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ABSTRACT, 

This paper is divided into tvvo parts. The first part gives a 

review on the measures of association which have been suggested 

in the literature. The aim of this review has been to guide an 

investigator in his choice of a measure in a given situation. 

It is strongly emphasized that one should only choose between 

measures which can be given a probabilistic interpretation. 

The second part deals with testing of independence in a 

two-1'\Tay table when the number of observations is large. The 

hypothesis >i exact independence' 1 will then nearly always be re­

jectedo It is consequently a need for defining a notion 1'almost 

independence'; and develop tests for this hypothesis. This is 

done by first considering testing of approximately exact hypo­

theses in the general multinomical case. Secondly we treat the 

problem of choosing an nalmost independence'' hypothesis by using 

an appropriate measure of association as a basis. Thirdly the 

theory for the general multinomial case is applied to such 

measures. 

Key words: measure of association, almost independence. 
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I. INTRODUCTION. 

I.1. Some situations where measures of association are used. 

The problem of choosing a measure of association appears when 

one wishes to examine the association between two factors or attri­

butps in one or several contingency tablesq There are especially 

two situations where measU+es of association can be of interest. 

One is comparison of dependence in several tables, and the other 

is testing for independence in one table. 

It has become apparent that when testing for independence in a 

large datasample the exact independence hypothesis will nearly 

always be rejected, even in situations where the dependence evi­

dently is very little. What one really wru1ts to do is to accept 

independence between two factors even when there exist a slight 

degree of association. We then say that the factors are almost 

independent. So, instead of testing exact independence we want to 

test almost independence. When determinating the almost indepen­

dence hypothGsis, we have the problem of choosing a measure of 

association. 

Part one is meant as a guidance as to which measure one ought to 

choose. In part two we consider the problem of testing almost inde­

pendence, For comparison of tables we refer to [1]. 

I.2. An introductory discussion on measures of association. 

The conception of association between two a~tributes will often 

be vague and not precise. Usually there are, however, special 

features of the association which we want to measure in a given 

situation. These relevant features of association can some times 

be specified as a part of the purpose of an investigation. A 
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measure of association should in consequence be constructed from 

a relevant model for the particular case, so that it renders as 

much information as possible about the interesting features of 

associationo So the desire is, that for a given situation the 

measure of association measures the features which are interesting 

to that particular situation. I.e., we sharpen the definition of 

association when constructing relevant, suitable measures. 

If several measures are constructed for the same situation, one 

ought to choose the measure one believes gives the most evident 

expression for the relevant features of association. In addition 

it is required that the measures can be given a simple operational 

(probabilistic) interpretation such that, for one thing, values of 

a measure for different tables can be compared. 

It seems natural when looking at measures of association, to 

seperate between the following five cases: 

1) Ordered case. 

There exists for each factor an underlying ordering between 

the categories • 

One example can be A: level of education and B: incomelevel. 

2) Unordered s~etrical case. 

There is no natural or relevant ordering. Moreover the factors 

appear symmetrically; there is no reason to give one factor 

precedence to the other. 

3) Unordered as~~~cal case. 

This situation occurs when one of the factors, say B, is of 

primary interest and there is no ordering in the two factors. 

This can happen if the factor A 11 precedes 0 B chronologically 

or causally. One example can be A: occupation and 

B: attitude to a certain problem. 
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4) Reliability-case. 

This situation appears when v = w , and .A and B assume the 

same categories but refer to two different methods. Let for 

instance A and B be two psychological tests both of which 

classify deranged individuals as to the type of mental disorder 

from which they suffer. 

5) Mixed case. 

The categories of one of the factors possess a natural, rele­

vant ordering, the other do not. One example of this situation 

can be A: level of income and B: geographical classification. 

Outside of these five cases we treat the 2 x 2- situation separately o 

Most of the measures which is considered in the cases 1) - 4) can be 

found in [5] and [6]. The ordered situation is treated with special 

thoroughness, since it seems to occur quite frequently. The mea­

sures discussed there will all vary in the interval [-1,1]. As a 

measure for the degree of association in the ordered case, one can 

use the square of these measures. 

II. THE INDEPENDENCE-SITUATION IN A TWO-WAY CONTINGENCY TABLE. 

The following situation is considered. Two factors (later, 

also called attributes), A and B, can naturally be .divided in re­

spectively v and w categories A1 , •• o,Av and B1 , ••• ,Bw • At 

each trial one and only one of the categories 

Let Y, z be tvm random variables defined by: 

y = i if A. 
1 

occur for i = 1, ••• ,v 

z = j if B. 
J 

occur for j = 1' .... 'w 

A. & B. 
1 J 

will occur. 

( 1) 

The number of trials being executed is n • The outcome of each 
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of the n trials is stochastically independent of the outcome 

from the other trials. At each trmal the probability for occurence 

of A. & B. is p .. .. The probability for A. then becomes 
J. J J.J J. 

w v 
P· = I: p .. ' and the probability for B. becomes p. j = I: P· . J.. j=1 J.J J i=1 l.J 

I.e. P·. J.J 
= P(Y=i n Z=j) 

' P· J.. = P(Y=i) and p ·j = P(Z=j) 
' 

for 

i = 1 , • • v and j = 1 ~ • • w • 

The factors A &~d B are said to be exact independent if Y and 

Z are stochastically independent. I.e. the hypothesis of exact 

independence between A and B can be expressed as 

H: P· . P p J.J = -i. ·j for i = 1, ••• v and j = 1, ••• w • (2) 

Let X. . be the observed frequency in class A. & B. 
J.J J. J 

during the 

n trials, and let qij = Xij/n. Let further q. = I: g. . and 
J.. j J.J 

q . = I: g ..• 
·J i J.J 

The statistical data can be arranged in a two-way 

contingency table: 

. 
• . . 

Sum. 

Here is 

number of 

of B .• 
J 

Sum. 

x22 .. 0 •• 0 • 0 • 0 • x2w 

0 

0 . • 

0 • • D 0 0 • • 0 0 XVVJ' 

x.2 ••••ocoo•oX .w n 

v 
X. = 2: X. . and 

J. 0 j =1 J.J 
occurences of A. J. 

X . = 
•J 

and 

r 
L X;J· , that is X.; 

i=1 ~ ~-

X . is the number of oJ 

is the 

occurences 
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III~ Ordered case. 

III.1. Three ordinally invariant measures. 

The situation under consideration is a relevant ordering between 

the categories within both factors. Let us first hive a definition 

of an ordinally invariant measure. 

Definition 1 A measure g is said to be ordinally invariant 

if it is unchanged under similar types of monotone transformations 

of Y and Z , c:m.d if the sigh of g_ switches under unlike types 

of transformations. This means that g(Y 2 Z) = £(f(Y),h(Z)) if 

f and h are both strictly increasing or both strictly decreasing 

functions, and g(Y,Z) = - g(f(Y),h(Z2) if one of the functions is 

strictlLdecreasing, and the other is strictly increasin£. 

Since Y and Z are measured on an ordinal scale, such that 

the succession of the their possible values, but not the distance 

between them, has meaning, we require that a measure for this 

situation is ordinally invariant. In addition the measure g 

ought to satisfy two demands: 

(i) - 1 .:: g .:: 1 

(ii) A, B exact independent -> g = 0 • 

If the range of g is bounded and g is symmetric in origo (i) 

can always be fulfilled by norming the measure. 

We will describe three ordinally invariant measures, satisfying 

(i) and (ii), which are all modifications of a fundamental quantity. 

They are denoted by 

1) y , proposed by Goodman & Kruskal ([5],p.748). 

2) Tb , Kendall's rank-correlation coefficient modified to 

contingency tables. 

3) Tc, suggested by Stuart, [17]. 
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The measure y is also discussed in [11]. Later we will see that 

there are reasons for prefering y to the others. 

All the measures, but especially y , have a simple probabilistic 

interpretation. We consider this measure first. 

III.2. Construction of a natural measure, y. 

Let (Y1,z1 ) and (Y2 ,z2 ) be two independent random variables 

with the same distribution as (Y,Z) • 

y is defined by 

y = P((Y1 -Y2 )Cz1 - z2 ) > o!Y1 =i=Y2 n z1 t z2 J 

- P((Y1 -Y2 )(Z1 - z2 ) < OiY1 tY2 n z1 T z2}. 

It is immediately seen that y is ordinally invariant. 

Let Tit = P(Y1 = Y2 U z1 = z2 ) .. 
TIS = P{ (Y1 - Y2 ) (z1 - z2 ) > 0} • 

Tid = P{(Y1 - Y2 )(Z1 - z2 ) < 0} 

That is, TIS is the probability that the variables are concordant, 

and nd is the probability that they are discordant. 

In this case we .find it natural to extend the definition o.f exact 

independence to: 

Definition 2 Two .factors A and B are said to be 

ordering-independent (o.i.) if ns~d· 

y can be expressed as follows: 

(3) 

Besides, since rrt + n s + TId = 1 : y = n s - n d ITT s + n d • 

Hence it is seen that y E [-1,1] , such that (i) is satisfied. 

One finds that 
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v 2 w 2 v w 2 
l: p. + l: p . - l: l: P· . 

i=1 J.. j=1 •J i=1 j=1 lJ 

n = 2 s 

v-'1 w-1 
l: l: P·. { l: l: p., .,) • 

i ="J j ="J J_ J i I >j_ j I > j J_ J 

v-'1 w 
=2 L: l: p .. { L: L: p.,.,)~ 

i=1 j=2 lJ i '>i j '<j J_ J 

Further it can be shown that A, B exact independent i~plies that 

ns = nd, such that definition 2 actually is an extension of exact 

independence. 

Hence y satisfies (i) and (ii). In addition (see (5]), y has 

the following properties: 

(iii) A, B exact independent => y = 0 , but the converse need 

not hold except in the 2 x 2- case. 

(iv) y is well-defined provided not all of the positive all-

probabilities are concentrated in one single row or column. 

In the 2 x 2- table the measure reduces to 

y = 
p'1 '1p22 -;;>'12p21 

P'11P22 +P'12P2'1 

6-'1 
=-

where 6 ~ p p /p p is the cross-product ratio. - '11 22 '12- 21 

Measures of association in the 2 x 2- table will be discussed 

later in VIII. 

III. 2· Two alternative measures, 'Tt and 'T • c-
Let us first consider the following situation. 

( '-1-) 

Let U,V be continuous random variables. Kendall's rankcorre-

lation coefficient 'T for (U,V) is defined by: 

(5) 
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distributed as (U,V) ([11], p.822). 

T can be considered as the correlation coefficient between the 

signs of u1- u2 and v1- v2 • 

Let (u1 ,v1 ), ••• ,(un,vn) be n observations of (U,V) • We say 

that there are no ties if and v. I= v. 
~ J 

for i I= j and 

i = 1, ••• ,n, j = 1, ••• ,n o In a contingency table ther? will occur 

ties if at least two obe~rvations fall in the same row or column, 

something that always will happen if n > min(v,w) o 

In the event of no ties y is reduced to T • In other words y 

is a modification of T to the situation with ties. We will now 

consider two other modifications to the situation with ties. 

Let the situation be as in III.2. 

Dendall's rank correlation coeffisient for contingency tables is 

defined by (our definition): 

Tb = ~ P(Y1/=Y2)P(Z1/=Z2' 

$rotice that y = (ns-nd)/P(Y1/=Y2 n Z1/=Z2 ) • ) 

Let ny = P(Y1!=Y2 ) and nz = P( Z1/=z2 ) • 

= 1-
v 2 
E P· 

• /1 J.. 
~=I 

w 2 
nz = 1- E p . 

j=1 • J 

In the 2 x 2 - case we have 

(6) 

(7) 

Tb satisfies (i) and (ii) in III.1., since Tb = 0 ~>Tis =Tid • 

In addition Tb has the following properties: 
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(iii) Tb is well-defined provided not all positivecaQprobabili­

ties are concentrated in one single row or columm. 

(iv) Tb is ordinally invariant. 

With regard to (i) it should be mentioned that the limits :!:: '1 are 
v 

never attained except in a v x v - table where L: p. . = '1 • . , J.J. J.=l 
It is also worth noticing that T~ can be considered as a generali-

2 
sation of f3 = (p'1'1P22- P12P2'1) I P-1.P2.P. 1p • 2 to a v x w ordered 

situation, while the traditional chi-square measure 

v w 
L: L: 

i="l j ='1 

2 (p .. -p. p . ) 
l.J J.. • J 
P· p . J.. • J 

is a generalisation of f3 to the situation with no relevant order­

ing. For other traditional measures in that situation we refer to 

IV. 3. 

The third measure Tc is defined by: 

TIS-Tid 
Tc = (m-1/m) 

where m = min(v,w). 

(8) 

The norming factor m/m-'1 is a consequence of lemma 1. 

IiEI'1MA '1 • m-'1 m-'1 - 'Ii:l ~ TIs - TId .::. Iil . The limits are attained in the 

case all the cel.lprobabili ties are equal to 0 outside a longest 

dia_gonal of the table, and equal to '1 /m in the di ag_onal. 

Proof. The number of cells in a longest diagonal is equal to m. 

Assume fi+st that v = m. 

for a given k ' 0 <k<w-m 

Hence: 
2 m-1 

max( TIs- rrd) = 
m2 

L: 
i='1 

and Pi,i+k 

m-'1 L: 1 = 
i'>i m 

m 
occur when L: P· . k =1 i="l J., J.+ 
'1 for =-m i = 1, ••• ,m • 
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Correspondingly, min(ns- nd) occur when 

m-1 
L: u . k . = 1 for a given k , 1 < k < vJ- m+1 

i=o "'m-:L, +:L 
1 

and Pm-i,k+i = m for i = 0,1, ••• ,m-1 • 

This gives that 

m-1 
= ~ 2 L: L: 1 /m2 = 

i=1 i'>m-i 

m-1 -m- . 

In case w = min(v,w), the proof is completely analoguous. The 

difference is only that max:(ns-rrd) occur when 0 < k < v-m, - -m 
L: Pj+k,j = 

j=1 
m 
L: Pv-k-j,j j=1 

1 

= 1 

and p. k . = 1jm, and min(ns- nd) occur when 
J+ 'J 

for - 1 < k < v-m-1 and 1 
Pv-k-j,j = m 

Q.E.D .. 

Lemma 1 gives that (i) is fulfilled, where now the limits - 1 and 

+ 1 can be attained also when v f w. Condition (ii) also holds, 

and moreover, Tc is ordinally invariant and always well defined. 

In the 2 x 2- case T c = 4(p11P22- P12P21) • 

Let now Tb be the estimator for Tb obtained when substituting 

the relative frequencies 

for Tb • I.e .. 
ps -Pd 

1fb = 
\JPy.P z 

q .. 
:LJ instead of P· . :LJ in the expression 

(9) 

where Py = ny(q), Pz = nz(q), P8 = ns(q) and Pd = nd(q). 

(Stuart [17] shows a similar result for P s- Pd as we have done 

for ns- nd) • 

Tb can be considered as a special case of a generalized empirical 

correlation coeffisient (see [10], p.19). We give a short review 

of it. (y1 ,z1 ), ••• ,(yn,zn) are the n independent observations 

that is executed. 

and a Z- score 

To every pair [ (y. , z. ) , (y . , z . ) ) 
:L :L J J 

a Y- score 

b .. 
:LJ are assigned such that a .. = -a .. 

:LJ J:L 
and 

a .. 
:LJ 
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b .. = -b .. 
~J Jl ( => a. . = b . . = 0 ) • The general em:piri cal corre-ll l~ 

lation coefficient is defined as: 

n n 
L: L: a .. b .. 

l. =1 J'=1 lJ ~J 
r = --;::::;=~=-~=:;:=:==:=:::::; 

J, n n 2 n n 2 
L: L: a .. • L: L: b .. 

i =1 j =1 l J i =1 j =1 ~ J 

(10) 

For example, the usual empirical (product) correlation coefficient 

L:(y. -y)(z. -z) 
j l l 

is obtained by putting a .. =y.-y. 
~J J ~ 

and b . . = z . - z . • 
~J J l 

The following result shows how ~b appear as a special case of r . 

LEMMA 2. Let the Y-scores a .. and Z-scores b .. be given by 
~J ~J 

={~1 
if y. < y. 

=F 
if z. < z. l J l J 

a .. if Y· = y. b .. if z. = zj ~J ~ J ~J ~ 

-1 if y. > y. -1 if z. > z. 
~ J ~ J 

Then r "' = Tb-! 

Proof .. 

The number of ordered pairs among K elements is K(K-1). 

This implies that the number of ordered :pairs among the total 

n(n-1) ordered :pairs for which a .. = 0 
~J 

2 such that L: a. . = n(n-1) - L: X. (X. -1) 
• • lJ • lo ~ • 
~,J 2 2 ~ . 

