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Summary. 

In this paper we define and study certain nonparametric 

estimators of partial transition probabilities and of integrals 

of forces of transition in multiple decrement models (which are 

simple Markov chains). We compute approximately expectations, 

variances and covariru1ces ru1d prove that the estlinators are 

based on minimal sufficient statistics. We prove that the esti­

mators are strongly consistent and give a generalization of the 

Glivenko-Crultelli theorem. For some of the estimators we prove 

asymptotic normality which gives us asymptotic tests. We also 

give a test of Kolmogorov-Smirnov type. We conclude with a 

comparison of our estimators with the occurrence-exposure rates. 

This comparison seems to indicate that even when the forces of 

transition are constant, the nonparametric estimators are 

almost equally good as the occurrence-exposure rates. 

The theory developed in this paper may alternatively be 

regarded as a generalization of the theory of empirical distri­

bution functions. 
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1. Introduction. 

A multiple decrement :model (see e.g. Zwinggi (1945L 

Simonsen (1966), Sverdrup (1967), Hoem (1969)) is a time-

continuous Markov chain with one transient state labeled 0 

and m absorbing states numbered from 1 to m • We define 

Pi(t) . i :;:: 0,1, ••• ,n . to be the probability that the process 
' ' 

is in state i at time t given that it started in state 0 

at time 0 • The force of transition (see e.g • Hoem (1969)) or 

infinitesimal transition probability from state 0 to state i 

at time t is given by 

( 1.1) i = 1, ••• ,m 

provided the derivative exists. 

We make the following mathematical assumption (see Feller 

(1957) sec. XVII. 9): 

Assumption 1. ai(t) exists an~ ir continuous everywhere for 

i :;:: 1 , ••• ,m • 

In applications of the multiple decrement model one is 

interested in the socalled partial transition probabilities 

(see e.g. Hoem (1969)) which occur if one or more of the forces 

of transition are put identically equal to 0 • Let A be an 

arbitrary subset of !1, ••• ,m} • Assume i E A and let 

Pi(t;A) be the probability of transition from 0 to i in 

the time interval [O,t] if a;(t) = 0 for all j ~A • Then 
tJ 

we have: 

t s 
( 1. 2) Pi(t;A):;:: Jai(s)exp(-k~~ J~k(u)du)ds 

0 0 

Further we will define for i = 1, ••• ,m: 



( 1. 3) 

so that 

( 1.4) 
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t 

= exp ( -j'a. (s )ds) 
' l 
0 

Let B be a subset of l1, ••• ,ml • We define: 

( 1. 5) 

( 1. 6) 

We also define: 

t 

( 1. 7) [3 i ( t) = Ja i ( s) c1s 
0 

\IJhen the functions O...; (t) are all constant it is well 
..1. 

lmown how to estimate them ~1d test hypotheses about them (see 

e.g. Sverdrup (1967)). vn1en they are not constant, then 

different procedures are in use. One is to partition the time 

interval of observation into smaller intervals and then assume' 

constancy over each subinterval. The estimation may then 

possibly be followed by some kind of graduation (see e.g. Hoem 

(1972)). Another method consists in assuming that each ~i(t) 

equals some parametric function, and then to mru~e inference 

about the pararneters of this function (Grenander (1956)). 

When the fm1ctions a.i(t) are very irregular or when they 

have an unlmown f~mctional form, the methods mentioned above 

may be lJ.napplicable or difi'icult to apply. Such a situation 

arose in the authors study of statistical methods in connection 
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with projects for determining the security of the Intrauterine 

Contraceptive Device (Aalen (1972)). The nonparametric theory 

we will present in this paper is a further development of the 

methods constructed to taclde that situation. It might be of 

* use also in other situations. 

The qua.11ti ties which seem to be of greatest interest in 

practice are the Pi(t;A) • We will therefore study the esti­

mation of these quantities when the only assumption which is 

made about the forces of transition is Assumption 1. 

~ve vvill also study estimation and testing of pi ( t) • 

Our methods are partly inspired by a paper by Kaplan and 

Meier (1958). Our estimators may partly be regarded as gene-

ralizations of their 11product-limi t" estimator. Their estiruator 

corresponds to our pi(t) which is defined in section 4. 

Kaplan and Meier approximately compute the expectation and 

variance of this estimator and give some other results. Our 

Theorem 5.2 may be regarded as an extended and somewhat more 

precise statement of most of their results. Our proof is how-

ever quite different from the one in Kaplan and Meier. The 

other estimators and results which v:re present are believed to 

bE: new. 

We will make the following observational assumption: 

Assumption 2: We observe continuously n independent processes 

of the kind described above, each with the same set of forces 

of transition. The observation of each process starts at time 

0 and continu·es as long as "de want to make inference about 

them. Every process is assumed to be in state 0 at time 0 • 

* Barlow (1968) and Barlow and van Zwet (1969) have developed 

other nonparar.aetric methods. 
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We will use the following notation: 

Mi(t) is the number of processes in state i at time t • 

This definition is made nnambiguous if for i > 0 we say that 

a process is in state i at time t if the transition 0 ~ i 

is performed exactly at this instant. We put M(t) = M0 (t) • 

We define T (A) to be the time of the v-th transition 
\) 

from 0 to A • We define M(v; i) 

( 1. 8) 

By our definition of M(t) , JYI(v;i) will be the number of 

processes in state 0 just after the v-th transition from 0 

to i has occurred. We also define: 

( 1. 9) 

(1.10) 

M(v;A) = M(T (A)) 
\) 

l\1A(t) = L: M. (t) 
iEA l 

We also define for positive M(t) and p(t) 

(1.11) R ( t ) = (M ( t ) ) - 1 , r ( t ) = (p ( t ) ) '"" 1 

All these quantities will of course be dependent on the number 

n of processes. If we need to stress this dependence, we will 

instead of r·1(t), H. (t) l,n instead of 

Mi(t) and similar for the other quantities. 

Let ·r > 0 be a given paint of time. Let X and Y be 

statistics defined on the total process we observe. Throughout 

the paper we will use the following notation: 

fE X = E(X IM(T )>0) , var'fX = var(X lr·1(T )>0) 
(1.12) 'f 

cov'f(X,Y) = cov(X,YIM(T) > 0) 
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A uniformly minimum variance unbiased estimator is as 

usual denoted as an UMVU estimator. 

a.s. is as usual used as an abbreviation of the expression 

"almost surely". 

In accordance with standard notation we say that 

f(x) = 0 (x) if lim 1f(x) = 0 
X 

when X-?0. 

We also put f(x-)= lim f(y) and lastly we define 
Y1·X 

o.-6- = o . 

2. The estimators. 

We will give heuristic justifications for the estimators 

we want to propose. We will use an argument which is partly 

analogous to the one in Kaplan and r1eier ( 1958). 

Assume that [O,t] is partitioned into so small intervals 

that with overvrhelming probability there is at most one transit­

ion in each subinterval, and so that ai(s) may be assumed to 

be constru1t on each subinterval. (By Assumption 1 ai(s) is 

uniformly continuous on [O,t] .) Let (s,s+h] be one of the 

subintervals. »J (1.1) it is seen that M(s)hai(s) is approxi-
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mately equal to the conditional probability of one transition 

0 ~ i in (s,s+h] given M(s) • It follows that if there is 

no transition in 0 ~ i in (s,s+h] then it is natural to 

"estimaten ha.i(s) by 0 
' 

and if there is a transition 0 ~ 

it is natural to 11 estimaterr :r...ai (s) by [M(s)]-1 • With a 

i 

small modification D1 order to avoid zero denominator, this leads 

us to propose the following estimator for p.(t) : 
l 

(2 .1) 
Mi(t) 

;i(t) = ~ [M(v;i)+1]-1 
v=1 

.Alternatively we may write: 

t 

(2.2) 5i(t) = J[M(s)+1]-1dMi(s) 
0 

which is by the definition of Iii (t) well defin,::Jd as a LebesgL.le­

Stieltjes integral. 

