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Summary .

In this paper we define and study certain nonparametric
estimators of partial transition probabilities and of integrals
of forces of transition in multiple decrement models (which are
simple Markov chains). We compute approximately expectations,
variances and covariances and prove that the estimators are
based on minimal sufficient statistics. We prove that the esti-
mators are strongly consistent and give a generalization of the
Glivenko-Cantelli theorem. For some of the estimators we prove
asymptotic normality which gives us asymptotic tests. We also
give a test of Kolmogorov-Smirnov type. We conclude with a
comparison of our estimators with the occurrence-exposure rates.
This comparison seems to indicate that even when the forces of
transition are constant, the nonparametric estimators are
almost equally good as the occurrence~exposure rates.

The theory developed in this paper may alternatively be
regarded as a generalization of the theory of empirical distri-

bution functions.
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1. Introduction,.

A multiple decrement model (see e.g. Zwinggi (1945),
Simonsen (1966), Sverdrup (1967), Hoem (1969)) is a time-
continuous Markov chain with one transient state labeled O
and m absorbing states numhered from 1 to m . We define
Pi(t) 3 1 =0,15ees,m1 ; to be the probability that the process
ieg in state i at time t given that it started in state O
at time O . The force of transition (see e.g. Hoem (1969)) or
infinitesimal transition probability from state O +to state 1

at time t 1is given by
(1.1) a;(t) = B;"(£)/B (%) i=15ee.,m

provided the derivative exists.
We make the following mathematical assumption (see Feller

(1957) sec. XVII, 9):

Assumption 1. ai(t) exists and is continuous everywhere for

1 =1560e,m &

In applications of the multiple decrement model one is
interested in the socalled partial transition probabilities
(see e.g. Hoem (1969)) which occur if one or more of the forces
of transition are put identically equal to O . Let A be an
arbitrary subset of {1,ese,m} . Assume i € A and let
Pi(t;A) be the probability of tramsition from O <to i in
the time interval [0,t] if aj(t) =0 forall j¢ A . Then
we have:

.

G s
(1.2) B (554) = Jo; (s)exp(= 2 [a (w)aw)as
0 0

Further we will define for i = 1;.ee,m 2



(1.3) p; (t) = 1-B, (+;{i})

so that
i

(1.4) p; (+) = exp(-]a; (s)as)
0

Let B be a subset of {1,es.,m} . We define:

m
(1:5)  py(t) = Wo(8) , (1) = T2, (8) = B, (5)

m
by ak(t) , (%) )X ak(t)
lceB k=1

(1.6) 6B(t)

]

We also define:
t
(1.7) By () = Jai(s)ds

o)

When the functions ai(t) are all constant it is well
known how to estimate them and test hypotheses about them (see
e.g. Sverdrup (1967)). When they are not constant, then
different procedures are in use. One is to partition the time
interval of observation into smaller intervals and then assume
congstancy over each subinterval. The estimation may then
possibly be followed by scme kind of gradﬁation (see e.g. Hoem
(1972)). Another method consists in assuming that each ;i(t)
equals some parametric function, and then to make inference
about the parameters of this function (Grenander (1956)).

When the functions ai(t) are very irregular or when they
have an unknown functional form, the methods mentioned above
may be unapplicable or difficult to apply. Such a situation

arose in the authors study of statistical methods in connection



with projects for determining the security of the Intrauterine
Contraceptive Device (Aalen (1972)). The nonparametric theory
we will present in this paper is a further development of the

methods constructed to tackle that situation. It might be of

use also in other situationsf

The quantities which seem to be of greatest inverest in
practice are the Pi(t;A) . We will therefore study the esti-
mation of these quantities when the only assumption which is
made about the forces of transition is Assumption 1,

We will also study estimation and testing of Bi(t) .

Our methods are partly inspired by a paper by Kaplan and
Meier (1958). Our estimators may partly be regarded as gene-
ralizations of their "product-limit" estimator. Their estimator
corresponds to our ﬁi(t) which is defined in section 4 .
Kaplan and Meier approximately compute the expectation and
variance of this estimator and give some other results. Our
Theorem 5.2 may be regarded as an extended and somewhat more
precise statement of most of their results. Our proof is how-
ever‘quite different from the one in Kaplan and Meier. The
other estimators and results which we present are believed to
be new,

We will make the following cbservational assumption:

Agsumption 2¢ We observe continuously n independent processes

of the kind described above, each with the same set of forces
of transition. The observation of each process starts at time
O and continues as long as we want to make inference about

them. Every process is assumed to be in state O at time O .

* Barlow (1968) and Barlow and van Zwet (1969) have developed

other nonparametric methodse.



We will use the following notation:

Mi(t) is the number of processes in state 1 at time +t .
This definition is made unambiguous if for 1 > 0 we say that
a process is in state i at time t if the transition O = 1
is performed exactly at this instant. We put M(t) = Mb(t) .

We define T (A) to be the time of the v-th transition
from O to A . We define M(v; i) by

(1.8) M(v;i) = M(T ({i}))

By our definition of M(t) , M(v;i) will be the number of
processes in state O jJjust after the v-th transition from O

4

to 1 has occurred. We also define:

(1.9) M(v;iA) = M(Tv(A))
(1.10) MA(t) = igAMi(t)

We also define for positive M(t) and p(t) :

(1.11) R(t) = (M(t))™7, r(+) =@(+))"

All these quantities will of course be dependent on the number
n of processes. If we need to stress this dependence, we will
write e.g. Mh(t) instead of M(%) , Mi,n(t) instead of

Mi(t) and similar for the other quantities.

Let T >0 be a given point of time. ILet X and Y be
statistics defined on the total process we observe. Throughout
the paper we will use the folilowing notation:

E X = E(X[M(T)>0) , var X = var(X|M(T)>0)

(1.12)
covT(X,Y) = cov(X,Y|M(T) > 0)



A uniformly minimum variance unbiased estimator is as
usual denoted as an UMVU estimator.

a.s. is as usual used as an abbreviation of the expression
"almost surely".

In accordance with standard notation we say that

f(x) = 0(x) if 1im %f(x) =0 when x = O .

We also put f(x-)= 1im f(y) and lastly we define
y4x

1 -
0.6—00

2« The estimators.

We will give heuristic jJjustifications for the estimators
we want to propose, We will use an argument which is partly
analogous to the one in Kaplan and Meier (1958).

Assume that [0,t] is partitioned into so small intervals
that with overwhelming probability there is at most one transit-

ion in each subinterval, and so that ai(s) may be assumed to
be constant on each subinterval. (By Assumption 1 ai(s) is

uniformly continuous on [0,t] .) ZIet <{s,s+h] be one of the
subintervals. By (1.1) it is seen that M(s)hxi(s) is approxi-



mately equal to the conditional probability of one transition

0 -i in (s,s+h] given M(s) . It follows that if there is

no transition in 0 - i in <{s,s+h] then it is natural to
"estimate" hai(s) by O , and if there is a transition O = i
it is natural to "estimate" hai(s) by [’_M(s)]“1 « With a

small modification in order to avoid zero denominator, this leads
us to propose the following estimator for Qi(t) :

M, (t)

(2.1) éi(t) = X [M(v;i)+1]‘1
v=1

Alternatively we may write:

N

U

(2.2) B, (t) = | [m(s)+1 77 a, ()

which is by the definition of Mi(t) well defin=d as a Lebesgue-
Stieltjes integral.

