# STATISTICAL RESEARCH REPORT <br> No 8 <br> Institute of Mathematics 1973 <br> University of Oslo 

ON THE WAITING TINE DISTRIBUTION OF BUIK QUEUES
by

John Dagsvik

## Abstract

The waiting time process of the $n$-th arriving group is considered for the general bulk queueing model $G I^{X} / G^{Y} / 1$.

A generalisation of Lindley's waiting time equation is established.

By a generalisation of Kingman's method [3], this equation is solved for the models $G I^{X} / E_{k}^{Y} / 1$ and $E_{k}^{X} / G^{Y} / 1$.

When the service time is Erlang distributed $\mathrm{E}_{\mathrm{k}}$, the results are applied to the case where the service- and the arrival groups are of constant size.

Key words: Wendel projection, Group Waiting time, Restbatch, Waiting time equation, Erlang distributions, Hyperexponential distribution, Stationary distributions.

1. Introduction ..... 1
2. The algebraic formalism ..... 1
3. Group waiting time ..... 3
4. The model $G I^{X} / E_{k}^{Y} / 1$ ..... 12
5. Special cases ..... 16
6. The model $E_{k}^{X} / G^{Y} / 1$ ..... 19
7. The stationary solution ..... 21
8. Introduction

In the present paper we shall assume that customers arrive in groups $C_{n}, n=0,1,2, \ldots$. The group size is a stochastic variable $X$, with probability distribution $f(0)$. The interarrival intervals $A_{n}, n=0,1, \ldots$ are independent and have the same distribution $a(0)$. The service mechanism is described as follows: At the end of a service period the server accepts $Y$ customers from the waiting line, or a smaller number if the line is shorter. $Y$ is called the service group capasity. The length of the service time $B$, has the distribution $b(0)$. We shall assume the existence of two integers $m$, $l$ such that $\mathrm{X} \leq \mathrm{l}, \mathrm{Y} \leq \mathrm{m}$.

The most general works on bulk queues seems to be those of Keilson [2], Cohen [1], Le Gall [5], Lambotte and Teghem [4]. They obtain the distribution of the queue length from which the waiting time distribution is derived. However, there exists no such results for general distributions $a(\circ), b(0), f(0)$ and $g(\circ)$. Earlier works are restricted to the case where $a(\circ)$ or $b(0)$ are the exponential distribution. Even if $b(0)$ is exponential the analysis are only limited to bulk service models (Cohen [1], Le Gall [5]).

## 2. The algebraic formalism.

Let $\Omega_{n}$ denote the set of $n \times n$ matrices whose components are finite complex measures on the Borel subsets of the real line. According to Kingman [3] the product of two measures is defined as their convolution. An operator $T: \Omega_{1} \rightarrow \Omega_{1}$ is defined by
(2.1)

$$
(\mathbb{T} \nu)(\mathbb{E})=\nu\left(\mathbb{E} \cap R^{+}\right)+\nu\left(-R^{+}\right) \varepsilon(\mathbb{E}), \quad \nu \in \Omega_{1},
$$

where $\epsilon$ is the measure

$$
\epsilon(E)=\left\{\begin{array}{lll}
1 & \text { if } & 0 \in E \\
0 & \text { if } & 0 \notin \mathbb{E}
\end{array}\right.
$$

and $\mathrm{R}^{+}=(0, \infty)$.
This operator has the property that if $X$ is a random variable with distribution

$$
\nu(E)=\operatorname{Pr}\{X \in E\},
$$

then

$$
(\mathbb{T} \nu)(E)=\operatorname{Pr}\left\{X^{+} \in \mathbb{E}\right\}
$$

Kingman shows that $\Omega_{1}$ is an commutative algebra over the complex field © with identity $\epsilon$. Furthermore, he shows that the image $\Omega_{1}^{+}$and the kernel $\Omega_{1}^{-}$of $T$ are both disjoint subalgebras of $\Omega_{1} \cdot T$ is extended to $\Omega_{n}$ by $T\left\{\nu_{i j}\right\}=\left\{T \nu_{i j}\right\}$, $\left\{\nu_{i j}\right\} \in \Omega_{n}$ and multiplication in $\Omega_{n}$ is defined in the obvious way. With $I_{n} \epsilon$ as identity it is easy to verify that $\Omega_{n}$ has the same properties as $\Omega_{1}$ except that $\Omega_{n}$ is no longer commutative. The norm on $\Omega_{n}$ is defined by

$$
\|\nu\|=\max _{j} \sum_{i}\left|d \nu_{i j}\right|, \quad \nu=\left\{\nu_{i j}\right\}
$$

The set whose elements are Fourier-Stieltjes transform of elements from $\Omega_{1}$ we denote $\hat{\Omega}_{1}$, and extend the definition to $\hat{\Omega}_{n}$ in the obvious manner.

## 3. Group waiting time.

We shall study the group waiting time process defined as follows:

## Definition 3.1

By the group waiting time $W_{n}, n=0,1,2, \ldots$ we mean the waiting time (excluding service time) of the first customer from $C_{n}$ who is taken into service.

It is convenient to work with the random variable $Z_{n}$ which is defined as the time $C_{n}$ spends in the queue until there is no one ahead, except the ones being served. If $I_{n}$ is the time interval from the instant when $Z_{n}$ becomes zero and until the last service group with customers from $C_{n}$ starts, then the sequence $\left\{Z_{n}\right\}, n=0,1,2, \ldots$ satisfies
(3.1) $Z_{n+1}=\left(Z_{n}+I_{n}-A_{n}\right)^{+}$,
with the initial condition $Z_{0}=z$. We recognize the expression above as an equation of the similar type as the waiting time equation found by Lindley [6]. However, there is an important difference: The random variables $Z_{n}$ and $I_{n}$ are no longer independent as in the model GI/G/1.

Consider now the servicing of the $n$-th arrival group $C_{n}$. Service may be performed in one or several groups. The last service group which has customers from $C_{n}$ will be called the n-th rest batch. The rest batch may be filled with customers from $C_{n}$ or there may be places available for customers from $C_{n+1}$ -

We define two random variables $T_{n}$ and $J_{n}$, as follows: If the $n$-th restbatch can accept $s$ customers and contains only $t \leq s$ customers from $C_{n}$, then $\left|J_{n}\right|=s-t$. If the $n$-th restbatch contains customers from $C_{n-1} ; J_{n}=-\left|J_{n}\right|$. Otherwise $J_{n}=\left|J_{n}\right| \cdot T_{n}$ is the number of customers which can be accepted from $C_{n+1}$ in the first service group with customers from $C_{n+1}$. We define $J_{-1}=T_{-1}$; the capasity of the initial service group.