In order to estimate P. {t;A) we will first put A = lil 
l 

and try to estimate pi(t) (see (1.3)). We use the same 

parti tL ning as above. Since h is small we have: 

s+h 

exp[- J ai (s )ds J ~ 1-a.i (s )h 
s 

As above we conclude that this expression may be estimated by 

1 or 1-[M(s)]-1 according as there is 0 or 1 transition 

0 ~ i in (s,s+h] Hence v;e are led to propose the following 

estimator for pi(t) (with the same modification as above): 

(2.3) 

H. (t) 
l 

n [1-(M(v;i)+1)-1 ] 
v=1 
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Now we observe that Pi(t;A) may be written 

t 
(• 

Pi (t;A) = Ja.i (s)pA (s)ds 
0 

It is natural to estimate pA ( t) by 

l·TA ( t) 
(2.4) = IT [1-(M(v;A)+1)-1 ] 

v=1 

so that by the same argument as the one leading up to (2.1) and 

(2.2) we are led to propose the following estimator for P.(t;A): 
l 

t 

(2.5) 
... 
Pi ( t ;A) = J [M(s )+1 ]-113 .A (s- )d.Mi (s) 

0 

By defining suitable qua~tities one may write this in a more 

explicit form like (2.1) and (2.3). 

By ( 1. 3) v:re naturally ought to have for all i E l1, ••• ,m} : 

.... 
Pi(t;{il) = 1-pi(t) 

Tllis is seen to be a consequence of the following formula which 

is easily proved by induction: 

Let be strictly positive numbers. Then we 

have for all k > 1 : 

k 1 i 1 
2.: <a- .n (1- a:+"-1)) = 1-

i=1 i J=1 J 

k 
n (1 1 ) - a .+1 

i=1 J 

If A= {1, ••• ,ml we have: 
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This shows that our estimators are generalizations of the natu­

ral "frequency estimators" of Pi(t) • From another point of 

view we may regard the functions (2.3) and (2.5) as generalized 

empirical cumulative distribution functions. In the same sense 
.... 

one may regard ~.(t) 
J. 

as the empirical function corresponding 

i;e the theoretical function p.(t). 
J. 

This remark is relevant 

for the theory developed in section 8. 

3. Expectations, variances and covariances. 

The following theorems hold: 

Theorem 3.1. 

t 

( 3 • 1 ) E ~ i ( t ) = ~ i ( t ) -J a i ( s ) [ 1 - p ( s ) Jn 
0 

t 

(3.2) var ~i (t) = Ja.i (s)Es(R(s))ds+p 1 (r:.;t) 
0 

t 

(3.3) var ~i(t) = ~ai(s)r(s)ds+p 2 (n;t) where n2pj(n;t)for j=1,2 
0 

is bounded uniformly vvi th respect to n a.n.d t E [0, 1 ]. 

""' ~i(t) is weakly consistent. 

A A A 

(3.5) cov (pi(s),~i(t)) = var ~i(s)+p 3 (n;s,t) for s < t 
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Theorem 3.2. 

(3.7) 

t 

(3.8) var fi. (t) = 1p?(t)j.a.. (s)r(s)ds+o(1) • J. n l . l n 
0 

(3.9) :Pi(t) is weakly consistent. 

(3 .1 0) cov 
p.(t) 1 

(pJ..(s),fiJ.. (t)) = ~) var p.(s)+o(-) 
Pi~s J. n 

for s < t • 

Theorem 3.3. 

A 

(3.12) IE .Pi(t; A)- Pi(t;A) I:;; ~i(t){exp[(1-p(t))n]-1J • 

t 
/ 2 I Let oA(t) = pA(t) 6A(s)r(s)ds. Then: 

0 
t 

var Pi(t;A) = ~~i(s)pi(s)r(s)ds 
0 

(3.13) ., t s 
+ ~J[o.i (s)pA (s)Jo.i (u)(o A (u)pA (u)-1-pA (u)r(u) )du]ds 

0 0 

+ o(1) n 

... 
(3.14) Pi(t;A) is weru{ly consistent. 



- 11 -

;., A 

(3.15) An B = p => cov tPi(t;A),Pj(s;E)J = for all 

i E j E B 

For the proof of these theorems we need a sequence of 

lemmas: 

Lemma 3.1. Let X ru1d U(h) be rru1dom variables, the latter 

defined for each h > 0 , such that the following conditions 

are fulfilled: 

(i) ~1ere exists a and b such that Pr( \XI ~a) = 1 , 

Pr( jU(h) l ::5 b) = 1 for all h > 0 • 

(ii) Pr(U(h) ~ 0) = o(h) • 

Then we have : 

EU(h) = o(h) , E(xlJ(h)) = o(h) 

var(X+U(h)) = varX+o(h) , var(XU(h)) = o(h) 

cov(X,U(h)) = o(h) 

The proof of this lemma is trivial and will not be given. 

Lemma 3.2. Let X be binomial (n;p) with p 0 ~ p ~ 1 for 

a given p 0 > 0 • Let us denote E(f(X) \X>O) by E*(f(X)) • 

Then we have : 

(i) There exists a constru1t k independent of n and 

IE*(~)- ; I ~ ~ 

2 
\E*(!L. )- _j_ I < k 

x2 P2 - n 

The following .statements hold m1iformly on [p 0 , 1] : 

(ii) 

(iii) 

E* 1£ - 11 _,. 0 X p 

\) 

E*(112) _,. 0 for 
X 

\) < 2 • 
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The proof is given in the Appendix. 

Lemma 3.~ Let for i = 1, ••• ,m Ui(t,h) be the number of 

transitions 0 ~ i in [t,t+h) • Then we have 

Pr(Ni (t,h) = 0 JI1(t)) = 1-l\1(t) oa.i (t)h+o(h) 

Pr(Ni (t,h) = 1 JM(t)) = M(t) o.i (t)h+o(h) 

Til 

Pr((N.(t,h)=1)n n (N.(t,h)=O)JM(t)) 
l j :;:j J 

= l.\1(t)o.. (t)lHO(h) 
l 

j~i 
m 

Pr( E N;(t,h) >2JM(t)) = o(h) 
j=1 tl 

Proof: The lemma is an easy consequence of the assumptions in 

section 1. 

Lemma 3. 4 • L8 t g (x) ~ h (x) , f 11 (x) , g11 (x) ; n = 1 , 2 , • • • ; 

be real continuous f1.mctions defined on [O,a] , a <co , and 

such that fn(O) = c for all n • Assume that the fn(x) are 

all differentiable on [O,a] and that the following limit 

relations hold uniformly on [O,a] : 

when n ~co • Then: 

X X y X 

fn(x) ~ exp(-Jg(y)dy)Jh(y)exp(jg(t)dt)dy+coexp(-Jg(y)dy) 
0 0 0 0 

uniformly on [O,a] • 

The proof is given in the Appendix. We now proceed to the 

proofs of our theorems: 
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Proof of theorem 3.1. We assume 0 < t < 1 - - and put 
.... 

X(t) = ~i (t) • Let I(t,h) be equal to 1 if there is at 

least one transition 0 ~ i in [t,t+h) , and 0 if there is 

none. We can then write 

(3.16) X(t+h) = X(t)+I(t,h)R(t)+U(t,h) 

where by lemma 3. 3 we have: 

(3.17) 

/ 

/ Pr (I ( t, h) =1 I :rvi ( t) ) = M ( t) cah •0. i ( t) +0 (h) 

Pr (I ( t, h) =O 1M ( t ) ) = 1 - rvr ( t ) m i ( t ) +o (h) 

\Pr(U(t,h)~o) = o(h) 

The following inequalities obviously hold: 

(3.18) 0 ~ X(t) < n , 0 ~ U(t,h) ~ n • 

Proof of ( 3 • 1_)_;_ Let f ( t ) = E X ( t ) • By ( 3 • 1 6 ) , ( 3 • 1 7 ) , ( 3 • 1 8 ) 

and lemma 3.1 VlG have: 

f(t+h) = f(t)+hai(t)Pr(M(t)>O)+o(h) 

Since f(O) = 0 this gives us 

t 

f(t) = J~i(s)Pr(M(s)>O)ds 
0 

ru1d hence (3~1) is proved. 