In order to estimate Pi&;A) we will first put A = {i}
and try to estimate p,(t) (see (1.3)). We use the same
partiti:ning as above, Since h is small we have:

s+h
exp[ - J ai(s)ds] ~ 1-ai(s)h
S
As above we conclude that this expression may be estimated by
1 or 1--[M(s)]"1 according as there is O or 1 +transition
O0~-1i in (s,s+h] . Hence we are led to propose the following
estimator for pi(t) (with the same modification as above):

M, (%)
(2.3)  p,(t) = 1 [1-Q1(v;i)+1)7"]

v=1

If Mi(t) =0, we put pi(t) =1,



Now we observe that Pi(t;A) may be written

ot

P, (t;4) = jai(S)pA(S)ds

0
It is natural +o estimate pA(t) by

MA(t)
(2.4)  8,(8) = 1B (8) = T [1-((v;4)+1) 7]

v=1
so that by the same argument as the one leading up to (2.1) and
(2.2) we are led to propcse the following estimator for Pi(t;A):

(2.5) ii(t;A) = [M(s)+1]”1ﬁA(s-)dMi(s)

o

By defining suitable quantities one may write this in a more
explicit form like (2.1) and (2.3).
By (1.3) we naturally ought to have for all i € {1,e¢.,m}:

Hd
|
~
o+
e
[
~
I

1-§i(t)

This is seen tc be a consequence of the following formula which
is easily proved by induction:
Let a1,a2,... be strictly positive numbers. Then we

have for all k > 1 3

5 (-1 ; (1= —12)) : ( 1)

2 o (1= = 1= 10 (1 -

11 ai =1 aj+1 =1 aj+1
If A= {1,ees,m} we have:

P, (t;4) = %Mi(t)



This shows that our estimators are generalizations of the natu-
ral "frequency estimators" of Pi(t) . From another point of

view we may regard the functions (2.3) and (2.5) as generalized

empirical cumulativevdistribution functions. In the same sense
one may regard Bi(t) as the empirical function corresponding
4c the theoretical function Bi(t) . This remark is relevant

for the theory develored in section 8.

3. FExpectations, varianceg and covariances.

The following theorems hold:

Theorem %.7.

;
(3.1) B g, (8) = B;(6)=]o; (s)[1-p(s) TP
0
(3.2)  var §,(t) = |a;(s)E (R(s))as+p, (25t)
0

R g

(3.3)  var B;(t) = Lfa, (s)r(s)as+o,(nst) where 0% (nst)for 3=1,2
0]

is bounded uniformly with respect to n and + € [0,1].

(3.4) Bi(t) is weakly consistent.

(3.5)  cov (B;(s),6;(+)) = var By(s)+ps(nss,t) for s <t

where |p5(n;s,t) ] 5-n[Bj(t)-Bj(s)][1-p(t)p(S)]n .
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(3.6) lcov [éi(s),éj<t)]ls n[p; (s)+6(£)][1-p(t)pls)]" for iAj .

Theorem 302.

(3.7)  |E $;(8) = p;(8) | < exp[(1-p(£))"]-1
¢

(3.8)  var () = 2p%(t)]a; (s)r(s)as+o(d) .
O

(3.9) ﬁi(t) is weakly consistent.

(3.10) cov (p (s),p (t)) = E—%—g var p (s)+o(~) for s <t .

(3.11) cov [3;(s),8,(£)] = o(d) for i £ .

Theorem %.3.

(3.12) |BE B, (t; 4) - B, (434)] < B, () {exp[(1-p($))"]-1]

Tet o,(t) = p2(t)[6,(s)r(s)as. Men:

0
t

var P (t34) = nfa (s)pA(s)r(s)ds
0

(3.13) ¢ %
+ &[[a; (8)py (8)o; (W) (o, (w)p, (w) 7 =p, (w)r(u) )au]ds
O 0

+ o(d)

(3.14) Pi(t;A) is weakly consistent.
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(3.15) AN B =9 = cov [Pi(t;A),Pj(s;B)] = o(%) for all
i€h, jEB

For the proof of these theorems we need a sequence of

lemmas :

Lemma %.1. Let X and U(h) be random variables, the latter

defined for each h > O , such that the following conditions
are fulfilled:
(i)  There exists a and b such that Pr(|X| <a) =1,
Pr(|U(h)| <b) =1 for all h >0 .
(ii) Pr(U(n) #0) = o(h) .
Then we have:
EU(n) = o(n) , E(XU(h)) = o(h)
var (X+U(h)) = varX+o(h) , var(XU(h)) = o(h)

cov(X,U(h)) = o(h)

The proof of this lemma is trivial and will not be given.

Lemma 3.2. Let X be binomial (n;p) with P, <p <1 for

a given p, >0 . Let us denote E(£(X)|Xx0) by E*(£(X)) .
Then we have:
(i) There exists a constant k independent of n and

p € [p,,1] so that
n 1 k
[B*(z)- 51 =&

2
- 5l < 5

n
X P

IA

The following statements hold uniformly on [po,1] :
.. n 1
(i1) BE¥lg -5l =0

VvV
(iii) B*(E=5) = 0 for v <2 .
x2
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The proof is given in the Appendix.

Lemma 3,3, Let for 1 = 1,e4s,0 Ni(t,h) be the number of

transitions 0 - i in [t,t+h) . Then we have

0|M(t))

Pr(Ni(t,h) 1—M(t)u1i(t)h+o(h)

i

Pr(W, (t,h) = 1[M(t)) = M(t) o, (t)h+o(h)

]

m
Pr((Ni(t,h)=1)n n (Nj(t,h)=o)]M(t)) = M(t)ai(t)h+o(h) .
J=1
JAi
m
Pr( T Nj(t,h) >2|M(t)) = o(h)
J=1
Proof: The lemma is an casy consequence of the assumptions in

section 1.

Lemma 3.4. Let g(x) , h(x) , fn(x) , gn(x) ;0 = 1,2,060 3

be real continuous functions defined on [0,a] , a <o, and
such that fn(O) =c for all n . Assume that the fn(x) are
all differentiable on [0,a] and that the following limit

relations hold uniformly on [0,a] :

£} (x)+g, (x)f (x) = h(x)

g, (x) = g(x)

when n -, Thent

X X X X
£,(x) » exp(-|e(y)ay) [n(y)exp([g(t)at)ay+eecxp(-[g(y)ay)
o) 0 o 0

uniformly on [O0,a] .
The proof is given in the Appendix. We now proceed to the

proofs of our theorems:
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Proof of theorem 3.1. We assume 0 <t <1 and put

X(t) = B;(t) « Tet I(t,h) De equal to 1 if there is at
least one transition O = i in [t,t+h? , and O if there is

none. We can then write
(3.16) X(t+h) = X(t)+I(t,h)R(+)+U(t,h)
where by lemma 3.3 we have:
fér(I(t,h)=1|M(t)) = M(t)<hea; (t)+o(n)
(3.17) Pr(I(t,h)=0M(t)) = 1-M(t)ha, (t)+o(h)
KIT(U(t,h)#O) = o(h)
The following inequalities obviocusly hold:
(3.18) 0 <X(t) <n , 0 <U(t,h) <n .

Proof of (3.1): ILet f£(t) =E X(t) « By (3.16), (3.17), (3.18)

and lemma 3.1 we have?
f(t+h) = f(t)+hai(t)Pr(M(t)>O)+o(h)

Since f(0) = 0 +this gives us
i

t
£(t) = [a; (s)Pr(1(s)>0)as

and hence (3.1) is proved.

Proof of (3.2): Let g(t) = var X(t) . By (3.16), (3.18) and

lemma %.1 we have:

(3.19) g(t+h) = var (X(+)+I(t,h)R(t))+o(h) .

We define the function J(x) to pbe equal to O if x =0 and
1 if x #£0 .



- 14 -

By the independence of the individual processes and their Markov
property we have that if M(t) is given, then I(t,h) is
stochastically independent of X(t) . This gives us:

var E [X(+)+I(t,n)R(t)|X(t),M(t)] =

var[X(t)+bo; (£)T(M(t)) J+o(n) =

var X(t)+2ha (+)cov[X(+), J(M(t))J+o(n)

Il

and
E var [X(£)+I(t,h)R(t) |X(t),M(t)] =

E var [ I(t,h)R(t) |X(t),M(%)] =

E E [I(t,h)R(+)%|X(t),M(t)]+o(h) =

I

= @ (4)nE; (R(+))Pr (M(+)>0)+0 (n)
The two last results together with (3.19) gives us:
g(t+h) = g(t)+a, (t)nE, (R(HPr(1(+)>0)+2ha, (t)ov[X(t), J(M(+))]
+o(h)

and hence (3.2) follows by the following easy inequality:

(3.19a)  cov[X(+), 3(M(t))] < nPr(M(+)=0)

Proof of (3,3): (3.3) follows from (3.2) by lemma 3.2, part (i).

