q .(a..-B..))-(P -P P .
+ 2 j=4qlaq.a( 13 Bla)) (P,-P4)°( _—
where
A, . = I L Q.ys0t+ Z zq .
lJ l'>l JI>J‘ l'vj' l'<l JI<J l'J'
B = I L Q4+t X L q
I R T R D I A0 A E I LI e A A
2 _  4m 2
S, = _.-g(m—’l) {P o tPgq=2Pyq~(Pg-Pg) "} «
Proof.
2 T T a N v a2 -
From III. 1. = Z 2 q..(T . .-TX = X Q..Te . .—TF
S 121 j__,lqla( b,i,J b> i=,]q13 b,i,j b ?
~ aﬁb - V W A A PS-Pd
where T, . . = and T* = % 2 Q:. Ty = = § T =
b,y1,J 5qij b 1=1 J-=/lql<] b,i,J- ? b VP:YPZ'
P-y = ﬂy(Q> ’ PZ = TTZ(Q.> .

After some calculation we find that
~ /] ~ ~
» . = . o= . o — . -P )
Tb,l,J (P_P >372 {2((113 BlJ>PyPZ+ (Ps Pd>(q1.Pz+q.J y)}
Y z
This leads to

2,‘-{; = (PyPZ)-B/g{<Ps"Pd)<Py+Pz)} .

2 . ~ _ 78 d

The result for S mnow follows easily. Now T, = @=T) /o

2 _ A~ —A*
So Sc = izjqi‘j Tc,i,j L where

b
T = 3% _/3q. - 1¢ -B ) and ?*='2m(P—P)
Cyi,yJ c 1] m-"1 ij "ij c  mIvsd’ "
Hence
2
2 _ _4m 2
Se = a2 Fes*PaaFaa~(FsFe)™}

Q.E.D.
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Confidence intervals with level 1-a& are given by

%

~ sb o . N a
el -1, = 9 T, — s
Ty max ( T = x(5)), min (1,7 + = x(%))

~ c (G . ~ S a
T, € (max (- 1,7, -== x(x)), min (1,7 +—=x(3))) .

¢} 1[;1" /V’r'l‘

ITI. 3. Unordered symmetrical case and the measures A,T.

Two suitable measures were proposed in this case (part 1,ch.IV):

v w
ZPipt ZPpsi=D -0
. im " .7, Fm .0 ‘m,
) = 2=l =1 where p _ = max p .
2-p . -D N B-L S
.m Fm, Pip = mgx plJ and similar
for Pp. and pmg .
v oW
2, =1 1
2 (p;s-p; P )7(p: +p 1)
11 321 FJ T1eTed i. J

We shall in this chapter also consider the traditional measures in
part 1, ch. IV. 3 and the simple measures

' P . ‘
and max —il-p.jl

max |p:.-p: D
i,j tJ e i,5 P4,

1,d .
A disadvantage with A compared to mn 1s that A = 0 does not
necessarily imply exact independence. Especially when choosing an

2.1. hypothesis this is an unfortunate property. It therefore looks

like one ought to choose M as a basis for an a.i. hypothesis.

III. 3(i) The asymptotic variances of \/-1?3: and \/r_l7 ﬁ .

The C-estimators A and 7 are given by:

v w v w
Lq. + g .-9 -q TX. + X .-X _-X
£ _ i=1 in gqmd Semme jqim ygmd Tem .
2"'q.m'qm. 2n-—X_m-Xm.
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3>
]
>

2 7 1
§( Z q 4-.2 q ) and P2 = L Ig

where ﬁ
1 5=1 i=1 §=1 ¥3°9%4, 9,

Since, by assumption, pij >0 A and m are well-defined.

However )\ does not have continuous partial derivatives as a
function of the p; J « On the other hand A has of course con-

j9) and

tinuous partial derivatives as a function of p. n

lm 9 pmj 3

pm fOI‘ i = /I’o.o,v alld j = /"so.,w o ThiS can be U.tilized j.n
a similar way. This was done by Goodman & Kruskal, [7)}. From [7]

we have that if p and p n 2are uniquely defined

mj ? pim 9 pm.
and X € 0,1) then

| fn"s—""(i-u 2 neo,)
. 2 . . S
Here the estimator SX for the asymptotic variance of J£1X is
given by:
2
s - _(.2.____)2. [(2-U ) (2-Ug) (U_+Ug+4-2U, )-2(2-U_ F1-2*q, )
-2(2-U)?(1-qus )}

where
Up = pn* 9y
2 W
UZ 1q1m jiqqma
Tt i,3 = Q. = .
D f ?qla over all (i,j) such that 5 = Uy = Ipj
Qxx = That qu where Q. = qm' and q.j = q_m
_ T sC.
Uk 'Eqinf ? qu+Q*m Ap*
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quim denotes the sum of the q. 's over those values of i for

. im

i

which q. is in the same column as ¢ . Zcq . 1s the sum over
im i} 3 mj

those qm,j such that qmj is in the same row as Ay Qs 18

that gy with q; =gq and q , is that Ap 5 with e 5=%p-

Now, by using theorem 1 a corresponding result is true for ‘ﬁ.

LEMMA 11

The C-estimator for

the asymptotic variance of \/-n_' '?1 is

v

2 { i 1,1 2
Sp=—=={ 2 = aq;:l2q; (z—=+5—)(1-P,) -
LYEIE I B B N RNt AL P RO 1
-~ ”~ ~ 2 A ~ AA 2
2 ' 2
~ w q.’c« v q 3
Here is Y.. = L --2-1” + I TJ_I' .
1J s=1 q: r=1 q .
i ed
Proof.
From theorem 1:
. 2 v w A2 2 A a?‘l AL A
S = & Q. N-:=-1% N: = = and N* = I N:.Q:+ o
n i=1 j=1 1d 1J ’ 1J qu i,3 1Jd71d
We find:
3P 3P
2 /] 1 e 1
= qQ; s(—+=—) = =Y. =(q; +q ;) .
aqij 1J qi. q‘.j 2'ij ? aqij L. »J
Hereby
T Ay (1B ) (1t &
nlJ = __Z"—'?{ 2qij(q. +q .)(/]—P’l>-Yij(1-P/l)—2(qi.-‘.q.j)(,‘ Pz)}-
Ay 2 PN A A A

The result follows. Q.E.D.