Proof of J3.2): Let g(t) = var X(t) • By (3.16), (3.18) and 

(3.19) g(t+h) = var (X(t)+I(t,h)R(t))+o(h) • 

We define the function J(x) to oe equal to 0 if x = 0 and 

1 if X f= 0 • 
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By the independence of the individual processes and their Markov 

property we have that if M(t) is given, then I(t,h) is 

stochastically independent of X(t) • This gives us: 

var E (X(t)+I(t,h)R(t) \X(t),M(t)J = 
,...., 

= var[X( t )+hai ( t) J(M( t)) ]+o (h) = 
'"-

= var X(t)+2r~i(t)cov[X(t),J(M(t))]+o(h) 

and 
E var [X ( t) +I ( t , h) R ( t) \X ( t) , N ( t) J = 

= E var [I(t,h)R(t) \X(t),M(t)J = 

= E E (I(t,h)R(t) 2 !X(t),M(t)]+o(h) = 

= eti (t)lJ.Et (R(t))Pr(M(t)>O)+o(h) 

The two last results together with (3.19) gives us: 

,..... 
g ( t+h) = g ( t )+o.i ( t )h~ (R( t))Pr (r'!J( t)>O )+2bcLi ( t )cov [X( t), J(N( t))] 

+o(h) 
and hence (3.2) follows by the following easy inequality: 

,...., 
(3.19a) cov[X(t), J(N(t))] ~ nPr(N(t)=O) 

Proof of (3.3): (3.3) follovm from (3.2) by lemma 3.2, part (i). 

Proof of (3.4): (3.4) follows immediately from (3.1) and (3.3). 

goof of (3.5): We have for s < t : 

cov (X(s),X(t)) = var (X(s))+cov (X(s),X(t)-X(s)) • 
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We have: 

(~ov [X(s),X(t)-X(s)] = E cov [X(s),X(t)-X(s) !M(s)] 
( 3. 20) ./ 

(+cov [E (X(s) [M(s)LE (X(t)-X(s) [M(s))J -., 

It follows from the definition of the X-process and from (3.1) 

that 
t 

(3.21) E [X(t)-X(s) IM(s)] = Jai(u)[l-(1-p(u))M(s)]du 
s 

It is also clear that when N(s) is given then X(s) and 

X(t)-X(s) are independent. Hence: 

(3.22) cov [X(s),X(t)-X(s) IM(s)] = 0 

(3.20), (3.21) and (3.22) gives us: 

(3.23) !cov [X(s),X(t)-X(s)] ISJ.(Pi (t)-~i (s)]E[1-p(t)JM(s) = 

= n[~i(t)-~i(s)][1-p(t)p(s)]n 
Hence (3.5) is proved. .... 
Proof of (3.6): We put Y(t) = ~j(t) for a j different from 

i • In analogy to (3.16.) we write: 

Y(t+h) = Y(t)+J(t,h)R(t)+V(t,h) • 

We define h(t) = covr[X(t),Y(t)] • By lemma 3.1 we have: 

~(t+h) = g(t)+cov [X(t),J(t,h)R(t)J 
( 3. 24) I 

(+cov [Y(t),I(t,h)R(t)]+cov [I(t,h)R(t),J(t,h)R(t)]+o(h) 
·~ 

We have: cov [X(t),J(t,h)R(t)J = 
CCV {E [X(t) !X(t),M(t)],E [J(t,h)R(t)[X(t),M(t)JI 

"" +E cov [X(t),J(t,h)M(t)JX(t),M(t)J = cov [X(t),aj(t)h~(M(t))] 

+ 0 (h) • 
('.) 

.Analogously: cov [Y(t),I(t,h)R(t)] = cov[Y(t),a.i(t)hJ(I•I(t))] 

+ 0 (h) • 



- 16 -

By lemma 3.3 we have: 

Pr[I(t,h)J(t,h)~OJ = o(h) 

so that: 

cov [I(t,h)R(t),J(t,h)R(t)J = o(h) • 

The last computations together with (3.24) gives us: 
r-.J r-.J 

h'(t) = aj(t)cov[X(t),J(M(t))]+ai(t)cov[Y(t),J(M(t))] 

which together with h(O) = 0 and (3.19a) gives: 

Uow assume s < t • Then: 

cov. [X(s),Y(t)] = cov [X(s),Y(s)]+cov [X(s),Y(t)-Y(s)] 

= I cov[X(s), Y( t )-Y(s) J I~ n [~ j ( t )-~ j (s) ][ 1-p ( t )p (s) Jn 

The last inequality is proved in the same way as (3,23). Hence 

(3.6) and theorem 3.1 is proved. 

Q.E.D. 

Proof of theorem 3.2: We fix i and 

define X(t) = :Pi(t) • Similarly to (3.16) we can write: 

(3.25) X(t+h) = X(t)[1-I(t,h)R(t)][1-U(t,h)] 

where the distribution of I(t,h) is given by (3.17) while 

Pr[U(t,h)~] = o(h) • We obviously have: 

Proof of (3.7): (3.7) is easily proved similarly to (3.1). 

In the following proof h (t) = o(n-v) will mean that 
11 

lim nvh (t) = 0 uniformly on each finite interval. 
n~ n 
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Proof of (3.8): Let f(t) = var X(t) • By computations ana­

logous to the ones in the proof of (3.2) we easily get: 

One easily shows: 

If we put gn(t) = nf(t) , (3.26) takes the form: 

By lemma 3.2, part (ii), lemrua (3.4) and assumption 1 this per-

mits us to conclude that 

t 

(3.27) gn(t) -7 pi(t)Jc.i(s)r(s)ds 
0 

when n -7 o:; , (uniformly on [ 0,1 ]) • This proves ( 3. 8). 

~f of (3.9): (3.9) is an immediate consequence of (3.7) and 

(3.8). 

Proof of (3.10): By conditioning with respect to 

(M(s),pi(s)) (3.10) is easily proved similarly to (3.5). 

Proof of (3.11): (3.11) is proved similarly to (3.6). 

Q.E.D. 

Proof of theorem 3.3: (3.12) and (3.15) are easily proved 

similarly to (3.1) and (3.6). (3.14) is an immediate conse-

quence of (3.12) and (3.13). It remains to prove (3.13). For 

this purpose the following lenMa is useful: 
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Lemma 3.5. 
t 

limn cov[Pi(t;A),;A(t)] = pA(t)j~i(s)[aA(s)pA(s)- 1 -pA(s)r(s)]ds 
n-?CD 

0 

t 

where aA(t) = pf(t)J6A(s)r(s)ds • 
0 

This lemma may be proved in a way similar to the proof of 

(3.8). The same methods may then be used to derive (3.13) by 

means of lemma 3.5. 

4. Sufficient and complete statistics. Proof that the esti-

m.ators are based on minimal sufficient statistics. 