Similarily: L: b. . = n - L: X .2 • 
i,j ~J j ·J 

This implies that the denominator in r 

is eg_ual to 

2 2 = n - L: X. 
i ~. 

v 
L:X. (X. -1), 

. 1 ~. ~. 
~= 

• 

can be expressed as 

2 2 }t 2 j 2 2 2 ' 2Nz { L: a ..• L: b.. = n (1-L:g_. )(1-L:g_. )(1-Eg_ .) = n P P • 
• _1 • lJ · 1 · ~,J · l. ~ • . • J y Z lrJ ~FJ ~ J 

Let U = L: a .. b .. = . . lJ ~J 
~,J 

2 E a .. b .. , 
'<' ~J ~J ~ J 

since a .. b .. = a .. b .. 
~J ~J J~ Jl 
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( I: a .. b. . is called the total score S in Kendall, [ 10].) 
i<j lJ lJ 

After some calculation one finds that 

v-1 w-1 v-1 w 
I: a .. b. . = I: I: X k( ~ 

. . lJ lJ 1 1 1 r . l<J r= {= 1>r 
I: X .. ) - I: I: X k( I: I: X .. ) , 

j>k lJ r=1 k=2 r i>r j<k lJ 

which gives U = n 2 (P s- Pd) , and hence 

• 

In the case of no ties we always have a .. , b .. 
lJ lJ 

Q.E .. D. 

equal to + 1 or - 1 , 

for i /: j , and therefore completely analogous to lemma 2, we see 

that r = 1- where 1- is the sample-statistic of T , defined by (5), 

That is, is the natural modification of 
... 
T , based on r . 

III.4. A valuation of the measures y , Tb and T c...: 

The first thing to notice is that the three measures are all modi­

fications of the difference rr - rrd to the situation with ties. s 
The most natural modification is obviously y , where one looks at 

the conditional probabilities given no ties. Both Tb and Tc 

seems to be somewhat artificial as modifications of rrs- rrd • 

Especially T c , which is only a norming of rrs- rrd • 

Another thing one should take note of (regarding Tb ) is that origi­

nally it was the empirical rank correlation coeffisient 1- that 

was modified to 1-b , with starting-pointat the generalized emperical 

correlation coeffisient r given by (10) (see [10] and [17])a The 

definition (6) is a result of substituting the probabilities P·. lJ 
instead of q. . in Tb • lJ ( T b is not mentioned in any of the ar-

ticles that we give references to.) Hence, we have that while y 

is the natural modification of based upon 1" b is the 

natural modification of 1" based upon r . It is the parameter 
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that interests us. The correct thing to do must therefore be to 

modify the parameter, and thereafter look at the estimation problem, 

not to go the other way as Kendall did with ~ • 

The conclusion must therefore be that y is the most natural and 

suitable measure in the ordered case. 

None of the suggested measures in the ordered situation are invari­

ant by permutations of rows or columns (of cell-probabilities) in 

the table, naturally. In the next situation to be considered the 

measures will remain unchanged under such permutations. 

IV. UNORDERED SYMMETRICAL CASE. 

IV. 1. A symmetrical prediction model. 

Two measures of association, y and 11 , suggested by Goodman & 

Kruskal, [5] and [6], will be discussedo In addition we mention 

some of the traditional measures of association which, however, 

cannot be given any operational interpretation. 

The measures A and 11 '1.-lill be simple functions of error-probabi­

lities within a certain model of prediction to be described. To 

give the model of prediction meaning it will be assumed that the 

cell-probabilities P·. lJ are known when constructing the measures 

A and 11 • The two measures are the same function of probabilities 

for false predictions, based on two different methods of prediction. 

The symmetrical prediction model the measures are constructed from 

is as follows (see [5], p.743): 

In a given trial one predict with probability 0 .. 5 the B -class 

and with probability 0.5 the A -class. (Either A or B' s class 

is predicted, each factor having probability equal to 0.5 for be­

ing drawn out for prediction.) If B's class is to be guessed, 
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prediction is made on the basis of 

(1) no further information, and 

(2) given the A-category. 

Similar, if A shall be predicted. 

JV. 2. The measures A. and n based on respectively optimal 

and pro-portional prediction. 

Goodman & Kruskal suggests two alternative methods of prediction. 

a) Optimal prediction. 

If B is drawn out: Predict in case (1) the class B. 
J 

with 

p . = max p . 1 , and in case (2), given A. : Predict the class B. 
•J j1 •J 1 J 

with p .. = max p .. 1 • Same method is used if A is drawn out. 
lJ j 1 1J 

Let 

Q1 = P (correct optimal prediction in case (1)) 

and Q2 = P (correct optimal prediction in case (2)). 

b) Proportional prediction. 

If B is drawn out: Predict in case (1) B. with probability 
J 

p . , for j = 1, ••• ,w and in case (2), given A. : Predict B. 
•J 1 J 

with probability p .. /p. for j = 1, ••• ,w • Similar if A is 
1J 1. 

drawn out. 

Let 

The measures 

A = 

n = 

(correct proportional prediction in case (1)) 

(correct proportional prediction in case (2)). 

A and n are now defined as 

( 1-Q1 ) - ( 1-Q2 ) Q2- Q1 
= ( 11) 

Q-~ 1-~ 

( 1-P 1 )- (1-P2 ) p2 -P1 
= (12) 

1- p1 1- p1 
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One notice that A and ~ both are relative decrease in probabi­

lity of error in prediction from unknown to known characteristic 

for the factor which is not predicted. 

Now Q. = f · [P (coreect optimal prediction of B's characteristic J.. 
in case (i)) + P(correct optimal prediction of A's character-

istic in case (i))}. 

and similar for P. • J.. We find the following expressions for 

and P. ' J.. and 1l • 

v w 
CL = i( L: p. + L: p . ) , -v.::: . 1 J..m . 1 mJ J..= J= 

where P.m = max p . , p = max p. , P· 
j .J m. i J... J..m 

= max p. . , and p . = max p., .• 
j 1 l.J mJ i I J.. J 

v w 
L: P· + L: p .-p -p . 1 J..m . 1 mJ .m m. 

A = J..= J = 
2- p - p .m m. 

v 2 w 2 
p1 = f( L: p. + L: p . ) 

. 1 J... . 1 .J J..= J= 

It is easily seen that ~ can be formulated as follows: 

t ¥ (p .. -p. p .)2(j_+p1 .) 
~ = i=1 j=1 l.J J.. •• J Pi. .J 

v 2 w 2 
2- L: p. - L: p . 

. 1 J.. •. 1 ·J J..= J= 

Some properties of A : 

(i) 

(ii) 

(iii) 

(iv) 

is welldefined, except when one 

0 < A < 1 

A,B exact independent => A = 0 

P·. = 1 l.J 

A is unchanged by permutations of rows and columns 
(of cell-probabilities) in the contingency table. 

(13) 

(14) 



- 16 -

Some properties of 11 : 

(i) is well-defined, except when one 

(ii) 0 ~ T) ~ 1 

P·. = 1 
~J 

(iii) A,B exact independent <=> 11 = 0 

(iv) T) is unchanged by permutations of rows and columns 

In the 2 x 2 - case T) equals !3 • That is, T) equals the chi-
2 sequare measure 2 cp , and Tb , in the 2 x 2- table. 

Which of the measures that is best suited for a given situation will 

depend on the method of prediction that is relevant for the situ­

ation. Usually it is perhaps most interesting to guess the most 

likely Y or Z- value, that is optimal prediction. One should, 

however, notice that A is a somewhat 11 coarser 11 measure than 11 • 

By that we mean that if the association between A and B changes 

slightly, then A will not necessarily reveal it. 

IV. 3. Traditional mesures of association. 

The most usual traditional measures of association are based on the 

chi-square measure, already mentioned: 

2 v w (p .. -p. p . )2 v 
a) cp = 2: 2: ~J 2: • • J = 2: 

2 w P·. 
2: ~J -1 

i=1 j=1 p. p . i=1 
l. • J j=1 P· p . 

l •• J 

~lso called the me~~ square contingency in the literature.) 

Three variations of this measure are mentioned in [5), p.739-740. 

b) J 2 f 

K = 1:cp2 
(suggested by K. Pearson). 

c) T = j cr/ (suggested by Tschuprow ). 
!,.J (v-1) (w-1 ) 1 

d) C = cp2/min(v-1,w-1) (suggested by Cramer), 



- 17 -

It is readily seen that K,T,C E [0,1] and that: 

.A,B exact independent <=> cp2 = K = T = C = 0 • It is difficult 

to give a probabilistic interpretation of these measures. Measures 

based on cp2 are in other Nords not particularily meaningful • 

Goodman & Kruskal, [5], give a wider account of such measures with­

out interpretation • 

.A measure not based on cp2 was suggested by J.F. Steffensen in 1933. 

(See [6], p.1L~O.) 

e) 
2 

2 v w (p .. -p. p .) 
~ = I: I: ~J ~.. • ~ 

.;_-1 J"--1pij P· (1-p . )p .( -p .) 
~ ~. .~ ·J ·J 

• 

Some properties: 

2 (a) w = 0 <~ A and B exact independent,and 

(b) 0 ~ $2 < 1 • 

is a weighed average (with P·. 
~J 

as weights) of all 2x2 

mean square contingencies formed from each of the vw cells and 

its complement. 

Teo simple measures are 

f) X-1 ::::: maxlp .. -p. p ·l and . . ~J ~ •• J 
~,J 

p .. 
g) 1{.2 = maxl~-p J . . p. • J 

~,J ~-

It seems that K2 is a more elucidating measure than x2 (because, 

for one thing one usually set up tables with qij/qi. and consider 

the difference qij/g. -q . when valuating the association in the 
~. • J 

table). 

Let us now consider the case where one factor is of primary interest. 
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V. liNORDERED ASY11METRICAL CASE • 

V.1. An agymmetrical prediction model. 

Let us assume that the factor B is of primary interest. Two 

measures, A.b and ~ , suggested by Goodman & Kruskal, [5], are 

to be considered. The measures A.b and ~ corresponds to A. 

and ~ in IV, with the difference that they are constructed in an 

asymmetrical model of prediction. For the model to have meaning 

we will assume, as in IV.1., that the P· .'s 
~J 

are known when we 

construct the measures A.b and ~ • The asymmetrical model, given 

in [5], p.741, is as follows: 

In a given trial the B-class is to be predicted, on the basis 

of 

1) No further information, and 

2) Given the A-category. 

Now, since B is the vital factor the relevant features of associ-

ation are essentially of the type: 11 The differenced between correct 

B-prediction given A and correct B-prediction given no informa­

tion. Accordingly the asymmetrical prediction model described above 

is a relevant model for constructing measures of association. 

V.2. The measures A.b and ~ based on res~ective~ optimal and 

proportional prediction. 

Optimal and proportional prediction for B are completely ana­

logous to the definitions a) and b) in IVo2. That is 

a) Optimal prediction means that one predict the most probable 

B-class in case(1), given no information, and (2) given A. • 
~ 

b) Proportional prediction means that one in case (1) predict 

B. 
J 

~rith probability p . 
·J 

for j = 1, ••• ,w, and in case (2), 
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j = 1, ••• ,w. 
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B. 
J 

with probability p. ·lP· l.J J.. 
for 

The definition of ~ and fit are the same as the defini­

tion of A. and Tl in (11) and (12). 

Let b Qi = p 

i = 1,2~ and 

(correct optimal prediction of B in case (i)) 

P? = P (correct proportional prediction of B 
]. 

case (i)) for i = 1 ,2. 

Then: 

b b 

A.b 
( 1-Q1 ) - ( 1-Q2) 

= b 
1- Q1 

b b 

fit = 
( 1-P 1 ) - (1-P2 ) 

E 1-P1 

b b 
Q2- Q1 

= b 
1- Q1 

b b p2- p1 . 
= b 1 -P1 

for 

in 

(15) 

(16) 

Both A.b and ~ are relative decrease in probability of error in 

prediction from unknown to lmown A .. The measures can be expressed 

in the following form: 
v 

.2:1Pim-P.m 
J.= A.b =--:or----1-p .m 

v w 2 w 2 
2 v w (p .. -p. p .) 

(17) 

1:: l: p . . /p . - 1:: p . 
= i =1 j =1 ]. J ]. • ,j =1 • J 

~ 

1:: z l.J -J. •• J 

= i=1 __j=1 Pi. • ( 1B) 
w 2 

1 - 2: p . 
j=1 • J 

Some properties of A.b : 

1- ! p2. 
j=1 • J 

(i) is indeterminate if and only if one p . = 1 
·J 

(ii) 0 ~ A.b ~ 1 

(iii) A,B exact independent => A.b = 0 

(iv) ~ is invariant under permutation of rows and columns,. 

The properties (i), (ii), and (iv) are valid also for ~·. In 
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addition we have: 

(iii) 1 : A, B exact independent <=> 'f1t = 0 • 

If A is the primary factor the measures will be completely corre­

sponding: 
w 
2:: p .-p 

. 1 mJ m. 
_.J.:' 

A.a - 1- p 

11a = 

m. 

w 2 
2:: p .. /p . -

,j =1 J.J • J 

v 2 
1-l::p . 

. 1 J.. J.= 

v 2 
2:: P· . 1 J.. J.= 

(19) 

• (20) 

As to which of the measures ~ or 'f1t that are most suitable in 

a given situation we refer to the discussion in IV .2. about A. and 11. 

VI. RELIABILITY- CASE. 

VI.1. The unordered symmetrical case. 

The situation is described in I.1. (see also [5], p.756). The 

characteristical thing in this case is that A. = B. 
J. J. 

for i = 1, ...,v. 

In this situation one is often interested in the degree of agreement 

between the tvm methods which A and B generally refer to. For 

the case where the categories doss not hold a relevant ordering, 

Goodman & ICruskal, [5], construct a measure based on the symmetrical 

model of prediction given in IV.1. The prediction method is as 

follows: 

In case (1) predict that B. 
J. 

with P· + p . = J.. .J. PM. + p .1'1 = 
max(p. 1 +p . 1 ) • Similar if A 
• I J. o .J. 
J. 

is drawn out. 

In case (2), given Ai , predict Bi • Correspondingly if A is 

to be predicted. 

Let Ai = P (correct prediction in case (i)) for i = 11 2. 



- 21 -

The proposed measure is defined analogous to A., TJ, A.b and ~ : 

One finds that: 

such that 

Some properties: 

v 
E P· . . 1 ~~ 

~= 

= 

E p. . -t(pM +p M) i ~~ .n. .u 

1 - f(PM. +p .1'1) 

i) -1<A. <1 
- r-

ii) A.r assumes no particular value in case 

(21) 

(22) 

A and B are exact independent, but as Goodman & Kruskal argue 

a measure as A.r would only be used where there is known to be 

dependence between the methods A and B, so this undesirable 

quality is not so important. 

VI.2. The ordered case. 

In this situation it has been customary to use measures of the 

type 

E P· . 
li-jl<k ~J 

for a chosen k • 

v 
For example, rr0 ( = E p .. ) is the probability that the methods 

. 1 ~~ 
~= 

liagree 11 (that is give the same result). 

VII. MIXED SITUATION. 

A case which has not been discussed in any of the articles which 

we refer to is the situation where we have a nominal level for one 

of the variables (Y,Z) and an ordinal level for the other. We 

shall here try to forward some suggestions for measures of associ-
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ation in this case. Let us for the sake of simplicity suppose 

that Y holds an ordinal level. The kind of measure one ought to 

choose will depend on the features of dependence one is mainly in­

terested in. It seems natural to separate between the following 

three situations. 

a) Asymmetrical situation. B is of primary interest. 

b) Asymmetrical situation. A is of primary interest. 

c) Symmetrical situation. 

a) B has primary interest. 

There is no interesting ordering in B's classes, so it seems 

reasonable that an asymmetrical prediction model as in V.1 is re­

levant here. Consequently the measure should be constructed from 

that model. Ab and ~ are therefore suitable measures. 

b) A has primary interest. 

Since the classes for the primary factor hold a relevant ordering 

it would be reasonable to require that the measure in any case is 

not invariant under permutation of rows in the contingency tables. 

This implies that all measures in the unordered case are noteligibleo 

A suitable measure then seems to be a measure constructed for the 

ordered case, which means y since this measure was found to be 

the most natural of three measures valuated in III. 

c) §ymmetrical situation. 

As mentioned earlier, this situation appears when there is no 

reason to give one factor priority in preference to the othero 

Intuitively it seems natural that a measure of association in this 

case is a function of two measures D...-1 , D2 , where D1 is a measure 

for the ordered situation ( -1 _:: D1 ~ 1), and D2 is a measure con­

structed for the unordered situation ( 0 .:s, D2 _:::. 1). 
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Such a function h(D1 ,D2 ) should idealistically have the following 

properties: 

1) Invariant under permutation of columns 

2) Not invariant under permutation of rows. 

,It seems however, that this is a much too ambitious assumption. 

A more unprecise condition is: 

h shoUld utilize the information from D1 and D2 to 

11 the same amount 11 • 

Besides it can be desirable that 

h(D1 ,D2 ) = 0 <=> D1 = D2 = 0 (23) 

Examples of such measures are: 

i) h(D1 ,D2 ) = a( 1D1 I + D2 ) 

ii) h(D1 ,D2 ) 2 and b constants. = b(D1 + D2 ) . a are 
' 

The measures i) and ii) will be non-negative. If it is believed 

that the condition (23) is immaterial other measures of the form 

c(D1 + D2 ) and d(D1·D2 ) can be used, where c and d are con-

stants. 

At last we will consider the 2 x 2-case. 

VIII. THE 2 x 2- TABLE. 

VIII. 1. Deducement of a measure of association. 

The . 2 x 2- contingency table can be described in the following 

manner: 
-

B B 

A p11 p12 (24) 

A p21 p22 

We want to measure the association between the two attributes A 
-

and B • A and B are their negations (complements). 
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It is readily seen that the cell-probabilities can be expressed in 

the following way: 

P11 = P1 .. P. 1 + (6- 1 )p12P21 

P12 = P1.P .2- ( 6- 1 )p12P21 

P21 = P2.P .1- ( 6- 1 )p12P21 

P22 = P2.P .. 2 + ( 6- 1 )p12P21 

Here 6 = P11P22/p12p21 is the cross-product ratio. 