If $S\left(T_{n-1}\right)$ denotes service time of $C_{n}$, excluding the service time of the $n$-th rest batch, we realize that $Z_{n}>0$ implies that
(3.2) $\quad I_{n}= \begin{cases}S\left(T_{n-1}\right)+B \delta\left(0, T_{n-1}\right)=S^{\prime}\left(T_{n-1}\right) & \text { when } J_{n} \geq 0 \\ 0 & \text { when } J_{n}<0,\end{cases}$
and $\quad T_{n-1}=J_{n-1}$,
since $C_{n}$ will have to wait an extra service period when $J_{n-1}=0, J_{n} \geq 0$. When $Z_{n}=0$ the first service group from $C_{n}$ has capacity $Y$ and $C_{n}$ must wait for the time $W_{n}$ before service starts, hence
(3.3) $I_{n}= \begin{cases}S\left(T_{n-1}\right)+W_{n} & \text { when } J_{n} \geq 0 \\ 0 & \text { when } J_{n}<0,\end{cases}$
and $\quad T_{n-1}=Y$.

We define matrices of distribution functions
$U_{n}(t)=\left\{U_{n}^{i}(t) \delta(j, 0)\right\}, V_{n}(t)=\left\{V_{n}^{i}(t) \delta(j, 0)\right\}, K(t)=\left\{K_{i j}\right\}$
and $H(t)=\left\{H_{i j}\right\}$
for $i, j=-(m-2),-(m-1), \ldots, m-1$,
by

$$
\begin{aligned}
& U_{n}^{i}(t)=\operatorname{Pr}\left\{z_{n} \leq t, J_{n-1}=i\right\} \\
& V_{n}^{i}(t)=\operatorname{Pr}\left\{W_{n} \leq t, J_{n-1}=i\right\}
\end{aligned}
$$

$K_{i j}= \begin{cases}\operatorname{Pr}\left\{S^{\prime}\left(T_{n-1}\right) \leq t, J_{n}=i \mid J_{n-1}=j, Z_{n}>0\right\} & \text { when } i \geq 0 \\ \operatorname{Pr}\left\{0 \leq t, J_{n}=i \mid J_{n-1}=j\right\} & \text { when } i<0,\end{cases}$
$H_{i j}= \begin{cases}\operatorname{Fr}\left\{S^{\prime}\left(T_{n-1}\right) \leq t, J_{n}=i \mid J_{n-1}=j, Z_{n}=0\right\} & \text { when } i \geq 0 \\ 0 & \text { when } i<0 .\end{cases}$

If $\mu$ is the probability distribution of a random variable $X$, $\mu^{*}$ denote the distribution of (-X) .

Let
$M_{n}=Z_{n}+S^{\prime}\left(J_{n-1}\right)-A_{n}, N_{n}=W_{n}+S(Y)-A_{n}, D_{i j}=\left\{J_{n}=i, J_{n-1}=j\right\}$.

Considering the possible events between the $n$-th and the $n+1-$ th arrival we find
(3.8 a) $U_{n+1}^{i}(t)=\sum_{j} \operatorname{Pr}\left\{\left(Z_{n}-A_{n}\right)^{+} \leq t, Z_{n}>0, D_{i j}\right\}$ when $i<0$,
(3.8b) $\quad U_{n+1}^{i}(t)=\sum_{j}\left[\operatorname{Pr}\left\{M_{n}^{+} \leq t, Z_{n}>0, D_{i j}\right\}+\operatorname{Pr}\left\{N_{n}^{+} \leq t, Z_{n}=0, D_{i j}\right\}\right]$ when $i \geq 0$,
(3.9 a) $V_{n+1}^{i}(t)=\sum_{j}\left[\operatorname{Pr}\left\{\left(Z_{n}+\delta\left(0, J_{n}\right) B-A_{n}\right)^{+} \leq t, Z_{n}-A_{n}>0, D_{i j}\right\}\right.$

$$
\left.+\operatorname{Pr}\left\{\left(Z_{n}+B-A_{n}\right)^{+} \leq t, Z_{n}-A_{n} \leq 0, Z_{n}>0, D_{i j}\right\}\right]
$$

when $i<0$. (3.9 a) can be written

$$
\begin{aligned}
& V_{n+1}^{i}(t)=\sum_{j}\left[\operatorname{Pr}\left\{\left(Z_{n}-A_{n}\right)^{+}+\delta\left(0, J_{n}\right) B \leq t, D_{i j}\right\}\right. \\
& -\operatorname{Pr}\left\{\delta\left(0, J_{n}\right) B \leq t,\left(Z_{n}-A_{n}\right)^{+}=0, D_{i j}\right\} \\
& +\operatorname{Pr}\left\{\left(Z_{n}-A\right)^{+}+B \leq t, 氵_{n}>0, D_{i j}\right\} \\
& \left.-\operatorname{Pr}\left\{B \leq t,\left(Z_{n}-A_{n}\right)^{+}=0, Z_{n}>0, D_{i j}\right\}\right] \\
& =\left(\left(b \delta(0, i)_{-b}\right)\left(U_{n+1}^{i}-\epsilon U_{n+1}^{i}(0)\right)\right)(t) \\
& +\sum_{j} \operatorname{Pr}\left\{\left(Z_{n}-A_{n}+B\right)^{+} \leq t, Z_{n}>0, D_{i j}\right\}
\end{aligned}
$$

When $i \geq 0$ the expression is more complicated;

$$
\begin{aligned}
(3.9 \mathrm{~b}) & \quad \mathrm{V}_{\mathrm{n}+1}^{i}(t)=\sum_{j}\left[\operatorname{Pr}\left\{\mathbb{M}_{\mathrm{n}}+B \delta\left(0, J_{n}\right) \leq t, M_{n}>0, Z_{n}>0, D_{i j}\right\}\right. \\
& +\operatorname{Pr}\left\{\left(\mathbb{M}_{n}+B\right)^{+} \leq t, \mathbb{M}_{n} \leq 0, Z_{n}>0, D_{i j}\right\} \\
& +\operatorname{Pr}\left\{N_{n}+B \delta\left(0, J_{n}\right) \leq t, N_{n}>0, Z_{n}=0, D_{i j}\right\} \\
& \left.+\operatorname{Pr}\left\{\left(N_{n}+B\right)^{+} \leq t, \mathbb{N}_{n} \leq 0, Z_{n}=0, D_{i j}\right\}\right]
\end{aligned}
$$