Let us assume that we observe each process in the time 

interval [0,1]. Our observation of the v-th process is com-

pletely described by the pair (Uv,Yv) where u v is the time 

(in [ 0, 1 J) the process stays in state 0 ' while y 
\) 

is the 

state at time t = 1 • The likelihood of (Uv,Yv) is given by 

where we define a 0 (t) = 1 • By the independence of the indi­

vidual processes the total likelihood of all pairs (Uv,Yv) 

may be written 

(4.1) 

Let N be the number of processes which leave state 0 

during [0,1] • Let T1 < T2 < ••• <TN be the ordered times 

transition of these processes and let x1 , ••• ,XN be the 
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corresponding final states. It is easily shown that the like­

lihood of Z = [N, (T1 ,x1 ), ••• ,(TN,XN)J is given by 

(4~2) 

where p = p(1) • By dividing (4.1) by (4.2) we get the condit­

ional likelihood of [(u1 ,Y1 ), ••• ,(Un,Yn)] given Z equal to 

(4.3) (n-N)! 
n! 

if [u1 ,Y1), ••• ,(un,Yn)] is a permutation of 

[(T1,x1 ), ••• ,(TN,XN),(1,0), ••• ,(1,0)]. (The last vector should 

of course contain n elements.) Hence we have the following 

lemma: 

Lemma 4.1. Z is a sufficient statistic. 

(For a more stringent proof of this than the one given 

above one would have to use the measure-theoretic definition of 

conditional probability. This is not difficult, but we will not 

do it in this paper.) 

We will now turn to the question of the completeness of Z • 

We will make the following definitions for t E [0,1] • . 

fo.i (t) 
if 6(t) > 0 6(t) 

(4.4) yi(t) = l 
. i = 1 ' ••• ,m. , 

1 if b(t) = 0 m 

(4. 5) y 0 (t) = 1 

(4. 6) f(t) = (1-p)-1o(t)p(t) 
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The likelihood (4.2) of Z may then be put in the form: 

Let ai be the fm1ction ai(t) restricted to [0,1]. We 

define the following sets: 

(Ao1 denotes the assumption 1 of section 1.) 

(4.9) 

(4.10) J:' is the class of continuous densities on [0,1] 

(4.11) I= (0,1] 

"VIe recall that p may be written in the following way 

1 

( 4 • 1 2 ) p = exp (-J b ( t ) d t ) 

0 

The following len~a is easily proved: 

Lemma 4.2. (4.4), (4 .• 6) and (4.12) constitute a one-to-one 

mapping from ~ onto l x1=>< T ...... . 
We are now ready to prove the completeness of Z , 

Let us fix y = y(o) and f = f 0 • By applying the factori­

zation criterion for suffi< iency to (4.7) it is seen that N 

is in this case sufficient for Z • 
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Let us denote by a(y(o),f0 ) the part of~ in which y == y(o) 

and f ~ f • 
0 

when a. runs 

By lemma 4.2 p runs tl1.rough the whole of 

through §t(y(o),f0 ) • Since N is binomial 

I 

(n,1-p) it follows that N is also complete. Hence for an 

arbitrary integrable g we have: 

(4.13) 

/Eg(T1 ,, •• , TN,N) = 0 \j a. E a(y (o) ,f0 ) 

! 

) ~ 
\ E(g(T1 , ••• , Tk,1o) JN~k] ~ 0 

t f , 0 1 d (o) f -- f \ .. or ... ( = , , ••• ,n an y = y , 0 

(If k = 0 !T1 , ••• ,Tkl is tru(en to be the empty set.) 

It is easily established that the likelihood of 

(T1, ••• ,TN,N) is given by: 

(4.14) n! N ( ) pn-N( 1-p)N (n-N)! n f T 
v=1 v 

Since N is binomial (n,1-p) it follows that the conditional 

likelihood of T1 , ••• ,Tk given N = k (2: 1) is given by: 

k 
(4.15) k! n f(Tv) 

v=1 

This is equal to the likelihood of the order statistics corre­

sponding to k independent random variables with the density f. 

Hence by the well known results about the completeness of the 

order statistics in the nonparametric case (see e.g. Lehmann 

(1959) p. 133) it follows that: 
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(E[g(T1 ' ••• ,Tk,k) IN=k] 

(4.16) 

I ij 
/ 
\ g ( T 1 , ••• , Tk , k ) = 0 

lfor k • 0,1, ••• ,n 

a.s. for al1 f ES' 

Let ~(y(o)) be the part of Jl. in which y = y(o) • By lemma 

4. 2 f runs through the whole of ~ when a. runs through 

5lCY(o)) • Since f 0 is arbitrary in (4.13) it follows by 

(4.13) and (4.16) that 

(4.17) 

/
Eg(T1 , ••• ,TN,N) = 0 

/ .. I! 
'\ 'Y 

(g(T1 , ••• ,TN'N) • 0 a.s. for all a. E Ji (y(o)) 

By dividing (4.7) with (4.14) we get the conditional likelihood 

of (X1 , ••• ,XN) given (T1 , ••• , TN,N) : 

(4.18) 

It follows that (T1 , ••• ,TN,N) is sufficient when y is given. 

Together with (4.17) this gives us for any integrable h : 

Eh(Z) ::; 0 

By (4.14) the distribution of (T1, ••• ,TN,N) is independent 

of y • This means that the set with probability 1 where 
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(4.19) holds is independent of y • Let (t1 , ••• ,tk,k) be a 

point in this set. With probability 1 the t's are distinct, 

hence we assume this to be the case. We define a set of numbers 

xi E {1, ••• ,ml for i ~ 1, ••• ,k. 

We now let y be an element of l for which 

i=1, ••• ,k. 

By (4.18) we have: 

k k 
Fr[ n (X =x ) 1 n (T ~t )nN=k] ~ 1 

v=1 v v v=1 v v 

for our choice of y • If (4- .19) is true then this implies 

and the completeness of Z is proved. Together with lemma 4.1 

this gives us the following theorem: 

Theorem 4.1. [N~(T1 ,x1 ), ••• ,(TN,XN)] is a sufficient and com­

plete statistic with respect to the class of distributions which 

is generated by the set of those a that satisfy assumption 1. 

We will prove the following corollary 

Corollary. [N, (T1 ,x1 ), ••• , (TN,XN) J is mLYJ.imal sufficient. 
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Proof: Let ~ be the Lebesgue measure. We define the measure 

p on the Borel sets of [0,1] in the following way: 

p(A) Q ~(A) for A c [0,1) 

p({1}) = 1 

We define the measure ~ on all subsets of {0,1, ••• ,m} in the 

following way: 

~<lil) = P1 (1) for all i E {0,1 , ••• ,ml 

We define the f1-mction f(t;i) in the following way: 

fo1 f(t;O) = 1 
if 0 < t < 1 

if t = 1 

CP!(t)[:P.(1)r1 

= \_ ~ 0 ~ 
if i>O,O<t<1 

f(t;i) 
i > 0 J 

Then it is easily seen that we can write: 
yu 

Pr (U < u n Y < y) = JJ f ( t; i ) dp ( t) dM. ~ i) v- v-
00 

Hence our class of probability distributions of 

t = 1 

[(u1 ,Y1 ), ••• ,(un,Yn)J is dominated by a a-finite measure. 

The corollary then follows by Theorem 9 in Sverdrup (1966). 

Q.E.D. 

It is easily seen that all our estimators are functions of 

Z • Hence they are based on a minimal sufficient statistic. 

Besides, it follows from theorem 4.1 that our estimators are 

UMVU estimators of their expectations. Taken together with 

(3.1), (3.7) and (3.12) this shows us that our estimators should 

be quite good when n are not too small. 
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5. Strong consistency. A generalization of the Glivenko­

Cantelli theorem. 

For the Glivenko-Cantelli theorem, see e.g. Chung (1968, p. 124). 

We will prove the following theorems. All limits are talren 

with respect to n • 

.... 
Theorem 5.1. Pr[ sup I~. (t)-f. (t) 1~0] = 1 • 

O~t:51 J.,n J. 

Theorem 5.2. Pr[supJp; n(t)-p.(t) 1~0] = 1 • 
t>O .J-' J. -

• 
Theorem 5. 3. Pr[ sup IP. (t;A)-P. (t;A) 1~0] = 1 • 

O~t~1 J.,n J. 