The exact independence hypothesis can be formulated as 

(25) 

There are certain reasonable requirements a measure of association 

for (A,B) should satisfy in the 2 x 2- table (see [2] and [13] ,p.4). 

In most cases the following three demands are reasonable: 

1) The measure must be a function of the conditional probability 

of B given A , p11 /p11 +p12 , and the conditional probability of 

B given A , p21 /p21 +p22 , or, alternatively, of the conditional 

probability of A given B, p11;p11 +p21 , and the conditional 

probability of A given B , P12/p12+P22 • 

2) The alternative measures in 1) must be equal. 

3) The measure must change monotonically, for a given set of 

marginals p1 • and p •1 , as the association becomes stronger. 

The demands 1), 2) and 3) implies that the measure of association 

must be a one-to-one function H of the cross-product ratio 6 • 

(From Edwards, [2].) 

H(6) is invariant under multiplication of rows and/or columns. 

That is, H(6) gives the same value to table (24) and the table: 

A 

A 

B B 

(26) 
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for all non-negative r 1 ,r2 ,c1 ,c2 such that 

r1c1p11 + r1c2p12 + r2c1P21 + r2c2p22 = 1 • 

It is with this shown that the natural choice of a measure of asso-

ciation in the 2 x 2- table essentially is the cross-product rat;io 

We now mention four measures which are one-to-one functions of ~ • 

Yule's coefficient of association: 

d - p11p22- p12p21 b.- 1 
1 - p11p22 + p12p21 = ~ + 1 = 

2 1---
~ + 1 

(27) 

( d1 is the ordinal measure y in the 2 x 2 - case). 

Yule's coefficient of colligation: 

d2 
- jP.11p2~ -i12p2~ {";- 1 "2 

(28) 
- VP11p22 +JP12p21 1 

= 
0:'+1 

= 1- ft'+ 1 . 
.J 

p = ln ~ (29) 

and of course ~ itself. 

Yule's two measures are strictly increasing when ~ increases •. 

Let us now define what we mean by positive and negative association 

between A and B in the table (24). 

Definition 3. If ~ > 1 (p11E22 > p12R21 ) we say there are posi-

tive association (p.a.) between A and B. If ~ < 1 A and B 

are negative associated (n.a.)o 

Some properties on Yule's two measures: 

(i) 

(ii) 

(i.ii) 

- 1 

for 

d. 
1. = 

d. 
1. 

d. 
1. 

< d. 
1. .::: 1 ' and d. 

1. 
> 0 if p.ao, 

.i = 1_,2 • 

0 <=> Exact independence 

assumes the value -1 when p11 =O 

assumes the value +1 when p12 =O 

d. 
1. 

< 0 if n.a.; 

or p22 = 0, for i = 1 ,2. 

or p21 = 0, for i = 1 ,2. 
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If we are not interested in the direction of dependence, but only 

in the degree of association, we can use one of the measures 

d~, d~ or p2 • 

Triii. 2. An alternative measure of association. 

It can of course occur situations where other measures than 

those based on ~ can be applicable. Here we mention one: 

Kendall's rank correlation coefficient: 
. :P11P22- P12P21 

Tb - JP_,_P2.P.1P.2. 

or T2 
b if we are only interested in the degree of association. 

(For other measures see [2] and [6].) 

IX. CONCLUDING CO:MI1ENTS. 

As we have seen, most of the measures constructed from a given 

model have the property of being zero if there is no association 

relatively to the relevant features of association the measure is 

constructed for, even if other types of association possibly are 

present. This is what we had to expect, since we sharpen the 

''definition 1i of association in the different cases. Notice that 

for all situations, except VI, exact independence will imply that 

the measure is zero. 

Finally we will again, as in I.2., strongly emphasize that when 

determining a measure of association for a given contingency table, 

one shoulc choose that measure which gives the best information 

about the interesting features of association. 
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PART TWO: 

TESTING ALMOST INDEPE1illENCE 

\ 
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I. INTRODUCTION. 

I.1. Some practical problems in larger investigations. 

On testing for independence in a two-way contingen~J table it 

has been customary to uwe a chi-sguare test on the hypothesis of 

exact independence. As mentioned in part one, it is well known 

that when the number of observations is large the power of the chi­

square test is so high that the hypothesis describing exact inde­

pendence nearly always will be rejected. At larger investigations, 

say in the Central Burea~ of Statistics of Norway in Oslo, the pur­

pose of using tests for independence can be to decide which tables 

that are to be published from the investigation. . If two factors 

are not associated, the value of the corresponding two-way table 

is too little to be published, because one can then be content with 

the marginal distribution for each factor's classification. Because 

of the high power of the chi-sguare test it is then not suitable as 

an assitance for setting up the tables in a large investigation. 

As mentioned in part one, one should instead accept independence 

even if the factors are only almost independent, by which we mean 

that the degree of dependence is not materially signigicant with 

respect to the subject investigated. 

This problem can be solved by extending the exact hypothesis to 

include cases where the degree of association is less than a certain 

limit, and thereafter develop tests for the extended independence­

hypothesis. 

Let us first give an ecample to show how the classical test can be 

less suitable for the purpose described above, when there are many 

observations. 
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Example 1_,_ from [ 15). 

We shall examine if there was significant association between 

participation and occupation at the Starting elections in Norway 

in 1969. The number of persons being interviewed was 2702D There 

are eight occupational groups. With participation we mean whether 

the intervievJ-object has voted or not (according to the object's 

own statement). ~ne result is given in the table below .. 

Table 1 .. 

0 t• 11 

~ I I I 
I 

t I I 
1 

I 
2 3 4 5 6 7 8 Total 

I 
I 

I I 
I 

Voters I 169 '141 429 618 45 268 753 16 2439 

I 
r.N"on-voters I 19 16 43 56 I 14 36 75 4 263 

Lal I '188 '157 472 674 59 304 828 20 2702 

Source: [15], table 17 and 19 

For each occupational group we can calculate the relative frequency 

that voted/not voted. It gives the following table: 

Table 2. 

Occupational group Voters Non-Voters Number of res·nondents 

1 o.go 0.10 188 -
2 o.go 0.10 '157 
3 0.91 o .. o9 472 
4 0.92 0.08 674 
5 0.76 0.24 59 
6 0.88 0.12 304 
7 0.91 0 .. 09 828 
8 0.80 0.20 20 

All occupations o.go 0.10 2702 
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· It seems likely to believe that the dependence between occupation 
and participation is very little. (There are few observations 

from the occupational groups, 5 and 8, which shows significant de­

parture.) However, the usual chi-square test rejects the exact 

independence-hypothesis for significance levels greater than 0.005. 

The test gives therefore a result in contradiction to what we find 

reasonable by inspection of table 2 above. (We shall later see 

that the new tests proposed in this paper will lead us to accept 

the independence hypothesis.) 

I. 2. The multinomial situation. 

The situation given below covers several of the cases where a 

chi-square test usually has been used, for instance 

a) Testing of goodness of fit for a specified distribution to 

certain variables. 

b) Testing of independence between two factors. 

As mentioned earlier, we are particularly interested in case b). 

We consider the following situation: A sequence of n independent 

trials is executed. At each trial one and only one of r charac-

teristics 

can appear with probabilities 

where 

Let x. 
J. 

be the number of appearences of .A. 
J. 

in the sequence, and 

let qin = Xi/n , for i = 1, ••• ,r • 

A priori we assume that the probabilities p1 , ••• ,pr are unknown, 

and p. > 0 for i = 1, ••• ,r. 
l 

The general hypothesis to be tested is 

H :p. =cp.(e) 
0 J. J. 

for i = 1, ••• , r (1) 
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and 0 includes a non-degenerate 

interval of a m-dimensional real space ~ • 

Each function cp. 
~ 

is assumed to have continuous partial derivatYes. 

The number of observations n is assumed to be large. 

Further the matrix M = (cpii ::! } of order r x m is of rank m 

at the true value of 8 • Let e = (e1 , •• em) be an efficient esti­

mator of e in the sense of Rao ([16] po285), and let 

r (X.-ncp. (9))2 
2:: ~ ~ 

i=1 ncpi(e) 
z = (2) 

The asymptotic distribution of Z is x2 with r - 1-m degrees 

of freedom (Rao [16] p.325). 

Let us in addition to the above conditions assume that for o > 0 

there exists e > 0 such that 

inf 
le-eol>o 

(3) 

where 9° is the true value of e and le-e 0 1 is the distance 

between e and 8° • 

We then have that the maximum likelihood (m.l.) estimator S is 

efficient and can be used in (2). For this result we refer to Rao, 

([ 16 J p • 296 ) • 8 is the value of e which maximizes 
r q. 

[ n cp. ( 8) ~n]n. 
i=1 ~ 

With approximate level e we now reject H0 when 

Z > z(r- 1 - m, e) (4) 

where z(r- 1 - m, e:) is ( 1 - e )-fractile in the chi-square distri­

bution with r- 1 - m degrees of freedom. This test is called the 

chi-square test for goodness of fit. The approximation to the chi­

square distribution is usually applicable when ncpi(e) ~ 5 for 
i = '1,2, ••• r • 
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Let us consider case b). The situation is described in part 1, 

ch.II, and we have a multinomial sequence of trials with v•w 

categories. The exact independence hypothesis is 

H: P· · = P· P · lJ J.. ·J 
for i = 1, ••• v and j = 1, •• w (5) 

We see that the hypothesis (5) has the same form as (1), with 

8 = (p1 _, •• Pv_1 _,P_ 1 , ••• ,p.w_1 ) and m = v+w-2. In this situ­

ation the conditions above are satisfied and the m.l. estimators 

for 8 are efficient and equal to Xi./n and X. j/n for p. and 
J.. 

p . respectively. 
·J 

Hence, from (2) we have that 

X. X . 2 
v W (X: • . -n....k.o~) 

z = I: I: lJ n n 
i=1 . 1 xi x . 

J= n•-.:..~ 
n n 

= n( 
2 v w x .. 

I: I: J.,] - 1) 
i=1 j=1 x. X .j J.. 

is approximately chi-square distributed with (r-1)(w-1) degrees 

of freedom. The chi-square test for H now becomes 

Reject H when Z > z((v-1)(w-1),e) 

I.3. Statistical hypotheses as idealized theory of nreality'! 

(6) 

(7) 

As mentioned earlier it seems that, where the data sample is 

extensive the chi-square test nearly always reject the exact inde-

pendence-hypothesis. 

We will now look further into this matter. 

There are many situations where the mull-hypothesis only can be 

expected to be approximately true. In such situations one can say 

the statistical hypothesis is an 1'idealizing of reality'', and will 

therefore be called an idealized hypothesis. An idealized hypothesi$ 

is then a hypothesis that cannot be expected to be exact true. Such 

a situation occur, for instance, usually when we test whether some 
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gariables are normally distributed. Often it also seems reasonable 

to believe that two factors can be almost independent, but not ex­

actly independent. If this is the case it can explain, to a certain 

extent, why the usual independence test rejects the exact hypothesis 

for large n • 

Before looking closer at this, let us consider the following general 

situation. 

Let Xn be a random variable with distribution depgnding on n 

and on a parameter 8 which apriori lies in a set 0 • Let 

w0 c 0 represent an idealized hypothesis as described above. 6 is 

a test for 

H . 0 • (8) 

with critical region Tn 

Definition 3. 6 is called consistent if P8(Xn E Tn) -*1 as n-* CD 

for all 8 E 0 - w • ----------o-
It is readily shown that the chi-sguare test (~) for the hypothesis 

(1) is consistent. Especially the chi-sguare test for the exact 

independence hypothesis is consistent. This leads to the fact that in 

a very large sample, small and unimportant departures from the hypo­

thesis (1) are almost certain to be detected. If then the hypothesis 

is an idealized hypothesis, the chi-sguare test will reject it nearly 

always when there are many observations. This of course is not a 

particular feature of the chi-sguare tests, but will apply to any 

consistent test for an idealized hypothesis. 

When testing an idealized hypothesis we are generally interested in 

rejecting the hypothesis only when it is considerably wrong. This 

is, as mentioned in I.1., the case when we test for independenceo 

The usual test for independence will however as we have given an 
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example of, reject the exact hypothesis even in cases of almost 

independence. 

One way of avoiding this difficulty, suggested by Hodges jrs & 

Lehmann, [9], is to extend the region of hypothesis to include situ­

ations close enough to the hypothesis so that the difference is not 

materially significant with regard to the specific problem we are 

investigating. 

Let us in this connection turn back to the general situation with 

the idealized hypothesis (8). The extended region of hypothesis is 

represented by the set w1 ~ w0 • If we know 8 E w1 we will still 

accept the idealized hypothesis H0 • Let 6' be a test for the 

extended hypothesis 

The significance level of the test will be 

the power function of o' • 

max ~(8) 
8 E w1 

where ~(8) is 

What we are doing is to keep the power under a level ~ in situa-

tions unsignificantly different from H0 which means that 

max S(8) < ~ • For consistent tests (for H0 ) the power will converge 
9Ew1 -
to 1 as n .... o:::> in the set w1 - w0 • 

Following the idea of Hodges jr. & Lehmann [9], one way to extend 

the region of hypothesis is to introduce into the parameterspace 

a measure, say b. ( 9) , of the 11 distance \i of 8 from H0 reflecting 

at least roughly the materiality of departures from H0 

then defined as the set of 8 for which b.(9) does not exceed a 

specified value b.0 The choice of b.0 will present problems 

similar to those encountered in choosing the alternative at which 

specified power is to be obtained. 
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I. 4. The independence· pro':)lem. 

We will treat the exact hypothesis of independence as described 

in I.4., that is, we intend to enlarge the exact hypothesis to si­

tuations indicating almost independence (abbreviated a.i.). 

As Hodges jr. & Lehmann suggest we are going to do this by means 

of a measure for the 11 distance" to the true parameter point from 

the exact hypothesis of independence. This will then be a measure 

for degree of association. The extended hypothesis is then defined 

to be the set of parameters for which this measure does not exceed 

a specified value c • The first problem to handle is to choose a 

measure of association. This is done in part one. We are thus 

left with two problems to be considered in this part. 

(a) Extension of the region of ~ypothesis 

This extension will of course depend on the measure of associ­

ation that is chosen for the actual situation. 

(b) Development of tests for the extended hypothesis satisfying 

at least approximately a given level a • 

Besides proposing tests for almost independence we shall in 

chapter III develop confidence intervals for the various measures 

of association mentioned in [5]. Also in chapter III we discuss 

natural extensions to a.i. for the most important measures. First, 

however, we consider in chapter II the problem (b) for general ex­

tended hypotheses in the multinomial case. The conditions given in 

I.2. are assumed to hold in II. The theory developed in chapter II 

will be applied to testing and interval-estimation for measures of 

association. A three-decision procedure for the problem is also 

considered. 
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II. TESTS FOR EXTENDED HYPOTHESES. 

II. 1. General case. 

II.1. (i) The main theorem. 

Consider a multinomial sequence of n trials with r classes 

described in I.2. The following notations will be usedo 

Xn E X : Xn converges in distribution to X • 

p 
~ -+ X: Xn converges in probability to X .. 

x(p) upper p- fractile in N(O, 1). 

z(k,p) upper p- fractile in x2 (k) where x2 (k) denotes the 

chi-square distribution with k degrees of freedom. 

~(x): the distribution function for N(0,1). 

Let now d be a function in r variables admitting continuous 

partial derivatives of the first order. Let further 

where 

and 

2 r 2 
ad= 2: p.(a. -a) 

. 1 ~ ~ 
~= 

a(p) = 
r 
l: a.p .• 

. 1 ~ ~ 
~= 

for i = 1, ••• ,r , 

Consistent estimators (called C-estimators) for d(p) 

are given by respectively 

and 
r .... .... 2 
l: q. (a. -a) 

. 1 ~n ~ 
~= 

where 

X./ q = ~ n in and 

(9) 

and 

(10) 
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a. = a. (g ) 
J. J. n 

The main result for our problem can now be stated as follows. 

THEOREM 1. Assume crd > 0 , i.e. there exists an i such that 

(11) 

Then 

D 
... N(0,1) D 

... N(0,1) • 

To be able to prove the theorem we need a result which follows 

from Rao ([16], p.321). 

LEl'1MA. 3. Le·t; Tn be a k-dimensional statistic (T1n, ••• , Tkn) 

such that 

,[n_(Tn-8) = {,[n_(T1n-e1 ), ••• ,.[n(Tkn-ek)} ~ Nk(O,L:) 

where L: is a covariance-matrix with elements a. . ( 8 ) • Let further lJ 
g be a function of k variables with continuous partial deriva­

tives of the first order. Then 

provided v(S) ~ 0 where 

k k ~ 
v(S) = L: L: a .. (8) ::. 8 

i=1 j=1 lJ u i §~. 
J 

• 

2) If CJ • • 
lJ is a continuous function of 8 and v(8) I 0 then 
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Proof of theorem 1. 