- 66 -

Twosided confidence intervals for A and mn are given by

S S
AT o . » A o
A € {max (O,X 'V:nX (5)), min {1,x+—vﬁx(§))>

A S ~ 8
n € (max (0,M--2x(3)), min <1,n+v—§x<g>>>

Vn

Onesided confidence intervals:

9 a [ I .

‘rl e O’Il—_-— 9 I °

III. 3(ii) Determination of a.i. hypothesis based on 7.

Consider the hypotheses

Hy @ A 2 ¢y (38)

*

Hy : 1< ¢y (39)

From ITI.3(ii) it follows that we shall reject H/'
(A~ -c4)
reject H when [ '—S__ > x(a) .

and reject Hg* when ff%il > x(a) .

Let us assume that we have chosen 1 as a measure for degreé of
association. We wish to determine s in (39) such that szecomes
an ae.i. hypothesis. In addition it is desirable that Co does
not depend on the dimension vXxw of the table. We can therefore
choose ¢, in the 2x2-~table. Then we have that 1 equals 'r% .
A criterion for a.i. bésed on Ty is given by

<6 (40)

2

-6_<_'r

From this we determine cy = )
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Regarding the choice of & +the same problems as in III. 2.(ii)
arise, but similar to € in (33), it seems natural to choose a

value of & of size 0.01 +to O.1Q.

ITT. 3.(iii). Confidence intervals for traditional measures,

We shall give confidence intervals of the four measures ¢2, K,

T and C, listed in part 1, ch.IV.3.

Let
2 2
. v. w (g;.-q. q .) v w XI.
SECTE S Jpeie=h M EAuTH KOS S S
i=1 3=1 4.9, i=1 3=1 "5
2 . A A2 2 .
and let further o_ be the asymptotic variance of ,/n o~ . S@ is
the C-estimator of cg . Then we have:
LEMMA 12.
82 v oW . a2 v oW . . )}2
= I L q..(2a, ;=u.=-B.)"={ & L q..(2a, .=p.-B.
. j=/]qla( 5571 BJ) {i=1 J.=/‘qla( 157HiB
where
- d
Q.. = (9 :=q: - q =)
i3 qi.q.J i *i.7.]
ﬁl _ 1 VZ‘:T (qij;ql.qu)
45, J=1 oJ
5 17 (9;5-95 .9, 1)
J q j i=1 qi. ’
Proof.
2 2 2
2_ T (9;45-95 .9 5) v (g54-a ;9,607 W (a,5-95, 9 )
P = = + + L +
i=1 j=1 a4 q.a- i=1 ql q.S 3=1 qr.q.a
ifr s ifr 34s >
+(qrs-qr qg) )
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This gives that

A nD (a;.,-9; a &)
brg =S8 -0+ p LS o8 {205 q g-q; }+
qrs i%r (qi’q.s) . - °
(Q.:-9, Q@ ;) (Qg=q,. Qo)
. raq ré Ta (“2qr.q2j_q j)'F y— 2 {2qr.qas-2q§.q's-
j#s T3] Yo (ap.a g)
2
2qr.q.s—qr."q.s} y
Hence we have
B = 2&rs-§s-ﬁr and the result follows. LE.D

A confidence interval for @2 is now given by:

. A B Ao S
%% € (max (O,wz——éX(%)), ¢2+ﬁx C

> 8 -
Let L, = max (O,cpe-%/-c:_;‘x (%)) and L, = cp2 +%x (%) .

Confidence intervals for the measures K, T, C can now be stated

as follows

Lq 1 L2 1
K ¢ <{7:f;}2 ) {7:E537>

R 3% min (1,{ 2 1))
Y (v=-1) (w=-"1) ‘V(v—ﬂ)(w-ﬂ)

L, . >
¢ € <min (v=T,u=1y » M8 (1’min (V;ﬂ,w—ﬂ))>

In the next section we consider interval estimation of two quanti-
ties which are not especially suitable measures of association
(they are much too coarse), but very straight to deal with, since

their values are easily interpreted.
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IIT. 3 (iv). Confidence intervals for max |p and

ios ij‘Pi.P.jl

o
max |=2d-p .].
i, Pi. °

p

n, = max lp

|
1,3 -J

i3~ Pi.

% is not derivative and we can therefore not use theorem 1 to

1
construct confidence intervals for Hy e Consider instead
() = £ I ( )2
D(p) = £ Z (p:.=p: P = .
i=/] j=,] lJ l‘ OJ

D has obviously continuous partial derivatives.
It is assumed that (27b) holds. A confidence interval for D is

hence given by:

5 )
D %)), brDx @) (1)

Y Vo

where D = D(q) and S% is the C-estimator for the asymptotic

D € ¢max (0,D-

variance of ,/n D , given below,

LEMMA 13
5 v oW a A D
Sn =44 £ Y q. (g .—q. ~E.=v. -
D {i=1 j=4qla(qla 95,9, 5757v5)
[ v w A ~ 2
-L Z z q..(q..-q. ~E.-v.
P j=1q13(q13 9.9, 3 55 va)]
where
~ w .
gi = kiqq.k(qik“qi.q.k) for i = 1,...,v‘
and
A v .
vy = IE.Z/Iqr_(<;[I,J.~~<;1r_q.a.) for J = TyeeeyW &




- 70 -

Proof. By using the same splitting on D as was used on &2 in

the proof of lemma 12 we see that

- _ ) _ w v _
ij = aqij"2{(qij_qi.q.j)-kiqq.k(qik~qi.q.k)'r§4qr.(qrj %9 5!
= g(qij—qiaq.j_gi—vj)

Hence the result for S% follows.

QeEeDe

The confidence interval (41) for D can now be applied to construct
an interval for x, . ILet C, = Cq(q) and G, = 02(q) be respec-
tively lower and upper limit in (41). Then the following result is

valid.

LEMMA 14

a) Vv =w=2 gives: C; <D< Cy = %,/Cy < n,y < 3[Cy

. ponm |
. 1 2
b) v=2, w>2 (or w=2, v>2) gives: Cq<D<Cg=>/‘vﬁ<”1<J%‘

c) v>2, w>2 gives: Cq <D< 02 => /V% < ny < 02 .

Proof.

a)  Ipjy-p;.2 51 = lpgqppp -pyoPpq| for i=1,2 ana §=1,2
 (see part 1, ch.VIII)

Hence: D = 4%% and the result follows.

b) Assume v =2 . For w = 2 the procedure is completely ana-

loguous. We have: lqu"Pq.P_-l = lp2j"p2.p,j" such that

J
D =23 (pipq D )2 |
. 13 1.5, J

i and n, = max [pqs-py P,

J J

This implies: C, <D < C, <= - < 2(}9,13--1»I D .)2 < - =>
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C C

d 2

C C
2 2 1 2 2 1 2
T p W and ag < m SP g <y < S RIS T

2
C) C/l<D => C,l <V‘W74.,]

?