Proof of (3.4): (3.4) follows immediately from (3.1) and (3.3).

Proof of (3.5): We have for s <+t @

cov (X(s),X(%4)) = var (X(s))+cov (X(s),X(t)-X(s)) .
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We have:

{cov [X(s),X(t)-X(s)] = E cov [X(s),X(t)-X(s)|M(s)]
(3.20) <
+cov [E (X(s) M(s8)),E (X(t)-X(s)|M(s))]

It follows from the definiticn of the X-process and from (3.1)

that
t

(3.21) B [X(+)-X(s) M(s)] = fa, (2)[1-(1-p())"(*) Jau
S
It is also clear that when M(s) is given then X(s) and

X(t)-X(s) are independent. Hence:

(3.22) cov [X(s),X(t)-X(s)|M(s)] =0

(3.20), (3.21) and (3.22) gives us:
(3.23) |oov [X(s),X(+)-X(s)]|np, (+)-8, (s) JE[1-p ()13 =
= n[g; (+)-B; (s) 1[1-p(t)p(s) 1"

Hence (3.5) is proved. R
Proof of (3.6): We put Y(t) = Bj(t) for a j different from

i . In analogy to (3.16) we write:
Y(t+h) = Y(t)+J(t,h)R(t)+V(t,h) .
We define h(t) = cov [X(t),¥(t)] . By lemma 3.1 we have:
g(t+h) = g(t)+cov [X(t),I(t,h)R(%)]
(3.24)[
+cov [Y(t),I(t,h)R(t)J+cov [I(t,h)R(t),I(t,h)R(t) J+o(h)
We have: cov [X(%),J(t,h)R(t)] =
cov {E [X(%)|X(t),MM(t)],E [IJ(t,n)R(L)|X(t),M(t)]}
+E cov [X(t),J(t,0h)M(t)|X(%),M(t)] = cov [X(t),aj(t)hJ(M(t))]
+ o(h) .
Analogously: cov [Y(t),I(t,h)R(t)] = cov[Y(t),ai(t)h}(M(t))]
+ o(h) .
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By lemma 3.3 we have:
Pr{I(t,h)J(t,h)&0] = o(h)

so that: |
cov [I(%,h)R(%),J(t,h)R(t)] = o(h) .

The last computations together with (3.24) gives us:
B (5) = oy (6)eov[X(+), 30u()) e (+)eov[¥(5),d (u(+))]

which together with h(0) = 0 and (3.19a) gives:

[h(t) |=]cov [X(%),¥(%)]|< n[Bi(t)+sj(t)1[1—p(f)]n

How agssume s < t . Then:

cov [X(s),¥(t)] = cov [X(s),Y(s)]+cov [X(s),Y(t)-Y(s)]

= |cov[X(s),Y(t)-Y(s)]|< n[bj(t)—Bj(8)1[1—p(t)p(s)]n

The last inequality is proved in the same way as (3.,23). Hence

(3.6) and theorem 3.1 is proved.
Q.E.D.

Proof of theorem 3.2: : . We fix i and
define X(t) = ﬁi(t) . Similarly to (3.16) we can write:

(3.25) X(t+h) = X(t)[1-I(%,h)R(%)]J[1-U(%,h)]

where the distribution of I(t,h) is given by (3.17) while
Pr(U(t,h)#0] = o(h) . We obviously have:

0 <X(t) <1 0 <U(t,h) <1

Proof of (3.7): (3.7) is easily proved similarly to (3.1).

In the following proof hn(t) = o(n”Y) will mean that

lim n\’hn(t) = 0 uniformly on each finite interval.
n-£0
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Proof of (3.8): ILet f(t) = var X(+t) . By computations ana-

logous to the ones in the proof of (3.2) we easily get:
(3.26) £1(t) = -26; (£)2(+)+aZ(4)B, [X° (£)R(t) Jro ™)

One easily shows:

B [X2(£)R(+)] = 22(6)r (+)+1pF (£)r ()48, [X° () (R(£)-1r (£)) J+o(n™T)
If we put g (t) =nf(t) , (3.26) takes the form:

g! (t)+a; (t)[2-Tr(£) g, (+) = a; ()05 (t)x(+)

+Et[X2(t)(nR(t)—r(t))]+o(1) .

By lemma 3.2, part (ii), lemma (3.4) and assumption 1 this per-
mits us to conclude that

t

(3.27) g, (t) = pi(t)fai(s)r(s)ds
0]

when n - < ,(uniformly on [0,1]). This proves (3.8).

Proof of (3.9): (3.9) is an immediate consequence of (3.7) and
(3.8).

Proof of (3.10): By conditioning with respect to

(M(s),ﬁi(s)) (%3.10) is easily proved similarly to (3.5).

Proof of (3.11): (3.11) is proved similarly to (3.6).
Q.E.D.

Proof of theorem 3.3: (3.12) and (3.15) are easily proved

similarly to (3.1) and (3.6). (3.14) is an immediate conse-
quence of (3.12) and (3.13). It remains to prove (3.13). For

this purpose the following lemma is useful:
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Lemma, 3050

_b

Lin n cov[P, (t34),p,(+)] = p,(+)]a;(s)[0,(s)p,(s) 7 -p,(s)x(s) Jas
n-00 o

t

where cA(t) = pi(t)ij(s)r(s)ds .
0

This lemma may be proved in a way similar to the proof of
(3.8). The same methods may then be used to derive (3.13) by

means of lemma 3.5.

4, Sufficient and complete statistics. Proof that the esti-

mators are based on minimal sufficient statistics.

Let us assume that we observe each process in the time
interval [0,1] « Our observation of the wv-th process is com-
pletely described by the pair (Uv’Yv) where U, is the time
(in [0,1]) the process stays in state O , while Y  is the
state at time + =1 . The likelihood of (Uv,Yv) is given by

aYv(Uv)p(Uv)

where we define a_(t) =1 . By the independence of the indi-
vidual processes the total likelihood of all pairs (Uv’Yv)

may be written

n
(441) vE1[aY§(Uv)p(Uv)]

Let N ©be the number of processes which leave state O
during [0,1] « Let T, < T, < +ss < Ty Dbe the ordered times

1 2
transition of these processes and let X1,...,XN be the
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corresponding final states. It is easily shown that the like-

lihood of % = [N,(T1,X1),..”($N,XN)] is given by

. . Y n: n Il-N
(4:2) =5 H1[ax (T,)p(T,)]p
V= Y

where p = p(1) . By dividing (4.1) by (4.2) we get the condit-
ional likelihood of [(U1,Y1),...,(Un,Yh)] given Z equal to

n-N)!
n.

(4.3)

if [U,Y)5.44,(0,,Y, )] is a permutation of
LT X, ) oo ey (T Xgd» (1,005,044, (1,0) ]« (The last vector should
of course contain n elements.) Hence we have the following

lemma:

Lemma 4.1. Z is a sufficient statistic.

(For a more stringent proof of this than the one given
above one would have to use the measure-theoretic definition of
conditional probability. This is not difficult, but we will not
do it in this paper.)

We will now turn to the question of the completeness of Z .