Let p = (p1 , ••• ,pr) 

We define the following r-dimensional random variable: 

Un = (U1n, ••• ,Urn) where 

u. 
~n 

r 1 
= "l 0 

if i'th characteristic 
otherwise. 

appear in trial number n. 

E(U. ) = p., var(U. ) = a .. (p) = p. (1-p.) and cov(U. ,U. ) =a . . (p) 
~n ~ ~n ~~ ~ ~ ~n Jn ~J 

= -p. p .• 
~ •• J 

are independent identically distributed 

(i.i.d.) random variables with expection p and covariancematrix 

L: = {a . . (p) } • 
~J 

Further we see that u. 
~ 

1 n X. 
= - t u.k = -1:. = q~ , 

n k=1 J. n J.n 

From the multivariate central limit theorem for i.i.d. random vari-

ables (see for example Rao [16], 2c.) it follows that 

.[ncun-p) = .[ncgn-p) = c[n.Cg1n-p1),_,;;;.cgrn-pr)) E Nr(O,L:). 

The conditions in lemma 3 are now fulfilled with Tn = gn, 8 = p 

and g = d. In addition we find that 

r r od od r 
v(p) = L: L: a . . (p ):r-- • :;:- = L: 

i=1 j=1 ~J upi upj i=1 
2 p . ( 1-p . ) a. - L: p . p . a. a . 

~ ~ ~ ilj ~ J ~ J 

Simple calculation gives 

\) (p) = 
r ( -)2 2 
L: Pi ai-a = ad 

i=1 
Since ad > 0, we have v(p) > 0 • 

Then, from lemma 3 : 

1) ~(~-d)jad ~ N(0,1) • 

In addition a .. 
~J 

is a continuous function of p so that lemma 3-2) 
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can be applied, giving 

Q.E.D. 

Let us assume that d(x) E [M1 ,M2J for xES= {(p1 , ••• ,pr )l 
p . > 0 ' l:p . = 1 ) • 
~ ~ 

Then it is seen that condition (11) in theorem 1 implies 

d(x) E (M1 ,1'12 ) , x E S • Especially if d is non-negati v, ( 11) 

implies that d(p) > 0 • 

II.1. (ii). The N-test for an extended hypothesis. 

We return to the problem of extended, approximately idealized 

hypotheses. Since ~pi = 1 , the point p = (p1 , ••• ,pr) lies on 
l. 

a hyperplane in the r-dimensional euclidean space. The standard 

hypothesis can be formulated as follows (see [9]). 

H : p lies on a specified surface C • 

(Usually this will be an idealized hypothesis as defined in I.3.). 

Instead of testing H , we are interested in testing an extended 

hypothesis that p lies in a region close enough to C such that 

C 11 almost is true" • 

Let now d be a non-negativ function of p, considered as a 

measure of the distance to p from C • 

In the contingency table, d is a measure of association. A. natural 

assumption should then be: d(p) = 0 <==> p E C • Unfortunately as 

shown in part 1 this is not true for a number of measures of asso­

ciation. On the other hand we will always have p E C ==> d(p) = 0 , 

where C now denotes the exact hypothesis of independence. 

We must assume in order to use theorem 1, that d possesses con-

tinuous partial derivatives of the first order. The extended hypo­

thesis can now be formulated as follows. 
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H* : d(p) :5. c (13) 

Here c is chosen so that 11 H is almost true'' under H* • We pro-

pose the following test, called the normal-test (N-test), for 

H* : Reject H* when 

(14) 

The powerfunction ~n(p) for the N-test has the following asymp­

totical property: 

Proof. 

a) d(p) = c • 

.{ncd.n-c) 
lim ~ (p) = limP ( S > x(a.)) = 1- ~(x(a.)) = a. 

n n ... co P d 

from theorem 1. 

b) d~£) < c 0 

d is continuous giving "' p 
dn ... d(p) which is equivalent with 

"' 
= { 

1 if X< 0 
lim P(~-d> x) 

0 if X> 0 n ... co 

This gives 

0 < lim !3n(p) < lim P (d -c>O) = lim P (d -d> c-d) = 0 • 
n ... co n-tco p n n ... co p n 

cJ d(p) > c • 

Sd is a continuous function in qn implying 



- 41 -

We therefore have: ,.. 
d -c p d-e 

vn 
n 

= ---s- _. -=a> 0 . 
d crd 

Let yn = fnvn • V -a (Yn-fna)/ F D 0 • = _. 
n 

Let now 0 < e < a , and b = a - e: • 

(Yn-{n a)/ J;;. >-e: <=> Yn > {nb which imply 

lim P(Y > {nb) = 1 • 
n.-.oo n 

Since b > 0 the result follows. 
Q.E.D. 

By applying theorem 1 we can construct confidence intervals for 

a chosen measure d(p) with confidence level equal to 1 -a. asymp­

totically. Assume that M1 < d(p) < M2 and that crd > 0 • From 

theorem 1 

A confidence interval for d(p) with asymptotic confidence level 

equal to 1 - a. is hereby given: 

min (15) 

In the next shapter we shall consider two-way contingency tables. 

Usually then M1 is equal to 0 , but situations where it is na­

tural to separate between directions of association will occur fre-

quently. In such cases the measures can take negative values. 

They will vary from - 1 to 1 • Onesided confidence intervals for 

positive d(p) is deduced from the following equality: 

(dn-d) 
lim PC,{n' 8 < x(a.)) = 1- a. , 

n-+oo d 

which gives a (1-a.) confidence interval of the form 
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,. sd 
d(p) E (max (O,dn - J'if! x(a.)), M) 

if d(p) < M. 

Let now k(qn) = dn - Sd x(a.)/~ 
For c < k( qn) , the hypothesis 

H* : d(p) _::. c 

and assume 

will be rejected by N-test at level a. , since 

c < k(qn) < > {r: (dn-c)/Sd > x(a.) • 

k(q ) > 0 0 

n 

In other words, the set (d < k(q )} , is the maximum extended 
- n 

(16) 

region of hypothesis that will be rejected when observing qn • 

If then k( q ) < 0 then all hypotheses H : d(p) _< c , c > 0 is 
n -

accepted (at level a. ) • 

II. 2. A special case. 

Under certain conditions we can apply the theory from Neyman 

([14], ch.4) on the hypothesis 

H' : d(p) = c • 

Let us assume that the distance measure d is given. To use the 

theory of Neyman it is sufficient (it seems likely to believe that 

in view of the theory in II.1. it is not necessary), to find 

e1 , ••• ,er_2 and functions f 1 , ••• ,fr such that 

In addition the functions 

vatives of second order. 

for i = 1, .... , r (17) 

f. must have continuous partial deri­
~ 

This is the case that Hodges jr. & Lehmann, [9], consider, though 

it seems that they have not been aware of the problem of finding 

such functions f 1 , ••• ,fr. For testing independence in a two-way 

contingency table we have not succeeded, with our choice of measures 
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of association, in finding e1 , .... ,er_2 so that (17) holds. 

Therefore, the theory in this section will not be used when testing 

almost independence. One of the situations where (17) is satisfied 

is the case where consists of a single point p0 
..1.. 

and d 2 is 

the euclidean distance from p0 to p • 

LEMMA 4. Let <!ill) = r o 2 
E iJ2 . .::12. . ..L.)--::•:.-_T;:;:h:::..e=..;n:.::;..._t:.:h::.;e:.:r;;..;e;......;e~Xl.=·:.;;:s;..::t;.;:s~U>~o=:.l.:::a=-r_..;;.c.:;;..o o::.;r;;;;.d;;:;;~~· -. 1 1.. 'l.-

~= 

nates) e1 , ••• ,eT_2:---an~d __ f_un __ c_t_i_o~n __ s __ ~f1 , ••• ,f~ that (17) is ful-

filled. 

Proof. 

Let 0 
l-1· =p.-p. 
~ ~ ~ 

for i=1, ••• ,r. Then 
r 

d = E 
i=1 

2 
1-1· 
~ 

r 
and E 1-1· = 0 • 

. 1 ~ 
~= 

There exists polar coordinates e,e1 , ••• ,er_2 so that we have: 

1-11 = jd sin eo 

1-12 = j'd cos eo sin 91 

0 

0 

• • 

1-lr-1 = fd cos eo cos 810 ... " cos er-3 sin er-2 

1-lr = F cos e0 cos e1 •• 0 0 cos er_3 cos 8r_2 

where - ~ < 8 < ~ so c:.- o-c: 

(*) 

Define a(e1 , ••• 8r_2 ) = sin 81 +cos 81 sin 82+ .... +cose1 ••• cos 8r_3 sinr_2 

+cos e1 ..... 8r_2 and let e = (91 , .... ,er_2 ). Assume first that 

a ( e ) f. 0 and d > 0 • 
r 

Now using the fact r. IJ.. = 0 and cos 80 > 0 we see that 
i~ ~ 

cos e0 = 1;J1+a2(e) 
(**) 
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This holds trivially when a(8) = 0, so (**) is valid for all 

a(8) and d > 0 • 

Let now f 1 , •• o,fr be functions of (d,8) given by 

f1(d,81, ••• ,8r-2) 
0 fa_ a~8) = p1 -

fl+a2c;) 

f2(d, 81,0 0. '8r-2) = p~ + .ta:(e) sin 81 
0 .. 
• • 

We see that pi = p~ + \J.i = fi (d, 8) for i = 1, ••• ,r o 

If d = 0 then pi = p~ = fi so we have 

pi= fi(d,8) , i = 1, ••• ,~ for all values of 8 and d > 0. 

Q.E.D. 

In this chapter we will assume that (17) is true and that d has 

continuous partial derivatives of second order. 

The next section gives a short review of Neyman's 

under the condition of (17) and H' : d = c • 

II. 2 (i). BAN-estimators. 

BAN-estimators 

Neyman introduced the term BAN-estimator, where BAN is an abbre­

viation of ;'best asymptotically normal" .. 

"' Definition 4. A function 8k of qn not depending directly on n 

is called a BAN-estimator of the parameter 8k if it satisfies the 

following four conditions: 

(i) 
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(iii) Let \J be another function satisfying (i) and (ii) with 

cr2 equal to the asymptotical variance of J~. \J • Then crk < cr 

"' (iv) 8k possess continuous partial derivatives with respect to 

each gin L i = 1 , ••• , r 

Neyman shows that the following three types of estimators are BAN. 

A) ML-estimator Let 

B) Ninimum chi-square estimator Sk·S = (81 ,. •• ,8r_2). i\ =fi(c,e). 

C) Modified minimum chi-square estimator 8~·8* = (8~,gg.,8;_2 ). 
p'!' =f. (c,8*). 

]_ ]_ 

In this case we have that: 

" 
r q. 

1) 8 maximizes [i~1fi(c,e, ••• ,8r-2)J ln]n 

2) -p minimizes n I: 2 the condition d(p) = c (g. -p.) /p. under ln ]_ l 

3) :p* minimizes n I: (qin-pi)2/qin under the condition d(p) = c 

A fourth type of BAN-estimator is also given by Neyman (see [14], 

theorem 5 and 6). Let p 1 = (p1 , ••• ,pr_1 ) , and let us assume there 

are 11 restrictions on p 1 , ••• ,pr_1 (in this case 11 = 1). 

Let Q = 

for t = 1,2, ••• ,11 (!1 ~ r-1) 

r 2 
I: (X. -np.) /X. 

. ..., ]_ l ]_ 
l=l 

(18) 

(19) 

Ft is assumed to have continuous partial derivatives of second 

order. Let now 

r-1 
= Ft ( q I ) + I: bt . (p. -q. ) 

n i='l ,1 1 1n 
(20) 
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where and 

Neyman shows that minimizing of Q under the linear restrictions 

leads to BAN-estimators 
r-'1 

,.. 
P· ]. 

of p. 
]. 

when p' satisfy ( '18). 

Let Pr = '1- i:'1pi • The fourth type, D, of BAN-estimators for p 

is now equal to :P = C:P"I, ••• ,:Pr) 

Let p = (p-1, .... ,pr) be a BAN-estimator of p under H' of type 

A, B, C or D , and assume that d has continuous partial derivatives 

of second order. Then we have from (['14-], lemma '12, p.268): 

LEJ.1tlA 5 Under H' . d(J2) = c : . 

x2 
r (q. -p. )2 

~ x2('1) n ~ 
J.n ]. 

= b i=-1 P· 

x2 
r (q. -p. )2 

D x2('1). and ~ 
ill ]. = n -> b i=-1 qin 

II.2 (ii). _As~totically equivalent tests for an extended h~othesis .. 

Hodges jr. & LehmruLn ([9], p.267) suggests the following tests 

for the extended hypothesis 

('17) is assumed to hold) : 

H* 
' 

(which now can be applied since 

TEST I: 

Reject H* if 

(2'1a) 

and 
r (q. -p. )2 

n " J.n .2:...._ > (,., 2"') '-' Z 1, ""' o ,.,_, 
i=-1 p. 

-]_ 

(2'1b) 

TEST II: 
Reject H~" if 

(22a) 
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and 
r (q. -p)2 

n l: ~n > z ( 1 , 2a.) • 
i=1 qin 

(22b) 

r-1 o"' 
Let 

,.. 
d (gin' • • • ' qr-1 n 1- . l: gin) ' 

cpn 
now cpn = a...YJ.d let b. (q I) =a-, J. n q. 

' ' J.=1 J.n 
for i = 1, ••• ,r-1 . BAN-estimators under H' of type D are 

obtained by minimizing Q given by (19) under the restrictions 

r-1 
~n + l: b. ( q ) (p. -q. ) - c = 0 . 1 J. n J. J.n 

~= 

r-1 
p =1- l:p. 
· r i='1 J. 

We must have q. > 0 for i = 1, ••• ,r, otherwise J.n 

(23) 

Q is undefined. 

This means that q I 

n is a inner point in the set S given in II.1a) 

and hence " " a.- a 
~ r so that the restrictions (23) are 

equivalent with 

r an + L: a. (p. -q. ) - c = 0 .1J. ~ ~n J.= 
r-1 

p = 1- l: P· r . ..., J. J.=l 

The following interesting result is now true. 

LEMMA 6 Let A 

C.i? 1-.1-! oe 2 P~J be BAN-estimator p = 

of tfRe D. 

Then 
(qin-pi)2 (dn-c)2 r 

z1 = min Q = n l: = n 
(23) i=1 gin s2 

d 

of I? under 

• 

(24) 

H' 

Note. As a result of lemma6we have, even if (17) is not explicitly 

assumed, that under H' and (11) 
D 2 z1 .... x ( 1 ) , when d has continuous partial derivatives of 

second order, which is true for most of the measures of association 

considered in part 1. 
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Proof. 
r 2 

n - n 2: (q p ) /q is to be minimized under the restric-
'CU - • • in- i in 

l='1 

tions (24). We apply the met:b.od of Lagrange and form the Lagrange 

fu_nction 
r .... r 

F(p) =Q+1,_,( 2:p.-'1)+A.2 (d + l:a.(p.-q. )-c) 
1 i~'1 J. n i='1 J. ~ J.n 

The first order conditions are: 

~F = - 2n ( q. -p. ) + A.1 + ~.28.. = 0 
Pi qin J.n J. J. 

(*) 

Now for each p p p 0 we see that 

r 
F (p) _ F (po ) > 2: oF l ( _ o ) 

i=1 opi p=po Pi Pi 

so that F is a (strictly) convex function (see [19], p.23'1) 

Then we know (['19], p.265) that a value p of p satisfying(*) 

and (24) vvill minimize Q under (24).. From ( *) : 

We 

and 

:>.1 :>.2a.. q. 
£. =CJ.· (1-~)- 2llll -" J. J.n c:.n n 

determine A.1 and A.9 so that 
L. 

A.1 A.2 ~ 
2: q. ~ = -~a => A.1 = -J.n 

A 

p 

A.2 

1 r "' 2 
~ 2: ca:.q. A./I+ a.. q. :>.2 ) = d - c 
eli i='1 J. J.n 1 J. J.n n 

se.tisfies (2L~) : 

-a 

! r ,., 2 A 

=> A. 1 a+ L> 2: q. a. = 2n(d -c) c:. . _, J.n J. n 
l=i 

(**) and (***) give 

and 

This implies the following expression of q. - p. : 
::t.n ]_ 

(d -c) q. (a.-~)(d -c) 
n2 ( - q. ~ + q. a. ) = .....;;;;J..;.;;;n___;J.~ _ _...;,;.n;;....__ 
S J.n J.n J. 

d 8d 

(**) 

(***) 
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z1 = min Q 
(23) 

r 
= n L: 

i=1 
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= 

A 2 
n(~-c) r ,. ~ 2 

4 L: g. (a.-a) = 
S i=1 ~n ~ 

d "' 2 
n(d -c) ; 82 

n d 

Q.E.D. 

It will be shown that asymptotically the eight tests I and II are 

. in a certain sense equivalent. To define precisely the notion of 

asymptotically equivalent tests, consider the general situation 

where Xn is a random variable with distribution depending on n 

and of a parameter 8 E 0 .. The hypothesis to be tested is 

against 

Let cp~ , cp~ be two non--randomized tests for H • cp~(x) is the 

probability Of rejecting the hypothesis having observed Xn = X • 

Definition 5 .. n and n 
cp1----cp.:...:2 are called asymptotically equivalent 

(a.e.) tests if for all 8 E 0 

lim P 8 (cp~ I cp~) = lim P 9 (cp~=1 n cp~=O) +lim P 9 (cp~=O n c¢~=1) = o 
n _,co n ->co n --co 

The following result will be used to show the equivalence of tests 

I and II .. 

