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Abstract

This thesis addresses a class of particularly challenging real world optimisation

problems that occur in operational patient management in hospitals. These prob-

lems are found in surgery scheduling, as well as in scheduling for various non-

surgical treatment or diagnostic services. As a class, these problems can be iden-

tified by the following properties: They concern the scheduling of a (potentially

large) set of patients, where one or several activities must be scheduled for each

patient. A set of resources is required for each activity, and there are many altern-

ative such sets to choose from (the problems are multi-modal). Furthermore, the

problems involve both planning and scheduling decisions; both a day and an exact

start time must also be chosen for each activity. These problems are subject to re-

source capacity constraints and a variety of time constraints, often including both

minimum and maximum time lags, as well as time windows. Common objective

functions involve both the quality of treatment and an efficient use of hospital re-

sources. In general, these problems have a high computational complexity, and in

many cases even simpler subproblems have been shown to be NP-hard.

In this thesis we show that a majority of these real world problems can be

modelled in a unified way, without artificial simplification, and that structurally

different problem instances can be solved efficiently based on such a model. We

develop several efficient search methods, both heuristic and exact, and test these

on real world problem instances. We also investigate the potential of ‘same pro-

gram multiple data’ parallelisation for use in algorithms for our chosen problem

class.

The scientific contribution of this thesis is presented through five papers. Three

of these were published in (or submitted to) ‘Level 2’ journals1.

1Norwegian classification of journals; Level 2 is the top level.
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In Paper I, we consider inpatient surgery admission planning. The paper

employs a meta-heuristic algorithm, based on iterated local search and variable

neighbourhood descent, and demonstrates its effectiveness on realistic problems

instances from a Norwegian hospital. The paper also presents a search space

analysis for different neighbourhood operators and fitness surfaces, and offer con-

clusions on their suitability for local search algorithms. The problem involves

integrated planning and scheduling on a planning horizon of three weeks. The

paper was published in the Journal of Heuristics.

For Paper II, we investigated the potential of utilising massively parallel com-

putation hardware for solving permutation-like optimisation problems. At the

time, hardware for ’same program multiple data’ parallelisation, like the General

Purpose Graphical Processing Unit (GPGPU), had been applied to many scientific

computation tasks. There were, however, very few applications for local search

methods, and we wanted to investigate how this emerging technology can enable

novel ways to design such methods. The paper shows how massively parallel

neighbourhood evaluation can facilitate the simultaneous application of many in-

dependent improving moves. This gives considerable improvements in perform-

ance, in addition to the one achieved from the parallel evaluation in itself. Paper

II was published in the Journal of the Operational Research Society.

In Paper III, we present a generic model for the ’generalised surgery schedul-

ing problem’, expressed as an extension of the multi-mode resource constrained

project scheduling problem with minimum and maximum time lags. We show

that this model covers many of the problem variations that are addressed in the lit-

erature. The paper also presents an algorithmic framework for iterative schedule

construction and improvement, based on sampling and modification of the project

insertion order, respectively. The methods use a sequential schedule generation

scheme that is modified to handle the rich set of model constraints. The model

can be applied without modification to surgery scheduling problems that arise in

three very different planning situations. Our numerical experiments show, based

on realistic data from a Norwegian hospital, that the presented method provides

high quality solutions for these problems, in a short time. Paper III was accepted

for publication in Computers & Operations Research in July 2015.

The general model of Paper III is also applicable to the scheduling of other

kinds of treatment, examination, or control activities. Indeed, Paper IV applies
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the same underlying model to another real world application; multi-mode appoint-

ment scheduling in outpatient clinics. In this paper, we exploit the multi-period

nature that is typical for this class of problems. We show how one may construct a

three-level version of logic based Benders decomposition to solve large, real world

problem instances to optimality in a very short time. Paper IV was submitted to

the European Journal of Operational Research in August, 2015.

Finally, Paper V gives an introduction to some topics in hospital resource man-

agement and patient scheduling. It was published as a chapter in the Handbook of
Healthcare Delivery Systems.
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Preface

This thesis is submitted in partial fulfilment of the requirements for the degree of

Philosophiae Doctor (PhD), at the Faculty of Mathematics and Natural Sciences,

at the University of Oslo.

The work has been carried out in association with two research projects, both

sponsored by the Research Council of Norway. The first, ‘Optimisation methods

in health care planning software’ (HOSPITAL), had surgery scheduling as one of

its main topics. This project was initiated by the candidate, together with col-

league Martin Stølevik, and included collaboration with Bærum hospital, and the

software vendors DIPS and Gatsoft. DIPS is a market leader in Norway in activ-

ity planning software for hospitals. The second project, ‘Tools for unified activity

planning and scheduling in hospitals’ (AKTIV), has a broader scope. It considers

not only surgery, but also other kinds of treatment and diagnostic services. This

project was also initiated by the candidate. The project involves a close collabora-

tion with the hospitals Drammen hospital and the University Hospital of Northern

Norway, as well as with DIPS. The collaboration in these projects has provided

application knowledge and insight into the optimisation problems that we address

in this thesis. The hospitals have also provided the data that we have used in our

experiments.

For the duration of this thesis, the candidate has been employed by SINTEF

ICT, at the Department of Applied Mathematics.

Thesis structure
This thesis consists of two parts. Part I provides an introduction, and gives an

overview of our contribution: In Chapter 1 we introduce the problem domain,

and the main research challenges. A more detailed description of the class of

optimisation problems that we consider is given in Chapter 2. Chapter 3 provides
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an introduction to common applications, and an overview of related work. The

scientific contributions are summarised in Chapter 4, with a discussion of each

paper. Finally, we conclude in Chapter 5, and discuss some interesting directions

for further research. Part II contains the scientific papers.
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Chapter 1

Introduction

Hospitals are under pressure to provide high quality care within limited budgets.

At the same time, national health care expenditures are increasing, world wide

[109]. Hospitals are therefore looking for ways to reduce cost, and one way of

doing this without reducing the quality of care is through better use of critical and

expensive resources. Hospital resource management and patient scheduling are

topics that have been much studied in the scientific field of operations research
[44, 83, 124, 46, 33]. These topics contain optimisation problems on different time

scales and levels of detail, often categorised as strategic, tactical, or operational
[15, 26, 42, 104, 67, 83, 54]. On the tactical level one finds decision problems

related to patient mix and overall dimensioning of resources, usually on a long

time horizon (year). Based on such overall decisions, the tactical decision level

is concerned with the allocation of resources to different specialities1, resulting

for example in a master surgery schedule for operating rooms [16, 134, 47, 99].

These tactical resource allocations in turn impose constraints on the operational

daily planning and scheduling of treatment activities.