Theorem 5.2 is seen to be a generalization of the Glivenko­

Cantelli theorem. The following lemmas will be needed for the 

proofs: 

Lemma 5.1. Let F0 ,F1 ,F2 , ••• be right-continuous increasing 

functions on [0,1] such that Fn(O) = 0 and Fn(1) ~ 1 for 

all n. Let g0 ,g1 ,g2 , ••• be stepwise continuous functions on 

[0,1] such that 0 ~ g0 (x) <a< oo for all x E [0,1]. 

Assume that 
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X X 

Then: Jgn(y)dFn(y) ~ Jg0 (y)dF0 (y) uniformly on [0,1] • 
0 0 

Lemma 5.2. .Assume that fn(x) (>0) converges towards f(x) 

rmiform.ly on [ 0, 1] when n -? oo • Assume that there exists an 

a> 0 such that f(x) >a on [0,1]. Then the following 

limits hold uniformly on [0,1] : 

[fn(x)+*]-1 -? f(x)- 1 

-nlog[1-(nfn(x)+1)-1]-? f(x)- 1 

These lenw~as may easily be proved by standard methods. 

For completeness the proofs are given in the Appendix. 

Proof of theorem 5.1. vie de;fine 

Hence we may write: 

t 

~ i , n ( t) = J yn ( s ) ~,/ s ) 
0 

With probability 1 ~ satisfies the assumption about Fn 

lemma 5.1 ' while yn satisfies the assumption about gn • 

By the Glivenko-Cantelli theorem and lemma 5.2 the following 

statements are true with probability 1 when n...;.oo: 

Xh(t) -7 Pi(t) unifornuy on [0,1] 

Yn ( t) -7 r ( t) uniformly on [ 0, 1 J 

in 
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r(t) satisfies the assumptions about g0 (x) in lemma 5.1. 

Hence with probability 1: 

t 
;. n(t) ~ j'r(s)P!(s)ds = ~.(t) 
1, 1 1 

0 

uniformly on [0,1] • 
Q.E.D. 

Proof of theorem 5.2. We may write: 

t 

Pi,n(t) = exp{Jlog[1-(~1 (s)+1)- 1 ]dMi,n(t)} 
0 

We define: 

By the Glivenko-Cantelli theorem and lemma 5.2 the following 

statements are true with probability 1 for an arbitrary finite 

interval [o,a] : 

~(t) ~ Pi(t) uniformly on (O,a] 

Yn(t) ~ r(t) uniformly on [O,a] 

By lemma 5.1 we may then conclude: 

Pr[ sup !P; n(t)-p.(t)I~O] = 1 
O<t<a ..~.., 1 --

Let e > 0 be given. Let p. ~lim p.(t). Choose a so large 
1 t~co 1 

for t 2: a • Let z . ( t ) ; n = 1 , 2 , • • • ; 1,n 

~ (t) for which sup lz. (t)-p.(t) 1 ~ 0. ~;.n , n , I ...... O<t<a ..~.., ..~.. 

be a realization of 

Choose N · so large that 

n > N => sup I z. n ( t )-p. ( t) I < e: 
O<t<a 1, 1 --
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Then, since z. (t) is decreasing in t , we have: 1,n 

Q.E.D. 

Proof of theorem 5.3. Of course theorem 5.2 remains true when 

i is replaced by a set A of states. This fact together with 

lemmas 5.1 ru1d 5.2 immediately yields theorem 5.3. 

Q.E.D. 

A A 

6. Estimators of var pi(t) and var pi(~ 

By considerations of the same kind as in section 2 it is 

easily deduced from (3.2) that the following is a reasonable 
• 

estimator of var ~. ( t) : 
1 

( 6.1) 
Mi(t) 

;i(t) = ~ (M(v;i)+1]- 2 
v=1 

We put 

.... 
(6.2) cri(t) = var pi(t) 

The following theorem holds: 

Theorem 6.1. t 

(i) FBi (t) = Ja.i (s)Es(R(s))Pr(M(s) > O)ds 
0 

(ii) Pr! sup [nlcri n(t)-o. n(t) \] ~ O! = 1 
o.::;t=::1 ' 1 ' 1 n -7 00 
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Proof: Similarly to (3.1) we easily prove· (i). 

(3.2) shows the significanse of (i).-

(ii) is proved similarly to theorem 5.1. 

We put: 

Q.E.D. 

Let T0 = 0 and let T1 < T2 < ••• be the 

ordered times of transition 0 ~ i in [O,~J • We define a 

stochastic process pi(t) on [O,~J in the following way: 

(6. 4) 

The following theorem holds: 

Theorem 0.2. 

= p.(t)+o(1) 
~ n 

Proof: We may write: 

p.(t+h) = p.(t)[1-2I(t,h)R(t)]+p~(t)R2 (t)I(t,h)+U(t,h) 
~ ~ ~ 
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where the distribution of I(t,h) is given by (3.17) while 

Pr[U(t,h)#O] = o(h) • Let f(t) = E 9i(t) • It is easily 

shown that f(t) satisfies equation (3.26) with the same side­

condition f(O) = 0 • Hence (i) is true. 

Part (ii) of the theorem is an easy consequence of theorems 

5.1 and 5. 2 and the fact that (3. 27) holds uniformly on [0, 1 J ~ 

Q.E.D. 

7. Asymptotic normality. 

I have found no central limit theorem in the literature by 

which it is possible to prove the asymptotic normality (AN) 

of our estimators directly. In this section I will give a proof 
.... ... 

of the AN of [~ 1 (t), ••• ,~m(t)] by means of characteristic 

functions. Then I will use that result to deduce the AN of 

[p1 (t), ••• ,pm(t)]. I have not yet studied the question of AN 
.... 

for Pj(A;t) in general, but I believe that AlT for these esti-
.... 

mators may be proved in a similar way to that of ~j(t) • 

We define for j = 1, ••• ,m : 

(7 .1) X. (t) = n~[P. (t)-f3 .(t)] 
J,n J,n J 

We will prove the following theorem: 

Theorem 7.1. X. ( t) ; j = 1, ••• ,m ; are asymptotically inde-J ,n 
pendent and normally distributed with means 0 and variances 

t 
Ja.j(s)r(s)ds 
0 

respectively. 

j = 1, ••• ,m 
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For the proof we need the following lemma: 

Lemma 7.1. Let ~ be a statistic defined on the process we 

observe. Then: 

Pr(~ ~ x) ~ F(x) 
n~oo 

The proof is trivial and will not be given. 

Proof of the theorem: 

Define 

where 

(7.2) 

Let A1 , ••• ,Am be specified real numbers. 

m 
~n(t) = E exp[i.E AJ.xJ. n(t)] 

J =1 ' 

i = J-1 . 
... 
~. ( t+h) J ,n 

We may write equation (3.16) in the form: 

.... 
= ~j,n(t)+Ij,n(t,h)~(t} +.uj,n(t,h) 

Lemma 3.3 gives us the simultaneous distribution of the 

Ij ,n ( t ,h) for j = 1, ••• ,m and also permits us to conclude 

that 

(7. 3) 

In this proof f(n;t) = o(n-1) will mean that lim nf(n;t) = 0 
n.,..co 

uniformly on every finite interval. 