LEMMA 7. The 2a-level tests in (21b) and (22b) for H' : d = c 

are (IPirwise) asymptotically e~uivalent. 

This result follows directly from ([14], theorem 7) and from the 

fact that if are a .. e. and the same then 

are a.e. 

LEMI1A. 8. The tests I and II for H* are as:YID..utoticall_y equivalent. 

Proof .. 

Let cp~ and cp~ be two of the tests in (21b) and (22b), arbi-
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trarily chosen. The corresponding tests for H* are denoted by 

1n d ,1,n • 
w1 an "' 2 • 

Now, 

if and only if and n cp. = '1 • 
l 

. " n n . " n n = l:r.m P(d >cficp1 ='1 n cp2 = 0/p) + l1m P(d >c n cp'1 = 0 n cp2 = '1/p) 
n-oo n n-oo n 

.s lim P(cp~ = '1 n cp~ = O/p) + lim P(cp~ =on cp~ = '1/p) = o 
n ..... 00 n-co for all p 

Q.E.D. 

2 z(1 ,2a.) = x (a.) , so the N -test is the same as test II when 

p is a BAN-estimator of type D • Hence the N-test is a.e. with 

the seven other tests in I and II under the assumption of (17). 

Let now Sk n (p) , for k = 1, ••• ,8 be the power. functions of the 
' eight tests I and II. They have the same asymptotical property as 

the power function for the N-test as shown in the following result. 

THEOREM 3. Assume crd > 0 • Then for k = '1, ••• ,8 : 

{
0 for d(p) < c 

lim ~l (p) = c.
1 

for d(p) = c 
n -+co c,n 

for d(p) > c 
--------~~----

Proof. 

Let the power 

respectively ~ '1 
n 

functions for the tests I and II be denoted by 

and !3 2 
n That is, 

'1 
\3n (p) = P C z1 > z n d. > c) p n o n 

Sn2(p) = P (z2 > z n d >c) p n o n 

where z0 = z('1,2a.) and 
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z"ln 
r (q. -p. )2 

= n I: 1n 1 

i=1 p. 
l 

and 

a) d(p) < c 
~ D 
d - d ..... 0 and c- d > 0 which implies n 

0 < lim [3ni(p) < lim P (d >c) = 
- p n n n 

"' lim P (il - d > c -d) = 
n p -n 

0 • 

b) d(p) > c 

From Neyman (['14], lemma 14) we have that 

lim P(Z. > z ) = 1 for 
1n 0 

n "' 
have that l~m P(dn>c) 

d(p) f. c • 

= 1 since 

lim s!(p) = 1 for i = 1,2. 

In this case we also 

c- d < 0 • Hence 

c) d(p) = c 

Let us return to the notations S and let !3 be the n,k S,n 
power function of test II, type D • s8 n is hence, from 

' 
lemma 6 the power function of the N-test. Therefore 

a ( ) Let now zn* = n(dn- c )2;s2d and let Zn be ~-'r,; 8 P n :::oo a. • 

aL~one of the other seven quantities in (21b) and (22b) with 

as the corresponding power function of the test for H* 
' 

i.e. !3n is anyone of !3i ,n for i = 1, .... , 7 • Now by using 

the asymptotical equivalence with the N-test we find that 

lim !3 (p) = limP (Z >z nd_ >c)= limP (Z >z n~ >cnt'>z ) .. 
n ..... 00 n n ..... 00 p n o n n ..... 00 p n o L1 n o 

and 
A A 

a. = lim s8 (p) =lim P (Z* > z n d >c)= limP (Z* >z nd >cnz >zJ. n ..... 00 ,n p n o n n p n o n n . 

Hence lim Sn(p) = lim s8 n(p) = a. • 
n n -oo ' 

Q.E.D. 
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II. 2(iii) Comments and an example. 

As mentioned earlier we have not been able to show that (17) is 

satisfied for our choice of measures of association. We will there-

fore use the N-test in that situation. It is also worth noticing 

that for applying Neyman's theory one of the requirements is that 

the distance measure d has continuous partial derivatives of sec­

ond order , while it is sufficient that d only possesses contin­

uous partial derivatives of first order to apply the N-test. (For 

testing almost independence, however, this is no problem with the 

measures in part 1.) 

Let ~s give an example, (from [9]) of choice of d for a completely 

specified hypothesis and application of the N-test. 

Let the idealized hypothesis be 
1 

H: P1 = •. • = P = -r r 

and choose d = ~ (p. - 1 )2 • This is a special case of lemma 4, 
. 1 l. r 
l.= 

so with this choice (17) is satisfied. The extended hypothesis is: 

r 1 2 
H* : 2:: (p . - -) < c • 

. 1 l. r 
l.= 

We find 
A r 2 1 
a = 2 2:: q. - 2. -

i=1 J.n r 

so the N-test is to reject H* when 

r 1 2 
L: (q. --) -c F . 1 J.n r 

n l.= > x(a.) • 
r r 2 2 1 

2[ 2:: q. (q. - L: q. ) J2 
i=1 J.n J.n i=1 J.n 

II. 3. A test procedure for a three-decision problem. 

Sometimes one can be interested in taking one of three decisions 

of the type: 
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1) Assert d < c1 or 2) assert d > c2 (c2 > c1 ) or 

3) make no inference 

A test procedure for this problem is proposed: 

1) Assert d < c1 if Jr: (~ -c1 )/Sd<-x( o.) (25) 

2) Assert d > c2 if {n (~ -c2 )/Sd > x(o.) (26) 

3) If neither (25) nor (26) is vali~ no inference is made. 

We call this procedure the N3-method. 

The N3-method has the following asymptotical property. 

THEOREM 4. Assume that ~ > 0. Then 

( a. 
limP (At least one false assertion) =lo 

n-+oo 

when d = c1 or d = c2 
otherw-ise 

Proof. Let Pa denote the probability of at least one false asser­

tion and let un = J~Cdn-c1 )/Sd and Vn = ~(dn-c2 )/Sd • 

(i) d = c1 

lim 
n 

P =lim P(U < -x(a.)) +lim P(V > x(a.)) = a.+ limP(Vn >x(a.)) 
a n n n n n 

a R d: 0 <lim P(V >x(a.)) <lim P(d >c2) = 0 .. 
n - n - n n 

Now, since 

(ii) d = c2 Completely similar to (i) we get: 

lim P = lim P(V > x(a.)) = a. • 
n a n n 

~) £1 < d < c2 

lim P a .:S. lim P(dn -c1< 0) + lnim P(dn -c2< 0) = 0 .. 
n n 

(iv) d < c1 
... 

lim P a = lim P(V n> x(a.)) ~ lim P(dn>c2 ) = 0 .. 
n n n 

(v) d > c2 
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One application of this is to the independence-problem where one 

can choose c1 and c2 such that d < c1 indicates a.i. and 

d > c2 indicates strong association. 

The usual a.i. hypothesis, d ~ c1 is suitable mainly when one is 

interested in, if possible, to establish whether there is an asso­

ciation in the table.. In cases where the interest lies in stating 

either a.i. or strong association a three-desision procedure like 

N3 will be suitable. 

III. TESTS FOR ALMOST INDEPENDENCE • 

III. 1. Assumptions and notations. 

The problems to be considered refer to the situation in a two-way 

contingency table, described in part 1, ch. II. Let q .. = Xij/n, 
~J 

x. I X ·; d ( ) T t f th qi • = ~ • n , q. j = • J n an q = q11 , ••• , qvw • .LJe ur er 

We will assume that no P·. 
~J 

is equal to zero. 

For every measure of association, d, it is in addition assumed 
*) that the following conditions are satisfied: 

(a) d has continuous partial derivatives as function of p c27 ) 

(b) There exists (r,s) such that 

The following notations for a particular measure d are used 

(if nothing else is said): 

*) Three measures suggested by Goodman & Kruskal, A, Ab' Ar 
(see part 1), do not fulLill a). There is however developed 
a similar theory for these measures in [7]. 
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v w 2 
L: L: p . . ( d . . -d * ) 

i='1 j='1 lJ lJ 

where d .. 
lJ 

od 
= op .. 

lJ 
for i = 1, ••• ,v and j= '1, .... ,w 

and 

Further 

v w 
d* = L: L: d. ·P· ·• 

i=1 j=1 lJ lJ 

" ( \ "' d = d q; ' d is the C-estimator of d 0 

The C-estimator for a~ is given by: 

v w "' " 2 
L: L: q. . ( d . . -d * ) 

i=1 j=1 lJ lJ 

v w "'2 .... 2 
= L L: q .. d . . - d * 

i=1 j ::::'1 lJ lJ 

vlhere 

,., v w "' 
d* = L: I: d . . q .. 

i=1 j =1 lJ lJ 

(28) 

(29) 

From theorem 1 we see tha,t Jnc'd-d) R N(O,ad) a~ is therefore 

called the asymptotic variance of J2a e 

At this point we like to mention that the results in Goodman & 

Kruskal, [8], for multinomial sampling over the entire two-way 
2 table is a special case of formula (28) for ad • It should also 

be said that the author did not have any knowledge of the work in 

[8], while working on this theory for measures of association. 

Theorem '1 also gives 

F ( td) E N ( 0' 1 ) 
d 

(30) 

This asymptotical proporty will be applied for testing and interval 

estimation of the measures of association given in part 1. We 

should emphasize that the major value of theorem '1 lies in the 
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fact that it finds the asymptotic variance 

As in part 1 we will deal with measures applicable to the following 

situations: 1) Ordered case - 2) Unordered symmetrical case -

3) Unordered asymmetrical case - 4) Reliability-case and 5) The 

2x2-table. 

In every case, except for 4) and 5) it is shown how the a.i .. hypo-

thesis can be determined based on the different suggested measures. 

For each choice the estimator S~ is found. Tl~e N-test for the 

a.i. hypothesis follows then from IIo 1.(ii), and by applying (15) 

and (16) twosided and onesided intervals can be given. The appli­

cation of the N-s-procedure in IIo 3 also follows directly when 

s~ is known. 

III. 2. Ordered case and the measures y 2 Tb~~ 

The three measures considered in part 1 for this situation was 

y = 

Tb = 
ll.j TTY • TTZ 

TTS-TTd 
Tc = (m-1)/m 

Here is m =min (v,w), and TT 8 , TTd' TTY and TTz are given in 

part 1 , ch. III. 2 and III. 3. 

In part 1 , chapter III.(iv) we discussed the three measures and 

found that y is the most natural and suitable measure. Testing 

for aoi. should consequently be based on y2 • An a.i. hypothesis 

will be determined later. (As mentioned earlier since y can be 

negative, we apply y2 as a measure for degree of association.) 

We recall that in III. 1. it is assumed that p .. > 0 for every 
lJ 
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i and j • This implies as shown in II that the measures vary 

in the open interval ( -1,1) • 

III. 2. (i) The asJBl;ptotic variance of 1-;{ y • 
We will now as in part 1 follow the notation of Goodman & Kruskal 

([7], p.322) b:y letting Ps = ns(q), Pd = nd(q) and Pt = nt(q). 

Let now P; = n2·Ps, Pd_ = n2Pd and Pt = n2•Pt. 

Let (~ ,Z~ (Y2 ,z2 ) and (Y3 ,z3) be three independent random vari­

ables with the same distribution as (Y,Z) (see part 1 ,ch.II). 

Define the following probabilites: 

nss = P{(Y1-Y2 )(Z1-z2 ) >on (Y1-Y3 )(Z1-z3 ) > 0} 

nsd = P{(Y1-Y2 )(z1-z2 ) > 0 n (Y1-Y3 ) (Z1-z3) < 0} 

Tidd = P{(Y1-Y2 )(Z1-z2 ) < 0 n (Y1-Y3) (Z1-z3) < 0} 

Let Pss' Psd' Pdd be the following consistent estimators for 

these probabilites: 

1 2 
p = TI (g_) = 3 }: 1:: x. • { }: }: x. 1 • 1 + 2: }: x. 1 • 1} ss ss ~J , J , J n i j i 1 >i j'>j ~ i 1 <i j 1 <j ~ 

Psd TTsd(q) 
1 2: 1C . { L: = = 3 ~ j ~J i 1 >i n ~ 

{ L: }: x. I • I 

i 1 >i "I<. ~ J 
J J 

= ndd(q) 
1 { L: pdd =- L: r:x .. 

n3 i . ~J i 1 >i J 

Let .further 

" C-estimator y for y now is 

" p s - p d p; - Pd_ 
y = p + p-d = P* + P* 

s s d 

1:: x. 1 • I 2: 2: X. 1 • 1 }x + 
j I >j ~ J i 1 <i . I<. ~ J 

J J 

+ L: }: x. I • I} 

i'<i 'I>. ~ J J J 

L: 2 }: x. I • I + }: x. I • I} 
. '<. ~ J i'<i "'>. ~ J J J J J 

The 

(31) 



The asymptotic variance 

in the following result. 

- 58 -

and its C-estimator are given 

The C-estimator can be expressed in two alternative wa~s: 

1) s2 16 2 2 = Zj: {P sp dd - 2P sp dp sd + pdpss} y 
(1-Pt) 

2) s2 n·16 {P*2P* - 2P*P*P* + P*2P* ) = 
(n2-P-t)4 y s dd s d sd d ss 

Proof. ~ne expression 1) for S~ follows immediately from cr~ • 

-2c 2 *) I The expression 2) follovrs from 1) since 1 - Pt = n n -Pt • t 

is left to show the expression for 

From III. 1. 

\ve find 

where a. .. 
lJ 

(3 • • 
lJ 

(see also 

y* = 

v w 2 
2: 2: P· .(y .. - y*) 

i=1 j=1 lJ lJ 
where oy and 

Y ij = ap .. 
lJ 

v w 
y* = 2: L: y .. p .. 

i=1 j=1 lJ lJ 

y .. = 
lJ 

4 2 {ndoa. .. -n (3 •• ) • 
(1-nt) lJ s lJ 

= 2: 2: P• I • I + 2: 2: p. I • I and 
i'>i j l>j l J i I <i . I<. l J J J 

= 2: 2: P· I • I + 2: 2: P· I . I 
i'>i j l <j ]. J i I <i . I>. l J J J 

[7], p.362). 

L~ 
v w v w 

2 {nd 2: 2: p .. a. .. -n 2: 2: n .. s .. ) 
j=1 ~ lJ lJ s . ~ lJ. lJ 

(1-nt) i=1 i=1 J=1 
= 0 
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16 2 2 2 2 {nd I:p .. a. .. +n I: p .. s .. -2n nd I: .. ~J ~J s . . ~J ~J s .. 
~J ~,J ~J 

= 16 4 { n2nd· d + nd2n - 2n ndn d} 
(1-nt) s ss s s 

p .. a. .. s .. } 
~J ~J ~J 

Q.E.D .. 

Lemma 9 is a simplification of the proof in [7]. In ([8], p.416) 

Goodman & Kruskal apply the same simplification. 

A confidence interval for y with asymptotic confidence level equal 

to 1- a. is novJ given by 

(32) 

,., 
If y :::: 1 or - 1 then s2 

y = o. Goodman & Kruskal suggests then 
,., 

the degenerated interval y = 1 (- 1 if y = -1) vJhen n is large. 
.... 

Since y E (-1,1) , lim P(y = :!::1) = 0 • Hence the probability of 
n -+co 

getting a degenerated interval will be very small for large 

For a more thorough discussion we refer to [7], p.324. 

III. 2(ii). Determination of a.i. llypothesis based on y • 

Estimation of y2 • 

n • 

When testing for a.i., the hypothesis will be that the degree 

qf association is less than or equal to a certain upper bound. This 

means that the "direction" of the association is immaterial .. 

We will, as mentioned earlier, use 2 y as a measure for degree of 

association. A criterion for a.i. is given by: 

(33) 

Choice of e must necessarily be somewhat arbitrary, since the 

notion almost independence hardly can be given a realistic precise 
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definition. However, we know from part 1 that y is a difference 

between two (conditional) probabilities. A reasonable choice of e: 

will therefore be of size 0.01 - 0.10 • It should also be observed 

that the e:-cl1oice can rest on the given situation at hand. If one 

from experience know that two factors always possess a certain de­

gree of association, then one possibly ought to choose e: somewhat 

larger than if one apriori knows the factors can be approximately 

independent. 

The hypothesis for a .. i. can now be formulated as: 

H* : y 2 :::_ c 

where c is of size 0.0001 - 0.01 • 

As a matter of course one finds the asymptotic variance of J;; .Y 2 

equal to and its C-estimator is equal to 

Hence: 
rnc22-v2) 

2121sy 
D 
-+ N(0,1) 

The N-test for H* : Reject when 

A twosided confidence interval for v2 (from (15)): 

2 ~ 2 21.Y1sv ~ A 2 21.Y1sv ~ 
y E (max (O,y -A.(; x(~)), min (1,y + Vn x("2'))) 

From (16) we get a onesided interval: 

2 h 2 21.Y1sy 
y E (max ( 0, y - fu x( ~)), 1 ) 

(34-) 

(35) 

(36) 

As mentioned in II, .Y 2 - 21vls x(~)n-t is the maximum c such 

that the hypothesis: v2 ~ c is rejected. The interval (36) tells 
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us therefore more about the strength of the degree of association 

than the result of the N-test. 