It is this last class of operational problems that we consider in this thesis. It

is critical for the overall performance of a hospital that such problems are solved

efficiently [57, 26, 70]. Some of these problems, such as surgery scheduling, have

received a lot of attention in the operations research literature. Still, however, real

1Each hospitals is organised in a different way. Here, and in the following, we use the term

‘speciality’ to denote an organisational unit that specialises in a certain branch of medicine or

surgery (such as for example a ‘Department of orthopaedic surgery’). Each speciality is typically

responsible for the treatment of a certain group of patients.
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world applications continue to raise hard research challenges. Also, the situation

remains that most hospitals do their scheduling manually, or with software tools

that do not take advantage of these research results. This gap between academic

research and actual application is to a large extent a result of the complexity of

hospital operations, and the diversity of planning situations and problem defini-

tions that can be found in hospitals. This diversity is reflected in the literature,

which covers a large variety of such planning and scheduling problems. In ad-

dition, there is often a certain degree of simplification of the problem at hand,

which reduces the applicability of the research results to real world applications.

These are some of the reasons why advanced production scheduling tools are less

common in hospitals than in, say, the production industry. There is, therefore, still

a significant benefit to be achieved if this gap can be bridged, both in terms of

economics and in terms of general quality of care in hospitals.

The work in this thesis is motivated by the recognition of several factors:

1. There is a a need for richer, more realistic, modelling of real world activity

planning and scheduling problems [67]. If research in this field is to support

software applications for activity planning and scheduling, such a model has

to be general enough to express most problems, without excessive custom-

isation for each application.

2. These problems are typically of a high computational complexity - several

have been shown to be NP-hard (see [59] for an introduction to complex-

ity theory). Since most real world instances are also quite large, they are

challenging to solve to a sufficient quality within a reasonable time limit.

This has led to a number of problem simplifications, both in actual hos-

pital management and in the research literature. Solving realistic models

for these problems, without making such simplifications, therefore poses a

considerable research challenge.

3. One simplification that is frequently used in the literature is to consider

planning and scheduling as two separate, consecutive, steps. We use the

term planning here to imply a choice of day, and a choice of resources, for

each activity. By scheduling we mean a choice of activity start times2,3.

2This, of course, also implies a sequencing of activities on each resource, for each day.
3Note that we still use the term ‘surgery scheduling’ as a name for a class of problems. In
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This two-step approach of planning and scheduling is usually motivated

by the need to reduce computational complexity, but has been shown to

give inferior solutions. It is therefore important to integrate planning and

scheduling decisions, and this is a key aspect of the presented work. We

will elaborate on this in Section 2.1.

We choose to address a general, but challenging, class of real world activity

planning and scheduling problems, in which planning and scheduling decisions

are integrated, and multiple alternative resources must be chosen for each activity.

This thesis aims to answer the research questions:

• How can this class of rich and computationally complex problems be mod-
elled realistically, in a generic way?

• How can one design search methods that can find high quality solutions to
realistic problem instances from different planning situations, within a time
limit that is acceptable in the practical planning situation?

We aim to answer these questions through a series of research papers, and

through the discussion in this introductory part of the thesis. As will become

apparent, our aim has been to find the right methods to solve actual, real world

problems, rather than to adapt each problem to fit a certain type of method.

that context, the word ‘scheduling’ does not refer only to a choice of start times; indeed, surgery

scheduling problems often contain planning decisions. With this in mind, however, it should be

clear from the context what the meaning is in each case.

5





Chapter 2

Scope and problem description

2.1 The activity planning and scheduling problem
Operational activity planning and scheduling in hospitals include a vast range of

optimisation problems. These are found in many different planning situations,

with different characteristics in terms of the number patients, the number of activ-

ities per patient, the number of resources and the length of the planning horizon.

Figure 1: APSP applications.

For example, a short term surgery

scheduling problem may consider sev-

eral activities per patient (including

the surgery itself), and many resources

(preparation rooms, operating rooms,

surgeons, anaesthesiologists, nurses,

an intensive care unit, mobile equip-

ment, cleaning staff, and so on). On

the other hand, a long term schedul-

ing of elective outpatients1 for a gast-

roenterology clinic may consider very

many patients and several types of re-

sources (for example doctors, rooms

and equipment), but perhaps only one

1An outpatient is a patient that shows up for an appointment, and then leaves the hospital on

the same day, without being admitted. Inpatients are patients that are admitted to the hospital, for

example on the day before their surgery.
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activity per patient. In this thesis, we consider real world problems that involve

many treatment activities, and where a day, a start time and a set of resources
have to be chosen for each activity. In the following discussion, we will refer to

such problems collectively and generically as the activity planning and scheduling
problem (APSP). Such problems are ubiquitous in hospitals, and include surgery

scheduling on different time scales, as well as scheduling of non-surgical treat-

ment and diagnostic activities (see Figure 1). We will define this class of problems

in more detail in Section 2.2. As an introduction, however, it can be characterised

by the following properties:

• Many patients are to be scheduled, and for each patient there may be one

or several treatment activities, often with time windows and time related

preferences. There may also be time constraint between the activities in

each project.

• Each activity requires one or several resources, and there are several pos-

sible combinations of resources that can perform the activity. One such

combination, (a mode), must be chosen for the activity. The activity dur-

ation often depends on the mode, because it depends on the experience or

capabilities of the mode’s resources.

• Most resources are renewable, and may have a setup time. In general, the

APSP may also contain non-renewable resources, but we have so far not

encountered a problem where non-renewable resources are critical.

• Resources are available only part of the time. The availability is often gov-

erned by a combination of factors, such as tactical resource allocations,

working hours, lunch breaks, scheduled meetings, etc. For most problems

that we consider, the availability of all resources can be partitioned into dis-

joint time intervals, often one per day. This multi-interval structure is an

important property of these problems.

• There may be compatibility constraints between activities and resources,

based on skills, and even between resources that cannot be used together.

• There may be constraints or preferences to use the same resources across

several activities for the same patient.
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• Both planning and scheduling decisions are included, which means that in

addition to the choice of resources, both a day, and a precise start time must

be chosen for each activity.

The last point deserves some elaboration. In the literature, surgery schedul-

ing that cover more than one day is often considered as a two-step process [56,

57]. The first step considers planning decisions, while the second step concerns

scheduling, based on the planning step solution. In the planning step, a day of sur-

gery, and possibly an operating room, is chosen for each patient on the waiting list.

This is often called admission planning, but is also known as advance schedul-
ing [98, 114], operating theatre planning [68, 30] or surgery loading[72]. The

scheduling step of this approach, sometimes called allocation scheduling [98], is

to create a schedule for each day. This may happen at a much later point, closer

to the day of surgery, and typically involve more activities for each patient, and

more resources.

The advantage of this two-step approach is that it reduces the problem com-

plexity, even if both steps are still, at least in their general versions, NP-hard

[72, 25]. The drawback of the two-step approach, however, is that the assign-

ments from the planning step may not permit a reasonably good, or even a feas-

ible, schedule to be found in the scheduling step. This is, of course, because the

scheduling is bound by the previous planning decisions, which was made without

consideration of the scheduling step’s constraints and objectives. For example, as

pointed out by Cardoen et al [24], the quality of the surgery sequence that can be

achieved in the second, detailed, surgery scheduling step is highly dependent on

the assignment to days and rooms that was made in the admission planning step.

