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Summary 

Let a be an estimator of a(e) and Y a statistic 

which is sufficient and complete for each fixed value of e • 
Torgersen (1965) has stated that if a is unbiased, then it 

is conditionally unbiased, given Y , and if it is UMVU 

conqitionally, given Y , then it is UMVU also unconditionally. 

This paper provides a rigorous proof after introducing 

(necessary?) additional conditions. A principle of conditional 

inference, due to Sandved, and the UMVU-criterion are 

elucidated by the theorem. A sufficient condition for the non

existence of an unbiased estimator is derived from the theorem. 

It is suggested that statistical methods should be Judged after 

one has deleted from the sample space such events, which in a 

certain sense contain no information concerning the parameter 

(-component) in interest. 



1. Introductory remarks on an earlier result by Torgersen and 

Sandved. 

Sandved (1968) considers two observable random variates 

X and Y , possibly vectorvalued. The marginal distribution 

of Y depends on a parameter ~ , and the conditional 

distribution of X , given Y , depends on a parameter e • 

e and v may be vectorvalued, and they take on values inde

pendently of each other, i.e. (e,v) may be any point in a 

product space SXN • The parameter of interest is 0 , while 

v is nuisance. In this situation Sandved speaks of Y as 

ancillary for e , and she states as a principle that inference 

concerning e should be made conditionally, given the an

cillary statistic Y • This principle can be motivated by 

considering the experiment as being performed in two steps: 

First we observe the value of Y • This part of the experiment 

contains no information concerning the value of e , since the. 

distribution of Y depends only on v , and e takes on values 

independently of v • Next we observe X , given the value 

of Y , and from this additional experiment we can draw in-

ference concerning the value of e • Thus the value of Y 

contains in itself no information about e , but it is decisive 

for the amount of information that X gives concerning 6 • 

We want a point estimate of a realvalued parameter a(9) • 

An estimator a is unbiased if Ee va = a(e) for all (6,v) , 
' and it is a UMVU-estimator (Uniformly Minimum Variance 

Unbiased estimator) jf it is unbiased and any other unbiased 

estimata~· a* satifies var8,va* ~ var9,va- or equivalent 



- 2 -

E a*2 > E ~2 - £or all (e,v) • e,v - e,v 
Sandved (1968) states that if the ancillary statistic Y is 

also complete, then 

a is unbiased=> a is conditionally unbiased, given Y=y , (1.1) 

and 

a is UMVU conditionally, given Y => a is UMVU. ( 1.2) 

(Fraser (1956) points out that if there exists an unbiased esti

mator of the realvalued parameter b(v) , which is a function 

of Y • then it is essentially unique UMVU. (1.2) constitutes 

a supplement to Fraser's result.) We give an example where 

(1.2) is useful: 

Example 1. The intensities A1 and A2 of two independent 

poisson ~rocesses are to be compared by estimating 

e = )1/(A1+A2) , the expected number of poisson events in 

process number 1 per time unit in fractions of the expected 

total number of poisson events per time unit. One decides to 
-

observe the two processes during a time period of length ·ct 
0 

and, if necessary, to continue the observation beyond this 

period until a total number of at least m events are recorded. 

Let Xi be the number of recorded events in process no. i , 

i=1,2 • The point of time when the experiment is finished is 

not recorded, so that (X1,Y) is a sufficient statistic, where 

Y = X1+X2 • The conditional distribution of x1 , given 

Y=y , is b~l with parameters y and 9 , i.e. 
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Let N be the (unobserved) number of claims in the first time 

period of length t 0 • N has a poisson distribution with 

parameter v = (A1+A2)t0 • Y = max(N,m) , and hence the distri

bution of Y depends on (A1,A2) only through v • Suppose 

nothing is known a priori concerning the values of A1 and 

A2 , except that they are strictly positivec Then 

(e,~)E(0,1)X(o,oo) , and hence Y is ancillary for e 
according to Sandved's definition. Furthermore, since N is 

complete, Y is also complete, and by (1.2) the conditional 
A 

UMVU-estimator G:X1/Y is UMVU also unconditionally. 