In [7] it is shown that 

a2 < 2('1-y2 )/('1-nt) (37) y-

By using the estimator for the upper bound in (37), 2('1-y2 )/('1-Pt), 

instead of S~ in (34) one gets a simple computation of the test­

statistic. In return the test becomes more conservative, that is 

·the asymptotical level will be < ~ • By using 2('1-y2 )/('1-Pt) 

instead of s2 in the two given confidence intervals the corre-
Y 

spond.ing asymptotical confidence level becomes > '1 -cr. • 

Goodman & Kruskal, [7], treats more thoroughly the use of (37) to 

construct confidence interval for y • (Notice that if we use (32) 

as starting-point, we can construct another interval for v2 • If 

the limits in (32) have opposite signs, this interval will be larger 

that (35).) 

III.2. (iii) The asymptotic variances of ji;_ :fb_an_d_£ r c~ 

The 

and 

:fb, 1' c are the a-estimators of Tb, T c • 

a-estimators ~ and s~ 

a~ of respectively .F rb 

for the asymptotic variances 

and .{nrc are given in the fol-

lowing result. 

LEMMA '10 

2 '1 2 2 2 2 v 3 Bb = (PP )3 [4PyPz(Pss+Pdd-2Psd)+(Ps-Pd) (Pz i:'lgi .. + 
z 

+ p2 ~ g3 . + 2P p ~ ~ g .. g. g . ) + 
y j='l .J y z i='l j='l l.J 1. ·J 

v w A 

+4PyPz(Ps-Pd)(Pz I: I: g .. g. (0. .. -(3 .. )+ 
i='l j=1 1 J 1 • 1 J l.J 
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v w A A 2 2 
+ Py L: L: g .. g .(a. .. -[3 .. )) - (P -Pd) (P +P ) } • 

i=1 j=1 lJ •J lJ lJ s y z 

A 

a. .. = L: L: g.,.,+ L: L: q.,.,. 
lJ i'>i j'>j l J i'<i j'<j l J 

A 

f3. . = lJ 
L: L: 

i'>i j'<j 
q.,.,+ E E g.,., 

l J i I< i j '>j 1 J 

From III. 1. Sb2 -- ~ ~ (" "*)2 LJ ~ q. • Tb . .-'T"b = v "'2 "'*2 
L: q .. Tb-'.; 'J. -Tb ' i=1 lJ ...... i=1 j=1 lJ ,l,J 

where 

P = n (q) ' Pz = nz(q) • y y 

1-* = b 

v w 
" E E q .. Tb . . ; 

i=1 j=1 lJ ,l,J• 

After some calculation we find that 

rb .. = • 1 3/2 {2(0. .. -~ .. )P p + (P -Pd)(q. p +q .Py)} • ,1,J (P p ) 1J l.J y z s 1. z .J 
y z 

This leads to 

The result for 
2 . 8£ now follows easily. Now 

,... 
A 

""* so sc:_ = E q .. T c,i,j -T 
' 

where c . . lJ c l,J 
.... 

o1" /oq .. 
m ..... ,., 

1-* 2m 
T c,i,j = = ---r 2(a. .. -[3 •. ) and = iil-1(P -P d) • c 1J m- 1J 1J c m- s 

Hence 

Q.E.D. 
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Confidence intervals with level '1- a. are given by 

.... sc a. "" sc a. 
T c E (max (- '1, T c - ...,"n x( 2)), min ( '1, T +- x( 2 ))) • 

vn c 1Jr; 

III. 3. Unordered symmetrical case and the measures Ain. 

Two suitable measures were proposed in this case (part '1,ch.IV): 
v w 
I:p. + I:p .-p -p 

• .., :Lm. • .., mJ .m m. 
A = l= I J =I 

2 -p - p 
where p = max p . 

• m j • J 
Pl·m =max p.. and similar . lJ .m m. 

J 
for Pm. and Pmj • 

v w 2 ·-'1 -'1 
2: 2: (p .. -p. p . ) (p. +p . ) 

i='1 j='1 lJ l. ·J l. ..J 
n = ~-... -~---..,......--__,.,.....-----

2 - 2: p? - 2: p2 . 
i l. j ·J 

We shall in this chapter also consider the traditional measures in 

part '1, ch. IV. 3 and the simple measures 

max !P · · - P · P · I . . lJ l. ·J l,J 
and lp. . f. 

max .:2:.J. - p . 
. . P· •J l,J l. 

A disadvantage with A compared to n is that A = 0 does not 

necessarily imply exact independence. Especially when choosing an 

a.i. hypothe3is this is an unfortunate property. It therefore looks 

like one ought to choose n as a basis for an a.i. hypothesis. 

III. 3(i) The asymptotic variances of J;: ~ and J;: ~. 
.... "" The C-estimators A and n are given by: 

v w v w 
E q. + E q .-q -q 2: X. + 2: X .-X -X 

.,.. = i='1 liD j='1 IDJ .m m. = i='1 lm j='1 mJ .m m. 
A 2-q -q =--...;__...,2,.....n--X~..;_-....,X----

.m m. .m m. 
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where qim = m~ qij, , qmj = :U:Sf qi, j , q.m = mc:x 
J 1 J 

Xim = nqim ' Xmj = nqmj ' X .m = nq.m ' xm. = nqm. • 

where 
A 1 v 2 w 2 
p1 = 2 ( L: q . + L: q- . ) 

i=1 l. j =1 • J 
and 

q . ' ·J 
q =max q. .. 
m. i 1. 

Since, by assumption, p .. > 0 lJ A and n are well-defined. 

However A does not have continuous partial derivatives as a 

function of the P· . Is • lJ On the other hand has of course con-

tinuous partial derivatives as a function of Pim , Pmj , P .. m and 

Pm. for i = 1, ••• ,v and j = 1, .... ,w. This can be utilized in 

a similar way. This was done by Goodman & Kruskal, [7). From [7] 

we have that if 

and A E (0,1) 
Pmj' 

then 

and p .m are uniquely defined 

Here the estimator for the asymptotic variance of .[n' ~ is 

given by: 

where 

L:q. 
liD 

q** = 

u* = 

q +a .m ""In. 

v w 
L: q. + L: a . 

. 1 liD . 11D.J 1= J= 

= L: L: q .. 
. lJ over all (i,j) 

i J 
that q .. vvhere q. = <Im. lJ 1 .. 

L:rq. +I:cg_ .+q* +q * · 1m · IDJ m m 1 J 

such that q .. 
lJ 

:c qim = qmj 

and q .j = q.m 

i 



- 65 -

r denotes the sum of the q. 's over those values of i for L: q. . liD liD l 
which q. 

lm 
is in the same column as q.m • L:cq . 

. IDJ 
J 

is the sum over 

those qmj such that qmj is in the same row as qm. q*m is 

that q. with q. = ~- and ~* is that qmj with q . = q • lm l. •J .m 
,. 

Now, by using theorem 1 a corresponding result is true for ~. 

LEr11'1A 11 

The C-estimator for 

the asymptotic variance of J; ~ is 

2 1 v w 1 1 ,. 
STI = "' 4{ L: _L:1qij[2qij(q-:-+q--:-)(1-P1) 

4(1-P1 ) i=1 J= .J .J 

A A ~ 2 A A A A 2 
- y •. (1-P1 )- 2(q. +q .)(1-P2 )J - 4[P2-2P1+P1P2J } lJ .l. • J 

w 2 v q2. ,.. qis 
Here is y .. = L: ~+ L:-¥ • lJ s=1 q. r=1 q . l. ·J 

Proof. 

From theorem 1: 

2 v w ,..2 *2 s = L: L: q. ·Ti· .-Tj 
~ i=1 j=1 lJ lJ ' 

We find: 

1 1 1"' 
qij Cq:- + q-:-)- 2Y ij 

l. ·J 

Hereby 

... 
aP1 

= ' oq .. lJ 

~* = 
,.. 

L: ~ • • q. . • . . lJ lJ l,J 

(q. + q . ) • 
l. ·J 

... 1 1 1 A A "' ~""} ~·. = ---... ~2 { 2q .. (-+-)(1-P1 )-y .. (1-P1 )-2(q. +q .)(1- • 
lJ 2(1-P1) lJ qi. q.j lJ l. •J 

A* 2 .A A A A } 

~ = A 2{P2-~1+~~ 
2(1-P1 ) 

The result follows. Q.E.D. 
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Twosided confidence intervals for A and 11 are given by 

A E (max "' SA a. 
min 

,.. SA a. 
(O,A -1llx (2 )), (1,A +-X (2))) vn 

11 E (max 
... s11 a. 

( 0 ' 11 - 1/ll x(2) ) ' min "' s11 a. 
(1,11+1/llxC2 ))) 

Onesided confidence intervals! 

.... SA 
A E (max ( 0 , A - C x (a.) ) , 1 ) • 

1·n 

.... s'll 
11 E (max (0,11--x (a.)),1) • 

4fll 

III. 3(ii) Determination of a.i. hypothesis based on 11. 

Consider the hypotheses 

H * . 2 • 

From III.3(ii) it follows that we shall reject 

reject H* 
1 

(~-c1) 
when ~ > x(a.) • '1/u SA 

and reject Hi when 

A 

/::' ( 11-C2) 
'1/u S > x(a.) • 

11 

H* 
1 

(38) 

(39) 

Let us assume that we have chosen 11 as a measure for degree of 

association. We wish to determine c2 in (39) such that ~becomes 

an a.i. hypothesis. In addition it is desirable that does 

not depend on the dimension v x w of the table. We can therefore 

choose c2 in the 2 x 2- table. Then we have that 11 equals 

A criterion for a.i. based on Tb is given by 

From this we determine C = s:2 
.2 u 

(40) 
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Regarding the choice of o the same problems as in III. 2.(ii) 

arise, but similar to e in (33), it seems natural to choose a 

value of 6 of size 0.01 to 0.10. 

III. 3.(iii). Confidence intervals for traditional measures. 

We shall give confidence intervals of the four measures 2 
cp ' K, 

T and C , listed in part 1, ch. IV. 3. 

Let 
2 2 

,.2 v w (q .. -g_. q . ) v w x .. 
cp = 2:: 2:: ~J ~ •• J = 2:: 2:: x.~f - 1 q. q ' i=1 j=1 ~. .j i=1 j=1 ~. .j 

and let further cr 2 be the asymptotic variance of cp 

the C-estimator of Then we have: 

LEMMA 12. 

where 

Proof. 

= 

2 v w v w 2 ~ A ~ 2 ( " ,_ A )] S = 2:: 2:: q .. (2a. .. -1..1--S .) - [ 2:: 2:: q .. 2a.. --1-1.-[3. 
cp i=1 j=1 ~J ~J ~ J i=1 j=1 ~J ~J ~ J 

,.. 1 
a. .. = ---(q .. -q. q .) 
~J q. q . ~J ~. • J 

~ •• J 

,. 

1 w 
= '"2 .2:: 

q. J=1 
~. 

(q .. -q. q . ) 
~.l ~ •• J 

q . 
·J 

(q .. -q. q . ) 
s . 

J 

1 v 
= '"2 . 2:: 

q . ~=1 

~.) ~. . ,} 
q. 

. ' 

v w ( q .. -q. q . ) 
2:: 2:: ~J ~. •J 

i =1 j =1 qi. q. j 
i.7'I' j :jS 

~ . 

2 

is 

• 
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This gives that 

(q. -q. q ) . 2 
= 0 + I: ~s 1. • s { _2q. q -q. } + 

i;ir (q. q )2 ~. .s ~. 
lo • S 

( q .-q q . ) 2 ( q -q q Cl) 2 
I: rJ r. eJ (-2q q .-q .) + rs r. eO { 2q q -2q q 

j;is qr.q.j r •• J .J (q q )2 r. Qs r •• s 
r •• s 

Hence we have 

A confidence interval for 

Let 

and the result follows. · 

2 cp is now given by: 

and 

Q.E.D. 

Confidence intervals for the measures K, T, C can now be stated 

as follows 

L1 1 

T E ({ } 2 

1 ( v -1 ) ( w-1 )' 
min 

L2 1 

(1,{ J2)) 
-vc v-1) ( w-1 )1 

L1 L2 
C E <min (v-1,w-1) ' min ( 1 'min (v-1,w-1))) 

In the next section we consider interval estimation of two quanti­

ties which are not especially suitablF:: measures of association 

(they are much too coarse), but very straight to deal with, since 

their values are easily interpreted. 
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III. 3 (iv). Confidence intervals for max lP· .-p. p -I 
i . ~J ~ ... J 

R,., = max lP .. - p. P · I . 
I • • ~J ~. •J 

~,J 

and 

R1 is not derivative and we can therefore not use theorem 1 to 

construct confidence intervals for R1 • Consider instead 

v w 2 
2: 2: (p .. -p. p . ) • 

i=1 j=1 ~J ~. •J 
D(p) = 

D has obviously continuous partial derivatives. 

It is assumed that (27b) holds. A confidence interval for D is 

hence given by: 

SD a. 
D E (max (O,D- r:::x ('2")), 

1n 
(41) 

where D = D(q) and s~ is the C-estimator for the asymptotic 

variance of F D , given below .. 

S2 v w ~ A 2 
D = 4{ 2: 2: q .. (q .. -q. q .-s.-v .) -

i=1 j=1 ~J ~J ~. ·J ~ J 

v w A A 2 
- [ 2: 2: q .. (q .. -q. q .-s.-v .)J 

i=1 j=1 ~J lJ ~. oJ ~ J 

where 

for i = 1, .... , v 

and 
v 

vj = r:1qr.Cqrj-qr.q.j) for j = 1, ••• ,w • 
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Proof. 
A A2 

By using the same splitting on D as was used on ~ in 

the proof of lemma 12 we see that 

,. oD w v 
D. . = ~ = 2 [ ( q · · -q · q · ) - 2: q k C q · k-q · q , ) - 2: qr C qrJ· -qr q J.) } 

l.J uqij l.J l. •J k=1 • 1 1 • • .K r=1 • • • 
A A 

= 2 ( q. . -q. q . - s . -v . ) 
l.J lo •J l J 

Hence the result for ~ follows. 
Q.E.D. 

The confidence interval (41) for D can now be applied to construct 

an interval for ~1 • Let c1 = c1(q) and c2 = c2(q) be respec­

tively lower and upper limit in (41). Then the following result is 

valid. 

LEMMA. 14 

a) v = w = 2 gives: c1 < D < c2 ~ i~ < ~ 1 < i~ 

b) v = 2 t w > 2 (or w = 2, v > 2) gives: c1 < D < c2 =>~< ~1 <§ 
c) v > 2, w > 2 gives: c1 < D < c2 ::::;:> ~ < ~1 < .jC;_ • 

Proof. 

a) lPij-Pi.P.jl = (p11p22 -p12p21 1 for i=1,2 and j =1,2 

(see part 1, ch.VIII) 

Hence: D = 4x2 and the result follows. 1 

b) Assume v = 2 • For w = 2 the procedure is completely ana-

loguous. \.Je have: lP, ·- p_., P ·I = IP2 ·- p2 p -I , such that 
IJ '• ·J J • ·J 

vv 2 
D = 2 2: (p, .-p, p .) 

j =1 I J I 0 • J 
and ~, =max. 1P1 .-p_., P -1 

I J J lo •J 

This implies: -> 
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c) 

and 

D < c2 => K; < c2 ' and the result follows. 
Q.E.D. 

Confidence intervals for K1 in the three different cases in 

lemma 14 are now given by (since x.1 E [0,1]): 

a) v = w = 2 

min 

where Asymptotic confidence level is 

equal to 1 - a. • 

b) v = 2 , w > ?:.J or . v > 2 _, w = 2 

D SD a. 1 
x.1 E ([max (0,--~ x(~))r2 , 

vw vw1n 
min 

Asymptotic confidence level is > 1 - a. • 

c) v > 2, w > 2 

Asymptotic confidence level is > 1 - a. • 

In all three cases the lower limit equals 

The upper limit becomes, if it is less than 1 , in case a) equal to 
c 1 c 1 1 

(~)T in b) equal to (~)T and in c) equal to C2 • 

111)'hen trying to construct confidence interval for *) 

*) x.2 is a measure which really is best suited in the asymmetrical 
situation (with B as the primary factor). 
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P·. 
x.2 = max !:.bl- p .j 

i,j Pi. •J 

we run across the same problem as with x.1 • 

construct interval for x.2 based directly on 

on the basis of the theory developed in chapter II. Therefore we 

will first conatruct an asymptotical (1- n)-confidence interval 

for 

This interval is given by 

E E 
A ~ a. ... B:E n 

(42) (max (O,E- Vn x( 2 )), E -1 -,::.::; x(~)) 
Vn 

" ~ where E = E(q) and is the C-estimator of the asymptotic 

variance for [n, E , given in the next lemma. 

2 V W q • • -q • q • A A 2 BE = 4[ 2: 2: g_ .. ( lJ l •• J- E.-F.) 
i=1 j=1 lJ q? ]_ J 

v w q .. -q. q . ... "' 2 
_ [ 2: 2: q .. ( lJ l. ·J-E.-F.)]} 

. 1 . ~ lJ 2 ]_ J 
l= J=l qi. 

vvhere 
" '7 -:; E. = q. 

]_ l. 

w 
2: (g_.k-q. g_ k)q.k 

k=1 l ]_. • ]_ 
for 

and 

" F. = 
J 

~ ,2lr __j -qr .. q. _j_ 

r=1 qr. 
for j = 1, ••• ,w .. 