If (3.9 b) is rewritten in the same way as (3.9 a) we obtain

$$
\begin{aligned}
& V_{n+1}^{i}(t)=\left(\left(b^{\delta}(0, i)-b\right)\left(U_{n+1}^{i}-\varepsilon U_{n+1}^{i}(0)\right)\right)(t) \\
& +\sum_{j}\left[\operatorname{Pr}\left\{\left(M_{n}+B\right)^{+} \leq t, Z_{n}>0, D_{i j}\right\}\right. \\
& \left.+\operatorname{Pr}\left\{\left(N_{n}+B\right)^{+} \leq t, Z_{n}=0, D_{i j}\right\}\right], i \geq 0
\end{aligned}
$$

Since $Z_{n}>0$ implies $W_{n}=Z_{n}+B \delta\left(0, J_{n-1}\right)$, the probability of $\left\{\left(N_{n}+B\right)^{+} \leq t, Z_{n}=0\right\}$ can be written
$\left.\operatorname{Pr}\left\{N_{n}+B\right)^{+} \leq t, Z_{n}=0\right\}=\operatorname{Pr}\left\{\left(N_{n}+B\right)^{+} \leq t\right\}$
$-\operatorname{Pr}\left\{\left(Z_{n}+S(Y)+\left(1+\delta\left(0, J_{n-1}\right)\right) B-A_{n}\right)^{+} \leq t, Z_{n}>0\right\}$,
whence
(3.10 a) $U_{n+1}^{i}=\sum_{j} T\left(a * K_{i j}\left(U_{n}^{j}-\epsilon U_{n}^{j}(0)\right)\right.$ when $i<0$,
(3.10 b) $U_{n+1}^{i}=\sum_{j}\left[T\left(a *\left(K_{i j}-b^{\delta}(0, j)_{H_{i j}}\right)\left(U_{n}^{j}-\epsilon U_{n}^{j}(0)\right)\right)\right.$ $\left.+T\left(a * H_{i j} V_{n}^{j}\right)\right]$ when $i \geq 0$
and
(3.10 c) $\left.V_{n+1}^{i}=\left(b^{\delta(0, i}\right)_{-b}\right)\left(U_{n+1}^{i}-\epsilon U_{n+1}^{i}(0)\right)$
$+\sum_{j} T\left(a * b K_{i j}\left(U_{n}^{j}-\epsilon U_{n}^{j}(0)\right)\right)$ when $i<0$,
(3.10 d) $V_{n+1}^{i}=\left(b^{\delta(0, i)}-b\right)\left(U_{n+1}^{i}-\epsilon U_{n+1}^{i}(0)\right)$
$+\sum_{j}\left[T\left(a * b\left(K_{i j}-b^{\delta(0, j}\right)_{H_{i j}}\right)\left(U_{n}^{j}-\epsilon U_{n}^{j}(0)\right)\right]$
$+T\left(a * b H_{i j} V_{n}^{j}\right)$ when $i \geq 0$.

Hence we have established a set of equation for $U_{n}$ and $V_{n}$.

Iemma 3.1
(i) $K_{i j}=\left\{\begin{array}{l}f(|j|+i), \text { when } i<0 \\ \sum_{r \geq 1} b^{r} \sum_{p>0}\left(f\left(g^{*}\right)^{r-1}\right)(p+|j|) g(i+p)+\delta(0, i) f(|j|) \epsilon\end{array}\right.$ when $i \geq 0$,
(ii) $H_{i j}= \begin{cases}\sum_{r \geq 0} b^{r} \sum_{p>0}\left(f\left(g^{*}\right)^{r}\right)(p) g(i+p), & \text { when } \\ 0 & i \geq 0 \\ 0 & \text { when } i<0,\end{cases}$
(iii) $\mathrm{bH}_{i j}=\mathrm{K}_{i 0}$ when $i \geq 0$.

## Proof:

Let $R\left(J_{n-1}\right)+1$ denote the number of service groups with customers from $C_{n}$. When $J_{n} \geq 0, J_{n-1}=j \neq 0, Z_{n}>0$, $R\left(J_{n-1}\right)$ must satisfy.
(3.11 a) $J_{n}+X=\sum_{S=1}^{R(j)} Y_{S}+|j|, X>\sum_{S=1}^{R(j)-1} Y_{S}+|j|$
because

$$
\sum_{s=1}^{R(j)} Y_{a}+|j|
$$

customers are served in $R(j)+1$ groups and the rest of $C_{n}$ is served in the $n$-th restbatch. When $J_{n-1}=0$, the restbatch is complete and $T_{n-1}=Y$, so that
(3.11 b) $J_{n}+X=\sum_{s=1}^{R(0)} Y_{S}+Y, X>\sum_{s=1}^{R(0)-1} Y_{S}+Y$.

By an elementary argument

$$
\begin{aligned}
& \operatorname{Pr}\left\{R\left(J_{n-1}\right)=r, J_{n}=i \mid J_{n-1}=j\right\}=\sum_{p>0}\left(f\left(g^{*}\right)^{r-1}\right)(p+|j|) g(i+p), \\
& \quad i \geq 0, j \neq 0, r \geq 1,
\end{aligned}
$$

$\operatorname{Pr}\left\{R\left(J_{n-1}\right)=r, J_{n}=i \mid J_{n-1}=0\right\}=\sum_{p>0}\left(f\left(g^{*}\right)^{r}\right)(p) g(i+p), i \geq 0, r \geq 0$,
$\operatorname{Pr}\left\{S^{\prime}\left(J_{n-1}\right) \leq t\left|R\left(J_{n-1}\right)=r, J_{n}=i\right| J_{n-1}=j, Z_{n}>0\right\}=b^{r+\delta(0, j)}(t)$.

When $J_{n}<0, Z_{n}>0$, the relation

$$
x+\left|J_{n}\right|=\left|J_{n-1}\right|
$$

must be valid. Furthermore $S(Y)$ is seen to have the same distribution as $S(0)$. The theorem now follows easily. It is convenient to introduce some further matrix notations. Let $F=\left\{F_{i j}\right\}, G=\left\{G_{i j}\right\}, E=\left\{E_{i j}\right\}, K^{\prime}=\left\{K_{i j}^{\prime}\right\}$ and $\nu_{r}=\left\{\nu_{r}^{i j}\right\}$ be the matrices with entries

$$
F_{i j}=f(j-i), K_{i j}^{\prime}=\sum_{r \geq 0} b^{r} \sum_{p>0}\left(f\left(g^{*}\right)^{r}\right)(p+j) g(i+p),
$$

$$
\text { for } i, j=0,1,2, \ldots m-1 \text {, }
$$

$$
\text { and } F_{i j}=K_{i j}^{\prime}=0 \text { for } i, j=m, \ldots m+(1-i)^{+}-1
$$

$$
G_{i j}=g(i-j), E_{i j}=\sum_{p>0} g(i+p) f(p+j), \text { for } i, j=0,1, \ldots m+(1-m)^{+}-1,
$$

$$
v_{r}^{i j}=\delta(i, 0) \text { for } i, j=0,1, \ldots r-1
$$

## Lemma 3.2

(i) $K^{\prime}=E\left(\varepsilon I_{m}-b G\right)^{-1} I_{m}$
(ii) $K_{i j}=\left\{\begin{array}{l}\in F_{-i j}, \quad \text { when } \quad i<0, j \geq 0 \\ b K_{i j}+\delta(0, i) F_{i j} \epsilon, \quad \text { when } i \geq 0, j \geq 0 .\end{array}\right.$