The result (1.2) is of some fundamental interest, by 

characterizing a (nonvoid) class of inference problems where 

Sandved's conditioning principle is supported by the "classical" 

UMVU-criterion .. 

Torgersen presented the results (1.1) and (1.2) as early 

as in 1965 in a discussion at the Nordic Conference on 

Mathematical Statistics. Instead of assuming that Y is 

ancillary for 9 and complete, he assumed only that Y is 

sufficient and complete for v for each fixed value of e • 

Example 1 (continued). Suppose that A2 >0 and A1 ;::: a 

is known a priori. Then SE (0, 1) and v > t a/8 
- 0 ' 

and y 

is no longer ancillary for 8 • BUt still y is sufficient 

for each fixed value of e , and Y is also complete for 

each fixed value 80 c! e , since the distribution of N 

belongs to a regular Darmois-Koopman exponential family of 

distributions when ~ ~ t 0 a/6 0 .. Hence, according to Torgersen's 
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... 
version of ( 1 • 2) 6 is still a UMVU-estimator of 8 • 

This example lays open an important consequence of Torgersen's 

result, namely the existense of estimatloAproblems where the 

UMVU-criterion leads to conditional inference even if ancillarity 

considerations do not apply. 

However, the UMVU-criterion should by no means be 

considered as canonical, and the above example could as well 

be turned to criticism of this criterion: Y is an estimator of 

v , and therefore Y contains information about e when 

v ~ t 0 a/8 • Conditioning with respect to Y amounts to 

neglecting this information. 

It is interesting to note that the UMVU-property of .. 
e is no longer implied by (1.2) when v is known, since Y is 

... 
not complete then. Thus, even if e in example 1 is optimal 

(in the UMVU-sense) when v is unknown, it might happen that 

knowledge of ~ can be utilized so as to construct another 
... 

unbiased estimator which has smaller variance than 6 for 

some e • 

Torgersen gave the following proof of (1.1) and (1.2): 

A A 

(1.1): Ee,va ~ a(e) => E8 ,~E9 (aiY) - a(e) 

=>Ve[E9 (;1Y) = a(e) a.s.]. 

The last implication is due to the completeness of Y for 

each .fixed e • 
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( 1 • 2 ) : Ee , \)a* = a ( e ) =,> Ve [ E 8 (a* I Y) = a ( e ) a. s • ] 

=> Ve[E6 (a*2 1Y) ~ E6(;21Y) a.s.] 

2 "'2 
=> V(e,v)[Ee,\.la* ~ E8,\)a J • 

A carefUl examination of the statements (1.1) and (1.2) 

reveals that the concepts nconditionally unbiased" and 

"conditional UMVU-estimator" must be defined precisely and that 

further assumptions are needed to make the above proof rigorous. 

General versions of (1.1) and (1.2) are stated and proved in 

section 3. 

2. Basic assumptions and notations. 

Let X be an observable random variate, whose distri

bution belongs to a parametrized family P = { P w J wEn of 

probability distributions over the Borel class Ji in a 

Euclidean space X • Expectation and variance with respect to 

Pw is denoted by Ew and varw respectively. The parameter 

of interest is the function w : 0 ~ ® , where ® may be 

taken as the image under w of 0 • Let Y = Y(X) be a 

statistic which takes on values in the measurable space (y,S) . 