Similar observations are made in [22].

The same two-step approach to planning and scheduling have also been used

in other application areas, for the same reasons, and with the same inherent prob-

lems. See, for example, [100] for a discussion of integrated production planning

and scheduling in manufacturing. They show that the inclusion of the scheduling

problem is necessary to give good enough information about feasibility and costs

at the time of planning, especially when production systems are operating at near

full capacity.

These observations are also consistent with our experience from Norwegian

hospitals. While at first glance it seems that many hospital in practice follow the

9



two-step approach, this is not completely true. For example, even if the admission

plan only contains a choice of day for each patient, the admission planner actually

considers sequencing and scheduling preferences to ensure that this assignment

will give good day schedules at some later point. This is often done indirectly,

based on experience or some agreed rules of thumb. One example is a time-of-day
preference to schedule certain patients, such as children or patients with diabetes,

early in the morning. Rather than formally including this scheduling preference

in the problem, the planner may use a rule of thumb that limits the number of

children to plan per day. However, while these rules of thumb to a certain degree

represent scheduling considerations in a manual planning situation, they are still

only approximations of the actual scheduling preferences and constraints. The

resulting plans will therefore often be suboptimal, or even infeasible. When we

model real world surgery planning and scheduling problems, we therefore do well

to replace these rules of thumb with the actual time and resource considerations,

and to solve the actual combined planning and scheduling problem.

Motivated by these realities of the application, we take the view that APSPs

are best solved by integrating the planning and scheduling decisions, for both

short and long term problems. In conjunction with multiple modes and general

time constraints, this makes the APSP very hard to solve. Solving these difficult

problems efficiently is the main focus of this thesis.

2.2 Modelling

We believe that the diversity of real world APSPs is best handled by establish-

ing a generalised model. Like some other authors [120, 127, 128], we find it

useful to formulate such a model based on a well-known problem definition. In

Paper III, we present such a general model that extends the multi-mode resource

constrained multi-project scheduling problem with minimum and maximum time

lags, which in turn extends the classical resource constrained project scheduling

problem (RCPSP). Based on the taxonomy of Cardoen et al [26], Paper III shows

that this model covers most of the relevant aspects found in surgery scheduling for

elective patients. While originally formulated for surgery scheduling, the model

also applies to other APSPs. An exact mathematical model can be found in [126].

In this section we provide a shorter, less formal, definition of the APSP.

First, we have to introduce the basic RCPSP and some of its common exten-
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sions. The RCPSP concerns the scheduling of the activities� p of a single project

p. Each activity demands a certain amount of each of a set of renewable resources

� , and each resource has a limited, constant, capacity. Preemption is not allowed.

Precedence constraints (minimum time lags of size zero) can be defined between

individual pairs of activities. The problem may be modelled as a directed activity-

on-node project graph, where an artificial start node represents the start of the

project, and another artificial end node represents the completion of the project.

Each precedence constraint can be expressed as an arc in this graph, from the pre-

decessor to the successor. The objective is to minimize the project makespan (the

total duration of the project), which is bounded from below by the longest path in

the project graph, from the start node to the end node. Several text books offer

introductions to the RCPSP; see for example [2] or [107]. In the classification

notation of Brucker et al [21], the RCPSP is labelled P S |p r ec |C max . Even in

this basic form, the RCPSP can be shown to be NP-hard [17]. As a generalisation

of this problem, the APSP is also NP-hard.

A number of generalisations and extensions to the RCPSP have been studied

over the years; see [76] for a recent survey of these. We shall present three of

these extensions: the multi-project extension, the multi-mode extension, and the

extension with generalised precedence constraints. In the multi-project RCPSP, a

set of projects � are to be scheduled. Each project can be represented with its

own project graph, as there are no precedence constraints between activities in

different projects. All projects share the same pool of resources,� [122].

The multi-mode extension requires that a set of resources is chosen for each

activity. This is modelled using the concept of modes: For each activity i , a set

of feasible modes � i are defined out of which exactly one must be selected.

Each mode defines a set of resources �m ⊆ � that together can perform the

activity, and a demandμm
r for each r ∈�m . Each mode also defines an associated

activity duration [52]. This extension is the multi-mode resource constraint project

scheduling problem (MRCPSP). In the three field notation of [21], the problem is

labelled M P S |p r ec |C max.

The third extension comes from replacing the precedence constraints with

more general minimum and maximum time lags between the activities in a project.

These constraints can be expressed as arcs with non-negative and non-positive

weights, respectfully, in the project graph. This problem is called the RCPSP with
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minimum and maximum time lags (RCPSP/Max), or the RCPSP with general-

ised precedence relations (RCPSP-GPR). In the three field notation of [21], the

problem is labelled P S |t e m p|C max.

Taking the above extensions together, one has the multi-mode resource con-

strained multi-project scheduling problem with minimum and maximum time lags

(MRCMPSP/Max in the following). The APSP is similar to this problem, but it

also has some additional constraints, as will be explained below. The problem

defines a set of projects� , where each project represents the treatment of one pa-

tient. There may be time windows, both for projects and individual activities, that

constrains their earliest start and latest completion. As for many other real world

scheduling problems, there may be instances where not all projects can be feas-

ibly scheduled. It is therefore necessary to choose a subset of projects, �̃ ⊆ � ,

to schedule. This means that there is always at least one feasible solution to the

APSP, where �̃ = �. The penalty for not scheduling a patient is a component of

the objective function, with individual weights for each patient depending on the

urgency of their treatment. The set of feasible modes for each activity depends

on resource skills and other resource/activity (or resource/resource) compatibility

constraints that may apply. Skills are typically linked to the ability to perform

a certain medical procedure, or to use a certain type of equipment. For each re-

source, a set of non-overlapping time intervals are defined, in which the resource

is available with a certain capacity. These resource availability intervals can be

made exclusive for certain patients, to model that certain blocks of resource time

have been reserved for individual surgeons, or for certain specialities.

The APSP also contains some constraints that we believe are not previously

studied in the literature. One of these are general mode consistency constraints,

which links the choices of modes for activities in the same project. This is used to

model, for example, that if a certain operating room is used in the preparation of a

patient, that same operating room should be used for the actual surgery, as well as

in the following room cleaning activity. This is a generalisation of the same mode
constraints in [50]. Another new extension is the project disjunction constraint,

which expresses the fact that a resource, say an operating room, can only be used

for one project at the time. This comes from the fact that as long as all activities

for one patient are not completed in the operating room, no activity concerning

another patients can happen in the same room (even if there is time and capacity

12



available on the resource).