## Proof:

(ii) is seen immediately.
(i): Since $E G^{r}=\left\{\left(E G^{r}\right)_{i j}\right\}=\left\{\sum_{p>0}\left(f\left(g^{*}\right)^{r}\right)(p+j) g(i+p)\right\}$,
$i, j=0,1, \ldots m-1$, the theorem follows. Observe that $G^{r}=0$ when $r>m+(1-m)^{+}$, hence there is no convergence problem.

## Remark:

Even if the matrices involved are defined $m$ dimensional they are understood to be $m+(n-m)^{+}$dimensional with the undefined entries equal to zero.

By the substitutions $Q_{n}=\left\{Q_{n}^{i k}\right\}, P_{n}=\left\{P_{n}^{i k}\right\}$, where
(3.12 a) $Q_{n}^{i k}=\left(V_{n}^{i}+\left(b-b^{\delta(0, i)}\right)\left(U_{n}^{i}-\epsilon U_{n}^{i}(0)\right)\right) \delta(k, 0)$
and
(3.12 b) $P_{n}^{i k}=\left(U_{n}^{-i}+U_{n}^{i}-\delta(0, i) \sum_{r}\left(U_{n}^{-r}+U_{n}^{r}\right)\right) \delta(k, 0)$,

$$
i, k=0,1, \ldots, m-1,
$$

it is possible to write (3.10) on the form
(3.13 a) $U_{n+1}=T\left(a *\left[\begin{array}{c}0 \\ K\end{array}\right] \nu_{2 m-1} Q_{n}\right)+T\left(a *\left[\begin{array}{c}F \\ b T\end{array}\right]\left(P_{n}-\varepsilon P_{n}(0)\right)\right)$, (3.13 b) $Q_{n+1}=T\left(a * b\left[\begin{array}{c}0 \\ K^{\prime}\end{array}\right] \nu_{2 m-1} Q_{n}\right)+T\left(a * b\left[\begin{array}{c}F i\end{array}\right]\left(P_{n}-\in P_{n}(0)\right)\right)$,
whence theorem 3.3 follows.

## Theorem 3.3

Let

$$
\widetilde{P}_{n}=\left[\begin{array}{c}
P_{n} \\
\nu_{2 m-1} Q_{n}
\end{array}\right]
$$

and assume that $U_{0}(t)=I_{2 m-1} \epsilon(z+t), V_{0}(t)=I_{2 m-1} \epsilon(w+t)$. Then $U_{n}$ and $V_{n}$ are uniquely determined by (3.13) and (3.14) $\widetilde{P}_{n+1}=T\left(a * K_{1}\left(\widetilde{P}_{n}-\in \widetilde{P}_{n}(0)\right)\right)+T\left(a * K_{2}\right) \widetilde{P}_{n}(0), n=0,1, \ldots$, where
$K_{1}=\left[\begin{array}{l}\left(I_{m}-\nu_{m}\right)\left(F+b K^{\prime}\right),\left(I_{m}-\nu_{m}\right) K^{\prime} \\ b \nu_{m}\left(F+b K^{\prime}\right), b \nu_{m} K^{\prime}\end{array}\right], K_{2}=\left[\begin{array}{l}0,\left(I_{m}-\nu_{m}\right) K^{\prime} \\ 0, b \nu_{m} K^{\prime}\end{array}\right]$.

Equation (3.14) is called the waiting time equation.

## Corollary 3.4

When the trafic intensity $\rho=E(X) E(B) / E(Y) E(A)$ is less than unity the stationary distribution $\widetilde{P}=\lim _{n \rightarrow \infty} \widetilde{P}_{n}$ exists and is determined by
(3.15) $\widetilde{P}=T\left(a * K_{1}(\widetilde{P}-\epsilon \widetilde{P}(0))\right)+T\left(a * K_{2}\right) \widetilde{P}(0)$.

A proof of the existence of the stationary distribution is given in [7] and [2].

We will assume that the customers in an arrival group are ordered and the queuedisiplin is first come first served. Let $W_{n}^{p}$ be the waiting time of customer $n r . p$ in $C_{n}$ given that $C_{n}$ contains at least $p$ customers. Let $I_{n}^{p}=\operatorname{Pr}\left\{W_{n}^{p} \leq t\right\}$.

The problem of finding $I_{n}^{p}$ can be solved by the following argument: If $C_{n}$ contains exactly $p$ customer then obviously

$$
I_{n}^{p}=\sum_{i} U_{n+1}^{i}
$$

Hence we must have
$\Gamma_{n}^{p}=T\left(a * \nu_{m} K^{\prime} p^{\nu}{ }_{2 m-1} Q_{n}\right)+T\left(a^{*} \nu_{2 m-1} K_{p}\left(P_{n}-\epsilon P_{n}(0)\right)\right)$,
where $K^{\prime} p$ and $K_{p}$ are $K$ and $K$ respectively, when $f(0)$ is replaced by $\delta(p, o)$.
4. The model $G I^{X} / E_{k} Y / 1$.

Within this model it is possible to obtain solutions of the waiting time equation (by using the approach suggested in [3] p.p. 312-313). Let $e_{\theta} ; \theta \in \mathbb{C}$, denote the complex exponential measure defined by

$$
\begin{aligned}
& e_{\theta}(E)=\int_{E \cap R^{+}} \theta \exp (-\theta x) d x, \text { if } \operatorname{Re} \theta>0, \\
& e_{\theta}(E)=\int_{E \cap-R^{+}} \theta \exp (-\theta x) d x, \text { if } \operatorname{Re} \theta<0,
\end{aligned}
$$

The following lemma is proved in the same way as the analogous results in [3] pop. 312-313.