We will make the following definitions for t € [0,1] @

_ai(t) _
-5-(—_5-)—- if &8(t) >0
(404’) Yl(t)= H i=1,...,m
«] 1 if 6(t) =0

18

"
—

(4.5) v (%)

(4.6)  £(t) = (1-p) o (t)p(+)
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The likelihood (4.2) of Z may then be put in the form:

' N
(4.7 emiyr B Dvg (9,)£(2,) 10" (1-p)"

Let a; be the function o,(t) restricted to [0,1] . We

define the fcllowing sets:
(4.8) ﬁi =ia=(a1,...,am)]ai satisfies Aol for i = 1,e4.,m}
(Ae1 denotes the assumption 1 of section 1.)

(429) T = {y=(yqseesvy) o €5

(4.10) ¥ is the class of continuous densities on [0,1]

(4.11) I =<0,1]

We recall that p may be written in the following way

1

(4.12) » = exp(-] &(t)at)
0

The following lemma is easily proved:

Lemma 4.2. (4.4), (4.6) and (4.12) constitute a one-to-one

mapping from éi onto I X¥x I,

We are now ready to prove the completeness of 7 .

Let us fix vy = Y(O) and T = fo . By applying the factori-

zation criterion for sufficiency to (4.7) it is seen that N

is in this case sufficient for 2 .
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Let us denote by g%(v(o),fo) the paft of gi_ in which vy = Y(O)
and f = fo « By lemma 4.2 p runs through the whole of I
when o runs through gi(y(o),fo) « Since N is binomial
(n,1-p) it follows that N is also complete. Hence for an
arbitrary integrable g we havet

[Be(Tyyeues Iy W) = 0 Va e&(y(o),fo)
| §

(4.13) \\ E[g(Tyse00s D ,k) [M=k] = O
\

'

Kﬁor X =0,T5e0eyn and vy = y(o), f = fo

(If kX =0 {T1,...,Tkl is taken to be the empty set.)
It is easily established that the likelihcod of

(Ty5eee, Iy, N)  is given by:
(4.14) —2b 1 £(2) G
' (m-N)7 V=1 Vv

Since N is binomial (n,1-p) it follows that the conditional

likelihood of T,,sss,T, given N =k (> 1) is given by:

(4.15) k!

==y
)
~
=]
-

v=1

This is equal to the likelihood of the order statistics corre-
sponding to k independent random variables with the density f.
Hence by the well known results about the completeness of the
order statistics in the nonparametric case (see e.g. Lehmann

(1959) p. 133) it follows that:
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/ﬁ[g(T1,...,Tk,k)|N=k] =0 Nred

4

(4.16) : —
\ g(T1,...,Tk,k) =0 a.s. for all f €&

Lfor k =0,1,00a510

Iet & (v(°)) be the part of & in wnich y =) . By lemma
4,2 L runs through the whole of @;J when a runs through
St(Y(O)) . Since £
(4.13) and (4.16) that

is arbitrary in (4.13) it follows by

Eg(T1,...,TN,N) =0 Vo e
(4.17) A " b

kg(T.,,--.,TN,N) =0 a.s. for all o € &(Y(O))

By dividing (4.7) with (4.14) we get the conditional likelihood

of (X1,...,XN) given (T1,...,TN,N) :
N
(4.18) o [yy (T,)]
v=1 V)
It follows that (T1,...,TN,N) is sufficient when vy is given.

Together with (4.17) this gives us for any integrable h :

En(z) = 0 Yoecl
J

(4.19) E[0(Z)|T,00., T N] = 0 aus. for any o € &

By (4.14) the distribution of (T1,...,TN,N) is independent
of vy « This means that the set with probhability 1 where
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(4.19) holds is independent of y . Tet (% ,¢ees% k) be a

C’
point in this set. With probability 1 the +t's are distinct,

hence we assume this to be the case. We define a set of numbers

XyseeesXy, SO that
x; € {1,00e,m} for i =1,.4.,k .
We now let y ©be an element of 1| for which
yxi(ti) =1 i=1,000,k .

By (4.18) we have:

k k
Pr{n (X =x_)| n (T =t )NN=k] =1
v=l Y Vy= VOV

for our choice of vy . If (4.19) is true then this implies
h(z) =0 for z = [k,(t1,x1),...,(tk,xk)]

and the completeness of Z is proved. Together with lemma 4.1

this gives us the following theorem:

Theorem 4.1. [N,(T1,X1),...,(TN,XN)] is a sufficient and com-

plete statistic with respect to the class of distributions which

is generated by the set of those o that satisfy assumption 1.

We will prove the following corollary

Corollary. [N,(T1,X1),...,(TN,XN)] is minimal sufficient.
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Proof: Let p be the Lebesgue measure. We define the measure

p on the Borel sets of [0,1] in the following way:
p(4) =p(A) for A c [0,1)

p({1}) =1

We define the measure # on all subsets of {0,1,e0.,m} in the

following way:
n(ii}) = Pi(1) for all i€ {091,...,111}

We define the function f(t3;i) in the following way:

0O if 0<%t <1
£(t;0) =
1 if ot =1

(P[P (1T iz i>0,0<t <1

f(t;i) =
0 if i>0, t =1

Then it is easily seen that we can write:
I
Pr(U <un ¥ <y) = [[£(t;1)ap(t)an )
00

Hence our class of probability distributions of

[(U1,Y1),...,(Un,Yh)] is dominated by a o-finite measure.

The corollary then follows by Theorem 9 in Sverdrup (1966).
Q.E.D,

It is easily seen that all our estimators are functions of

Z « Hence they are based on a minimal sufficient statistic.‘

Besides, it follows from theorem 4.1 that our estimators are

UMVU estimators of their expectations. Taken together with

(3¢1)s (3.7) and (3.12) this shows us that our estimators should

be quite good when n are not too small,
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5. Strong consistency. A generalization of the Glivenko-

Cantelli theorem.

For the Glivenko-Cantelli theorem, see e.g. Chung (1968, p. 124).

We will prove the following theorems., All limits are taken

with respect to n .

Theorem 5,1. Pr A. C)=L. (T O} = .
(o2, i n (- () 0] =

Theorem 5.2, Pr[igglﬁi’n(t)—pi(t)leO] =1 .

Theorem 5.3. Pr[ sup |Pi,n(t;A)—Pi(t;A)|eO] =1,

Theorem 5.2 is seen to be a generalization of the Glivenko-

Cantelli theorem. The following lemmas will be needed for the

proofs:

Lemma 5.1. Let FO,F1,F2,... be right—continuous increasing
functions on [0,1] such that F (0) =0 and F (1) <1 for
alln . ILet 8o1841801 00 be stepwise continuous functions on
[0,1] such that 0 <g (x) <a <o for all x € [0,1] .

Assume that

F (x)» F (x x) - x) uniformly on [O .
() > Ty ) gyl )n—>o§°() y [0,1]
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x x
Then Jgn(y)an(y) - Igo(y)dFo(y) uniformly on [0,1] .
0 0

Lemma 5.2. Assume that fn(x) (>0) converges towards f(x)

uniformly on [0,1] when n -, Assume that there exists an
a>0 such that f(x) >a on [0,1] . Then the following

limits hold uniformly on [0,1]

fn(X)"1 - £(x)"]
(£, G T o ()
—nlOgL1—(nfn(X)+1)—1] - f(X)-1

These lemmas may easily be proved by standard methods.

For completeness the proofs are given in the Appendix.