2
- C,]/vw < 3

and

D < Cr => n% < C, , and the result follows.

Q.E.D.

Confidence intervals for nq in the three different cases in

lemma 14 are now given by (since nq € [0,1]):

a) v=ws=2

4

i S
" € ({max(O,'ﬁ -——-X(g))}z min (1, {“
4Yn 4 n

where 2% = (q11q22'q12q2’1) . Asymptotic confidence level is

equal to 1-a .

b) v=2, w>2,0r v>2, w=2

Sp
T 1, {1D + —= Y .
('2))} min (1, {% +2V_' X( )} )

ny € ({max (O,%-

vwF

Asymptotic confidence level is > 1-a ,

c) v>2, w>2

D 5 L 2 5p 3
%, € ({max (o,—ﬁ-;w—ﬁx(%)}’f, min (1,{D+ﬁxcg>} > .

Asymptotic confidence level is > 1-a .

C, 1
In all three cases the lower limit equals ('v'% ‘

The upper limit becomes, if it is less than 1 , in case a) equal to

CA 1 Ch a4 1
2\-{ . 2 T . -E
(-——vw) in b) equal to (?) and in c¢) equal to C3 .

*)

When trying to construct confidence interval for

*) Mo is a measure which really is best suited in the asymmetrical

situation (with B as the primary factor).
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D
np = max |5-p

N
2 i,J i. J

we run across the same problem as with ng e We are not able to

1

«d

A

4 5
construct interval for no based directly on no =maxlzrj-q
i, 1

1.
on the basis of the theory developed in chapter II. Therefore we

will first construct an asymptotical (1 - a)-confidence interval

for

Vv W D
E() = £ T (GH-p )7 .
i=1 j=1 Pi, ~J

This interval is given by

g oo

E € (max (0,E-= x(§), £+ = x(E) (42)

Vo Va

where E = E(q) and S% is the C-estimator of the asymptotic
i A~

variance for ,n E, given in the next lemma.

LEMMA 15
A's q..-9. g A
s% =4{ X % g e Ei-FJ)2 -
i=1 J=/| qL
v w q_l q_' A 2
J 1o To) 3\
-z = qla( > E -Fj/] }
l=/l J=1 qio
where
I -
By = qyl B (a5 9l For 1= el
and
A v q -=q, q s
F. = 2 I;] Lo GJ fOI‘ ,j = /],0009W o
J r=" qr.

Proof. By using the same splitting of E as of D in lemma 13

AD
and o din lemma 12 we see that



. . va;mq; a4 v (a.sman a 1)a
=B - o328 > ¢ ] +
TS 9Qpg i=1 U J=1 q
. * A Te
i#r Jj#s
(Qq=q. Q )
rs *r. 2
2 (a, ~qn.g-95 )
qI'.
Qpg=9p. 9.5 2~ =
=2{ LS g. -Er.—FS} .
qI‘.
The result follows immediately.
Q.E.D.

Let the lower and upper bound in (42) be denoted by

K, = K(@) and K, = K (q) .

LEMMA 16,

. 1 2
1) w=2 gives: K, <E <K, =>~/7w'<“2< /-2-

2) w>2 gives: K,|<E<K2 => /'{r'w1<”2<xl/k—27

Proof.?) Let Ay = lpi’l'pi.p.’ll for i =1,.e..,v « Since

Di j A
lpj1-p; 24l = Ipjomp; p pl we have that lﬁz%u-p'jl ThT
j =12, 1i.e.

Pj1 p12
I-—]-'-——p 1 = ' ]:) l fOI‘ i = /] 2 coesV o
Pl. | p o2 PASR ] ’
is gi 2 Pi1
This gives: E = Z ( p.”l) and #, = max [-P;-——p.,ll such
i=1 Pi, i ia
that )

Ky <E <K, => 2% <5 < 3§ and the result 1) follows.
2) w>2: K, <E<K >-K—/]-<n2<K £<n<
¢ Ky o =gy Shp <Ky e pmr < hp <Ky .

Q,-E.D..
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Confidence intervals for no with asymptotic confidence levels

> 1-a in the two cases now become (since =, € [0,11),

1) w=2
ny € ({max (O,VW VWSEF (-g))}" min (1,{%%}((%)}%»

2) w>2

ny € ({max (O ;}—;\T—-»E-E——‘X (%))}%, min (’I,{ﬁ+ix (%)}%)
vwth fa
Next we consider the measures proposed in part 1 when one factor

is of primary interest. We shall assume for simplicity that the

primary factor is B .

III. 4. Unordered asymmetrical case and the measures A, T,

The measures suggested for this situation was

2 Pip—DP
i="1 -
Ay =
T-p
2
vow (p;5-p5 P 5)
_i=1 3= Pj,
Ny = w >
1T-Zp .
g=1 !

C~-estimators of )‘b and T, are given by

A2 v
N 2 Qg = g Z Xin= X n
N = _ i=1
P T-qn n-X o
. PB.fP
_ T2 1
L
A v A w o
where P§ = % ¥ q /a3, and B - Eq°. .
=1 *d

i=1 j=1 J
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IIT. 4 (i) Asymptotic variances of ngih and JETﬁb_:

A1l the cell-probabilities are assumed positive so kb and s
are well defined. kb does not possess continuous partial derivati-

ves with respect to the plJ . However, from [?7], we have that

if p;p and p . are uniquely defined and )y € {0,1) then
(A.-2)
m V™M D
\n___?g;___ q.N(o,q)

(1= Z %) : Qip* 9 =25 )
where S% = =1 , =1 )5
1-q
.m

With use of theorem 1 a similar result is obtained for ﬁb .

LEMMA 17
The C-estimator for the asymptotic variance of Jﬂ'ﬁh is given by

2 1 b 2b
Soy = —=p LT 94 [2——*1(’1—P )-2q .(1-P2) -
ob (’]—P/‘) i J ql. 1 ed 2
a b2 b 2
2
py = 2(q;5/95 )" »
dJ
(Goodman & Kruskal, [7] p.354, have an error in the result for Sgb

which they have corrected in [8].)