Lemma 4.1
(i) $e_{\theta} e_{\mu}^{n}=\beta^{n} e_{\theta}+(1-\beta) \sum_{k=1}^{n} \beta^{n-k} e_{\mu}^{k}$,
where

$$
\beta=\frac{\mu}{\mu-\theta} .
$$

(ii) $T\left(a * e_{\mu}^{n}\right)=\sum_{k=1}^{n}\left(e_{\mu}^{k}-\epsilon\right) \gamma_{n-k}+\epsilon$,
where

$$
\gamma_{m}=\int_{0}^{\infty} \frac{e^{-\mu y}(\mu y)^{m}}{m!} a(d y)
$$

By the introduction of the generating functions

$$
\begin{aligned}
& \psi_{x}(t)=\sum_{n \geq 0} P_{n}(t) x^{n}, \varphi_{x}(t)=\sum_{n \geq 0} \nu_{2 m-1} Q_{n}(t) x^{n} . \\
& \tilde{\psi}_{x}=\binom{\psi_{x}}{\varphi_{x}}=\sum_{n \geq 0} \widetilde{P}_{n} x^{n} .
\end{aligned}
$$

(3.14) is transformed to the equivalent equation
(4.1) $\quad \tilde{\psi}_{X}=x T\left(a * K_{1}\left(\tilde{\psi}_{X}-\varepsilon \tilde{\psi}_{X}(0)\right)\right)+x T\left(a * K_{2}\right) \tilde{\Psi}_{X}(0)+\widetilde{P}_{0} \cdot$

By the transformation

$$
\omega_{\mathrm{x}}=\left(\varepsilon I_{\mathrm{m}}-b G\right)^{-1}\left(b\left(\psi_{\mathrm{x}}-\psi_{\mathrm{x}}(0) \varepsilon\right)+\varphi_{\mathrm{x}}\right)
$$

we get
(4.2 i) $\psi_{X}=x\left(I_{m}-\nu_{m}\right) T\left(a *\left(F\left(\psi_{X}-\epsilon \psi_{X}(0)\right)+E \omega_{X}\right)\right)+P_{0}$,
(4.2ii) $\quad \omega_{X}-b\left(G \omega_{X}+\psi_{X}-\varepsilon \psi_{X}(0)\right)=x \nu_{m} T\left(a * b\left(F\left(\psi_{X}-\varepsilon \psi_{X}(0)\right)+E \omega_{X}\right)+\nu_{m} Q_{0}\right.$.

By assumption $b=e_{\mu}^{k}$. Assume that (4.2) has a solution of hyperexponential type; i.e,
(4.3) $\binom{\psi_{x}}{\omega_{x}}=\binom{q_{0}^{\prime}}{q_{0}^{\prime \prime}} \varepsilon+\sum_{j \geq 1}^{h}\binom{q_{j}^{\prime}}{q_{j}^{j}} e_{\theta_{j}} \cdot$

If $U_{0}=\epsilon U_{0}(0)$ and $V_{0}=\epsilon V_{0}(0)$, it follows from the definition of $\widetilde{P}_{n}$ that $\widetilde{P}_{o}=\binom{\left(I_{m}-\nu_{m}\right) U_{o}}{\nu_{m} V_{o}}$.
Inserting (4.3) in (4.2) gives

$$
\begin{aligned}
\varepsilon q_{0}^{\prime}+\sum_{j>0} e_{\theta_{j}} q_{j}^{\prime}=x\left(I_{m}-\nu_{m}\right) \sum_{j>0} T\left(a^{*} e_{\theta_{j}}\left(F q_{j}^{\prime}+E q_{j}^{n}\right)\right) & +x\left(I_{m}-\nu_{m}\right) E q_{0}^{\prime \prime \epsilon}+ \\
& +\left(I_{m}-\nu_{m}\right) U_{0},
\end{aligned}
$$

$$
\left(\varepsilon I_{m}-b G\right) q_{o}^{\prime \prime}+\sum_{j>0}\left(e_{\theta_{j}} q_{j}^{\prime \prime}-e_{\theta_{j}} b\left(G q_{j}^{\prime \prime}+q_{j}^{\prime}\right)\right)
$$

$$
\begin{aligned}
& \text { (4.4 i) } \epsilon q_{0}^{\prime}+\sum_{j>0} e \theta_{j} q_{j}^{\prime}-\left(I_{m}-\nu_{m}\right) x \sum_{j>0}\left(F q_{j}^{\prime}+E q_{j}^{\prime \prime}\right)\left(\alpha_{j} e_{\theta_{j}}+\left(1-\alpha_{j}\right) \varepsilon\right) \\
& -x\left(I_{m}-\nu_{m}\right) E q_{0}^{\prime \prime \epsilon}+\left(I_{m}-\nu_{m}\right) U_{0}=0, \\
& \text { (4.4ii) } \sum_{j>0}\left(\left(\epsilon I_{m}-\beta_{j}^{k} G\right) q_{j}^{\prime \prime}-\beta_{j}^{k} q_{j}^{\prime} j e_{\theta}-\left(e_{\mu}^{k}-\epsilon\right) G q_{0}^{\prime \prime}-G q_{0}^{\prime \prime \epsilon}+q_{0}^{\prime \prime \epsilon}\right. \\
& -\sum_{j>0}\left(G_{q_{j}^{\prime \prime}}+q_{j}^{\prime}\right)\left(\left(1-\beta_{j}\right) \sum_{r=1}^{k} \beta_{j}^{k-r}\left(e_{\mu}^{r}-\varepsilon\right)+\left(1-\beta_{j}^{k}\right) \varepsilon\right) \\
& -X \nu_{m_{j}>0} \sum_{i}\left(F q_{j}^{\prime}+E q_{j}^{\prime \prime}\right) \beta_{j}^{k}\left(\alpha_{j} e_{\theta_{j}}+\left(1-\alpha_{j}\right) \epsilon\right) \\
& -x \nu_{m_{j>0}} \sum_{j}\left(F q_{j}^{\prime}+E q_{j}^{\prime \prime}\right)\left(\left(1-\beta_{j}\right) \sum_{r=1}^{k} \beta_{j}^{k} \eta_{r j}\left(e_{\mu}^{r}-\epsilon\right)+\left(1-\beta_{j}^{k}\right) \varepsilon\right) \\
& -x \nu_{m} E q_{0}^{\prime \prime}\left(\sum_{r=1}^{k}\left(e_{\mu}^{r}-\epsilon\right) \gamma_{k-r}+\epsilon\right)-\nu_{m} V_{0}=0,
\end{aligned}
$$

where

$$
\eta_{r j}=\sum_{s \geq r}^{k} \beta_{j}^{-r} \gamma_{S-r}, \quad a_{j}=a\left(\theta_{j}\right)
$$