The sampling distribution of Y is denoted by P~ • We 

introduce the notation ~y = {p~fwEO , and for each e E ® we 

define~= {pwJwEw-1({eJ) and~= {P~IwEw-1({eJ) • 

If Y is sufficient for ~ , then by definition there 

exists for each A Edt a Joint version of the conditional 

probability of A given Y for all Pw in Fe , say 
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f:9 (A\ Y) • Since )( is Euclidean, we can choose the f'unctions 

P9(A\ •) such that for each fixed y , f59( .. jy) is a probability 

measure over It , viz. the conditional distribution of X , 

given Y = y , relative to any Pw in ~ • We denote 

expectation and variance with respect to Pe(o\y) by E8(•\y) 

and var8(•\y) respectively. If Y is sufficient for ~ 

for each 8 in e , we define for each y the class 

?y = a> e < ·I Y)} eEe • 

3. UMVU-estimators based on conditional UMVU-estimators • 

Let a be a realvalued .:t\.mction defined on e • We will 

now prove general versions of (1.1) and (1.2), and hence we 

assume that 

Y is sufficient and complete for ~ for each e in e .(3.1) 

Then P8(•\y) and ~ can be defined as in section 2. To make 

the proofs rigorous we shall also need one of the following 

additional (sets of) assumptions: 

(i) j3l is homogeneous, (which means that any two measures in 

Jpy are absolutely continuous with respect to each other), and 

(ii) ~ is countable, 

or 

(i) )JY is homogeneous~ (ii) a is continuous, 

(iii) e is Euclidean and hence posesses a countable 

dense subset @t , (iv) (the conditional distributions 

P8(•\y) can be chosen such that) for each y the class 

(3 .2) 
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j51 is dominated by a a-finite measure ~y 1 and the 

density f 8(x!y) = d~ 9 (xly)/dKY is a continuous 

function of e , and ( v) for each y and 9 0 we can 

find a constant c > 0 and a finite set te1, ••• ,Gkl 
k 

in 9 • such that f 9 (xl y) ~ c i~1 f 9i (xl y) for all 

in some neighbourhood (in 9) of 9 0 • ( c and 

{e1 , ••• ,ekJ may depend on y and 90 .) 

(3.3) 

e 

Lemma 3.4 Assume that (3.1) and (at least) one of the conditions 

(3.2) and (3.3) are true. Then 

A A 

Ewa ffi a[v(w)]=-~ 1!:8(aly) =g a(e) for y rf N, where N is 

a pY - nullset. 

Proof. By the rule of "double expectation" the left side of 
A 

the implication is EwEv(w)<aiY) m a[w(w)] I 0~ equivalent 

EwEeC;IY) = a(e) for all wE 'II-1cte}) and all e. Hence, 

by the assumed completeness of Y for each 9 , it follows that 

.. 
for each 8 in 9 , E8(aly) = a(e) for all y except 

(possibly) those in a ))1- nullset Ne • (3.5) 

The trouble now arizes that 9 is usually uncountable, and 

therefore the union of all exeptional sets N8 need not be 

contained in a Joy-nullset. Thus we can not conclude directly 
A 

from (3.5) that a is conditionally unbiased in the sense of 

the lemma. To solve this difficulty, as~ume first that (3.2) 
~Y1 each Ne is a 

is satisfied. Then, by the homogeneity o±W-nullset. More-

over, the countability of 3:4 impliesihat e is countable, 

and hence there is at most a countable number of distinct 



- 8-

sets Nft •. It follows that the union N = U Ne of the sets 
" 9E® 

N9 in (3.5) is a ~y-nullset, and hence the right side of the 

implication in the lemma is true. Assume instead that (3 .3) 

is satisfied. By the assumed homogeneity of JOY all No are 

l'Y-nullsets, and hence also N = u N0 is a ~Y-nullset. 
8E9' 

We now fix a y f/ N and a e E 9 and let c and 
0 

be as in (v) • Let be a sequence in 9 ' 

which converges to 
A 

la(x)jf8, (xly) ~ c 

80 • By (v) we have 

i~1 1;(x)lf6 i (xjy) for n large enough. 
n 

Considered as a function of x the right side of this inequality 
... 