Proof.
2 vow 5092 so M
S°. = % ( )S where n:. = and
ob i=1 j= 4 13 1iJ aqij
O\O—
n = quanla .

1d
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It is readily seen that

~bh 2b
oP oP 2q. + W Qo
a/]=2q.and82= id_ oy (&dhe
qlJ *d qij 9. J'=1 9,
This gives
~ d
ngs = =% s {25 1ﬂfﬂ—P )-2q (1—1? ) -5 (1-PDT
(1-P7) 9.
hence
7° 2801 .

71
/‘I

The result follows.

QeEaDe
We now can state the following confidence intervals
~ S g . 2 Sy o
Ay, € {max (O’)‘b-ﬁ X('g)), min (’I,Ab +E X(g))) .
( ob (=)) ( "o =)
nbe(max O%-FXE , min ’l,nb+’\/_, x(> ) .
Tests for the hypotheses
H; P Ay 2 Cz (43)
™y = Cy (44)
(A=)
are given by: Reject H; when ﬁ——%b% > x(a)
(Thy=cy,)
. * 4
and reject H, when N/IT—-S_—_' > x(a) .
ob
Choice of ¢, so that (44) becomes an a.i. hypothesis follows
from vthe criterion (40) since Ny = 'r% in the 2Xx2-table, i.e.
2
= 6%
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IIT. 5. Reliability-case and the measures A, and ' 7

We recall from partd,ch,VI that the characteristical feature of

this situation is that A; =By for i =ly...,w.

ITII. 5.(i) The unordered symmetrical case.

The proposed measure for this situation was

qull——f(PM +p M)

1-2(py, +2 )

where Py, *DP.y = Ir:LLax (p 14D .)

In [7] it is shown that if xr is well-defined, different from

+1 and PM. *P.m is unique, then

A

A=A
D
n —=—< = N(0,1) (45)
r
i
h A 2"(1 37 o) q ax (q; +q ;)
where = 5 Qy + =m . .
I' /l -%(qM._}_q.M) M. .M i 1. ol
and S5 = [1-3(qw +q 417201 T oy T s Mo +q ) x
T = EAR A | 1-—’Iq ,lqll T\,

A'A v
(/l-igqqii-(qM‘ +Q_M>) - QMM(% + %iz’l qii—(qM.+q.M)]}

Qq 1s that gq;. where q, +q 5 =Qqy tdy -

(45) can be used to test hypotheses and construct confidence inter-

vals for )‘r .

IIT, 5 (ii) The ordered case.

The suggested measures was of type e = z Py e
li-jl<k
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In this case we can use exact distribution theory. Let Xi:= L X...
|i-3]<k™

One sees immediately thet Xk have a binomial distribution

(nk,n) i.e.

P(X =x) = (QDm(1-n )" . for x =0,7,...,n .

It follows easily how testing and estimation of ™. can be done
with optimal methods.

Theorem 1 reduces in this case to the usual central limit theorem
for independent, identically distributed random variables.

At last we consider the measures proposed for the 2Xx2- table.

ITII. 6. The 2x2—tmﬂe,

Under certain reasonable assumptions on a measure of association
in the 2x2-table which we stated in part 1, ch.VIII, the cross-
product ratio

A - 2a1P22
P12P21

or a one-to-one function of A was found to be the matural choice

of measure. We listed three measures which was one-to-one functions

of A
e = A1 _ 4.2
17 A+1 ~ A+

I
a5 = ¥A=1 o, f
Va+1 Va1

p =1n A

The exact independence hypothesis can in this case be expressed as
H 2 DqqPop = PqoPpq -

As a measure for degree of association we can as mentioned in part 1

use any one of the measures d%, dg or p2 . For testing for a.i.
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it does not matter which one we choose; since a hypothesis about
one measure will be equivalenf to hypotheses about the other measures.
For testing of d% we refer to III.2.(ii), since d; =Y 1in the
2X2-case. Later it will be shown that there exists a uniformly
most powerful unbiased a-level test for a.i. based on p2. Let

2

us therefore show what the a.i. hypothesis based on 4 =p is,

and state the N-test for that hypothesis.

IITI. 6.(i) Determination of a.i. hypothesis, and its normal-test.

The a.i. hypothesis based on d can be formulated as:
2
(In A)" <c (46)‘

As a basis for determinating ¢ we shall use the a.i. criterion

(33) which now becomes:

-e < 2—4 < e 47)

(47) is equivalent with

1+¢€

1-¢
Tie S B 2T
which gives that A and B are a.i. if and only if

;I[:_e.< A < 1+¢ . (48)

= ° = 7=€

It is clear that A and A_q corresponds to the same degree of

association in opposite directions. We see that A € %E%-%ﬁi

~1 1-¢ 1+¢

and only if A~ ' € ETIE’T:E , 80 that (48) is a reasonable criterion

for a.i. Further (48) is equivalent with

1+¢€

1n ?_u <ln A <lna— <> (In 8)°2 < (1n 1+€)2

1+e>2

Hence c¢ = (1n ) » and the a.i. hypothesis (46) becomes equal

to

: (1o 8)° < (1o 52,
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where € is determined in (33). Below we present a table over

c-values for some chosen ¢-values.

€ 0.01 0.05 | 0.10

c 0.0004 | 0,01 0.04

. 4449 XX
d = (1n 222y2 _ (qp 122y
912921 Xq2%21

The C-estimator Sg for the asymptotic variance of ﬁ d are

given in the following lemma.

LEMMA 18
2 A Al
Sg = 4dnS (49)
2 o= o= =T =]

(when using (49) it is assumed that no Xi;] equals zero).

Proof.
Let 4. =so%- and a* = s & Ds < Qs o
Jd °Pij i=1 j=1 1d 1J
For i,j = 1,2 we have:
_ .o0l1lna
dij = 21ln A '-5—5;?‘ , and
-1 .
3lna _ ) Pix for 1=7
Pij 'pij-q for i#j
_ 2 2 . .
Hence d;; =—-—1nA and 4;, =-==1lnA for i £ J
ii J i

This gives d4* =0 .
R

1

Let cg (p) = .Z.p. d. 2 » We find: °c21 = 4(1nA)2 +

i,3 iJd 1d

+ .
Pqq Pqp Ppq Poyp
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2

Now Sd

= og(q) and the result follows.
Q.E.D.
From lemma 18 the N-test for H* is now given by:

Reject H* when “
d-c

251

The condition 27 b) reduces here to assume A # 1 (p2 >0) .

> x(a) .