The equations above imply that the coefficients of $\epsilon,\left(e_{\mu}^{r}-\epsilon\right), r=1,2, \ldots, k$, and $e_{\theta_{j}}, j=1,2, \ldots$ are zero. Hence, we are led to the equations
(4.5 i) $\quad q_{0}^{\prime}=\sum_{j>0} \frac{1-\alpha_{j}}{\alpha_{j}} q_{j}^{\prime}+x\left(I_{m}-\nu_{m}\right) E q_{0}^{\prime \prime}+\left(I_{m}-\nu_{m}\right) U_{0}$,
(4.5ii) $q_{j}^{\prime}=\beta_{j}^{-k}\left(I_{m}-\nu_{m}\right)\left(I_{m}-\beta_{j}^{k}\right) q_{j}^{\prime \prime}$,
(4.5iii) $\quad\left(I_{m}-G-x \nu_{m} E\right)_{o}^{\prime \prime}=\sum_{j>0}\left(\frac{1-\alpha_{j}}{\alpha_{j} \beta_{j} \nu_{m}}\left(I-\beta_{j}^{k} G\right)-1+\beta_{j}^{-k}\right) q_{j}^{\prime \prime}+\nu_{m} V_{0}$,
(4.5iv) $\quad\left(\delta(r, k) G+x \gamma_{k-r} \nu_{m}^{E}\right) q_{0}^{\prime \prime}=\sum_{j>0}\left[\left(\beta_{j}-1\right) \beta_{j}^{-r}\right.$,

$$
\left.+\left(\beta_{j}-1\right)\left(\eta_{r j} \alpha_{j}^{-1}-\beta_{j}^{-r}\right) \nu_{m}\left(I_{m}-\beta_{j}^{k} G\right)\right] q_{j}^{\prime \prime}, \quad r=1,2, \ldots, k,
$$

(4.5v) $\quad\left(\left(I_{h}-x \alpha_{j} F\right)\left(I_{m}-\beta_{j}^{k} G\right)-x \alpha_{j} \beta_{j}^{k} E\right)_{q_{j}^{\prime}}=0, j=1,2, \ldots$, where $\beta_{j}, j=1,2, \ldots h k$, are the roots of
(4.5vi) $\quad \operatorname{det}\left\{\left(I_{h}-x \alpha F\right)\left(I_{m}-\beta^{k_{G}}\right)-x \alpha \beta^{k_{E}}\right\}$, where $h=m+(1-m)^{+}$.

Observe that (4.5 iv-v) constitutes a set of 2 kh equations. Hence it is sufficient that ( 4.5 vi ) has kh roots.

## 5. Special cases.

Unfortunately, the assumptions (4.3) are not always fullfilled. For instance when $Y=m>1$. However, in this case we are able to slighten the assumptions (4.3). Observe that $Y=m>I$ implies $G=0$. Let
(5.1) $\mathbf{s}_{\mathrm{x}}=(F+b E)\left(\psi_{\mathrm{x}}-\epsilon_{\psi_{\mathrm{x}}}(0)\right)+E \varphi_{\mathrm{x}}$
whence

$$
\text { (5.2a) } \psi_{x}=x\left(I_{m}-\nu_{m}\right) T\left(a * ⿷_{x}\right)+\left(I_{m}-\nu_{m}\right) U_{0} \text {, }
$$

(5.2b) $\varphi_{x}=x \nu_{m} T\left(a * b \xi_{x}\right)+\nu_{m} V_{o}$
and
(5.3) $\quad E_{x}=x(F+b E)\left(I_{m}-\nu_{m}\right)\left(T a * \xi_{x}-\in T\left(a * \xi_{x}\right)(0)\right)+x E \nu_{m} T\left(a * b \xi_{x}\right)+E \nu_{m} V_{0} \cdot$ We now suppose that (5.3) has a solution of the form

$$
\bar{s}_{\mathrm{x}}=\mathrm{p}_{0} \epsilon+\sum_{j>0} e_{\theta_{j}} p_{j},
$$

that is; $p_{0}, p_{j}, j>0$, must satisfy

$$
\begin{array}{r}
p_{0} \epsilon+\sum_{j>0} e_{\theta_{j}} p_{j}=x(F+b E)\left(I_{m}-\nu_{m}\right) \sum_{j>0} T\left(a * e_{\theta_{j}}\right) p_{j}+x E \nu_{m_{j}>0} T\left(a * b e_{\theta_{j}}\right) p_{j} \\
+x E \nu_{m} T(a * b) p_{o}+E \nu_{m} V_{o}
\end{array}
$$

Exactly the same calculations as in the preceeding section give

$$
\text { (5.4 i) } \quad p_{j}=x \alpha_{j}\left(F+\beta_{j}^{k} E\right) p_{j}, \quad j=1,2, \ldots,
$$

$$
\text { (5.4j.i) } \sum_{j>0}\left\{\left(\beta_{j}-1\right) \beta_{j}^{\left.\left.k-r_{\alpha_{j}}-\delta(r, k)\left(1-\alpha_{j}\right)\right) E\left(I_{m}-\nu_{m}\right), ~\right) ~}\right.
$$

$$
\left.+\left(\beta_{j}-1\right) \beta_{j}^{k} \eta_{r j} E \nu_{m}\right\} p_{j}=\gamma_{k-r} E \nu_{m} p_{o}, \quad r=1,2, \ldots, k
$$

$$
\text { (5.4iii) }\left(I_{m}-X E \nu_{m}\right) p_{0}=\sum_{j}\left\{\left(\alpha_{j}^{-1}-1\right)\left(I_{m}-\nu_{m}\right)+X E \nu_{m}+X{ }_{j} E\left(I_{m}-\nu_{m}\right)\right.
$$

$$
\left.-x \alpha_{j} \beta_{j}^{k} E\right\} p_{j}+E \nu_{m} V_{o}
$$

We shall now consider the case when both the arrival and the service group capacity are of constant size; i.e. $\mathrm{X}=\mathrm{I}$, $\mathrm{Y}=\mathrm{m}$. Assume first that $\mathrm{m}<1$. Then $\mathrm{F}=0$ and

It follows that
(5.5) $\operatorname{det}\left(I_{1}-\beta^{k} G-x \alpha \beta^{k} E\right)=1-(x \alpha)^{m_{\beta}} k I$.

From Lemma 1 in Takács [8] page 82 we conclude that (5.5) has $k l$ distinct roots $\beta_{j}=\beta\left(\theta_{j}\right), j=1,2, \ldots, k l$ for $\operatorname{Re} \theta \geq 0$. Hence equations (4.5) have a solution. Assume that $I \leq m$. Then $G=0$;
$I_{m}-X c_{i}\left(F+\beta^{k_{E}}\right)=I_{m}-X a\left[\begin{array}{ll}0 & , I_{m-1} \\ \beta^{k} I_{1}, & 0\end{array}\right]$,
and
(5.6) $\operatorname{det}\left(I_{m}-x_{\alpha} F-x \alpha \beta^{k} E\right)=1-(x \alpha)^{m} \beta^{k l}$.