Let us illustrate the various concepts and constraints of the APSP by a simpli-

fied example. Consider a problem where � = {a, b}, where the resources a and

b have availability intervals 	 a = {ka
1 , ka

2 } and 	 b =
�

k b
1

�
, respectively. Let ka

1
span the time interval [4,12], which falls on day 1 of the planning period. On day

2, ka
2 spans [16,22] and k b

1 spans [13,19]. All the resource availability intervals

have capacity 1. Let � = {p1, p2, p3, p4}, where each project p ∈ � has two

activities, � p =
�

ip , j p

�
, with minimum and maximum time lags as illustrated

to the left in Figure 2. Both activities have two modes, one that uses resource a
and one that uses resource b . Both activities have duration 2 in both modes, and

all resource demands are 1. Mode consistency constraints require both activities

to use the same resource. There are also project disjunction constraints for both

resources.

Figure 2: To the left, the project graph structure that is common to all projects

in the example. j has to start at least 2, and at most 3, time units after the end

of i . To the right, the schedule resulting from the insertion order {p1, p4, p3, p2}.
For this schedule, �̃ = {p1, p3, p4}.

Now, assume that we try to build a schedule by inserting one project at the

time, in the order {p1, p4, p3, p2}. Assume also that our algorithm tries to schedule

each project as early as possible. The resulting schedule is shown in Figure 2. The

project p1 was scheduled first, and as early as possible. The modes using resource

a were chosen because this gave the earliest finish time. The same consideration

was made for project p4. Note that p4 could not be scheduled on resource a in

the resource availability interval ka
1 , because that would require i4 to be scheduled

between i1 and j1, which would violate the project disjunction constraint on a.

Nor could p4 be scheduled with i4 after j1 in ka
1 and with j4 in k b

1 , because this

would violate the mode consistency constraint that require both activities to use
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the same resource. Next, project p3 could not be inserted with i3 at the end of ka
1

and j3 in ka
2 , because this would violate the maximum time lag constraint. Both

activities were therefore scheduled in ka
2 . There was no room left to schedule the

last project, p2, and so �̃ = {p1, p3, p4} ⊂� .

The APSP has some additional characteristics that should also be noted. APSPs

can have many projects, often hundreds. These are quite small, with between one

and, say, ten or fifteen activities. In any given project, there are usually only a few

activities that can be performed in parallel, since most of them involve the patient.

Figure 3 shows an example of a project graph for detailed surgery scheduling.

Figure 3: Example project graph for a single surgery patient, with artificial start

and end nodes. Solid (dashed) arcs represent minimum (maximum) time lags.

Arc lengths are zero, except for the arc (ep , s ), which constraints the project to

finish no later than εp .

In general, the MRCPSP/Max may have start-to-start minimum and maximum

time lags that can depend on the modes of both activities. In practice we assume,

as in [40], that start-to-start time lags only depend on the duration of the ‘first’

(predecessor) activity. The reason is that in these real world problems, minimum

and maximum time lag constraints are actually between the completion of the

predecessor activity and the start time of the successor activity. When these are

converted to start-to-start time lags, the length only depends on the duration (and

thus the mode) of the predecessor activity. The time constraints between activities

in a project are often very tight, and many activities must be scheduled back to

back (see Figure 3). As mentioned in Section 2.1, the resource availability inter-

vals can often be aggregated into disjoint time intervals, giving these problems

a distinct multi-interval structure. In practice, there is often one such aggregate

interval per working day (as in the example in Figure 2). The APSP can contain
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both renewable and non-renewable resources, although we have only encountered

renewable resources in the cases we have studied. Finally, while the objective of

the MRCMPSP/Max is to minimise makespan, APSPs can define a range of differ-

ent objectives. Typical objective components are overtime costs, hospitalization

costs, intervention costs, room or doctor utilisation, patient’s waiting time, and pa-

tient or personnel preferences, among others. Some components are non-regular,

in the sense that to schedule an activity earlier is not always better. Examples

are preferences to schedule certain patients early in the day, or surgeon overtime

costs; moving a patient to an earlier day may lead to a worse solution in terms of

these objectives.

2.3 Uncertainty

The focus in this thesis is on solving highly complex, but deterministic, real world

APSPs. We do not, therefore, handle uncertainty explicitly, even if there are sev-

eral sources of uncertainty in hospital scheduling applications. There are several

reasons for this choice. First, like many other authors, we consider the schedul-

ing of elective patients only, and assume that the treatment of these is protected

against that major source of uncertainty that arises from the stochastic arrival of

emergency care patients. This assumption holds for many planning and schedul-

ing problems, in which dedicated resources (and time) are reserved for elective

care patients.

Second, to handle the uncertainty in the problem, one first has to be able to

solve the deterministic version. As noted in [135], previous work on stochastic

surgery scheduling often address unrealistically simple problem formulations, ap-

ply simplified recourse actions, or consider only short horizons [43, 147]. As

the (deterministic) APSP is NP-hard, it may be expected that exact methods like

stochastic programming or robust optimisation may not perform well on real-

istic, larger, problem instances. Also, in our experience, data are not available

to provide probability distributions of a sufficient quality, especially for stochastic

programming (see Section 3.1). Another method is to create candidate schedules

for a deterministic version of the problem, and to evaluate them, for example by

use of discrete event simulation, for a finite number of stochastically generated

scenarios. As shown in [135], such methods require that good solutions can be

found, fast, for the deterministic version of the problem.
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Some authors use hedging in the duration estimates to absorb the effect of dur-

ation variations. For example, Charnietski [31] introduced an estimate μ+ hσ ,

where μ is the mean duration, σ the standard deviation, and h a parameter of the

algorithm which was tuned using simulation (see also [150, 69]). Other authors

base their duration estimates on a percentile of observed durations [129, 130].

The hedging approach is, in our experience, consistent with how many hospitals

do their activity scheduling. They treat activity durations as deterministic, but

may add some slack to hedge for unforeseen delays. In long term admission plan-

ning, they may also plan with an artificially reduced future capacity for certain re-

sources, in order to reserve capacity for patients that may need treatment urgently,

but that are not yet known at the time of planning. In detailed surgery scheduling,

with a planning horizon of a few days, the scheduling is often done without any

regard to unforeseen arrivals or cancellations; these are simply handled by react-

ive rescheduling as they occur. As noted in [26], the majority of hospitals that

have been previously studied handle disruptions in a similar way. Again, once the

hedged duration estimates are made, one has a deterministic problem which needs

to be solved efficiently.
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Chapter 3

Applications and related work

APSPs appear in many hospital applications, both in surgical and non-surgical

treatment, as well as in diagnostic services. This chapter gives an introduction

to these applications, and an overview of the existing literature for each of them.

The relevant surgery scheduling literature is covered in Section 3.2, while Sec-

tion 3.3 provides a comprehensive survey of non-surgical applications. We show

that while the number of such non-surgical APSP applications exceed those that

we have been able to address explicitly in our contributions, their fundamental

similarities indicate that our results should have relevance for all of them.