Proof of theorem 5.1. We define

Xn(t) = % Mi,n(t) ’ Yn(t) = n[Mh(t)+1]-1

Hence we may write:
. i

Bi,n(t) = IYn(S)an(S)
o

With probability 1 Xn satisfies the assumption about Fn in
lemma 5,1 , while Yh 3atisfies the assumption about g,

By the Glivenko-Cantelli theorem and lemma 5.2 the following

statements are true with probability 1 when n -» oo }

Xh(t> - Pi(t) uniformly on [0’1]

Y (t) » r(t) uniformly on [0,1]
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r(t) satisfies the assumptions about go(x) in lemma 5.71.
Hence with probability 1
%
1 =
(t) » [r(s)P!(s)as = 6, (t)

(o]

Bi,n

uniformly on [0,1] .
Q.Eo D'

Proof of theorem 5.2. We may write:

pi,n

¢
By o (t) = exp{[log[1-(10 (s)+1)™ Jam; ()}
0]

We define:
X, (6) = £ M, [ (8) , Y, (%) = -nlog[1- (M, (£)+1)7"]

By the Glivenko-Cantelli theorem and lemma 5.2 the following
statements are true with probability 1 for an arbitrary finite

interval [0,a] :

X (t) » P.(t) uniformly on [0,a]

Yn(t) -» r(t) uniformly on [0,a]
By lemma 5.1 we may then conclude:

Pr[ogigalﬁi,n(t)-pi(t)I*O] =1

Let € >0 ©be given. Tet p. = 1lim p.(t). Choosc a so large
17 (e 1
that |p;(t)-p| <€ for t>a . Let z; (t) ;10 =1,2,.0. ;
9
be a realization of pi,n
Choose N ~so large that

(t) for which o;;galzi’n(t)—pi(t)[a 0 .

> = . -D. <
n>N=> O§§§a|zl’n(t) pl(t)‘ <e
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Then, since 2z n(t) is decreasing in t , we have:
H

n>N=> igg]zi’n(t)-pi(t)l < 2e .

Q'E.D.

Proof of theorem 5.,%. Of course theorem 5.2 remains true when

i 1is replaced by a set A of states. This fact together with
lemmas 5.1 and 5.2 immediately yields theorem 5.3.

Q.E.D.

6. Bstimators of var Bi(t) and var Pi(tZ .

By considerations of the same kind as in section 2 it is
¢asily deduced from (3.2) that the following is a reasonable

estimator of wvar Bi(t) :

. M, ()
(6.1) o, (t) = z [M(v;i)+1 72
V=
We put
(6.2) ci(t) = var éi(t)
The following theorem holds:
Theorem 6.7. %
(1) B8,(t) = [a;(s)B (R(s))Pr(M(s) > 0)ds
o}
(ii) Pr{ sup [nlai,n(t)_ci,n(t)‘] - 0} = 1

0<t<t n - co
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Proof: Similarly to (3.1) we easily prove (i).
(3.2) shows the significanse of (i)
(ii) is proved similarly to theorem 5.1.
Q.E.D.
We put:

(6.3)  p;(t) = ver B, (t)

Let TO =0 and let T1 < T2 < .e¢ be the

ordered times of transition O = i in [0,7] . We define a

stochastic process Bi(t) on [0,7] in the following way:

$,(0) =0

f

| 2

5 2 ﬁi(Tv)
!

pi(2,) = 8;(2,_4)l1- M(Tv)+1] =5 for

v Me(1,)

(6.4) /

\p (t) = p;(T,)) if T <t<T and v = M(1) .

v = 1,2,0--,M1(T)

and v = 1,2,...,Mi(T)—1

pi(Tv) if Tv5t<mv+1

e

The following theorem holds:

Theorem “.2.

(1) B8, (t) = p,; (t)+o (L)

—
=

(ii) Prio§§§;[n\ﬁi’n(t>3i’n(t)_pi’n(t)lg é;

Proof: We may write:

b (t+h) = B, (£)[1-2T(t,h)R(+) 1+d5 (+)RZ(£)I(+,0)+U(t,hn)
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where the distribution of I(t,h) is given by (3.17) while
Pr{U(t,h)# 0] = o(h) . Iet £(t) =B $;(t) . It is easily
shown that f£(t) satisfies equation (3.26) with the same side-
condition f£(0) =0 . Hence (i) is true.
Part (ii) of the theorem is an easy consequence of theorems
5.1 and 5.2 and the fact that (3.27) holds uniformly on [0,1] ,
Q.E.D. :

7. Asymptotic normality.

I have found no central limit theorem in the literature by
which it is possible to prove the asymptotic normality (AN)
of our estimators directly. In this section I will give a proof
of the AN of [51(t),...,§m(t)] by means of characteristic
functions. Then I will use that result to deduce the AN of
[8,(t),eee,8,(£)] + I have not yet studied the question of AN
for fj(A;t) in general, but I believe that AN <for these esti-
mators may be proved in a similar way to that of é.(t) .

J
We define for J = 1,0--,m H

(701) Xy 1 (8) = n3[B,  (3)-6,(%)]

We will prove the following theorems:

Theorem 7.7. Xj n(t) 3 J = 1,ee.,m j are asymptotically inde-
’
pendent and normally distributed with means O and variances

.t
Jaj(s)r(S)ds 3= 1s0ee,m
(0]

respectively.
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For the proof we need the following lemma:

Lemma 7.1. Let Xh be a statistic defined on the process we

observe. Then:

Pr(X, <x|[M (1>0] ~ F(x)
n - co
0

IT(Xn < x) - F(x)

n = oo

The proof is trivial and will not be given.

Proof of the theorem:

Let X1,...,Xm be specified real numbers.

Define

m
¢, (t) = E eXp[le1ijj’n(t)]

where 1 = J-1 « We may write equation (3.16) in the form:

»

(7.2) éj,n(t+h) = ~j’n(t)+Ij’n(t,h)Rn(t) +~Uj’n(t,h)

Lemma 3.3 gives us the simultaneous distribution of the

Ij n(t,h) for Jj =1,.0.,m and also permits us to conclude
3

that

m
(7-3) Pr[ali‘] (Uj’n(t,h)ié())] = O(h)

In this proof f£(n;t) = o(n™ ') will mean that lim nf(n;t) = O
O

uniformly on every finite interval.
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We define

m
(7.4) W, (%) = exp[ij§1AJXJ a(t)]
t+h

expli 2 And[I; (4,00R,(8)- [ aj(e)as])
I

]

(7.5) W, ,(t,h)

i

exp[i Z A n%U (t h)]

\116) w3’n(t!h) 3-1 J

By (7.2) we have

o, (t+h) = E [W1,n(t)wzyn(t,h)WB’n(t,h)] .

By (7.3) and lemma 3.1 we have:

on(t+h) = B [W,  (t)w, , (,h)]+o(h)

If Mh(t) is given then (I1’n(t,h),...,Im’n(t,h)) is indepen-
dent of (X1,n(t),...,Xm’n(t)) so that

(7.7) oy (t+n) = B{E[W, . (%) g, (£)IB[wW,  (t,0) L, (€)1}

For a moment we will drop n from the notation. By lemma 3.3%

we have for M(t) >0 :
t+h

‘& [Wz(t,h)[M(t)]=[1—M(t)6(t)h]exp[-in% g A j aj(s)ds]
J=1
(7.8) < oo

+h 21{M(t)a (t)eApflk nﬁ(R(t) I o (s)ds)] +o(h)
J= t




From the Taylor development of e™™ one has:

(7.9) X - 1+ix-%x2+ % XBQ(X)

with |§(x)t§ 1, E(x) continuous, for all real x . By apply=-
ing (7.9) to the exponential functions in (7.8) we get for
M(t) >0 :

/8 (W, (t,0) M(t)] = 1-hnR(t) % %k?aj(t)
i=1

(7.10) 3

kfhnﬁﬁz(t) 5 5@ (t, h)x o (%)
=1

where Oj(t,h) 3 lej(t,h)£§-1 ; is a ¥$ﬁgom variable which

depends on t and h only via R(t)- J aj(s)ds. Hence

v t
0.(t) = 1im 9.(t,h) exists, and so by (7.7):
d h=0 J

(@ﬁ(t) = —a(t)Ey[ow, [ (£)R,(1)]

(7011)\/ 3
| m 1 1
K E % A2 ey (t)Et[n R® (t)e (t)W1’n(t)]+o(n )

where

mo.2
(7.12) a(t) = = %2 %a.(t)
j=1 Jd J

We have:
(7.13)  Byfaw,  (OR (£)] = r(t)e, (£)+B LW, | () (@R, (£)-r(t))]