When $p_{0}$ is eliminated, (5.4ii) is a set of kl equations because

$$
E=\left[\begin{array}{ll}
0, & 0 \\
I_{1}, & 0
\end{array}\right]
$$

Accordingly, (5.4) has a solution since (5.6) has $k l$ distinct roots.

The stationary solution is obtained by multiplying (4.5) and (5.4) by $1-x$ and let $x$ tend to $1-$.
6. The model $E_{K}{ }^{X} / G^{Y} / 1$.

The "key" to the solution is the fact that the assumption $a=e_{\lambda}^{k}$ enables us to express the operator $T$ in a special form

## Lemma 6.1

Suppose $\mu \in \Omega_{m}^{+}$. Then

$$
T\left(\left(e^{*}\right)^{k} \mu\right)=\left(e^{*}\right)^{k} \mu+\left(\epsilon-e^{*}\right) \sum_{r=1}^{k} \alpha_{r}\left(e^{*}\right)^{k-r}
$$

where

$$
\alpha_{r}=\left(\left(e^{*}\right)^{r^{\prime}}\right)\left(\sim \mathbb{R}^{+}\right) .
$$

## Proof:

For $k=1$ the Lemma reduces to equation (72) in Kingman [3]. Assume (6.1) valid for $k=1,2, \ldots p$. Since $T\left(e^{*}\right)^{r}=\varepsilon$ we get

$$
T\left(\left(e^{*}\right)^{p+1} \mu\right)=T\left(e^{*} T\left(\left(e^{*}\right)^{p} \mu\right)\right)
$$

Now $\quad \nu=\mathbb{T}\left(\left(e^{*}\right)^{p} \mu\right) \in \Omega_{\mathrm{m}}^{+} \quad$ implies

$$
T\left(\left(e^{*}\right)^{p+1} \mu\right)=T\left(e_{\lambda}^{*} \nu\right)=e^{*} \nu+\left(\varepsilon-e^{*}\right) a^{\prime},
$$

where

$$
a^{\prime}=\left(e^{*} \nu\right)\left(\sim \mathbb{R}^{+}\right)
$$

Obviously $T\left(e^{*} \nu\right)\left(\sim R^{+}\right)=\left(e^{*} \nu\right)\left(\sim R^{+}\right)$which yields $\alpha^{\prime}=\alpha_{p+1}$. Hence, by the assumption

$$
T\left(e^{*} \nu\right)=\left(e^{*}\right)^{p+1} \mu+\left(\varepsilon-e^{*}\right) \sum_{r=1}^{p} \alpha_{r}\left(e^{*}\right)^{p+1-r_{+}}\left(\varepsilon-e^{*}\right) \alpha_{p+1}
$$

and the Lemma follows by induction.

With $\mu=K_{1} \tilde{\psi}_{X}$ and $e=e_{\lambda}$ application of (6.1) on (4.1) gives (with $I=I_{2 m-1}$ )
(6.2) $\left(\epsilon I-x a * K_{1}\right) \tilde{\psi}_{x}=x\left(\varepsilon-e^{*}\right) \sum_{r=1}^{k} a_{r}\left(e^{*}\right)^{k-r}+x T\left(a^{*}\left(K_{2}-K_{1}\right)\right) \tilde{\Psi}_{X}(0)+\widetilde{P}_{0}$.

Let $\Delta_{x}=\epsilon I-x a * K_{1}$.
Inserting $t=0$ gives an expression for $\alpha_{k}$, viz.,
(6.3) $x \alpha_{k}=\left(\epsilon I-x\left(a *\left(K_{2}-K_{1}\right)\right)(0)\right) \widetilde{\psi}_{x}-\widetilde{P}_{0}(0)$.

Since $\left\|a * K_{1}\right\| \leq 1, \Delta_{x}^{-1}=\sum_{r \geq 0}\left(x a * K_{1}\right)^{r}$ exists when $|x|<1$. Thus (6.3) and (6.2) are equivalent to
(6.4) $\quad \tilde{\psi}_{X}-\epsilon \tilde{\psi}_{X}(0)=\Delta_{X}^{-1}\left(\widetilde{P}_{0}-\left(\varepsilon-e_{\lambda} *\right) \widetilde{P}_{0}(0)\right)+\left(\varepsilon-e_{\lambda} *\right) \Delta_{X}^{-1} \sum_{r=1}^{k-1} \alpha_{r}\left(e_{\lambda}^{*}\right)^{k-r}$

$$
-e_{\lambda}^{*} \Delta_{x}^{-1}\left(I \varepsilon-x\left(e_{\lambda}^{*}\right)^{k-1} K_{2}\right) \tilde{\psi}_{x}(0)
$$

If $k=1, t=0$ determines $\tilde{\psi}_{\mathrm{x}}(0)$ by
(6.5) $\left(e_{\lambda}^{*} \Delta_{X}^{-1}\left(\epsilon I-x\left(e_{\lambda}^{*}\right)^{k-1} K_{2}\right)(0) \tilde{\psi}_{X}(0)=\left(\Delta_{X}^{-1}\left(\widetilde{P}_{0}-\left(\epsilon-e_{\lambda}^{*}\right) \widetilde{P}_{0}(0)\right)\right)(0)\right.$.

When $k>1$ let

$$
\begin{aligned}
& c_{r}=\left(\epsilon-e_{\lambda}^{*}\right)\left(e_{\lambda}^{*}\right)^{k-r}, \quad r=1,2, \ldots, k-1, \\
& C_{x}=e_{\lambda} *\left(\epsilon \operatorname{I-x}\left(e_{\lambda}^{*}\right)^{k-1} \mathrm{~K}_{2}\right), \\
& D=\left(\widetilde{P}_{o}-\left(\varepsilon-e_{\lambda}\right)^{*} \widetilde{P}_{o}(0)\right), \\
& E_{j}=\left(e_{\lambda}^{*}\right)^{j_{K}} K_{1} \Delta_{x}^{-1} .
\end{aligned}
$$

Thus, (6.4) can be written
(6.6) $\tilde{\psi}_{X}=\left(\epsilon I-\Delta_{X}^{-1} C_{X}\right) \tilde{\psi}_{X}(0)+\sum_{r=1}^{k-1} c_{r} \Delta_{x}^{-1} a_{r}+\Delta_{x}^{-1} D$.