In addition to this application oriented survey, we also present an overview of

work that is related to our more generic modelling and solution approaches. Since

parts of our contribution use a project scheduling model, Section 3.4 presents an

overview of the related project scheduling literature. Finally, Section 3.5 gives

a brief introduction to an emerging hardware technology for massively parallel

computing, and its applications to search methods.

Throughout this chapter, we focus mainly on the literature that is directly rel-

evant to the APSP as defined in Chapter 2. We also limit ourselves to papers

that describe the use of search methods (excluding, for example, papers that only

use discrete event simulation to evaluate simple dispatching rules). For readers

with a limited background knowledge about search methods, we first offer a brief

introduction in Section 3.1.
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3.1 Search methods
Simply put, an optimisation problem is defined by a set of variables, a set of con-

straints, and an objective function that is to be optimised. A solution to such a

problem consists of a chosen value for each of the variables. A solution is feasible

(legal) if these values satisfy all the constraints. A solution is optimal if there exist

no other feasible solutions for the problem with a better objective value. An op-

timisation problem may have more than one objective function (a multi-objective
problem), in which case all solutions in the Pareto set are considered optimal. See,

for example, [41] for an introduction to multi-objective optimisation.

Throughout this thesis, we will refer to a number of commonly used search

methods. This section provides some background for understanding these ref-

erences, as well as pointers to relevant introductory texts. By the term search
method, we here refer to a method that provides an optimal, or near optimal,

solution to an optimisation problem. We will distinguish between optimisation
(or exact) methods and heuristic methods. Optimisation methods, if successful,

either find a globally optimal solution to the problem or proves that no feasible

solution exists. Heuristic methods search for good solutions, but are unable to

prove if the best found solution is optimal or not, and are unable to prove infeasib-

ility. Heuristic methods are often used when the problem is too hard to solve with

optimisation methods within the required time limit.

One class of exact approaches is based on linear programming, where the op-

timisation problem is expressed as a set of linear constraints, and a linear objective

function. Linear programming includes integer linear programming (all variables

are integer)1, mixed integer linear programming [148] (contains both real and in-

teger variables) , and binary linear programming (all variables are binary). See,

for example, the text book by Dantzig and Thapa [38] for an introduction. With

linear programming, one uses established algorithms, such as Dantzig’s Simplex

algorithm, to find an optimal solution at a vertex of the polytope that the linear

constraints define in variable space. For versions with integer variables, the over-

all algorithm often applies a branch-and-bound tree search to fix these variables

to integer values. Authors that apply such methods generally use commercially

available software tools to express the model and to solve it. We use such an

1Note that an integer programming problem is not in general linear. Usually, however, the term

integer programming is used in lieu of integer linear programming.
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approach in Paper IV, and for calculating objective value lower bounds in Paper

III.

Stochastic programming [37, 86, 14] and robust optimisation [10, 13] are op-

timisation methods for optimisation under uncertainty. Both are based on linear

programming.

Logic based Bender’s decomposition was introduced by Hooker [79, 81] as

a generalisation of a decomposition approach for mixed integer models that was

proposed by Benders in 1962 [11]. This exact approach is sometimes used in

scheduling applications where the problem can be naturally decomposed into a

master and a slave problem. We propose a three level version of this approach in

Paper IV.

Column generation is used to solve large linear programs efficiently. It is often

also used in a heuristic setting, in the sense that it can provide good, non-optimal,

solutions when the problem is too hard to solve to optimality in a reasonable time.

See, for example, [45] for an introduction.

Another exact approach is constraint programming [1]. This method uses a

tree search that at each node instantiates a variable with one of the values in its

remaining domain. Following each instantiation, constraint propagation is used

to reduce the domains of other variables. The search backtracks if a variable’s

domain becomes empty.

Among heuristic methods, we will distinguish here between methods that it-

eratively improve a single solution, and population based methods that combine

known solutions to create new ones. In the first category, we find well-known

metaheuristics such as tabu search [63], guided local search [146], greedy ran-
domized adaptive search procedure (GRASP) [125], iterated local search [96],

variable neighbourhood search [73], variable neighbourhood descent [74], and

simulated annealing [144]. These are all based on some variation of local search.

Local search is an iterative improvement method based on an investigation of the

local neighbourhood of the current solution. This neighbourhood is defined by a

neighbourhood operator (or move operator) that represents a certain modification

of the current solution. All, or a subset of, these neighbour solutions are evaluated

with respect to their objective value, and one of them is chosen as the next current

solution. In this way, the local search iteratively traverses a search space topo-

logy, or a neighbourhood graph, defined by the neighbourhood operators. One
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can visualise this search by superimposing this graph on a fitness surface defined

by the objective value at each node (solution). The local search continues until

no improving neighbours exists. This happens when the search reaches a local

optima, or a plateau, on the fitness surface. Metaheuristics based on local search

implement various tactics to avoid that the search gets stuck in such situations,

but instead moves on to investigate new regions of the search space. Several text

books provide excellent introductions to local search and metaheuristics [62, 82].

The algorithms in Papers I and II are both based on local search.

Population based metaheuristics updates a population (or pool) of solutions by

adding new solutions that are created by combining existing solutions. Examples

are evolutionary methods (genetic algorithms, genetic programming) [51], scat-
ter search, and path relinking [64]. Some metaheuristics are inspired by swarm

intelligence models, such as ant colony optimisation [48] and particle swarm op-

timisation [89].

For project scheduling, heuristic search methods are often used together with a

so called schedule generation scheme (SGS). In such methods, the heuristic search

modifies a high level solution representation, typically an activity insertion order.

The SGS is then used to construct the corresponding schedule by inserting one

activity at the time in that order. For an introduction to such methods, see, for

example, [107].

Note that despite the above attempt at a loose classification, these methods are

frequently combined to create various hybrid methods.

3.2 Surgery scheduling
In this section we first give a brief introduction to the surgery scheduling prob-

lem. We then provide some references to the general surgery scheduling literat-

ure, followed by a more in-depth discussion of those papers that are relevant for

the APSP.

Surgery scheduling problems exist at various time scales and levels of detail.

For example, long term admission planning for inpatient elective surgery can span

weeks or months. Elective patients are planned based on a waiting list, containing

the referrals of each patient. Each referral has been evaluated by the appropriate

specialists and contains information about the urgency of the surgery, the required

resources and time, and other information that is relevant for the planner. Such ad-
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mission planning problems typically consider only one activity for each patient -

the surgery itself - and consider only one or two types of resources, such as operat-

ing rooms and surgeons [110, 68, 114]. Closer to the day of surgery we find more

detailed surgery scheduling problems, including more activities and resources for

each patient, but on a shorter time horizon (typically a week). Finally, before the

day of surgery, one finds very detailed scheduling problems, that consider all rel-

evant activities and the corresponding resources. A standard definition of these

different planning situations is not possible, as the boundaries between them are

not always clear, and there are significant differences from hospital to hospital.