is Ry-integrable, since E8 . (a! y) 
~ 

exists (and equals 

for i = 1, ••• ,k • By Lebesgue's theorem of dominated 

convergence and the assumed continuity in e of f 8 (xly) 

and a(e) it then follows that 

a(8 0 ) = lim a(9 0') = lim J;(x)f8, (xly)ctRY(x) 
n-+co n-+co ·n 

~ s;(x)fe (xly)dRY = Ee <;ly) • Since eo was an arbitrary 
0 0 

point in e , the right side of the implication in the lemma 

is true. 0 

Theorem 3.6 Assume that (3.1) and (at least) one of the 

assumptions (3.2) and (3.3) are true. Then, 
... 
a is a UMVU-estimator of a(e) with respect to ~ for all 

A2 A 

Y , and Ew a ( co for all w => a is a UMVU-estimator of 
a (*(w)] • 

A A A 

Proof. a is unbiased, since Ewa = EwEw(w)(aiY) = Ewa[~(w)] = 
a[w(w)] for all w • Let a* be any other unbiased estimator 

of a[w(w)] • Then~ by lemma 3.4, a* is an unbiased estimator 

of a(e) with respect to ~Y for all y except possibly 
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those in a pY_nullset N • By the conditional UMVU-property 

of ; we have ~e(;2 1y) ~ Ea(a*21y) for y fJ N • Integrating 
y "'2 2 

with respect to P 8 we get Ew(w)a ~ E~(w)a* tor all ~ 

such that Ewa*2 < c:o • (If ~a*2 = oo 1 this inequality is 
.... 

0 trivially satisfied.) This proves that a is UMVU. 

It is easily veri£ied that the conditions (3.1) and (3.2) 

are satisfied in example 1. Hence the conclusions in that 

example are valid. 

Example 2. The JOint density of X1 ,X2 , ••• ,Xn,Y (with 

respect to the Lebesgue measure in lR.n +1 ) is 

By integration with respect to x1 , ••• ,xn we find that 

y ~ N(~ 1 1) • As conditional distribution of x1, ••• ,xn, 

given Y=y , we can take the n-variate normal distribution 

with density 

n n , 1 } - '2 2 2 - '2 1_ - n 2 
f 2 (x1, ••• ,~ly) = (2IT) (cr +y) expl 2 (cr2 2).:r: xi • 
(j +y ~=1 

A UMVU-estimator of cr 2+y2 
1 

in this distribution is n f X~ 
i=1 ~ 

"'2 2 n 2 2 and hence cr = ni~1 xi - Y is a conditional UMVU-estimator of 

cr 2 , given Y • Y is sufficient and complete for each fixed 
2 "'2 value of cr • To establish that cr is a UMVU-estimator of 

cr 2 also unconditionally, it is sufficient to verify that 

condition (3.3) is sati€ied. Only (v) deserves a comment: 
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For any fixed cr 2 and y and e > o we have 

' Let e be the set of rationals in (o,oo) • By choosing e 

such that cr 2+e E 9' , we see that condition (v) is satisfied 
2 2 n 

with c =(~ +£+Y )2 • Hence ; 2 
02+y2 

This conclusion remains true if Tl 

is a UMVU-estimator of cr 2 • 

depends on cr 2 • We only 

require that the set of possible Tl - values includes an open 

interval for each fixed value of cr 2 • 

4. A result on the non-existence of an unbiased estimator. 

We start by modifying example 1: 

Example 3. Suppose in example 1 that one stops observing at time 

t 0 • Then Y = N is poisson distributed with parameter 

v = (~+A2 )t0 • Lemma (3.4) states that any unbiased estimator 

of e = A1/(A1+A2 ) is a.s. (~) conditionally unbiased, 

given Y • But Y = 0 is a nonnull event, and the conditional 

distribution of (X1 ,x2 ) , given Y = 0 , is the one-point 

distribution in (0,0) , which provides no (conditionally) 

unbiased estimator of e • Hence, in this situation e has no 

unbiased estimator, (and no UMVU-es~imator). 