- 32 -

We define 

m 
(7 0 4) w1 ,n(t) = exp[i L A.XJ. n(t)J 

j =1 J ' 

m t+h 
w2 ,n(t,h) = exph.E AJ.n-i[IJ. n(t,h)Rn(t)- J a.J.(s)ds]} (7.5) 

J=1 ' t 

. m ~ w3,n(t,h) = exp[1 E AJ.n u. n(t,h)] 
j=1 J' 

By (7.2) we have 

By (7.3) and lemn1a 3.1 we have: 

If M (t) is given then (I1 n(t,h), ••• ,I (t,h)) is indepen--n ,~ m,n 

dent of (X1 (t),.H,X" (t)) so that ,n -1n,n 

For a moment we will drop n from the notation. By lemn1a 3.3 

we have for r1(t) > 0 : 

t+h 
It]; [W2 (t,h)!M(t)]=[1-M(t)b(t)h]exp[-ini ~A. J et.(s)ds] 

) j=1 J t J 

(7.8) l t+h 

( +h ~ !M(t)a .(t)exp[iA .ni(R(t)- Jet .(s)ds)]!+o(h) 
\ j=1 J . J t J 
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From the Taylor development of eix one has: 

with js(x)t~ 1 , s(x) continuous, for all real x • By apply~ 

ing (7.9) to the exponential functions in (7.8) we get for 

M(t) > 0 : 

/E [w2(t,h)jM(t)J = 1-hnR(t) .~ iA2J.aJ.(t) 
J J=1 

c7.1o) I 3 

(+hn2R2 (t) ~ -31e .(t,h)A~a.(t) 
\ j=1 J J J 

where e j ( t,h) ; je j ( t ,h)! :5 1 ; is a t~dom variable which 

depends on t and h only via R(t)- J .. a. .(s)ds. Hence 
' J 
t 

eJ.(t) =lim 8 .(t,h) exists, and so by (7.7): 
h~o J 

where: 

m 2 
(7.12) a(t) = E !A.a..(t) 

j=1 J J 

We have: 

By lemma 3.2 we have for any T < co • . 
uniformly on 
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2 
Et[n2~(t)ej,n(t)w1 ,n(t)] ~ 0 uniformly on [O,T] 

This fact together with (7.-11L (7.13) and lemma 3.4 allov.rs us 

to conclude that 

t 

Cl'n ( t ) ~ exp [-J a ( s ) r ( s ) d s J 
0 

The theorem follows by the definition (7.12) of a(t) • 

Q.E.D. 

We now define for j = 1 , ••• ,m 

(7.14) 

We will prove the following theorem: 

Theorem 7.2. Yj,n(t) ; j = 1, ••• ,m; are asymptotically inde­

pendent and normally distributed with means 0 and variances 

t 

p~(t)Jaj(s)r(s)ds 
0 

respectively. 

Proof: By (2.3) we have: 

j = 1 , ••• ,m 

Mj,n(t) _ 
log p. (t) = I: logl1-[Mn(\l;j)+1] 1) 

J ,n \1= 1 

The following result is easily derived: 

For 0 ~X~ i there exists a function s(x), 

0 ~ S(X) ~ 1 , SUCh that log(1-x) =-X- ~(x)x2 • 

and 0 < t < T • Then - -
[Mrt(\l;j)+1]-1 ~ i and hence we can write: 



- 35 -

A 

(7.15) logpj,n(t) = -~j,n(t)-ej,n(t)crj,n(t) 

where 8 (tJ' j ,n 

where cr j 'n ( t) 

is a random variable with 0 :5 8 j ,n ( t) :5 1 

is given by (6.1). 

and 

From now on we drop n and t from the notation in order 

to achieve some simplification. By (7.14) and (7.15) we have: 

.l.. • .... 
Y. = n 2 (exp(-p .-e .o.)-p.) 

J J J J J 

and hence: 

~ the mean V8lue theorem there exists a random variable V 
A 

such that O<V<a. and 

(7.16) 

- - J 

! ... ! v· 
IY.-n (exp(-~.)-p.JI <n ea. 

J J J - J 

~ (3.3) and theorem 6.1 the expression on the right side in 

(7.16) converges almost surely to 0 • Hence 

(7. 17) 
.l.. .... 

Y. ( t) = n 2 [ exp ( -(3 . (t ~-p . ( t) ]+Z . ( t) J,n J,n J J,n 

where by leLTina 7.1: 

plim'T denotes that we assume ~('T) > 0 • 
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By the Taylor formula we have: 

(7. 19) 
A A w A 2 

exp(-P .)-p. = -p.(~ --~ .)+te (~.-~ .) 
J J J J J J J 

.... 
for a random variable W such that IW-~j I < lpj-pj I • We have: 

1 
1 w A 0 w 4 .... 2 

n2 e (pj-pj)~ = e [n (pj-~j)] 

which by theorem 3.1 converges in probability to 0 when 

Mu(r) > 0 is given. ~1is fact together with (7.17) and (7.19) 

yields: 

where uj,n(t) converges in probability to 0 when Mn(r) > 0 

is given. A limit theorem due to Cram~r (1946, Chapter 20.6) 

together with lemma 7.1 gives us that the Y. (t); j = 1,. •• ,m; 
J ,n 

havethe same simultaneous asynwtotic distribution as 

j = 1 , ••• ,m • 

The theorem now follows by theorem 7.1. 

Q.E.D. 

We now define: 

The following corollary to theorem 7.1 is an immediate conse­

quence of (3.3) and part (ii) of theorem 6.1: 
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Corollary to theorem 7 .1. Vj ,n (t) ; j = 1, ••• ,m ·; are asymp­

totically independent and normally (0,1) distributed. 

The following corollary to theorem 7.2 is an immediate conse­

quence of (3.8) and part (ii) of theorem 6.2: 

Corollary to theorem 7.2. Wj,n(t) ; j = 1, ••• ,m; are asymp­

totically independent and normally (0,1) distributed. 

These two corollaries are obviously relevant for testing statisti­

cal hypotheses about ~j(t) and pj(t) • 

"" 
8, Approximation of f3 ~~ (t) by a normal process with independent 

<.) 

incre:men ts. A test of Kolmogorov-Sm1rnov type. 

For a fixed j we define: 

X (t) = ni[p. (t)-p. (t)] • 
l1 J ,n J 

We will study the convergence of xn as a stochastic process. 

First we will give a theorem on the convergence of the finite­

dimensional distributions. Let t 0 ,t1 , ••• ,t1 for 1 > 2 be 

numbers such that 0 = t 0 < t 1 < t 2 < ••• < t 1 • n1en we have: 

Theorem 8.1. ~1(t1),xn(t2)-~1(t1), ••• ,xnctl)-~(tl-1) are 

asymptotically independent and normally distributed. 

Remark: The asy~ptotic means ru1d variances follow from ·theorem 

7.1. 

Proof: Let 1 "\ 
1\1 ' ••• ' "1 be arbitrary given numbers. We define 

for k = 1, ••• ,1 : 
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We also define: 

We state the following induction hypothesis: 

(8.1) cpn(t1, ••• ,tk) 

t 
k /.. 2 \1 

-? exp[- L: T J ex.. (s )r(s )ds J 
\1=1 t J 

\)-1 

By theorem 7.1 this is true for k = 1 • We will prove that if 

it is true for k , then it must be true when k is replaced 

by k+1 • We have: 

If we put 

we can write: 

we can put Vn in the fol."'D.: 

By the strong law of large numbers we known that if n -?co , 

then almost surely IV~ ( tk) -? oo in such a way that 
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From theorem 7.1 it then follows that the conditional distri­

bution given ~~(tk) of 

almost surely converges to a normal distribution with expectat-

ion 0 and variance 

tk+1 s 

(8. 5) J a.j(s)exp( J 6(u)du)ds 

tk tk 

Since the convergence of a sequence of characteris~ic functions 

is tmiform on every finite interval, it follows by (8.3), (8.4) 

and (8.5) that 

(8.6) 

tk+1 

Vn ~ exp[ -i/~.~+ 1 J a.j(s)r(s)ds] 

tk 

almost surely. We denote the l~nits in (8.1) and (8.6) by a 

and b respectively. We have: 

so that 

By the definition of a and b and since \Un I =: 1 and 

!Vn ~ 1 \ , the right side of the above li1equality converges 

to 0 • Hence (8.1) is proved with k replaced by k+1 • 

Q.E.D. 
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The theorem shows that the finite-dimensional distributions 

of xn converge to the finite-dimensional distributions of a 

normal process with independent increments (NPII). For the 

purpose of getting a test of Kolmogorov-Smirnov type we need to 

prove that sup IXrt(t)l converges in distribution to the corre-
O~t_::;1 

sponding supremum of the NPII. By Billingsley (1968) this is 

the case if we manage to prove a certain "tigh:tn,ess"property of 

Xh· 
From now on we consider the time interval [0.; 1.] , Then, 

by theorem 15.6 in Billingsley (1968), it is enough to prove the 

following lemma: 

Lemma 8.1. Assun1e 0 ~ t 1 ~ t ~ t 2 • Then there exists a con­

stant k independent of t, t 1 , t 2 and n such that 

4 ± .1. 
E! J~(t)-~(t 1 )"!"!PC11 (t 2 )-~(t) 131 ~ k[~Ct2 )-~(t 1 )J 3 

For the proof we need the following lemma: 

Lemma 8.2. 