A A 

Proof. By using the same splitting of E as of D in lemma 13 

and in lemma 12 we see that 
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The result follows immediately. 
Q.E.D. 

Let the lower and upper bound in (42) be denoted by 

LEr1M.A 16. 

1) w = 2 gives: K1 < E < K2 ->~<rt 'vw 2 <§ 
2) w > 2 gives: K1 < E < K2 => !!vi < X-2 <~ 

Proof .1) Let A. = lP. 1-p. p 1 ( for i = 1 , ••• , v • Since 
J.. J.. J... • 

1 1 1 1 lPij _ p .1 __ 6i P·1-p. P 1 = P·2-p. P 2 we have that 
J.. J.. • • J.. J.. • • p . • J PJ..· 

j = 1,2 , i.e. 

P·1 P·2 12-- p 11 = 1_2:.._- p 21 P· • P· • J... J... 

This gives: 

that 

2) w > 2 

J.o 

for i = 1,2,ooa,V • 

p "1 
and 11.2 = max 1.2;_- P 1 1 

J.. p. • 
J.. 

Q.E.D. 

for 

such 
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Confidence intervals for ~2 with asymptotic confidence levels 

> 1 - a. in the two cases now become (since ~2 E [ 0,1]), 

1) w = 2 

E ({ ( E ~ (a.))}t .,.n;n ( [E ~ (a.)}t)) ~2 max o 'vw- vw11'f x '2" ' ........ 1' 2 + 2"{ilx 2 

2) V>J > 2 

min 

Next we consider the measures proposed in part 1 when one factor 

is of primary interest. We shall assume for simplicity that the 

primary factor is B • 

III. 4. Unordered asymmetrical case and the measures Ab' Dt• 
The measures suggested for this situation was 

v 
I: P· - p 

i=1 l.m .m 

1-p .m 

2 v w (p .. -p. p .) 
I: I: l.J l. •• J 

i=1 j=1 Pi. 
~ = --~--------~----w 2 

1 - l: p . 
j =1 • J 

C-estimators of Ab and ~ are given by 

" T'IJJ = 

""b v 
where p2 = I: 

i=1 

v 
l: q. - q 

i=1 l.m .m 
1-q .m 

"b ""b 
P2-P1 

"n 1 -P1 
"liv 2 
I: g_ •• /q. 

j=1 l.J l.. 

v 
I: X. -X . _, l.m .m l.=l = .;;;.._...;_n----=x---

.m 

""b w ') 
and p1 = I: q'- . 

j=1 0 J 
• 
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III. 4 (i) Asymptotic variances of £~h. and £ ~_: 
All the cell-probabilities are assumed positive so Ab and ~ 

are well defined. Ab does not possess continuous partial derivati-

ves with respect to the P· . Is. 
~J 

However, from [7], we have that 

if Pim and P.m are uniquely defined and ~ E (0,1) then 

[n (~b-Ab) D 
St) .... N(0,1) 

where 

" With use of theorem 1 a similar result is obtained for ~ • 

LEr1l"'A 17 

The C-estimator for the asymptotic variance of E ~ is given by 

" 2 P· = L:(q .. /q. ) 
~ j ~J ~. • 

(Goodman & Kruskal, [7] p.354, have an error in the result for 

which they have corrected in [8].) 

Proof. 

s2 = 
ob 

v w "0 "0 2 
L: L: q .. (T) •• -T) ) 

i=1 j=1 ~J ~J 

"0 "0 
T) = L: q .. T) •• 

. . ~J ~J 
~J 

where 
" 

"0 d~ 
Tlij = aq .. 

~J 

and 
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It is readily seen that 

c:&b 
_j_ = 2q . oq. . ·J 

~J 

c.p"'b 2 u2· q .. W q .. ,2 
and - = _.:bJ..- . ,~ ( ..::!.Lq~. ) • aq. . q. 1 

~J ~. J = ~. 

This gives 

hence 

"'0 11 •• = 
~J 

1 qi. "b "'b "'b 
.... b 2 {2..:!.J.(1-P1)- 2q .(1-P,.-)- P· (1-P1)} 

(1-P1 ) qi. .J ~ ~ 

The result follows. 

We now can state the following confidence intervals 

,. sb ex. 
~ E (max (0, ~- ..,..2_ x('2')), min 

YD. 
Tests for the hypotheses 

"' 
· b R · t H* h C' (k~c3) > x(cx.) are g~ven y: eJec 3 w en ~u 

and reject 
(~-c ) 

H* when j;; 8 4 > x(cx.) • 
4 . ~ ob 

Q.E.D. 

(43) 

(44) 

Choice of c4 so that (~-) becomes an a.i. hypothesis follows 

from the criterion (40) since ~ = T~ in the 2 x 2- table, i.e. 
2 c4 = c2 = o. 
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III. 5. Reliability-case and the measures A.r and · rrk. 

We recall frompart1,ch.VI that the characteristical feature of 

this situation is that Ai = Bi for i = 1, ••• ,w • 

III. 5.(i) The unordered symmetrical case. 

The proposed measure for this situation was 

v 

where 

L P· ·-f(pM +p M) i=1 ~~ n. • 

1 - f(Pf1. +p .M) 

PM + P M = max (p · 1 +p . 1 ) • 
.n.. .J.-.1. i 1 ~ • • ~ 

In [7] it is shown that if A.r is well-defined, different from 

± 1 and PM. + p .M is unique, then 
.... 

,[r: A.r;A.r R N(O, 1) 
r 

v 

where 
L q .. - f(qM +q M) 

i=1 ~J • • 

1- f(qM. +q.M) 

and 
2 1 -2 v v 1 

S = [ 1--z ( qM +q M)] { ( 1- L q .. ) [ L q .. + 'Zj:( q'M +q M) x 
r • • i=1 ]_~ i=1 ]_]_ n. • 

q.Ml'1 is that q.. where 
]_~ 

q. + q . = qM + q M • 
~. • ]_ J:J.. • 

(45) 

(45) can be used to test hypotheses and construct confidence inter­

vals .for A.r • 

III. 5 (ii) The ordered case. 

The suggested measures was of type L p .. • 
li-jl~k lJ 
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In this case we can use exact distribution theory. Let Xk = L: X .... 
I i-j l_::k lJ 

One sees immediately thet Xk have a binomial distribution 

(rrk,n) i.eo 

for x = 0,1, ••• ,n. 

It follows easily how testing and estimation of rrk can be done 

with optimal methods. 

Theorem 1 reduces in this case to the usual central limit theorem 

for independent, identically distributed random variables. 

At last we consider the measures proposed for the 2 x 2- table. 

III. 6. The 2 x 2- table. 

Under certain reasonable assumptions on a measure of association 

in the 2 x 2-table which we stated in part 1, ch. VIII, the cross­

product ratio 

or a one-to-one function of ~ was found to be the matural choice 

of measure. We listed tl1ree measures which was one-to-one functions 

of ~ 

p = ln ~ 

2 1 - ....-:-:;rr 
~+I 

The exact independence hypothesis can in this case be e~ressed as 

As a measure for degree of association we can as mentioned in part1 

use any one of the measures or For testing for a.i. 
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it does not matter which one we choose, since a hypothesis about 

one measure will be equivalent to hypotheses about the other measures. 

For testing of d~ we refer to III.2.(ii), since d1 = y in the 

2 x 2- case. Later it will be shown that there exists a uniformly 

most powerful unbiased a.-level test for a .. i. based on p 2 • Let 

us therefore show what the a.i. hypothesis based on d = p2 is, 

and state the N-test for that hypothesis. 

III. 6.(i) Determination of a.i. hypothesis, and its normal-test. 

The a.i. hypothesis based on d can be formulated as: 

As a basis for determinating c we shall use the a.i. criterion 

(33) which now becomes: 

- e: < 6-1 < e: 
- 6+'1"-

(47) is equivalent with 

which gives that A and B are a.i. if and only if 

1-e: < 6 < 1+€ 
1+8- -1"=7 

(47) 

(48) 

It is clear that 6 and 6-1 corresponds to the same degree of 

association in onnosite directions. We see that 6 E [ 1-e: 1+€] ;f 
l:".l:' "1'+"€' 1-e: ..... 

d nl .f -1 E r1-e: 1+€] c ) . an o y ~ 6 L1+"€'1=8 , so that 48 ~s a reasonable criterion 

for a.i. Further (48) is equivalent with 

Hence 

to 

1 1-e: 1 1 1+€ n '"1"+"8 ~ n 6 < n "1-€ ~ 

c = (1 1+€)2 
n 1-e: ' and the a.i. hypothesis (46) becomes equal 
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where e is determined in (33). Below we present a table over 

c-values for some chosen e-values. 

€ 0.01 0.05 0.10 

c 0.0004 0.01 0.04 

q q 2 X X a = (ln 11 22) = (ln 11 22)2 
g12q21 x1~21 

The C-estimator S~ for the asymptotic variance of ~ d are 

given in the following lemma. 

LEMr1A. 18 

(49) 

where (50) 

(when using (49) it is assumed that no x .. 
~ 

equals zero). 

Proof. 
2 2 

Let and d* = 2: 2: p .. d ..• 
i=1 j=1 ~J ~J 

For i,j = 1,2 we have: 

d. . = 2ln b. • * ln b. , and 
~J P·. 

Hence 

o ln!:::. 
d P· . 

~J 

{ 
-1 p .. 

~~ 
= 1 

- Pij 

2 d .. = -ln b. 
~~ pii 

and 

This gives d* = 0 • 

Let a~ (p) = 2: p . . d .. 2 • 
i,j ~J ~J 

~J 

for 

for 

2 d .. =--ln b. 
~J Pij 

for i ~ j 

. 2 21 1 1 1 We f~nd: ad= 4(ln!:::.) ~+-+-+-). 
~11 p12 p21 p22 
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Now S~ = cr~(q) and the result follows. 
Q.E.D. 

From lemma 18 the N-test for H* is now given by: 

Reject H* when 
"" 
d- c ( ) ~>X a. • 
2S~d 

The condition 27 b) reduces here to assume ~ ~ 1 (p 2 > 0) • 

The theory in the next section, however, is valid even when ~ = 1 • 

III. 6 (ii) A uniformly most pmverful unbiased test for a.i •• 

Definition 6 Let H : 8 E w against 9 E 0 - w 
---~--- 0 _ _._........_ ________ 0 be the hypo-

thesis to be tested. Further, let 

Ma. = [cp J cp is an unbiased a.-level test for H J 

~he power function of a test m is called ~ Then cp ,;:;;_.;;:;;..;;......,~;;_...;;;.;;.;~.....;;;...;;=~.;;::;;.;;.;.;;;....~_..;.:-;,..;;...;..;;_..---I.;:t_=.....;;..~=.;;.;._....:. cp ...;;•;..._...-,;;~...___. 0 is a 

uniformly most_powerful unbiased (_UMPU) a.-level test for H , if 

~a. and f3 cp 
0 

( 9) > ~ (._8....::) __ f_or_al_l _ _._cp_E_Ma. __;;;an~d_9;;........;E~O--..;.;w 0 -! 

We shall now find a UMPU a.-level test for H* : (ln ~) 2 ~ c , or 

equivalently for 

H* * : - k < ln ~ < k 

where 1+€ 
k = ln "1-€ • 

Let us call this test 0 
0 

Then o will be a UMPU 
0 

(51) 

a.-level 

test for an a .. i. hypothesis based on every measure which is a one-

to-one function of ~ , and where a.i. pr. definition is given by 

(48). Especially 60 is a UMPU a.-level test for 

~-1 H :-e:<~<e:. 
0 - ~+ I -

Let X = (x11 ,x12 ,x21 ,x22 ) • We vfill use the same notation as in 
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Sverdrup, [ 18] o 

Let P0 be the distribution for X when 

X has then the following distribution P given by: 

Here is 

Let x = (x11 ,x12 ,x21 ,~2 ) • From Lehmann ([12], ch .. 4.L~) a Ul"'PU-

a.-level test 6 for H** is given by: 
0 

1 if x11 < c1 (x1 • ,x. 1 ) or x11 > c2 Cx1 • ,x. 1 ) 

60 (x)_= yi(x1.,x.1 ) if x11 = Ci(x1.,x. 1 ) for i=1,2 

0 if c1 (x1.,x. 1 ) < x11 < c2 Cx1.,x.1 ) 

where c1, c2, y1' y2 are determined by: 

To determine c. , y. , i = 1,2 we need the conditional distribu­
l l 

tion for X given the marginals. It is easily seen that 

_[ P(X11 =x11 jx1 • =x1 nx. 1 =y1 ) if 

-, x11+x12=x1 andx11+x21=Y1 
lo otherwise 

The conditional distribution of x11 given the marginals can be 

expressed as follows: 
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III •• 6 gii) . Confidence intervals for the cross-product ratio. 

Fisher, [3], proposed a method for obtaining confidence interval 

for ~ which required the solution of a quadratical equation. 

Goodman, [4], developed a simpler method for constructing confidence 

interval for ~ with asymptotical confidence level equal to '1 - et • 

We shall now show that by using theorem '1 we obtain the same confi­

dence interval as the one Goodman gives. Our method is however 

simpler than the one Goodman proposes. We assume that no 

equals zero. 

2 2 
Let ~* = L: L: P· -~- ·• 

i='1 j ='1 ~J ~J 

Then the following result will be proved: 

LEMMA 19 

where s2 is defined by (50). 

Proof. 

This implies ~* = 0 • 

Let a~(p) L: p. -~ .. 
2 ~2( .., -'1) = = ~ p . . .. . . ~J ~J . . ~J 

~,J ~,J 

Hence 

x .. 
~J 
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"'2 1 n b. ( L: X .. - ) 
. . l.J 
J.,J 

and lemma 19: 

D ... N(0,1) 

Q.E.D. 

A sufficient condition for satisfying a) and b) in III.1 is in 

this case that p .. > 0 for i = 1,2 
l.J 

and j = 1,2 • 

A confidence interval for b. with approximate confidence level 

equal to 1 -ex. is nmrJ given by: 

(52) 

This is the same interval as Goodman derives ([4], p.90). 

From theorem 1 we also have 

and since 

D ... N(0,1) • 

The following relations hold: 

" 
[-x(~) < ~:~ < x(~)} ~ [b.(1-x(~)S) < ~ < b.(1+x(~)S)} 

,. 

:> [ b. < b. < ~I( 1-x(~) • S)} '* [b.( 1-x(~)S) _:: ~ < b.( 1+x(~)S)} • 
1+x(~)S 

The function I is defined by: 

I(x) 
r 1/x 

= leo 

if X> 0 

if X< 0 

The above gives a confidence interval for b. with asymptotical 

confidence level equal to 1 - a. : 
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"' b. A a. 
b. E ( , b.I(4-Sx(2))) 

-'l+Sx(~) 
(53) 

It is easily seen that L(52) < L(53) , also when -'1-Sx(~) > 0 , 

where L(52) is the length of the interval given by (52) and the 

same for L(53) • (52) can be applied to construct confidence in-

tervals for any monotone one-to-one function H(b.) : 

a(1-x(~)S) < b. < ~(1+x(~)S) 

~ 
.... "' a. "' "' a. 

H(A-b.x(~)S) < H(b.) < H(A+b.x(2 )s) if H is strictly increasing 
in b. 

H(a+ax(~)S) < H(A) < H(~-~x(~)S) if H is strictly decreasing 
in b. • 

b.-1 ( ) For example an interval for y = 6.+1 based upon 52 would be: 

A a. A a. 
6(1-x(~)S)-1 6(1+x(2 )s)-1 

y E (max ( -1,,. a. ) , ,., a. ) 
b.(1-x(2 )S)+1 6(1+x(2 )S)+1 

(54) 

The interval (54) can also be expressed as follows: 

In the 2 x 2- table can be stated as: 

LEMI'1A 20 

Proof. 

and hence y* = 0 

Q.E.D. 
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The confidence interval (32) for y now becomes 

,. a. "' a. 
6 ~ 2~Sx( 2 ) 6-1 2~Sx(~) 

y E (max (-~ ,~- A 2 ) ,min (~ ,~+ ... 2 )) (55) 
~+1 (~+~) ~+1 (~+1) 

If Sx(~) < 1 the interval limits in (55) are equal to respectively 

26Sx(~) 
A a. 

" ... 2~Sx("2') ~-~ ~-~ --
(6+~ )2 

-+ 
(6+~)2 .... ,.. 

~+~ ~+~ 

Now let L~ be the length of interval (54) and L2 be the length 

of (55). 

LEr1I'1A 21 

Proof. The first thing we notice is that 

In addition: 

Hence: 

If Sx(~) < 1 , then 

If Sx(~) = 1 , then 

< 1 since 
A 

~ > 0 (no xij equals 0 ) • 

and a) is proved. 
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"" a. " a. ~(1+x(2)s)-1 2~(1+x(2)·S 
Then L1 = .... a. + 1 = ... a. 