Surgery scheduling is done in interaction between the specialities and the sur-

gery department. Typically, the surgical speciality ‘owns’ the patients and the sur-

geon resources, while the surgery department owns the operating rooms, teams,

anaesthesiologists, equipment, and so on. The capacity of each operating room

has often been reserved for different surgical specialities or individual surgeons on

different time blocks, in a master surgery schedule. This is called block schedul-
ing, while the case where all rooms are open to all surgeons is called open schedul-
ing [98, 72, 114, 70]. In principle, all critical activities and resources in the surgery

department should be included in the surgery scheduling problem, to make sure

that the resulting schedule is workable. In practice, however, the surgery schedul-

ing is often simplified. For example, during admission planning, only some of

the surgery department’s resources are considered, typically the operating rooms.

Only the surgery itself is scheduled. The remaining activities and resources are

considered only implicitly, based on experience or rules of thumb, or not at all.

Similar simplifications are often made in more detailed surgery scheduling. The

result is that the schedule may not be workable in practice, and that this is only

discovered close to the day of surgery. This leads to unnecessary rescheduling.

We believe that the reason for this simplification is, at least partly, due to the lack

of efficient surgery scheduling tools that can handle the full problem complexity.

When formulating a surgery scheduling problem for a given application, there-

fore, it is important to handle all the critical aspects of the problem that should be

included, not only those that are explicitly included in the present manual schedul-

ing.

Given the importance of surgery scheduling to the overall performance of the

hospital, it is not surprising that these problems have received a lot of attention
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in the operations research community, and that the current literature is large and

diverse. Several recent literature surveys are available [83, 26, 42, 104, 67, 54].

From these surveys, it can be seen that a great variety of problem definitions and

solution methods have been studied. Despite this diversity, the number of pre-

vious publications that are directly relevant to the complex APSP is much more

limited, especially for problems with longer planning horizons. As mentioned in

Section 2.1, this is probably due to the inherent computational complexity of these

problems.

Consider first long term admission planning, which for realistic problem in-

stances typically spans several weeks or even months, and where the schedule may

at any time contain hundreds of patients. We address such problems in Papers I

and III. We are not aware of any previous work that considers such multi-mode

surgery admission problems, where planning and scheduling are integrated.

On shorter time horizons, however, we do find some previous papers that con-

sider integrated planning and scheduling. The following authors all consider a one

week scheduling horizon, which is very common in hospitals [145]: Van Huele

and Vanhoucke [142] consider integrated planning and scheduling combined with

physician rostering. They model this problem using mixed integer programming.

They demonstrate the effect of the surgery related constraints on the physician

roster, and the effects of physician related constraints on the surgery schedule. In

[143], the same authors develop a set of constructive heuristics for solving the

same problem. Molina-Pariente et al [106] and Vijayakumar et al [145] both con-

sider multi-mode planning and scheduling on a planning horizon of up to five

days. In [145], the problem is modelled as an unequal-sized, multi-bin, multi-

dimensional dual bin-packing problem. Both papers [106, 145] first employ a

mixed integer linear program which cannot be solved fast enough. They there-

fore go on to construct specific schedule construction heuristics for this problem.

Marques et al [101] consider a version of the problem where the (elective) surgery

is the only activity for each patient. The operating room is the only resource to

be chosen, but surgeons that are preassigned to each surgery still impose capacity

constraints. They also require that only surgeons from the same speciality can use

an operating room on the same day. They formulate the problem as an integer

program which they solve with a 30 000 seconds time limit. For larger instances,

this approach does not provide an optimal solution within this time limit, in which
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case they provide a fast heuristic that effectively improves the best found integer

solution, when such exists. The resulting schedules are compared favourably with

those that were created manually in the hospital. The same authors later tackle

the same problem [103], but this time with a genetic algorithm. In [102], they

consider a bi-objective version of the problem. The two objectives represent the

number of surgeries that are scheduled, and the utilisation of the operating rooms,

respectively. They present dedicated construction and improvement heuristics.

Doulabi et al [49] present a column generation based method, where constraint

programming is used to solve the subproblem. They assume that all available op-

erating rooms are identical on each day, which in a many real world settings may

not be realistic. The problem uses an open scheduling strategy, but each surgeon

is required to be in at most one operating room during each day. Also, a max-

imum number of hours of surgery is allowed for each surgeon per day. Surgeons

are preassigned to each surgery, which is the only activity that is considered. The

authors test their algorithm on randomly generated data and show that the column

generation approach is more efficient than a corresponding compact formulation.

Bulgarini et al [22] combine scheduling on a one week horizon with a long term

assignment of patients to subsequent weeks, using a mixed integer programming

approach. They show that this improves over a myopic scheduling for only the

first week, which tends to systematically favour the most urgent patients without

taking into account medium or long term effects on the plan. Doctors are preas-

signed to rooms. They do not schedule the patients in subsequent weeks because

the computational effort is too large, even if they consider a small surgery depart-

ment. Similar approaches have been used in manufacturing production planning

and scheduling, for the same reasons [100]. The authors do not report how long

time they take to solve this problem, but conclude that in order to solve realistic-

ally sized instances, it would be necessary to develop a heuristic approach.

There are three papers that take a more generic modelling approach, similar

to what we do in Paper III: Roland et al [127, 128] model weekly problems as

an extension to the RCPSP. They use genetic algorithms, where a schedule gen-

eration scheme is used to construct complete schedules from the chromosome

representation of each new solution. Pham and Klinkert [120] view the problem

as a multi-mode blocking job shop problem. They solve test instances using mixed

integer programming, with a one hour time limit. We will discuss these papers in
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some detail when we describe the contribution of Paper III, on page 47.

Detailed, one day surgery scheduling problems are often solved as the second

(‘allocation scheduling’) step of the traditional two-step approach [140, 113, 114],

as described in Section 2.1. However, it can also be a refinement of an existing

schedule (including activity start times), that has previously been created on a

longer horizon. As proven by Cardoen et al [24], the one day surgery scheduling

problem can also be NP-hard. These problem can be quite detailed. The set of

activities may include, for example, the preparation of a patient for surgery, pre-

paration of equipment, removal of unnecessary equipment, the surgery, waking

the patient, cleaning the operating room and equipment, transporting the patient

to the recovery room or intensive care unit, and the recovery. These activities will

be linked by (tight) minimum and maximum time lag constraints. The involved

resources can include preparation rooms, operating rooms, operation teams, sur-

geons, anaesthesiologists, equipment, the recovery room, the intensive care unit,

post-operative beds, and others. Most authors include only small subsets of these

activities and resources.

For a complete overview of earlier papers on one day surgery scheduling prob-

lems, we refer to the aforementioned survey papers. The most up to date of these,

and perhaps the most comprehensive, is that of Demeulemeester et al [42], which

is from 2013. In what follows, we discuss some central papers from this literature.