There exists a constant k independent of n and 

t E [0,1] such that 

t 

var ~(t) ~ kja.j(s)r(s)ds 
0 

The lemma is ru1 i~~ediate consequence of (3.3). 
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Proof of lemma 8.1. We have: 

4 4 ffn (t,t1 ,t2)=E! I~ (t)-Xn(t1) 13 pen (t 2 )-~ (t) 131 

(8.7) 4 4 

l=E\E[ j~(t)-~(t 1 )!3 J~~(t)]E[ j~(t2 )-xn(t) J3 j~(t)Jl 

By the Holder inequality and lemma 8.2 we have for Mn(t) > 0 : 

4 2 

E[ 1xn <t2)-xn Ct) 1 3 1~ Ct) b!E[ c~ <t2 )-JS~ Ct) ) 2 1~ Ct) J13 

(8.8) t2 2 2 

where k1 and k 2 can be chosen independent of n,t,t1 

and t 2 • By the Holder inequality, lemma 3.2 (i) and (ii) and 

lemma 8.2 we have (using notation (1.12)): 

2 4 1 2 

Et{[n~Ct)J3 1~Ct)-xn<t 1 ) 13l~!Et[n2~Ct)J!3!Et[Xh(t)-xnCt 1 )J2 13 
2 

<k3 [Pr(M(t)>0)]- 1 {E[Xh(t)-~(t 1 )]2 }3 

2 

<k3[Pr(M(1)>0]-1 lE[E(Xh(t)-~(t 1 )) 2 \~(t 1 )]}3 
t 2 

<k4 lEt [k5n~(t1 )J aj(s)r(s)ds]l3 
1 t 

21 2 2 
<k6lEt [n~(t1)Jl3[~(t2)-~(t1)]3<k7[p(t2)-p(t1)]3 

1 

where the k's can be chosen independent of n,t,t1 and t 2 • 

Together with (8.7) and (8.8) this gives us lemma 8.1. 

Q.E.D. 
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Let X(t) be a normal process with independent increments 

and such that 
t 
f' 

EX(t) = 0 , var X(t) = J~j(s)r(s)ds • 
0 

Let X* be this process with t restricted to [0,1]. Let 

~ be our Xn-process with t restricted to [0,1]. By 

Billingsley (1968, theorem 15.6) we have proved the following 

theorem: 

Theorem 8.2. ~ converges in distribution to X* • 

The following corollary follows by corollary 1 to theorem 5.1 

in Billingsley (1968): 

Corollary 1. 

.tup IX(t)l. 
o:::;t::1 

sup l~(t) I 
o::t::1 

converges in distribution to 

We define: 
t 

~n = [n;j,n(1)]-i , f(t) = J~j(s)r(s)ds , p = [f(1)]-i 
0 

A 

Yn(t) = PnXh(t) , Y(t) = pX(t) • 

We will prove the following corollary to theorem 8.2. 

Corollary 2. IY (t)l d 'b t' t - sup converges in istrl u 2on o 
o;:::t,:S1 n 

sup JY(t) 1 • 
O~t~1 

Proof: We have: 
A 

= (pn-p) sup IXh (t) I+ sup IY(t) I • 
.. o::;t:51 O<t.::;1 
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By theorem 6.1 and (3.3) Pn converges almost surely to p • 

Hence corollary 2 follows by a limit theorem due to Cram~r 

(194-6, Chapter 20.6). 

Q.E.D. 

Obviously sup IY(t)l has the same distribution as the 
O~t~1 

corresponding supremum in a Wiener process. By a well-known 

result (see e.g. Felle1F ( 1971), p. 343) 

Pr( sup IY(t) tsv) ::a 

o,:::t~1 

Together with corollary 2 this gives us a test of Kolmogorov-

Smirnov type for the hypothesis: 

for all t E [0,1] 

for a specified function 

9. Comparison with the noccurrence-exposure 11 rates. 

In the first part of this section we will assume that all 

forces of transition are constant on the time interval [0,1] , 

i.e. : 

ai(t) =ai, t E [0,1], i = 1, ••• ,m 

where the ai are positive numbers. We put: 

m 
o= :L;a. 

. 1 l l= 
oA = L: o.. • 

- iEA 1 

A 

In this case the expression (3.13) for var Pi(1;A) 

may be explicitely computed. Doing this we get: 
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The maximum likelihood estimators, or the socalled 11 occurrence-

exposure" rates (o.c.) for the 

are given by: 

Mi(1) a.r = T(1J 

a. 
1. 

(see e.g. Sverdrup (1967)) 

where T(t) is the sum of the times each process has been in 

state 0 until time t • By (1.2) we have: 

Hence it is natural to estimate Pi(1;A) in the following way: 

where b~ = ~ a.~ • 
A iEA 1 

By wellknown results (Sverdrup (1967)) the 

asymptotic variance of this estimator is by some computations 

found to be: 

asvarpt( 1 ;A) 

Hence we have the following expression for the quotient between 
.... 

asvar :Pi ( 1 ;A) and asvarpt ( 1 ;A): 

(9.1 ) 

We denote this expression by f(a.,oA,c) • 
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The O.C. are known to have asymptotically least possible 

variance among a large class of estimators (Sverdrup (1965)). 

Hence it is interesting to study f(a,oA,o) • 

I have not yet per­

formed an extensive study of f(a,bA,o) , but I have computed 

it for certain special cases. The results are given below: 

(i) ~ = 6A = 6 • Then we have: 

(9.2) 

This expression occurs in Sverdrup (1967, p. 61) in a study of 

the simple special case m = 1 • From Sverdrup we take the 

following table: 

0 0 1 0.5 1. 0 2.0 

1.386 g(o) 1.ooo8 I 1.024 
I 

1 .086 

(ii) ' a. We then have: 

h(o) 

The following table may be computed: 

0.1 1.0 2.0 

1 .097 h(o) : 1 .ooo5 
I 

1 .035 

(iii) bA = 6 = 1 • We then have: 
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f(!,1,1) :a 1.02 

These examples should indicate that our nonparametric estimators 

are asymptotically almost equally good as the 0.0. even if the 

forces of transition are constant. 

To get a more complete picture of the situation one should 

also study the robustness of the 0.0. when the forces of tran­

sition are not constant. In this case the o.c. are usually re­

garded as estimators of the average of the forces of transition 

over the time interval in question, i.e.: 

t 
(9.3) 1 r ( ) t J o.i s ds i = 1 , ••• ,m 

0 

It is easily sho\~ that the corresponding o.c. converges almost 

surely to· .. •· · ____ · 

(9.4) 
t -1 

(1-pi(t))(Jpi(s)ds) 
0 

while (9.3) might be written: 

(9.4) and (9.5) are of course not equal in general. Hence the 

o.c. will generally not be consistent when they are intended to 

estimate (9.3). In contrast to this we have shown in section 7 
1. 

that tPi(t) is a strongly consistent estimator of (9.3). 