The theory in the next section, however, is valid even when A =1

IIT. 6 (ii) A uniformly most powerful unbiased test for a.i.e.

Definition 6 Let H: 6 € W, against 0 € Q-wo' be the hypo-

thesis to be tested. Further, let

M, = {o|leo is an unbiased a-level test for H}

The power function of a test ¢ is called B@ . Then Do is a

uniformly most powerful unbiased (UMPU) a-level test for H, if

€M, eand Bmo(e>'z E@(e) for all o €M, _and 6 € Q=-w

»

% 0=*

We shall now find a UMPU a-level test for H* : (In A)2_§ c , or

equivalently for
H**: -k <1n A <k (51)

where k = 1ln %E% .

Let us call this test 60 . Then 60 will be a TUMPU a-level
test for an a.i. hypothesis based on every measure which is a one-
to-one function of A, and where a.i. pr. definition is given by

(48). Especially 8, 1s a UMPU a-level test for
) A1
HO s - € _<_ 'm 5 € .

TLet X = (Xﬂﬂ’xﬂ2?X21’X22) . We will use the same notation as in

L4
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Sverdrup, [18].

. . . 1
Let P, be the distribution for X when p4y =Pqp = Ppq = Ppp =7~
X has then the following distribution P given by:

)Il eT,lX/l .+T2X’/I+pX1,'

dP = (4ps, dp,  (see (18], p.40-41)
X T X, +T~AX ,+pX
(P(X€A) = P(A) = [(4py)te 1o 2] 11dJ?o) ]
A
Here is 7T =ln3:|-§-and'r —lnp—g—/'- X, =X..+X and X , =X, 4+
1 Doo 2 = Pop’ 1. T2 o711 H

Let x = (%44+%15:%541%55) - From Lehmann ([12], ch.4.4) a UMPU-

a-level test 6, for H** 1is given by:

1 if x44-<01(xq.,x.1) or x11>'02(x1.,x_4)
5O(x),= Yi(xq.,x.q) if xyy = Ci(xﬂ.’x.ﬂ) for 1=1,2
0 if Cq(Xq.,X.q) < x4, < Cz(xq.,x.q)

where Cq, 02, Yqs Yo are determined by:

E_;k[éo(X) IX1.’X,4] = Ektao(xﬂxq.,x.,,] =a .

To determine C i=1,2 we need the conditional distribu-

R) Yi’

tion for X given the marginals. It is easily seen that

P(X':XlX,l =X,InX 1 =y/|) = (P(Xq/':Xq/llX/],:X’l nix./l =y3-) lfx )
0 ° X,],] X,IE —X,} an X,]/] 2/]_37/'
O otherwise

The conditional distribution of qu given the marginals can be

expressed as follows:
140 B P

(. )( e
11 T17*1
min (xX,,5,) X, 1D-X
z/l’ 1 /l)( 1)epZ
Z }Y/l—Z

PQLgq=gq |Xg =240 4=74) = = £,&plxpys)

Z=0
Hence Cq, 02, Yqs Yo are given by the following two equalities:
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G~

1 n

I Goqlegy) s I bl g Claym) et Glxgyg) < o
X44=0 XA,=Cr+1

1 11=C2
01"1 n

o fpGglx e B £ GlxnT iy Colrment Clxayg) = o

for all Xq9 Tq such that O < X4+y, 510 .

IIT. 6 (iii) Confidence intervals for the cross-product ratio.

Fisher, [3], proposed a method for obtaining confidence interval
for A which required the solution of a quadratical equation.
Goodman, [4], developed a simpler method for constructing confidence
interval for A with asymptotical confidence level equal to 1-a .
We shall now show that by using theorem 1 we obtain the same confi-
dence interval as the one Goodman gives. Our method is however
simpler than the one Goodman proposes. We assume that no Xij
equals zero.

X X2 2 2
N 11722 oA
Let A = A, . = and A* = T I p,.ls..
Xiokoq * 13 7 3y i=1 5=1 +d 1d
Then the following result will be proved:
LEMMA 19
2 22
SA =n A”S
where S° is defined by (50),
Proof.
P22 P11
A T mm—— A = —— A ==A/D A == A/D
1 % Boboy * 22 T Dby, 0 M2 120 821 21
This implies A* =0 .
2,y _ 2 2, o -1
Let OA(p) = .Z.piinj = A (Z P; 5 ) . Hence

1,d i,J
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2

S

- 02(q) = n82(zx,.7) - 032 .
e
1,d
Q-EQD.

From theorem 1 and lemma 19:

>

A-4 D

N(0,1)

>
n

A sufficient condition for satisfying a) and b) in III.1 is in
this case that pij >0 for i=1,2 and j=1,2 .
A confidence interval for A with approximate confidence level

equal to 1-0o is now given by:
5 € (max (0,A(1-x(%)+8)),5(1+x(5)+8)) (52)
This is the same interval as Goodman derives ([4], p.90).

From theorem 1 we also have

Jo A=A D weo,n
-1

7 R R
AJ£14+P42+P21+P22

and since

Pl A A
2 s = pimprezgiezs

>

-A D
AeS

N(0,1) .

The following relations hold:

(2@ <528 < x(®)) = (=8 < 3 < 31D}

~

(—2 < p < AT(1-x(2)-9)} = {(A(1-x(2)8) < b < a(1+x(2)9)}.
’x+x(%)s 2 270 = 2

The function I is defined by:

1/X if x>0

I(x) = {

<o if x<0

The above gives a confidence interval for A with asymptotical

confjidence level equal to 1-a :
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A

A€ (b | AT(1-8x(E (53)
oo MO

It is easily seen that L(52) < L(53), also when 1-Sx(%) >0,
where L(52) is the length of the interval given by (52) and the
same for IL(53). (52) can be applied to construct confidence in-

tervals for any monotone one-to-one function H(A) :

A1-x(H)8) < b < A(1+x(3)8)

!

H(E~Bx(%)8) < H(Ap) < H(E+Bx(%)s) if H is strictly increasing
in A

H(Z+BXC%)S) < H(A) < H(Z—BXC%)S) if H is strictly decreasing
in A .

For example an interval for Yy = %5% based upon (52) would be:

A1-x(5)8)-1_ A(1+x(5)8)-1

2 , —o (54
A(ﬂ—x(g)S)+1 A(1+X(2)S)+1

Y € <ID.8.X ('/]9

The interval (54) can also be expressed as follows:

o [0 4
X1Xpp(1-x()8) Xy Xo 1 Xg 4 %on (14x(5)8) X1 5%
a ’ o
XX (I=x(5)8)+X 1 0K0q  KqqXpp (14x(5)8) 4K X

Y € (max (-1.