We also provide an overview of more recent publications. Cardoen et al [24] ad-

dress a one day scheduling problem for a surgical outpatient clinic. The problem

arises on the day before surgery. Prior to this, the patients have only been told on

which day to show up, based on the earlier advance planning step. Surgeons are

preassigned to operating rooms. The authors propose various algorithms based on

integer programming and a dedicated branch and bound, and show that the most

competitive is an iterated integer programming approach, where iteratively, a sub-

stantial number of variables are fixed before the (sub)problem is solved again. In

[25], the same authors solve the same problem using a branch and price approach

where they use dynamic programming to solve the pricing problem. They con-

sider several objective components, but optimise a single linear combination of

these. They show that the dynamic programming solver performs better than a

corresponding mixed integer approach for the subproblem. Jebali et al [85] use a

mixed integer formulation to demonstrate that integrating planning (allocation of
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patients to rooms) and scheduling is important, even for a one day problem. They

show that this gives better results than dividing planning and scheduling into two

consecutive steps. This improvement, however, comes at a high cost in terms

of CPU time. Augusto et al [3] propose a heuristic based on Lagrangian relaxa-

tion of their integer programming formulation, combined with dynamic program-

ming. They consider several activities, including the recovery. For the surgery

itself, only operating room resources are considered, and these are assumed to be

identical. The authors show that there is a benefit, in terms of makespan, to let a

patient recover in the surgery room whenever there is no free capacity in the re-

covery room. Ghazalbash et al [61] consider a one-day multi-mode problem with

an open scheduling strategy, where rooms, equipment, surgeons, and surgeons in

training have to be chosen. The surgery is the only activity. They use a mixed

integer approach, and compare the results favourably with the current practice in

the hospital. Zhao and Li [152] consider a one day scheduling problem where

the surgery is the only activity, and the operating room is the only resource that

is chosen. They model the cleaning and preparation activities between surger-

ies as a sequence-dependent setup time for these rooms. They solve quite large

daily problems (28 ORs, 60-80 patients) in between 4-9 minutes, using constraint

programming. Analysing the robustness of their deterministic solutions under a

stochastic variation in the surgery durations, they conclude that the deterministic

model is sufficient for solving this scheduling problem. All patients are elective.

Xiang et al [149] present an ant colony algorithm for a problem that considers

both pre-, peri-, and postsurgical phases, and that integrates skill and availabil-

ity constraints for nurses, based on the nurse roster. They consider elective pa-

tients only, and base their model on the job shop scheduling problem. Pulido et

al [123] treat uncertain activity durations using stochastic programming. They

also present two decomposition based heuristics, in which, iteratively, some or

most of the variables in the stochastic problem are fixed before solving. They

show that these produce good results, and that they are computationally more

tractable than the stochastic program. Their largest test instances have 11 sur-

geries. Meskens et al [105] use constraint programming to handle several types

of real world constraints, including team preferences. Wang et al [147] consider

the allocation of patients to rooms under uncertain durations, and use a column

generation approach to minimise overtime and the risk of cancellations. A similar

25



problem is tackled by Deng et al [43], whose integer programming approach uses

‘chance constraints’ to minimize the total cost of opening operating rooms, sub-

ject to restrictions on the probability of surgery delays and overtime. Saremi et

al [135] present a hybrid between integer programming and tabu search for solv-

ing a stochastic surgical outpatient scheduling problem. The problem contains

preparation, surgery, and recovery activities. They use the integer programming

approach to provide a good solution to the deterministic problem, and then use

this as the initial solution for their tabu search. The tabu search uses simula-

tion over 30 randomly chosen scenarios to evaluate each candidate solution under

uncertainty. They show that the high quality initial deterministic solution is essen-

tial for this approach to be competitive. For performance reasons, especially for

larger problem instances, they also propose to replace the integer programming

approach with a relaxed mixed binary program, combined with a repair heuristic

to fix non-integer variables before the tabu search phase.

3.3 Scheduling of non-surgical activities

Most hospitals have laboratories and clinics that perform non-surgical activities,

including treatment, diagnostic procedures, or control procedures. Some of these

have planning and scheduling problems that fall under our definition of the APSP

in Chapter 2. The literature for such applications is much more limited than the

surgery scheduling literature. Also, we have found no survey of this literature,

and so we provide a more comprehensive overview here.

Let us first note that the substantial literature on appointment scheduling is

not directly relevant here. ‘Appointment scheduling’ is usually taken to mean the

design of template schedules, into which patients are typically booked on a first

come, first serve basis [83]. Surveys of the appointment scheduling literature can

be found for example in Cayirli and Veral [29], and in Gupta and Denton [70].

From these, one can see that the appointment scheduling literature covers topics

such as the optimal choice of block start times, the number of patients to schedule

in each block, the estimation of service durations, the choice of scheduling rules to

apply, and so on. These problems are usually modelled as single server problems,

considering a single resource (typically a doctor), and a single activity for each

patient [8]. Much of this work uses queuing theory and discrete event simulation,

while some also apply search methods [53]. Since such appointment scheduling
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problems do not consider the planning and scheduling of actual, known patients,

they do not fall within the scope of this thesis.

Non-surgical APSPs are primarily found in cancer treatment scheduling, re-

habilitation treatment scheduling, and in the scheduling for various diagnostic ser-

vices. We shall see that these problems are very similar. Therefore, although our

contributions do not explicitly address all of them, our results should be widely

applicable.

The largest literature concerns the scheduling of cancer treatment programs,

including radiotherapy or chemotherapy, where each patient’s program contains

many treatments that are to be carried out over several days or weeks. There

are also some preparatory activities, but these are usually not considered in the

literature. As the schedule typically covers several weeks, it is always partially

filled with patients that have already been scheduled. New treatment requests are

either scheduled continuously, in an online fashion, or in batches once or twice

a day. The main objective of these problems is often to minimize the degree of

deviation from each patient’s prescribed treatment program. An efficient solution

of these problems are of great medical value, since such deviations have a direct

impact on the health and survival prospects of the patient [34]. Other objective

components include the number of scheduled patients, the degree of compliance

with official waiting time targets, resource utilisation, and resource overtime. Few

hospitals use advanced scheduling technology, and those papers that consider real

world applications invariably report big improvements over current practice.

3.3.1 Radiotherapy treatment scheduling

Let us consider first the radiotherapy treatment scheduling problem, in which the

problem is to schedule treatment activities on one or more linear accelerator ma-

chines (linacs). These are often modelled as job shop problems; for example,

Kapamara et al [87] define the problem as a dynamic and stochastic job shop

problem. They review various methods that have been successfully applied to

such problems, including branch and bound approaches, simulated annealing, tabu

search, GRASP, and genetic algorithms. They conclude that the problem might be

best tackled by a metaheuristic, built around tabu search or a genetic algorithm.

Petrovic et al [119] propose two construction algorithms that attempt to schedule

each patient (in prioritised order) as soon as possible after release date, or as late

as possible before the due date, respectively. They show that the latter algorithm
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has some advantages because it gives better results for palliative (pain relief) pa-

tients. Only treatment activities are considered, and these are assigned to days.