To make a closer comparison of (9.4) and (9.5) we look at 

the simple special case when 

(9.6) cx.l.(t) = ....L 1 +t 
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Then (9.4) takes the form 

(9. 7) t 
(1+t)log(1+t) 

while (9.5) takes the form 

(9.8) ~log(1+t) 

We now make the transormation u = [3i(t) = log(1+t) in (9.7) 

and (9.8) and then talce the quotient of the resulting express­

ions ((9.7) as denominator). We then get: 

(9.9) -2 u( -u)2 u e 1-e 

This turns out to be exactly the function g defined in (9.2). 

The table below (9.2) gives values of (9.9) for different values 

of u • One can say that (9.9) measures the degree of incon-

sistency of the o.c. when it is regarded as an estimator of 

(9.3) and when the assumption (9.6) is made. Even if the 

assumption (9.6) represents a relatively large deviation from 

constancy, the degree of inconsistency of the o.c. is seen to 

be small for b < 1 • In practice vre will probably nearly 

always have 6 < 1 because this mcevns that the probability of 

leaving state 0 is less than 
_1 

1-e • = 0.632 • 

We might perhaps say that the results in this section seeli. 

to support a conclusion of the following kind: For the nonpara­

metric estimators to be considerably better than the O.C., the 

deviation of the forces of transition from constancy will have 

to be quite large. On the other hand, even if the forces of 

transition are constant, the nonparametric estimators are almost 

equally good as the o.c. 
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Of course we must take the reservation that we have not 

yet made any thorough investigation of the relationship between 

our nonparametric estimators ru1d the o.c. 

10. Appendix. 

Proof of Lemma 3.2: For x ~ 1 we have: 

( 1 0 1 ) 1 = _L + _.,...1.:...-;..,. 
• x x+1 x(x+1) ' 

(
1_ = 1 + 3x+2 
x2 (x+1)(x+2) x2(x+1)(x+2) 

(10.2)' 
! 3x+2 < ___ 2;..:.4 __ _ 

~~2 (x+1)(x+2)- (x+1)(x+2)(x+3) 

We put 

seen that 

(10.3) 

Direct computations give: 

1-p • 
0 

It is easily 

(10 .. 5) ( 1 ) a [ n+2 ( ) n+1 E* (X+1)(X+2) = 2 1-q - n+2 pq 
p (n+1) (n+2) 
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Proof of (i): By (10.1), (10.3), (10.4) and (10.5) we have: 

so that: 

where the right side is obviously bounded with respect to n 

since p0 > 0 and q < 1 • 
0 

Hence the first part of (i) is 

proved. The second part is easily proved in the same way by 

using ( 1 0. 2) , ( 1 0. 3) , ( 1 0. 5) ancl ( 1 0. 6 ) • 

Prof of (ii): By Iicilders inequality we have: 

~ 2 ~ 
n 12 ;;r n 1 2 n 1 2 

< [E*(x- P) J = [E*(x2 - ~) - PE*Cx- P)J 

Hence (ii) follows from (i). 

Proof of (iii): This is a clirect consequence of the first part 

of (i). 

Q.E.D. 
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Proof of Lemma 3.4: We defj_ne for n = 1 ,2, ••• 

X X y 

cpn (x) = fn (x~)exp[J g11 (y)dy]-Jh(y)exp[Jgn (t)dt]dy 
0 0 0 

We have: 

X 

cpn 1 (x) = exp [Jgn (y )dy][f11 ' (x)+g11 (x)f11 (x)-h(x)] 
0 

By the assumptions of the lemma we have when n ~ co : 

cpn' (x) -7 0 uniformly on [0, a J 

We also have cpn(O) = c for all n • By theorem 7.17 in Rudin 

(1964-) we conclude that cpn(x)-+ c uniformly on [O,a] • Hence 

the conclusion of the lemma. 

Q.E.D. 

Proof of Lemma 5.1. Assume 0 ~x ~ 1 • Obviously we have: 

(10.7) 

Let e > 0 be given. Since gn(y)-g0 (y) converges uniformly 

to 0 on [0,1], there exists a N1 such that 

1 

(10.8) => j' !g (y) .... g (y) ldF (y) < e n o n -
0 
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Since g0 (y) is uniformly contli1uous on each of a finite set 

of subintervals of [0,1], there exists a left-continuous step­

function s (y) ; 0 ~ s (y) :::; a ; with 11 jumping points 11 

x1< x2< ••• < xk such that 

Vy E [ 0,1] • 

Let m(x) denote the number of x. < x , h(x) 
J. -

the greatest 

x . < x and put x = 0 • Then: 
J. - 0 

X X X X 

ljg0 (y)dFn(y)··Jg0 (y)dF0 (y) I.:;; 2e:+ IJs(y)dF11 (y)-Js(y)d~(y) j 
0 0 0 0 

m(x)-1 
= 2e:+ I . 2:=0 s (xi) [F11 (xi+1 )-Fn (xi) ]+s (x) [Fn (x)-Fn (h(x)) J 

J.-

m(x)-1 
- 2: s(x.)[F0 (x.+1 )-F0 (x.)]-s(x)[F (x)-F (h(x))JI i=O J. J. J. 0 0 

Since F11 (y) converges to F0 (y) uniformly on [0,1] , there 

exists a u2 such that for all y E [0,1]: 

Hence: 

X X 

n 2:: N2 => ljg0 (y )dFn (y )-Jg0 (y )dl.,0 (y) 1:5 3e: 
0 0 
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for all x E [0,1] • Together with (10.7) and (10.8) this 

proves the lemma. 

Proof of Lemma 5.2: Choose e such that 0 < € < ia • Then 

there exists a N such that 

n > N :::;> l£n (x)-f(x) I ~ e for all x E [0,1]. 

We then have for n > N and all x E [0,1] : 

Hence the first statement in the lemma is proved. The second 

is proved in the same way. For the proof o£ the third we use 

the well knm·m and easily established fact that if lx I .::;: i 

then log( 1 +x) = x+8 (x)x2 where I e (x) I ~ 1 • Hence for n 

large enough we have for all x E [0,1] : 

jnlog[1-(nfn(x)+1)- 1 ]+f(x)f~lf(x)-n[nfn(x)+1]- 1 l+n[n£n(x)+1]- 2 

e...l 
< n + 
- a(a-e) 

n < )e 

(an+1 )2 - ~ • 

Q.E.D. 
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11. Further work. Generalizations. 

It should be quite clear that the theory developed so far 

is in many ways quite incomplete. The approximations and in­

equalities in the moment formulae in section 3 may surely be 

improved. In section 5 it ought to be possible to prove strong .. 
convergence of Pi,n(t;A) uniformly with respect to t > 0 • 

This would be a further generalization of the Glivenko-Cantelli 

theorem. The estimators in section 6 should of course be more 

thoroughly studied. It should also be possible to prove .. 
asymptotic normality of J?. n(t;A) l, 

in general, and likewise. 

to prove results of the kind in section 8 for these estimators. 

The possibility of non-asymptotic Kolmogorov-Smirnov type 

testing should also be studied. Lastly the comparison with the 

occurrence exposure rates and the study of the expression (9.1) 

should be done in much grater detail. The author will continue 

the work in all these areas. 

One will also see that the simplicity of the multiple 

decrement model is in no way essential for the theory. It is 

probably quite possible to generalize the results to Markov 

chains of a much more general kind. This will also be the 

object of further work by the author. 

We have used an especially simple observational scheme in 

this paper, in that we have assumed that all individual processes 

are observed during the same given time interval. It will be 

seen that this is not either essential for the theory. 
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