-1
By lemma 3,2 we have for any T < ©© +o(n" ")

By[W, ,(£) (@R (t)-r(£))] > 0 uniformly on [0,7]
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2
Et[nZRﬁ(t)ej,n(t)W1’n(t)] - 0 uniformly on [0,7]

This fact together with (7.11), (7.13) and lemma 3.4 allows us
to conclude that

t

wn(t) - eXp[-fa(s)r(s)ds]
0

The theorem follows by the definition (7.12) of a(t) .
QoE.D-

We now define for J = 1,¢e,,m ¢

(7.14) ¥y ,(8) = 2[B; (£)-p,(t)]

We will prove the following theorem:

Theorem 7.2. Yj n(t) 3 J = 1,ee.,m ; are asymptotically inde-
9

pendent and normally distributed with means O and variances
t
p?(t)Ia.(s)r(s)ds J = Tyeee,m
J J
o)

respectively.
Proof: By (2.3) we have:
M. (%)
" J’n .= "'1
log By n,(t) = = 1 Tog{1-[M (v;3)+117'}

v=

The following result is easily derived:
For 0 <x <% there exists a function E£(x),

0 <g(x) <1, such that log(1-x) = - x - §(X)X2 .
We assume Mh(T) >0 and 0 <t <7 . Then

[Mh(v;j)+1]-1 < % and hence we can write:
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(7.15) logby ,(t) = -éj,n(t)-e n (8385 (%)

where 0 n(t) is a random variable with O < 8 (t) <1 and
9

where Gj n(t) is given by (6.1).
H

From now on we drop n and t from the notation in order

to achieve some simplification. By (7.14) and (7.15) we have:

l__ -~ 'S
= = - .=9 . » J=D
Yj n=(exp( ¥ 9303) PJ)

and hence:

3

|Yj_n%[exp(_éj)_pj]| =1 exp(-gj)[1-exp(~ejgj)]

< n%ex;( =640 )[exp(e LF ) -1] <:n§[exp(o )-17 .

By the mean value theorem there exists a random variable V

such that 0 < V_<_.cj and

(7.16) |Yj—n%[exp(-éj)—pj]| 5.n%evgj

By (3.3) and theorem 6.1 the expression on the right side in

(7.16) converges almost surely to O . Hence

(747) 5 1 (8) = n¥[exn (-6, DDy (+) 145, (6

where by lemma 7.1:

(7.18) plim Z. _(t) =0 when n =

TJIl

plim_ denotes that we assume Mh(T) >0 .
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By the Taylor formula we have:

(7.19) eXP('éj)'Fj = -Pj(gj-ﬁj)+%ew(gj'ﬁj)2

for a random variable W such that |W—Bj| < |Bj-Bj| . We have:
N 1
~ o) -~
nzew(Bj'Bj>L = ew[n4(Bj'Bj)]2

which by theorem 3.1 converges in probability to O when
Mh(T) > 0 is given. This fact together with (7.17) and (7.19)

yields:
% 8 3.(1t) |+ +
Yj,n(t) =1 Pj(t)[Bj,n(t)nﬁj(b)] Zj,n(t) Uj,n(t)

where Uj Il(t) converges in probability to O when Mh(T) >0
b
is given. A limit theorem due to Cramér (1946, Chapter 20.6)
together with lemma 7.1 gives us that the Yj n(t) 3 = 1500e,m3
4

have the same simultaneous asymptotic distribution as

n%?j(t)[éj,n(t)"ﬁj(t)] j = 1,000, &

The theorem now follows by theorem 7.1.

Q.EoDo

We now define:
vy o (8) =R (TR, L (4)-py(1)]
Wy (8) = 0738, (DT P8, (T8, L (60, (6)]

The following corollary to theorem 7.1 is an immediate conse-

quence of (3.3) and part (ii) of theorem 6.1:
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Corollary to theorem 7.1. Vj n(t) $ J = 15ese,1 '§ are asymp-
?

totically independent and normally (0,1) distributed.

The following corollary to theorem 7.2 is an immediate c<onse-

quence of (3.8) and part (ii) of theorem 6.2:

Corollary to theorem 7.2. Wj n('i:) 3 J =15eee,m } are asymp-
’

totically independent and normally (0,1) distributed.

These two corollaries are obviously relevant for testing statisti-

cal hypotheses about Bj(t) and pj(t) .

8, Approximation of Bi(t) by a normal process with independent

increments., A test of Kolmogorov-Smirnov type.

For a fixed j we define:
3ra “Yog [+
xn(t) =1 [Bg,n(t>_p3(t)] .

We will study the convergence of Xn as a stochastic process.
First we will give a theorem on the convergence of the finite-
dimensional distributions. Let to’t1""’tl for 1 > 2 be

numbers such that 0 = to < t1 < t2 < see < tl « Then we have:

Theorem 8,1. X, (t,),X, (t5)-X (£,)seee, X ($7)-K,(t;_,) are
asymptotically independent and normally distributed.

Remark: The asymptotic means and variances follow from theorem

Tels

Proof: Let k1,...,hl be arbitrary given numbers. We define

for k = 15¢0e,1 ¢

k
ORI AN HCOE NCH P
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We also define:

¢n(t1,...,tk) = B exp(iY, (k))

We state the following induction hypothesis:

T
a2 Y
(8.1) wn(t1,...,tk) - exp[-v§1-§— I aj(s)r(s)ds]
.t
v=1

By theorem 7.1 this is true for kX =1 . We will prove that if

it is true for k , then it must be true when Xk 1is replaced

by k+1 . We have:

Pp(tyseeesty) = B exp[i¥, (e)+id 4 (X (4,1 )-%, (1,007 &

If we put
U, = Efexp (1Y, (x))|M (t,)]
Ty = E{eXP[ikk+1(Xn(tk+1)—Xn(tk))]th(tk)}

we can write:
(8.2) an(t1’.'.’t1C+1) = E(UnVn)

we can put Vh in the forms:

(8.3) V =Blexp[ir, (i (+,0)"F (+,0)¥(x, (t,,,)-X, (£,))]]
M, (t, )}

By the strong law of large numbers we known that if n » o,

then almost surely Mh(tk)-éco in such a way that

(8.4)  [d (5,077 - p(&)'%
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From theorem 7.1 it then follows that the conditional distri-

bution given Mh(tk) of

[%Mh(tk)]%[xn(tk+1)—Xh(tk)]

3 Mj,n(tk+1) 1tk+1
= () X (M(v;3)+1)” .(s)a
[ ()] [v=Mj’n(tk)+1 vid t£ ay(s)ds]

almost surely converges 1o a normal distribution with expectat-

ion O and variance.

tk+1 s
(8.5) j aj(s)exp( j d(u)du)ds
Ty Ty

Since the convergence of a sequence of characteris®tic functions
is uniform on every finite interval, it follows by (8.3), (8.4)
and (8.5) that
tk+1
(846) v, - exp[—%k§+1 J aj(s)r(s)ds]
tk

almost surely. We denote the limits in (8.1) and (8.6) by a
and b respectively. We have:
E(Uth)—ab = E[Un(Vhfb)]+b(EUn-a)

so that
|E(U,V, )-ab| < E|V_-b|+|EU_-a] .

By the definition of a and b and since [U | <1 and

|V, < 1] , the right side of the above inequality converges

to O . Hence (8.1) is proved with Xk replaced by k+1 .
Q.E.D.
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The theorem shows that the finite-dimensional distributions
of Xh converge to the finite~dimensional distributions of a
normal process with independent increments (NPII). For the
purpose of getting a test of Kolmogorov-Smirnov type we need to

prove that sup lXﬁ(t)l converges in distribution to the corre-
0<tt

sponding supremum of the NPII. By Billingsley (1968) this is
the case if we manage to prove a certain "tightness"property of

X,

From now on we consider the time interval [0,1] . Then,

by theorem 15.6 in Billingsley (1968), it is enough to prove the

following lemma:

Lemma 8.1. Assume O < t, = TSty . Then there exists a con-
stant k independent of 1, t1 , t2 and n such that
4 4

4
5| an(t)-Xn(’c,>'l3 K (b,)-X (8) 1P} < %[ (5,)-8(t,) 77
For the proof we need the following lemma:

Lemma 8.2.