In the 2x2-table S$ can be stated as:
LEMMA 20
~2
82=—[;\-LA—-—2’I182
Y (A+1)
Proof,
2A. .
2 3y ij
Yy =1 - => = and hence Y* =0
2
2 2 2 M7 4 2
= 0. = I z ———nlﬂ.p.. = o) and hence:
Y U520 5o ()R T (aen)F 2
~np
2 4 2 4A 2
S. = == 5T = —:r-—71118 .
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The confidence interval (32) for Y now becomes

A 2hsx($) 288%(5)
v € (mex (-1,820 - 2220 min (1,850 2220 (55)
' A+1 (A+1) A+ (A+1)

If SXC%) < 1 the interval limits in (55) are equal to respectively
2Bsx(3)
A (Be1)2

4 2bsx(®)

A~ .
+1 (3+152

A
A
Now let L, be the length of interval (54) and L, be the length
of (55).
LEMMA 21

a) If S-x(5) <1, then L, <L, .

b) If S-x(d) > 1+max (A7,3), then I, > I, .

¢) P(I,<L,) - 1
2" e

Proof. The first thing we notice is that

A1+x(5)+8)-1 B(1-x(5)-8)-1

Se &y < 1 L, = T4
x(x) £ 1 <= I, 8(1+X(%9’S)+1 A(ﬂ—x(%)'s)+4

4h8+x(%)
CRE(-sTxE(§))+2he1
. 405x(F)
In addition: S'X(g) _f 1 => L2 = -—1——2- °
(A+1)
L, A%(1-8°x°($))+2i+1 .
Hence: = = — when S+x(x) <1 .
1 (A+1)

If SXC%) < 1, then I’2/L,I <1 since 4 >0 (no Xij equals 0 ) ,
2A+1

——— < 1, and a) is proved.
(3+1)2 ’

If Sx(§) =1, then T2/L, =
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Z(’l+x(%)s)-1 , 22(1+x(%).s
Z(1+X<%)S)+1 T Z(1+x(%).s)+1

Next, let Sx(3) > 1 . Then L, =

The upper bound in (55) equals 1 if and only if

Sx(-%'—) > 1+ A1

The lower bound in (55) equals -1 if and only if Sox(-g) > 1+ A.

Assume now that S-x(%’-) > 1+ max (3_1,3) = max (’I+Z—1,’I+Z) . Then
1, 3(’]+x(%)'8)+1
L, =2 and 2/]::,| = — 5 > 1, and b) is proved.
A(1+X(§)-S)

From a): lim P(L,<L,) > lim P(82<x () .
n —oo n

Now Xij is binomial (n,pij) , and by using the fact that

Y. . = :
+J /Vﬁpi,j(/"Pij)

y >0

is asymptotically normal we find that for

-1
_ _ y —np. .
P(Xigf_y) = P(X;527 Ty - 1-P(Y; < iy - 1.,

/\/Elpia(q_PlJ) n -co

2
< S .

Let now s> 0 . Then X;3<zs‘4_ for i,j = 1,2 = S

This implies that 1im P(5°<s) > 1-1lim P( U X128 =1 .
n g

This proves c¢c) by putting s = x"2(%) .
Q.E.D.

Asymptotically the interval (55) is therefore better than (54).

A confidence interval for p = lnA, Dbased upon (52), is given Dby:
p € (B+ln (1-8x(3)), B+In (1+8x(F))) .

Here p is equal to 1n A .

A confidence interval for p2 (from lemma 16) is given by:

0% € (max (0,3 - 2|p]sx($), 52 + 2[plsx()) .
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III. 6 (iv) Confidence intervals for an alternative measure of

association.

A measure not depending on A is

_ P1qP22 = P1pP2q
(Pq.pg.P.qP.e)?

™

or B = Ti if we are only interested in the degree of association.

For testing of a.i. based on B we Pefer to III.3 (ii). In the
2X2 - case one finds that Sﬁ (here called S‘g) can be expressed

as follows:

LEMMA 22

AllaR 2 2 2 2
Sp = B 971a4qP50+ap0P11210P51+201P 5= (9q4Pp* 0P 14 =0 2P0

2
Qo)) -

where
B =949,919>
® = 9119279291
and
by = qi.q.j{qioq.j(2—qi.—q.j)-qij(qi.+q.j-2qi_q.j)}.
Proof.
2 2 2 (A S )2 A aé A* 2 2,\
S = ¥ ¥ qg,.(B;.-B* where B;.==s——and B*= L I8 ...
B i=1 j=1 1J°1d 1J qij i =1 j=113 1J

2 _ 42
Let M = (2499p5791294)" = & -

A~ M “ 1 . M A d .
B == B:. =55 u_MgiL},
n 13 7 2 " 94 Uj
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A

2 Y
oo = %.9.2001.% 1) 555 = 0,9,4(8p, 40 )

-~ ~

3 3
so— = a5 a4 q(aq +a 5), s
q_/le 2. ./I 1. .2 ? aqe,]

91,9,2(d2, %9 1)

The above implies:

A A._2A

Bgq = 1 "8byy

s a=2g

oo =1 8Dy,

A ,._2;\

Bio ==H Oy
and 8., =-p=26b

21 STH 12

The result now follows readily.
Q.E.D.

Confidence interval for B :

- S -~ 8
B € (max (O’B—V% x(%), min (1,8+—= x($)) ,

Vo
where
. >
5 _ 82 _ Fan¥opXapto)
" R R

-~ S . S
Let C, =B-—B-x(%) and 02=B+—‘ix(g-) .

Vn Vo'

Then an interval for T, with confidence level > 1-a is given by:
I
L € <—ﬂﬁll(1,JC2) , min (1,/02)> (56) w

From III.2 (iii) a confidence interval for T, Wwith asymptotic

level equal to 1-a is given. It is easily seen that
oT

2_ A 2 (BB _ oo . _by,
%Pij PPy

= =5 S
Sb 4Tb B
" Hence the interval for LN in III.2 (iii) can be expressed as
follows: S

.. € {max (-1,7% ———TE—-—
° E 2|Tb|VE?

x(5)), min (1,7 +~f’£-—x<°°>>> (57)
2777 Db 2|$blvzi 2
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Let Ky = Ty - x(%) and K, = T + —-;-E— x(%) .