Furthermore $\left(E_{j} \tilde{\psi}_{X}\right)(0)=\alpha_{j}$ leads to
(6.7 i) $\alpha_{j}=\left(E_{j}\left(\Delta_{x}^{-1}-C_{x}\right)\right)(0) \tilde{\psi}_{X}(0)+\sum_{r=1}^{k-1}\left(E_{j} c_{r}\right)(0) \alpha_{r}+E_{j} D$,

$$
j=1,2, \ldots, k-1
$$

(6.7ii) $\quad\left(\Delta_{X}^{-1} c_{x}\right)(0) \tilde{\psi}_{X}(0)=\sum_{r=1}^{k-1} c_{r}(0) \alpha_{r}+\left(E_{j} D\right)(0)$
which determines $\alpha_{j}, j=1,2, \ldots k-1$, and $\widetilde{\psi}_{X}(0)$.

## 7. The stationary solution

In this section we shall demonstrate how the stationary solution of (6.2) can be obtained by use of the Fourier-Stieltjes transform. In the stationary case we have
(7.1) $\left(\epsilon I-a * K_{1}\right) \widetilde{P}=\left(\epsilon-e_{\lambda} *\right) \sum_{r=1}^{k} \alpha_{r}\left(e_{\lambda}^{*}\right)^{k-r}+\mathbb{T}\left(a *\left(K_{2}-K_{1}\right)\right) \widetilde{P}(0)$,
where now

$$
\alpha_{r}=\left(e_{\lambda} *^{r_{K_{1}}} \widetilde{P}\right)(0) .
$$

After the introduction of the Fourier transform an equation analogous to (6.6) is obtained
(7.2) $\quad \hat{\Delta}_{1}(z)(\hat{\widetilde{P}}(z)-\widetilde{P}(0))=-\hat{c}_{1}(z) \widetilde{P}(0)+\sum_{r=1}^{k-1} \hat{c}_{r}(z) \alpha_{r}$.

Let $x$ be defined by

$$
\hat{u}_{\hat{\Delta}}^{1}, ~ \operatorname{det} \hat{\Delta}_{1},
$$

whence
(7.3) $\left.\mathfrak{k e t}\left(\Delta_{1}(z)\right) \hat{\tilde{P}}(z)-\widetilde{P}(0)\right)=-\hat{u}(z) \hat{c}_{1}(z) \widetilde{P}(0)+\sum_{r=1}^{k-1} \hat{c}_{r}(z) \hat{x}(z) \alpha_{r}$.

Suppose that $\operatorname{det} \Delta_{1}(z)$ has $k$ roots $z_{1}, z_{2}, \ldots, z_{k}$. Then $\widetilde{P}(0), \alpha_{1}, \ldots, \alpha_{k-1}$, are determined except for a constant by (7.4) $\hat{x}\left(z_{i}\right) \hat{c}_{1}\left(z_{i}\right) \widetilde{P}(0)=\sum_{r=1}^{k-1} \hat{x}\left(z_{i}\right) \hat{c}_{r}\left(z_{i}\right) \alpha_{r}, \quad i=1,2, \ldots k$. Premultiplicating (7.2) by

$$
u=\left[\begin{array}{l}
\nu_{\mathrm{m}}, 0 \\
0, \nu_{\mathrm{m}}
\end{array}\right]
$$

gives an equation where both sides become zero when $z=0$. By l'Hospitals rule,
(7.5) $\left.\left(\hat{a} * \cup \hat{K}_{1}\right)^{\prime}(0) \hat{\tilde{P}}-\hat{\widetilde{P}}(0)\right)=U \hat{C}_{1}^{\prime}(0) \widetilde{P}(0)-\underset{r=1}{k-1} \cup \alpha_{r}$.

Consider $\left(a * U \hat{K}_{1}\right) \cdot(0) \hat{\widetilde{P}}(0)$.

The process $\left\{J_{n}\right\}$ is recurrent and therefore $J_{n}$ converges in distribution to $J$, say. Since

$$
u K_{1}=\left(b \nu_{m} K, \nu_{m}(K-F)\right)
$$

and

$$
v_{m}^{K}(t)=\left(k_{o}(t), k_{1}(t), \ldots, k_{m-1}(t)\right)
$$

where

$$
k_{j}(t)=\sum_{i} k_{i j}(t),
$$

it follows that
$\left(\hat{a} * \hat{b} \nu_{m} \hat{K}\right)^{\prime}(0)=i\left(E\left(S^{\prime}(j)\right) \mid J=j\right)-i E(A)+i E(B)$.

Thus
$\left(\hat{a} * \cup \hat{K}_{1}\right) \cdot(0) \hat{P}(0)=\nu_{m}(\hat{a} * \hat{b} \hat{K}) \cdot(0) \hat{P}(0)+\nu_{m}(\hat{a} * \hat{K}) \cdot(0) \nu_{2 m-1} \hat{Q}(0)$
$\left.=i \sum_{j} E\left(S^{\prime}(j)\right) \mid J=j\right) \operatorname{Pr}(J=j)-i E(A)+i E(B) \quad$.
By (3.11) we find
$E\left(S^{\prime}(J)-A+B\right)=(\rho-1) E(A)+E(B)=k \lambda^{-1}(\rho-1)+E(B)$.

Equation (6.12) therefore reduces to

$$
\text { (7.6) } E(B)-k(1-\rho)=-i \lambda(\hat{a} * \hat{b} \hat{K}) \cdot(0) P(0)+\nu_{2 m-1} Q(0)-\lambda \sum_{r=1}^{k-1} v a_{r} .
$$

Together with (7.4) we have a set of $k+1$ matrix equations to determine the $k+1$ unknowns $\widetilde{P}(0), \alpha_{1}, \ldots, a_{k-1}$.
It is known that a probability distribution can be approximated by a linear combination of Erlang distributions. From Lemma 6.1 it is clear that the results in the last section can be generalized to the case when $a(0)$ is a linear combination of Erlang distributions. Accordingly, it is possible to obtain approximate solutions of the waiting time equation for general $a(0)$.

## References

[1] Cohen, J.W. (1969). The single server queue. NorthHolland Publishing Company.
[2] Keilson, J. (1962). The general bulk queue as a Hilbert problem. J. R. Statist. Soc. B, 24, 344-359.
[3] Kingman, J.F.C. (1966). On the algebra of queues. J. Appl. Probab. 3, 285-326.
[4] Lambotte, J.P. and Teghem, J.I. (1969). Modéles d'attente $M / G / 1$ et $G I / M / 1$ á arriveés et services en groupes. Springer-Verlag, Berlin.
[5] Le Gall, P. (1962). Les systémes avec ou sans attente et les processus stochastiques. Dunod, Paris.
[6] Lindley, O.V. (1952). The theory of queues with a single server. Proc. Camb. Phil. Soc. 48, 277-283.
[7] Miller, R.G. (1959). A contribution to the theory of bulk queues. J. R. Statist. Soc. B, 21, 320-337.
[8] Takåcs, I. (1962). Introduction to the theory of queues. Oxford University press. Iondon.