There exists a constant k independent of n and
t € [0,1] such that

t

var Xn(t) < kja.j(s)r(s)ds
0

The lemma is an immediate consequence of (3.3).
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Proof of lemma 8.1. We have:

4 4

£ (6,5 5,)=EL X, (6)-X,(,) 17 X, (£,)-X, (+) )

(8.7) 4 4
\=BiEL X, (8)-X, (+,) | i, (6) I8 X, (b,)-X, (£) |7 i1, (£) 1)

By the H8lder inequality and lemma 8.2 we have for Mh(t) >0

2
3

2
<lie,nR (t)] o (s)r(s)as)

- .

where k1 and k2 can be chosen independent of n,t,t1

By the H8lder inequality, lemma 3.2 (i) and (ii) and

4
;/E[an(tz)-Xn(t)|3th(t)lsiE[(Xn(tz)-Xﬁ(t))zan(t)]
(8.8)

£ £
3 3

<k, {nR, (£)[B(%,)-B (1) ]}

and tz .
lemma 8.2 we have (using notation (1.12)):
2

E i[an(t)]3|Xh(t) X (%, >1 <z, [n Rn<t>]} (B [X, (+)-X, (£, 13

2
5k3[Pr(M(t)>O)]'1{E[Xﬁ(t)-Xn(t1)]2}3

2
<5 [Pr(1(1)>0 ] BLB(X, (£)-X, (£,))% i, (£,) 47
t 2
<k4iEt1[k5an(t1)£ a(s)r(s)ds]}?
2' 2 2
<k6iEt1[an(t1>]}D[B(t2>—s(t1)]3537[b(t2>-9(t1)]3
where the k's can be chosen independent of n,t,t1 and t2 .
Together with (8.7) and (8.8) this gives us lemma 8.1,
Q.E.D.
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Let X(t) be a normal process with independent increments

and such that
t

EX(t) = 0 , var X(t) = j’aj(s)r(s)ds .
(0]

Let X* be this process with t restricted to [0,1] . ILet
X¥ Dbe our X -process with 1t restricted to [0,1] . By
Billingsley (1968, theorem 15.6) we have proved the following

theorem:

Theorem 8.2, Xﬁ converges in distribution to X¥ ,

The following corollary follows by corollary 1 to theorem 5.1
in Billingsley (1968):

Corollary 1. sup IXh(t)l converges in distribution to
o<t<
#up |X(t)]| .
o<t<t

We define:

t
;n = [ngj’n(1)]'% , £(t) = faj(s)r(s)ds y p o= [f(1)]"%
0

Y (8) = o X (%) , Y(t) = pX(%) .

We will prove the focllowing corollary to theorem 8.2.

Corollary 2.  sup |v (t)| converges in distribution to
O<t<t o

o;cl% e

Proof: We have:

02, (¥ = (pamed 2up, (015 sup, T¥CO -
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By theorem 6.1 and (3.3) p, converges almost surely to p .
Hence corollary 2 follows by a limit theorem due to Cramdr
(1946, Chapter 20.6).

Q.E.D.

Obviously sup |Y¥(t)| has the same distribution as the
O0<t«i

corresponding supremum in a Wiener process. By a well-known

result (see e.g. Feller 1971), p. 343)

oo k
Pr( sup |Y(t)|<y) = % T 51+1 exp[—ﬂ2(2k+1)2/8y2] .
0<t<1 k=0

Together with corollary 2 this gives us a test of Kolmogorov-

Smirnov type for the hypothesis:

a,(t) = ago)(t) for all t € [0,1]

for a specified function a§o)(t) .

9. Comparison with the "occurrence-exposure" rates.

In the first part of this section we will assume that all
forces of transition are constant on the time interval [0,1] ’

ieeed
O.l(‘t) =a.i 9 t € [0,1] 9 is=s 1,...,111

where the o; are positive numbers. We put:

m
6=Za9 6 =Z°u~o

= SERSTINE
In this case the expression (3.13) for var Pi(1;A)

may be explicitely computed. Doing this we get:
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5-26, 5 =26,
abA(é-Za)e ﬂlr(bA—6)~a e (8- 25A)

lim n var P (13;4)= -
sco 5T, (5-26,)

The maximum likelihood estimatcrs, or the socalled "occurrence-
exposure" rates (0.C.) for the s (see e.g. Sverdrup (1967))

are given bys:

Mi(1)
o¥ = =Ty

where T(t) is the sum of the times each process has been in

state O until time +t . By (1.2) we have:
%3
P;(1;4) = 5=(1-e

Hence it is natural to estimate Pi(1;A) in the following way:

a¥ -0%
PY(134) = g-(i-e )

where ¢f = I a¥* . By wellknown results (Sverdrup (1967)) the
iea *
asymptotic variance of this estimator is by some computations

found to be:

~28 -5, 2
1 azbibe A«a&(bA-é)(1—e 4
asvarP§(1;A) = = 5

(1-e )6A

Hence we have the following expression for the quotient between

asvar Pi(1;A) and asvarP§(1;A):

6-26

(1-e-§)6§[6Ae A(6-2a)-6(6A-a)-ae—zaA(6-26A)]

5 -20, =%, 2
6(6=206,) [t} e +8(6,-a)(1-e %) ]

(9.1)

We denote this expression by f(a,bA,b) .
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The 0.C. are known tc have asymptotically least possible
variance among a large class of estimators (Sverdrup (1965)).

Hence it is interesting to study f(a,éA,b) .

I have not yet per-
formed an extensive study of f(a,bA,b) , but I have computed

it for certain special cases. The results are given below:

(i) o = 5, = ® « Then we haves

—2 by, =by2
(9.2) g(d) = £(8,8,8) = 87" (1-e"")
This expression occurs in Sverdrup (1967, p. 61) in a study of
the simple special case m = 1 ., ZFrom Sverdrup we take the

following table:

6 | 0.1 0.5 1.0 l 2.0

g(d) l1.ooos

|
|

|
I
1,024 ! 1.086 ! 14386

(ii) b, = %6 , @ = %6 . We then have:
Ls
-5 3 &
= r(ls. 2 _4(1-e"")(3e? =2e°-1)
h(s) = f(36'36’6) = Pu—
462+9(e) -1)

The following table may be computed:

6 [ 0.1 ’ 0.5

!

h(s) 1 1.0005 l1.oo9

1.0 [ 2.0

1.035 l1.097

(iii) 6y =8 =1 . We then have:

f(%,1,1) = 1,009



- 46 -

£(%,1,1) = 1,02

These examples should indicate that our nonparametric estimators
are asymptotically almost equally good as the 0.C. even if the
forces of transition are constant.

To get a more complete picture of the situation one should
also study the robustness of the 0.C. when the forces of tran-
sition are not constant. In this case the 0.C. are usually re-
garded as estimators of the average of the forces of transition
over the time interval in question, i.e.:

(9.3) -.lb- Gl(s)ds i = 1,...,1[1

O~

It is easily shown that the corresponding O.C. converges almest

surely to.: .-

N
. -1
(9.4)  (1-p; (£))([p; (s)as)
0
while (9.3) might be written:

(9.5) - Flog(p; (t))

(9.4) and (9.5) are of course not equal in general. Hence the
0.C, will generally not be consistent when they are intended to
estimate (9.3). In contrast to this we have shown in section 7
that %éi(t) is a strongly consistent estimator of (9.3).