L1(1+x(2 )S)+1 ll(1+x(2 )·8)+1 
Next, let Sx(~) > 1 • 

The upper bound in (55) equals 1 if and only if 

a. "-1 Sx(2 ) ~ 1 + ~ • 

The lower bound in (55) equals -1 if and only if S•x(~) > 1 + ~. 
a. "'-1 .... ( "'-1 "') Assume now that S·xC2 ) ::, 1 +max (ll , ll) = max 1+~ , 1+~ • Then 

From a): 

Now X .. 
lJ 

... a. 
L L1(1+x(2 )·S)+1 

and 2/L1 = > 1 , and b) is proved. 
~(1+x(~)·S) 

is binomial (n ,p . . ) , and by using the fact that 
lJ 

X .. -np .. 
y .. = lJ lJ. 
lJ -1fnp . . (1-p .. )' 

is asymptotically normal we find that for 

v lJ lJ 

y > 0 

P(x-:-! < y) 
lJ-

-1 
1 Y -np .. 

= P(X .. >y-) = 1-P(Y .. < lJ) _. 1. 
lJ- lJ 1 I np .. (1-p .. ) n--co 

lJ lJ 

Let now s > 0 • Then x~: < ~ for i,j = 1,2 ~ s2 < s • 
lJ ~ -

This implies that lim P( s2 < s) > 1 - lim P( U x-:-! > ~) = 1 • 
- - n i,j lJ 

This proves c) by putting s = x-2 (~) • 
Q.E.D. 

Asymptotically the interval (55) is therefore better than (54). 

A confidence interval for p = ln ~ , based upon (52), is given by: 

p E (p+ln (1-Sx(~)), p+ln (1+Sx(~))) • 

Here p 
A 

is equal to ln ~ • 

A confidence interval for p2 (from lemma 16) is given by: 
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III. 6 (iv) Confidence intervals for an alternative mea§ure of 

association. 

A measure not depending on ~ is 

p11p22- p12p21 
'Tb = 

(p'1.P2.P .1P .2yz-

or S = T~ if we are only interested in the degree of associationQ 

For testing of a.i. based on S we ~efer to III.3 (ii). In the 

2 x 2 - case one finds that (here called S~ ) can be expressed 

as follows: 

LEMMA 22 

2 A-4~2 2 2 2 2 
8s = ~ 8 £g..,1b22+g22b11+q12b21+g21b12-(g11b22+q22b11-g12b21-

q21b12) } • 

where 

~ 

~ = g1.g2.g.1g.2 

e = g11g22_g12g21 

and 

b .. =g. g .[g. g .(2-g. -q .) -g .. (g. +q .-2g. g .)} • lJ l •• J l •• J l. .J lJ l. .J l. ·J 

Proof. 

82 2 2 ~ A 2 
r:~ = l: I: g .. ((3 .. -S*) where 
f.l i=1 j=1 lJ lJ 

,.. 
... aS 
S· -=~and lJ oq .. lJ 

Let M 

"' "' 1 ·oM ,. ~ 
sij = ":2 [ og .. ~ -M ~} 

~ lJ lJ 
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~ ~ 

d~~1 = g2.g.2(q1.+q.1), ~~;2 = q1.q.1(q2.+g.2) 

~ ~ 

d~;2 = g2.q.1(q1.+q.2), 0~;1 = q1.q.2(q2.+q.1) 

The above implies: 

~ ~-2"' 
(311 = 1-l eb22 
A "-2"' 
13 22 = 1-l eb11 
A ""-2A 
1312 =- l...l 8b21 
A '"-2" and f321 = -l...l eb12 • 

The result now follows readily. 

Confidence interval for f3 : 

where 

,., 8!3 a. 
13 E (max (0, 13-Vn x('"2")), min 

cx11x22_x12x21)2 

x1 • x2. x. 1 x. 2 
• 

Q.E.D. 

Then an interval for 'T"b with confidence level > 1- a. is given by: 

(56) 

From III.2 (iii) a confidence interval for 'T"b with asymptotic 

level equal to 1 - a. is given. It is easily seen that 

::.o o'J"b 
(~- 2 ) ::. - Tb·~ • 
upij opij 

Hence the interval for 'J"b in III.2 (iii) can be expressed as 

follows: 
A 813 0, "' 813 a. 

Tb E (max(-1,b- ~ x(2 )), min (1,Tb+ ... x('2"))) (57) 
2}1"b~~ 21Tblrn 
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.... s@ a. 
= 'l"b + "' x(~) • 

21 'J"b 11(ri' 
is the length of the interval 

<-,JC;,[C;_> , and similar L2 = ~- K1 • The following lemma gives 

us some results about the relation between L* 
1 

L.EMMA 23 

(a) C > 0 => L* < 1,{Z L* 
1 2 4 1 

(b) (= 0.207) 

(c) lim P(L2* < L~) = 1 • 
n -+CD 

Proof. 

(a) We find: 

and 

Now: 
L* 

c1 > 0 ~ r~fn.> S~ x(~) '* (L~ ) 2 > 4(1+1) = 8 
2 

L* 
( 1 ) ,~ * "'(i * 

~ L* >2'V2 ~ L2 < 4 L1 • 
2 

L* 2 • 

(b) 
L* 

(....1) /1 4"'4 4A2 Cs s2 2 Ca.) L * > I ~ 'l"bn + 'J"b,Jn 13x > sX ' where . X= X 2 • 

Let 

2 

... 2C 
y = 'l"bVn and b = s13 ·x, y ~ 0, b > 0. It now follows that 

*/L* 2 2 -1 L1 2 > 1 ~ y +by-b .4 > 0 • 

~ (y-~-1 b)(y+ ~+1 b)> 0 

- y -v2 -1 b > 0 ---- il.. > V2 -1 
~ - 2 ~ b 2 • 
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(c) From (b) we now have: 

~Tn '{2 
lim P(L2 < L~) = lim PC-}- > ~ - 1 x) 

n .... co n .... co S 

T~ > 0 , so that the interval (56) has meaning only at the assump­

tion of Tb ~ 0 • In that case 

T2 p b .... 
cr~ 

"'2 
T 

= a > 0 o 

Let now yn = F s~ and let k > 0: 

"2 
T 

P(Yn > k) = P( b > :::,) .... 1 "SS "'In n-co 
since a > 0. 

v-2-1 Substituting k with 2 x and we have obtained result (c). 

Q.E.D. 

III. J. 3 examples. 

The three examples to be presented are taken from [15]. In each 

example we shall use the measures we think are suitable. 

Confidence intervals will be stated, and testing of a.i. will be 

done. As for the numerical calculations these have not been checked, 

so some reservation must be taken for the results. 

For each measure d for degree of association being considered, the 

a.i. l~othesis in the examples will be chosen equal to 

H* : d .:s_ 0.0025 

For example, if d = y 2 , then € is chosen equal to 0.05 in the 

a.i. criterion (33). 

Example 1. 

Let us first go back to example 1 from I.1. Let A be occupation. 



The eight 

A-'1 : 

A2: 

A3: 

A4: 

A5: 

A6: 

A7: 

Aa: 
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occupational groups in the table are: 

Self-employed in agriculture, forestry and fishing. 

Other self-employed. 

Wage earners in manufacturing, construction and mining. 

Other wage earners. 

Pupils, students • 

Pensioners • 

Housewives. 

Others. 

It was shown earlier the chi-square test will assert association 

between occupation and participation (factor B). When testing a.i. 

the result will be to accept independence between the factors for 

those suitable measures that are considered. Usually one will think 

of the occupational groups A1 , ••• ,A8 to hold no relevant ordering, 

so Y has nominal level. As for the characteristics 11 Voters 11 and 

;'non-voters 11 these can be considered both as ordered or not depending 

on the kind of problem one is trying to elucidate. If, for instance, 

participation is used as an indicator for the interest of the elec­

tion, it can be meaningful to say that the characterisics are ordered. 

We will then have a mixed situation. It seems reasonable to consider 

B as the primary factor, so from the considerations in part '1 a 

suitable measure in this case will be y • 

The measure for degree ·of association is then y2 , and the a.i. 

hypothesis becomes: 

H~ : y 2 ~ 0.0025 

and We find that y = 0.0'146 

Since y2 < 0.0025 the a.i. 

"2 y = 0.0002 .. 

hypothesis is accepted. This means 

that we accept that the factors are approximately independent. (The 
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expression 11 accept 11 means in this connection: ''fail to reject 11 .) 

The estimator for the asymptotic variance of [n y is: 

s~ = 5.577 

Hence we have the following confidence interval for y with asymp-

totical confidence level equal to 0.95: 

- 0.0744 < y < 0.1036 

We see that 
A s 2 

2}YI~ = 0.00133 , so a 95r~interval for Y (35) 
1/n 

becomes: 

0 < y2 < 0.0028 

The onesided confidence interval (36) with 1- a. equal to 0.95 

gets a lower bound equal to zero, which means that all extended 

hypotheses, y2 ~ c , is accepted at level a. = 0.05 • 

Let us consider the situation that arises when there is said to be 

no relevant ordering between voters and non-voters. 

B is still regarded as the factor of primary interest. The situ­

ation therefore becomes unordered and asymmetrical. Practicable 

"" measures are hence A.b or ~. We find A.b = 0 so all extended 

hypotheses based on A.b are accepted. The a.i. hypothesis based 

on ~: 

~ ~ 0.0025 

Results: 

" ~ = 0.0072 • 

Estimated asymptotic variance: S~b = 0.0525 • 

The N-test with level a. = 0.05 • Reject H2 if 
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1UC~- o.oo25) 
T~ = > 1.645 

'I SOb 

We find Til = 1.07 which means that we accept 

The confidence interval for ~ with ~ = 0.05 is given by 

0 < ~ < 0.0158 

The onesided intel~al has lower bound equal to zero, so in fact all 

extended hypotheses, ilt .:S. c, are accepted at level 0.05 • 

Finally we shall state the 

x..., =max lP· .-p. p -1 and 
I i,j ~J ~. •J 

III .. 3 (iv). 

confidence intervals for 

x.2 = max lpij- p .j derived in 
. . p. • J 
~,J ~. 

A 0 
Results: D = 0.000068 , S}) = 0.000006. 

95%- interval for n1 : 0 < x.1 < o. 009 

" E = 0.06179, 2 BE = 5.9999. 

95%- interval for x. 2 : 0 < x. 2 < 0.2776. 

It is worth noticing that in this example the choice of a.i. hypo­

thesis is no problem because every extended hypothesis is accepted 

without regard to which of the measures y , A.b or flt that are 

prefered. 

ExamRle 2. In this example the dependence between the factors in­

come and participation will be investigated. We let factor A be 

(yearly)-income and factor B participation. The number of obser­

vations in the Bureau's interview survey was n = 2702. 

The result of the survey arranged in a two-way contingency table 

was: 
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Table _2_ 

Participation 

~L::rs 
I B2 

Non-voters Total 

A1: Less than kr 10.000 400 84 484 

.A2: kr 10 .. 000-19.900 517 64 581 

.A3: kr 20.000-29.900 I 785 68 853 

.A4: kr 30.000-39.900 398 32 430 

.A5: kr LJ-0. 000-49.900 194 9 203 

.A6: kr 50.000--and more 145 6 151 

Total 2439 
I 

263 2702 
( $ 1 = kr 5. 50) 

Source: [15], table 11. 

For each income group we can compute the proportion of voters/non-

voters. This gives the following table: 

Table 4 

Income group Voters Non-voters 

.A,, 0.83 0.17 

.A2 0.89 0.11 

.A3 0.92 0.08 

.A4 0.93 0.07 

.A5 0.96 0.04 

.A6 0.96 0.04 

.All :in come groups 0.90 0.10 
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The share of voters increases with increasing income. It seems 

that there is present a certain degree of association. The question 

is if the degree of association in the table is significant. The 

usual chi-square test in I. 2. rejects the exact independence hypo­

thesis for all significance levels > 0.001 • 

We will assume a relevant ordering in B • Income establishes obvi­

ously an ordering, so the situation is ordered. v2 is herewith 

a suitable measure for degree of association. The a.i. hypothesis 

is therefore equal to H~ in example 1 : 

H* 
1 : 

We find: 

"' "'2 y = - 0. 3080 ' y = 0. 0949 

The hypothesis is rejected with level a = 0.05 if 

The results are: 

s~ = 5.329 

Ty = 3. 37. 

and 
.... sy 

21 Y I~ = O. 0274 , which gives 

Conclusion: Association between income and participation. 

95% confidence intervals for y and y2 , (32) and (35): 

-0.3950 < y < -0.2210 

0.0412 < v2 < 0.1486 

The onesided confidence interval (36) for y2 with a = 0.05 

becomes: 
A.2 > 0.0498 

I. e. that all hypotheses: v2 < c , c < 0.0498 will be rejected at 

level 0.05. 
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As in example "1 we give 95% confidence intervals for x.1 and K 2 : 

"" Results: D = 0.000529 2 SD = 0.000095 

0.0037 < x."l < 0.02"12 
"" 2 E = o. 02587 ' BE = 0.1698 

0.0293 < x.2 < 0."1439 

Exam~le 3. The association between education and partysympathy 

shall be examined. Let factor A be level of education and B 

partysympathy. The starting-point is from ["15], table 27 but we 

have withdrawn those 26 who voted, but did not specify to which 

party. In addition, the votes for SF and K are added together. 

The result of the interview survey, expressed by the cell-frequencies 

X .. , was: 
~J 

Table 5 .. 

~I E 

A"l: Primary school 
lower stage 

A2: Primary school 
upper stage 

A3: Secondary 
school 

I 

A4: Post secondary! 
school I 

and University 

Total 

SF/K 

35 I 

11 

8 

8 

62 

Source: [15], table 27. 

A 

7Lm 

322 

93 

16 

1179 

I I v Sp Kr.F. H Total 
I 

I 

72 "152 107 101 1215 

71 1103 71 171 749 

I 
44 I 39 26 97 307 

21 11 21 65 14-2 

208 305 I 225 4-34 n=2413 

In the table the following letters are used for the political parties: 

A = Labour Party 

H = Conservative Party 
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Kr.F. = Christian Democrats 

K = Communist Party 

Sp = Center Party 

SF = Socialist People's Party 

v = Liberal Party 

At each level of education we compute the portion who voted for 

the different parties. This gives the following table: 

Table 6 

Level of education SF/K A v Sp Kr.F. H 

Primary school, 
0.03 0.62 0.06 0.12 0.09 0.08 lower stage 

Primary school, 
0.01 0.43 0.095 0.14 0.095 0.23 upper stage 

Secondary school 0.03 0 .. 30 0.14 0.13 0.08 \.. .31 

University & 
0.06 0.11 0.15 0.08 0.15 0.46 postsecondary school 

All levels of education 0.03 0.49 0.09 0.13 0.09 0.18 

There can be no doubt that level of education and partysympathy 

are strongly associated. The chi-square test rejects the exact 

independence hypotheses at any usual level. 

It seems to be several alternative ways to interpret the situation 

in this example. It is quite clear that generally there is a rele­

vant ordering between levels of education. If partysympathy is 

used to indicate political direction on the scale leftorientated­

rightorientated, we might say there is an ordering between the 

parties in the forgoing meaning. In tables 5 and 6 the parties 

are ordered (subjectively judged) on such a scale. Relevant mea­

sures are ordinal measures, and y2 is hence chosen as measure for 

degree of association. The a.i. hypothesis is: 
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* 2 H1 : Y ~ 0.0025 

A s2 We find: y = 0.3720 y = 1.260 and hence 

"'2 
;; (y -~.0025) = 7. 99 

21v I sy 

Conclusion: Education and partysympathy are dependent. 

95%- confidence intervals for y and v2 , (32) and (35): 

0.3271 < y < 0.4169 

0.1051 < v2 < 0.1717 

The onesided 95%- interval (36) becomes: 

y 2 > 0.110L~ 

I.e. all hypotheses v2 ~ c where c < 0.1104 will be rejected 

at level 0.05. 

The above interpretation of the situation is of course not necessa-

rily always the most relevant one. If the given problem indicates 

that it is desirable to consider the parties without ordering, but 

still think of education as ordered, we will have a mixed case. 

It then seems reasonable to consider the situation to be asymmetrical 

with B as primary factor, so that Ab or ~ will be natural 

choices. Let us choose ~ as measure for degree of association 

The a.i. hypothesis is: 

* H2 : ~ < 0.0025 

Results: ~ = 0.0513, s;b = 0.0763 and hence 

fn'c~-o.oo25) 
= 8.71 

Conclusion: We reject (at infinitesimal levels < 0.00001) 
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Further one finds : ~b = 0. 04 30 • 

Estimated asymptotic variance: ~ = 0.4030. 

Now we get the follm'ling two sided 95%- confidence intervals for 

0.0403 < ~ < 0.0623 

0.0177 < Ab < 0.0683 

One sided 95%- intervals: 

~ > O.OL!-21 

A.b > 0.0218 

This implies that all hj'l)otheses, ~ _::: c; c < 0.0421 and all 

hYIJotheses, Ab _::: c ; c < 0.0218 is rejected. 

As a third alternative interpretation the situation is considered 

as unordered and symmetrical. Suitable measures are then A. and 11. 

Results: 

"' 1l = 0.0517 
.... 
A. = 0.0506 

s2 = 0.0742 
1l 

s2 
A = 0.2101 

One sided 95%- intervals: 

1l > 0. OL!-25 

A > 0.0353 

Two sided 95%- intervals: 

0.0407 < 1l < 0.0627 

0.0324 < A. < 0.0688 

Finally, we state 95%- intervals for x.1 and x.2 : 

0.0167 < )'(.1 < 0.1059 

0.1012 < )'(.2 < 0.6236 
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