El'rbH/E 2| Ve’
Let further L, = 2@ , that is the length of the interval
<-/<32,ng,> , and similar L* K2 K’I . The following lemma gives

us some results about the relation between L; and L* .

2
LEMMA 23
* 1/_2—. *
(a) C/l>o=>l'2<7+_L1
A2
L* T n ey
®) —>1 <> brq 20 (20.207)
L2 SBX(?)
(¢) 1lim P(L <L,|) =1.
n -co
Proof.
(a) We find:
S 1 )
LY = 2(B + £ x(2))* .
1 Vn 2 >, L:]‘ > 41’2\[—1[ b}’n :l
: —
S LA x( ) T8gx( )
L*2 - - B ___'X(%) 2 2' 2-
lT'bH/n J

Now: C, > 0 <= T% n> S x(g) = (—) > 4(1+41) =

2

nr

1 4[5‘ *
PN (E—) >2J2 RS L2 > Ly -

2
L*

(b) (—-—) > 1 = 4Tbn+41-2/—'s x>S§x2 , where 'x=x(%) .

2

Let y=?§ﬁ and b=SB-x,y30, b >0 . It now follows that

CLI/LY > 1 <> yoby-basT >0

= (y- ‘L}-b)( \F*"b) >0
VZ -1 V2 1

(:)y-—-—z—b>0<:>%>—z— .




- 91 -

(¢) From (b) we now have:

T )n
lim P(L; < Li?) = 1im P( g > Vé;_q X) .
n —<oo n —eo B

T2 > 0 , so that the interval (56) has meaning only at the assump-

b
tion of T # 0 . In that case

~2 2

T T

b _1? b

'S—' 3——=a>0.

B B
?

Let now Yn=«/;'s_b' and let k > O:
B8
A2 "2
T T
Corb L kN : b D
P(Yn>k)—P(§B->ﬁ") n-»oo/l since ga- a>0.

Substituting k with V-Efix and we have obtained result (c).

Q.E.D.

III. 7. 3 exanples.

The three examples to be presented are taken from [15]. In each
example we shall use the measures we think are suitable.
Confidence intervals will be stated, and testing of a.i. will be
done. As for the numerical calculations these have not been checked,
so some reservation must be taken for the results.
For each measure d for degree of association being considered, the
a.i. hypothesis in the examples will be chosen equal to |

H* : 4 < 0.0025

For example, if d = Y2 s then € is chosen equal to 0.05 in the

a.i. criterion (33).

Example 1,
Let us first go back to example 1 from I.1. Let A be occupation.
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The eight occupational groups in the table are:

A/| : Self-employed in agriculture, forestry and fishing.

A2 ¢ Other self-employed.

A5 : Wage earners in manufacturing, construction and mining.
Aﬂ_: Other wage earners.

A5 ¢ Pupils, students.

A6 ¢ Pensioners .

A7 ¢ Housewives,

AS ¢ Others.

It was shown earlier the chi-square test will assert association
between occupation and participation (factor B). When testing a.i.
the result will be to accept independence between the factors for
those suitable measures that are considered. Usually one will think
of the occupational groups A1""’A8 to hold no relevant ordering,
so Y has nominal level. As for the characteristics "voters' and
"non-voters' these can be considered both as ordered or not depending
on the kind of problem one is trying to elucidate. If, for instance,
participation is used as an indicator for the interest of the elec-
tion, it can be meaningful to say that the characterisics are ordered.
We will then have a mixed situation. It seems reasonable to consider
B as the primary factor, so from the considerations in part 1 a
suitable measure in this case will be Yy .
The measure for degree -of association is then v2, and the a.i.
hypothesis becomes:

B : v° < 0.0025

2 _ 0.0002 .

We find that ¥y = 0.0746 and ¥
Since ?2 < 0.0025 the a.i. hypothesis is accepted. This means

that we accept that the factors are approximately independent. (The
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expression "accept” means in this connection: "fail to reject™.)

The estimator forthe asymptotic variance of 11§ is:
87 = 5.577

Hence we have the following confidence interval for Yy with asymp-
totical confidence level equal to 0.95:

.S
We see that 2lyl{¥;= 0.0013% , so a 95%-interval for Y= (35)
/n
becomes:

0 < y2 < 0.0028

The onesided confidence interval (36) with “1-a equal to 0.95
gets a lower bound equal to zero, which means that all extended

2

hypotheses, Y~ < c , is accepted at level a = 0.05 .

Let us consider the situation that arises when there is said to be
no relevant ordering between voters and non-voters,

B is still regarded as the factor of primary interest. The situ-
ation therefore becomes unordered and asymmetrical. Practicable
measures are hence xb or Ty . We find Kb = 0 so0 all extended
hypotheses based on Xb are accepted. The a.i. hypothesis based

on T]b:
H; : m, < 0.0025

Results:
ﬁb = 0.0072 .

Estimated asymptotic variance: Sgb = 0.0525 .

The N-test with level & = 0.05 . Reject H; if
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/L7, - 0.0025)

T
n Sob

> 1.645

We find T, = 1.07 which means that we accept Hg .
The confidence interval for Ty with a = 0.05 is given by
0 < Thy < 0.0158

The onesided interval has lower bound equal to zero, so in fact all

extended hypotheses, N, 2 c, are accepted at level 0.05 .

Finally we shall state the confidence intervals for

.|, derived in

D+
.| and ;«2=maoc]-=-]‘=7--p_J

n = max lp. =P P
| i,d T TLemed i,J 1.

ITI. 3 (iv).

O

A

Results: D = 0,000068, ST = 0.000006 .

o

95% - interval for #,: 0 < #, < 0,009
E = 0.06179, S5 = 5.9999.

95% - interval for nyt O < my < 0.2776.

It is worth noticing that in this example the choice of a.i. hypo-
thesis is no problem because every extended hypothesis is accepted
without regard to which of the measures vy, xb or T, that are

prefered.