To make a closer comparison of (9.4) and (9.5) we look at

the simple special case when

(9.6) oy (t) =+t
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Then (9.4) takes the form

-t
(9.7) (1+t)log(1+t)

while (9.5) takes the form

(9.8)  Tlog(1+t)
We now make the transormation u = Bi(t) = log(1+t) in (9.7)
and (9.8) and then take the quotient of the resulting express-

ions ((9.7) as denominator). We then get:
(9‘9) u—2eu(1_e—U.)2

This turns out to be exactly the function g defined in (9.2).
The table below (9.2) gives values of (9.9) for different values
of u . One can say that (9.9) measures the degree of incon-
sistency of the 0.C., when it is regardedvas an estimator of
(9.3) and when the assumption (9.6) is made. Even if the
assumption (9.6) represents a relatively large deviation from
constancy, the degree of inconsistency of the 0.C. is seen to

be small for 6 <1 ., In practice we will probably nearly
always have ©& < 1 Dbecause this means that the probability of
leaving state O is less than 1-e"V = 0.632 .

We might perhaps say that the results in this section seen.
to support a conclusion of the following kind: For the nonpara-
metric estimators to be considerably better than the 0.C., the
deviation of the forces of transition from constancy will have
to be quite large. On the other hand, even if the forces of
transition are constant, the nonparametric estimators are almost

equally good as the 0.C.
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Of course we must take the reservation that we have not
yet made any thorough investigation of the relationship between

our nonparametric estimators and the 0.C.

10. Appendix.

Proof of Temma 3.2: For x > 1 we have:

1_ 1 1 1 3
(10.1) 5 =57 * 5GF1) ¢ TGFT S @ ED)

—

™

. 1 + 3X+2
2 xR (x+2) 7 20000 (x42)
(10.2)

| 3340 - 24
kxz(x+1)(x+2) T (x+1) (x+2) (x+3)

We put a = [1-(1-p)n]-1 » @ =1-p, g, =1-p, « It is easily

seen that
1
O. <nn_-
(1 3) a P,

Direct computations give:

(10.4) B*(giy) = srippyl1-a"*'- (a+1)pq"]

(10.5) E*(TT:T%CY:§7) = 2 [1_qn+2_(n+2)Pqn+1

p? (n+1) (n+2)
-$(a+1) (n+2)p%"]
1 2 1
(10.6)  E*(grrymeey @) < p° (n+1) (n+2) (n+3) = poin’

o]
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Proof of (i): By (10.1), (10.3), (10.4) and (10.5) we have:

n 1 2. n
|E*(3)- ol <|E¥ (XIT)' = | +3E%( X+1 X+2 )— D n+1 |-1+q"-n"pq |+%;—
2. n
1+q +n
< 0 . 9y + 33
np, npg
so that:
2 n
1+ o i q,
n
njEx@)- 1| < —2m2+ 3
P, 1%

where the right side is obviously bounded with respéct to n
since p, >0 and g, <1 . Hence the first part of (1) is
proved. The second part is easily proved in the same way by

using (10.2), (10.3), (10.5) and (10.6).

Prof of (ii): By HBlders inequality we have:

% 2 %
B g - 11 < (2 - D2 - B+ (5 - ;1)—2-) - Spx (3 - 1))

Hence (ii) follows from (i).

Proof of (iii): This is a direct consequence of the first part

of (l)o
QeEeDs
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Proof of Lemma 344t We define for n = 1,2;¢4s ¢

X

x \ y
9, (x) = £, (xexpl[&, (v)ay]-|n(y)exp[[e, (t)atlay
, o) ¢ 9

We have?

X
9, (x) = expl|e, (y)ayllr, " (x)+g, ()2, (x)-h(x)]

By the assumptions of the lemma we have when n = <
mn'(x) - 0 uniformly on [0,a]

We also have mn(O) =c for all n . By theorem 7.17 in Rudin
(1964) we conclude that @n(x) - ¢ uniformly on [0,a] . Hence

the conclusion of the lemma.
Q'E. :D.

Proof of Lemma 5,1. Assume O <x <1 . Obviously we have:

x X
(e, 0am, (-] &, (ar, (1) |
(0] (0]

(10.7) 7 1 x x
kf | le, (7)-e, (7) 14, (7)+ || &, (7)aE, (v)-] &, (v)aF, (¥) |
e 0 o

Let € >0 be given. 8Since gn(y)-go(y) converges uniformly
to 0 on [0,1] , there exists a N1 such that

1

(10.8) n 2 W, = | |g,(7)~g,(¥) |aF,(v) < ¢
0]
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Since go(y) is uniformly continuous on each of a finite set
of subintervals of [0,1] , there exists a left-continuous step-
function s(y) ; 0 <s(y) < a ; with "jumping points"

x1< x2< ceo< X1 such that

lg, (7)-s(y)| < ¢ ¥y € [0,1] .
Let m(x) denote the number of X; £X h(x) the greatest
X; <X and put XO=O » Then:
X X X X
&, a8, (v)-] e, (7)aB, ()| < 2e+[s(y)aE, (v)-] s (v)ar(y) |
0 o 0 o

(x)-1
= 2€+lm,§o s (x; [P, (g )-Fp (x;) J+s () [F (x)-F, (n(x))]
i=

m(x)-1
- izo s(xi)[Fo (Xi+1 )-FO (}ci) J-s (x)[]i‘O (x)-—Fo (h(x))]|

k-1
< 2€+ai§O[ ‘Fn(xiﬂ )-FO (Xi+1 )|+ an(xi)-Fo(xi) | J+a |Fn(x)-F0 (x)]

+ alF, (h(x))-F, (a(x))|

Since Fn(y) converges to Fo(y) uniformly on [0,1] , there
exists a N, such that for all y € [0,1] :

nz N, = |F()-F, ()| <5z

X X
o = 1)8,(7)aF, (7)-] g, (7)aF, (v) |< 3e
0 0
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for all x € [0,1] » Together with (10.7) and (10.8) this
proves the lemma,

QtE. D.

Proof of Lemma 5.2% Choose ¢ such that O < ¢ < 3a . Then

there exists a N such that
n>N=> |f (x)-£(x)] <c¢ for all x € [0,1] .

We then have for n >N and all x € [0,1]

Ifn(X)-f(X)l € < 2ea”?

-1 -1
lfn(x) -T(x)7| = I, x)I(x) = ale-e) = .

Hence the first statement in the lemma is proved. The second
is proved in the same way. For the proof of the third we use
the well known and easily established fact that if |x| < %

then log(1+x) = x+e(x)x2 where |6(x)| <1 . Hence for n

large enough we have for all x € [0,1]

|nlog[1—(nfn(x)+1)-1]+f(x)ﬁ5|f(x)—n[nfn(x)+1]'1|+n[nfn(x)+1]—2

el
Il

n €
= ala-€) * (an+1)2 5'3? *

Q.E.D.
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11. Further work. Generalizations.

It should be quite‘clear that the theory developed so far
is in many ways quite incomplete. The approximations and in-
equalities in the moment formulae in section 3 may surely be
improved. In section 5 it ought to be possible to prove strong

convergence of P. _(t3A) uniformly with respect to +t >0 .

i,n
This would be a further generalization of the Glivenko-Cantelli
theorem. The estimators in section 6 should of course be more
thoroughiy studied. It should also be possible to prove
asymptotic normality of ii,n(t;A) in general, and likewise
to prove results of the kind in section 8 for these estimators.
The possibility of non-asymptotic Kolmogorov-Smirnov type
testing should also be studied. Tastly the comparison with the
occurrence exposure rates and the study of the expression (9.1)
should be done in much gratef detail. The author will continue
the work in all these areas.

One will also see that the simplicity of the multiple
decrement model is in no way essential for the theory., It is
probably quite possible to generalize the results to Markov
chains of a much more general kind. This will also be the
object of further work by the author,

We have used an especially simple observational scheme in
this paper, in that we have assumed that all individual processes

are observed during the same given time interval., It will be

seen that this is not either essential for the theory.
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