Example 4. Let (X1 ,x2 ,n-x1-x2 ) be trinomially distributed with 

probability distribution 
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for x 1 .,:x:2 = 0~1, ••• ,n, x1+x2 ~ n, w·here n1 ,n2 > 0 and 

TT 1 +TT 2 .< 1 • Y = X1 +X2 is binomially distributed With parameters 

n and v = rr1+n2 • Given Y = y > 0 ,the conditional 

distribution of x1 is binomial with parameters y and e = 
,.1 

n +rr , a~d X1/Y is a conditional UMVU-estimator of e • 
1 2 

Conditions (3.1) and (3.2) are easily ver~fied. However, 

given Y = 0 1 the conditional distribution of (X1 ,x2) is 

concentrated in (0,0) , and hence a conditionally unbiased 

estimator of e does not exist for this value of Y ~ By the 

same argument as in example 3, we conclude that there exists 

no unbiased estimator and hence no UMVU-estimator of e • 
(It has erronously been Claimed that x1/Y is UMVU in this 

model.) 

The following theorem exposes the gist of the matter in the 

last two examples. 

Theorem 4.1. Assume that (3.1) and at least one of the con

ditions (3.2) and (3.3) are true, and that the conditional 

distributions i.59(•1y) can be chosen independently of e on 

a set in m which is not a JJY-nullset. Then a[w(w)] has 

no unbiased estimator, unless a is constant on 8 • 

The proof is a trivial consequence of lemma 3.4. 

5. Irrelevant events. A possible principle of conditioning. 

For each w E 0 and A E .1t let P w 1 A be the measure 

Pw restricted to the cr - field of subevents of A • 

A set in Jt, which is not a JO- nullset, will be called 
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irrelevant for the parameterfunction w : 0 ~ ® , or 

$-irrelevant, i~ the family {PwiAlwEv-1({ej) does not dependon e. 
Suppose A is w - irrelevant. The event X E A is 

equally likely for all values of w in the sense that the 

class of probabilities {pw(A)fwE~-1({e}) is the same for all 

e in ® • Thus the occurence of the event X E A gives in 

i tsel~ no ~ormation on IV • Moreover it follows from the 

definitionabovethat the class of conditional distributions 

{Pw(·IXEA)}wEw-1({e}) is independent of e also, so that when 

X is known to be in A , no additional information on w can 

be obtained by specifying X fUrther. Since in this sense 

the event XEA contains no information on v it seems 

reasonable to disregard A and JUdge any method for making 

inference about w after conditioning on the complementary 

event XEJC- A • However the problem arizes that there might 

be more than one w-irrelevant set. In particular, if pw 

is absolutely continuous with respect to the Lebesgue measure 

and A is W-irrelevant, then AU{x} is w-irrelevant for all 

x EX. The union o~ all ~-irrelevant sets is therefore X , 

which itself is not w-irrelevant. Examples are easily 

constructed which show that not even finite unions of *-irre

levant sets need to be w-irrelevant. Thus, when there are 

more than one w-irrelevant set, conclusions based on the 

suggested conditioning principle may depend on the arbitrary 

choice of $-irrelevant set. However, when there exists a 

w-irrelevant set A which contains all other v-irrelevant 

sets as subsets, then it seems reasonable to JUdge any statis

tical method for drawing i~erence about (only) v by 
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studying its operating characteristic conditionally, given 

X EX- A • In example 3 1 when t..1 and ~ are > 0 , 

Y = 0 is the only event which is :irrelevant for 0 • When 

Y > 0 , ~/Y is a conditional UMVU-estimator of e 1 given Y • 

Y is complete for each fixed value of e also conditionally, 

given Y > 0 • Hence, by theorem 3.6, x1/Y is a UMVU-estimator 

of e when attention is restricted to the relevant part of the 

sample space, {(x1,x2 )1X1+X2> O} • Example 4 may be commented 

likewise. 
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