Ixample 2. In this example the dependence between the factors in-
come and participation will be investigated. We let factor A Dbe
(yearly)-income and factor B participation. The number of obser-
vations in the Bureau's interview survey was n = 2702,

The result of the survey arranged in a two-way contingency table

was:
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Table 5
Participation Bq Bg

Income Voters Non-voters Total

qu Less than kr 10.000 | 400 84 484

A2: kr 10.000-19.900 517 64 581

A5= kr 20.000-29.900 785 68 853

AA: kr 30.000-3%9.900 398 32 430

A5: kr 40.000-49,900 194 9 203

A6: kr 50.000-and morel 145 6 151
Total 2439 263 2702

Source: [15], table 11.
TFor each income group we can compute the proportion of voters/non-

voters. This gives the following table:

Table 4
Income group Voters Non-voters
A,1 0.83 0.17
A2 0.89 0.1
A5 0.92 0.08
A4 0.93% 0.07
A5 0.96 0.04
A6 0.96 0.04
All income groups 0.90 0.10
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The share of voters increases with increasing income. It seems

that there is present a certain degree of association. The question
is if the degree of association in the table is significant. The
usual chi-square test in I. 2. rejects the exact independence hypo-
thesis for all significance levels > 0,001,

We will assume a relevant ordering in B . Income establishes obvi-
ously an ordering, so the situation is ordered. Y2 is herewith

a suitable measure for degree of association. The a.i. hypothesis
is therefore equal to H: in example 1:

B : y° < 0.0025

We find:

Y = -0.3080, Y2 = 0.0949

The hypothesis is rejected with level a = 0.05 if

T = 'VI? (?f-o.0025) > 1.645
Y 2lylSY

The results are:

N
53 - 5.329 and 2|Y|-L = 0.0274, which gives
’\.v/ n

Conclusion: Association between income and participation.

95% confidence intervals for vy and Y2, (32) and (35):
-0.,%950 < y < =0,2210

2

0.0412 < vy~ < 0.1486

The onesided confidence interval (3%36) for Y2 with o = 0.05

becomes:

\C > 0.0498

I.e. that all hypotheses: Y2 <c, c <0,0498 will be rejected at

level 0.05.,
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As in example 1 we give 95% confidence intervals for

Results: D = 0.000529
0.0037 < x
E = 0.02587,

0.0293 <

/l

2

Example 3.

shall be examined.

partysympathy.

2
D
< 0.0212

s% = 0.1698

< 0.1439

Sy = 0.000095

nq and n2 :

The association between education and partysympathy
Let factor A ©be level of education and B

The starting-point is from [15], table 27 but we

have withdrawn those 26 who voted, but did not specify to which

party.

The result of the interview survey, expressed by the cell-frequencies

In addition, the votes for SF and K are added together.

Xij’ was:
Table 5.
SF/K| A v Sp Kr.F. H Total
Education
A_: Primary school
1 lower stage 25 | 748 | 72 | 152 107 101 1215
A,: Primary school !
2 upper stage 11 222 | 71 | 103 7 171 749
AB: Secondary
school 8 93 | 44 | 39 26 97 307
A, s Post secondary
¥ school | g | 46| 21| M 21 65| 42
and University
Total 62 |1179 | 208 | 305 225 434 | n=2413%

Source: [15], table 27,

In the table the following letters aretised for the political parties:

A

1

Labour Party

]

H

Conservative Party
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Kr.F., = Christian Democrats
K = Communist Party
Sp = Center Party
SF = Bocialist People's Party
Vv = Liberal Party

At each level of education we compute the portion who voted for

the different parties. This gives the following table:

Table 6
Level of education SF/K A v Sp Kr.F. H

Primary school,

lower stage 0.03 | 0.62 | 0.06 | 0.12 | 0,09 | 0.08

Prim school
aﬁgﬁer stage 0.01 | 0.43 | 0.095| 0.14 | 0.095| 0.23

Secondary school 0.03 0.3%0 0,14 0.1% 0.08 Ce 3

University &

postsecondary school 0.06 | 0.11 | 0.15 | 0.08 | 0.15 | 0.46

All levels of education 0.03 0.49 0.09 0.13% 0.09 0.18

There can be no doubt that level of education and partysympathy

are strongly associated. The chi-square test rejects the exact
independence hypotheses at any usual level.

It seems to be several alternative ways to interpret the situation
in this example. It is quite clear that generally there is a rele-
vant ordering between levels of education. If partysympathy is
used to indicate political direction on the scale leftorientated-
rightorientated, we might say there is an ordering between the
parties in the forgoing meaning. In tables 5 and 6 +the parties
are ordered (subjectively judged) on such a scale. Relevant mea-

2

sures are ordinal measures, and Y is hence chosen as measure for

degree of association. The a.i. hypothesis is:
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B : v© < 0.0025
We find: ¥y = 0.3720 s$ - 1.260 and hence
(¥%-0.0025)
Jo = = 7.99
2lylSY

Conclusion: Education and partysympathy are dependent.
95% - confidence intervals for y and Y2, (32) and (35):
0.%3271 <y < 0.4169

0.1051 < v© < 0.1717

The onesided 95% - interval (3%6) becomes:
v2 > 0.1104
I.e. all hypotheses Y2 < c¢ where c¢ < 0.71104 will be rejected

at level 0.05.

The above interpretation of the situation is of course not necessa-
rily always the most relevant one. If the given problem indicates
that it is desirable to consider the parties without ordering, but
still think of education as ordered, we will have a mixed case.

It then seems reasonable to consider the situation to be asymmetrical
with B as primary factor, so that hb or My will be natural
choices. Let us choose T, as measure for degree of agsociation

The a.i. hypothesis is:

%
Hy: m, < 0.0025
2

ob = 0.076% and hence

Results: 0 = 0.0513, 8

Afn'(f, ~0.0025)

Sob

= 8.71

Conclusion: We reject Hg (at infinitesimal levels < 0.00001)
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Further one finds: &, = 0.0430.
Estimated asymptotic variance: Sg = 0.4030 .
Now we get the following twosided 95% - confidence intervals for
LR and >‘b :
0.0403% < T < 0.0623

0.0177 < kb < 0.0683

Onesided 95% - intervals:
nb > 0.0421

M

> 0.0218

This implies that all hypotheses, my < c¢j; c¢ < 0.0427 and all
hypotheses, Ay 2c3 ¢ < 0.0218 1is rejected.

As a third alternative interpretation the situation is considered

as unordered and symmetrical. Suitable measures are then A and n.

Results:
n = 0.0517
A = 0.0506
sﬁ - 0.0742
82 = 0.2101

Onesided 95% - intervals:
n > 0.0425
A > 0.0%35%

Twosided 95% - intervals:
0.0407 < 1 < 0.0627
0.0324 < )\ < 0.0688

Finally, we state 95%-intervals for #, and #n,:
0.0167 < #, < 0.71059
0.1012 < Ry < 0.623%6
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