The authors do not include scheduling decisions. The problem is considered de-

terministic, and patients that have already been planned are not reassigned. In

[118], Petrovic et al generalise these two construction algorithms. They also pro-

pose a GRASP method which performs slightly better for cases with the average

number of patients or less. However, the two construction algorithms perform

better when the patient load is high. Conforti et al [34] present the first exact

method for this problem. New patients with different priorities are scheduled on

a one week rolling planning horizon. The authors present two similar integer

programming models: one which simply insert new patients, and one which also

reschedules existing patients (without removing any of these from the schedule).

Patients that cannot be scheduled on the first week, are kept on the waiting list and

will be a part of the problem for the next week. The authors argue that their single

server model can be easily extended to include several machines, which would

make their problem multi-modal. This would not, however, introduce any of the

complications that arise in typical APSP instances, where modes include several

resources of different types; it would simply correspond to increasing the capacity

of the single linac. They apply their models to a small real case and show signi-

ficant improvements in waiting times and the number of new scheduled patients

per week, compared to the current practice in the hospital. In [36], they extend

their model to include patient availability. In [35], they consider what they call a

‘non-block’ setting, where patients are not allocated to slots, but have individual

treatment durations. Here, however, they do not choose start time, but a shift for

each patient. There are two shifts per day in their case study. Again, their prob-

lem is deterministic and the planning horizon is one week. Their exact approach

produces optimal plans for a collection of test instances, within a run time of 12

minutes. The largest instance has 20 patients.

A few authors also consider stochastic aspects of the radiotherapy treatment

scheduling problem. Legrain et al [94] present an online algorithm where both a

linac and a time slot is chosen for each treatment of each patient. They plan on

a long horizon, but schedule only one patient at the time, without rescheduling

the previously scheduled patients. They use stochastic programming to handle

uncertainty in treatment durations and the arrival of future urgent patients. Their
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experiments verify that this approach is superior to the greedy scheduling heur-

istic that the hospital in their case study uses today. Pérez et al [116] consider

scheduling of patients for nuclear medicine treatment on a one day scheduling

horizon. Nuclear medicine is a sub-speciality of radiology that involves several

activities related to each procedure, where each activity requires different, and

multiple, resources. These activities must be carried out in a given sequence. The

problem is multi-modal. Furthermore, it is stochastic and online, since patients

arrive on a short notice and are scheduled immediately, one by one. They present

two integer programs for this online problem. The first represents the determin-

istic problem, while the second is a two-stage stochastic integer program. They

use discrete event simulation to evaluate both methods, and demonstrate that the

stochastic program gives better results, especially for high load scenarios. It also

performs better than the scheduling algorithm that is currently used in the clinic,

for a range of different evaluation criteria: the number of treated patients, a patient

preference satisfaction ratio, and patient waiting time. Cares et al [27] address the

diversity in formulations of the radiotherapy treatment scheduling problem, and

present a standardised online benchmark generator [28].

Petrovic and Elkin [117] introduce a genetic algorithm for the radiotherapy

pre-treatment scheduling problem, where patients are scheduled for an initial as-

sessment before starting their radiotherapy treatment. The problem contains sev-

eral activities per patient, and is multi-modal. It seems that the same doctor is

used several times during the treatment of the same patient. It is not clear if it is

a constraint that only one doctor is involved. If so, however, this is a practical ex-

ample of the general mode compatibility constraints that we introduced in Paper

III.

3.3.2 Chemotherapy treatment scheduling

The chemotherapy treatment scheduling problem is very similar to the radiother-

apy treatment scheduling problem. However, it typically has more variation in

activity durations and resource demand, and activities can use multi-capacity re-

sources [71]. A chemotherapy treatment plan is often given in treatment periods

separated by rest periods. The exact structure of each treatment plan is decided by

a team of oncologists, and depends on the kind of cancer that is being treated.

Sadki et al [132] consider the planning of chemotherapy patients on a group

of oncologists, while at the same time determining their working schedules. The
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time resolution for both decisions are based on a shift, and there are two such shifts

per day. The problem is therefore a planning problem, without detailed schedul-

ing decisions. The authors formulate a mixed integer program for the problem.

As this cannot be solved in a realistic time, however, they also present a heur-

istic algorithm, using a hybrid of local search and mixed integer programming for

relaxed problem formulations. They claim that this approach gives considerably

better results than current practice, but admits that they use information about all

patients for the whole scheduling horizon, while in reality this information be-

comes known only gradually. They go on to address this issue in [133], where the

problem is solved on a one week rolling horizon, and where future patients are

anticipated based on an observed probability distribution. They validate this ap-

proach through simulation, and show that they achieve a more balanced bed load

than the current practice in the clinic under study. The patients are preassigned

to an oncologist, and oncologists are preassigned to shifts. Turkcan et al [141]

do planning and scheduling in two sequential steps. In the planning step, a first

date of treatment is assigned to each new patient, on a one week rolling horizon.

The objective is to minimize unnecessary treatment delays. The scheduling prob-

lem decomposes into one problem per day, in which they assign start times and

resources (chairs and nurses) to each patient. Here, the objective is to minimize

overtime. They solve both problems using a mixed integer approach, and show

that this can be solved fast enough to be useful in practice. The PhD thesis of

Hahn-Goldberg [71] addresses the scheduling of chemotherapy outpatients on a

single day. She presents a scheduling method called ‘dynamic template schedul-

ing’, based on constraint programming. She uses historical data to predict future

arrivals of treatment requests, and solves the resulting deterministic problem. Last

moment changes are handled using a dedicated, reactive, shifting algorithm.

Note that the RCPSP based model for generalised surgery scheduling prob-

lems that we present in Paper III should be able to express radiotherapy and

chemotherapy scheduling problems. The project and activity concepts, and the

multi-period resource availability structure should fit the problems well. The spe-

cial constraints concerning program conformity can be modelled by a combination

of minimum and maximum time lag constraints. However, the relevant objectives

would have to be added where such constraints are to be relaxed into soft prefer-

ences. Also, the results of Paper IV should be very relevant for these applications.
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The three-level decomposition approach described therein should be applicable,

with the proper adjustment to the master problem where activities are assigned

to days. Our research should therefore be of relevance also to radiotherapy and

chemotherapy scheduling, even if we have not addressed these problems specific-

ally in our contribution. We also observe that none of the previous work discussed

above integrate planning and scheduling on a scheduling horizon of more than

one day, for a multi-mode problem, while scheduling more than one patient at the

time. Our results should therefore be applicable to richer, more complex, versions

of these problems than those previously studied.

3.3.3 Rehabilitation treatment scheduling

Yet another APSP application is the scheduling of various therapeutic activities,

for example in connection with rehabilitation. While not as medically critical as

the cancer treatments discussed above, an effective scheduling of such activities

contributes significantly to patient satisfaction and hospital economy. The prob-

lem consists of scheduling a set of (possibly different) treatment activities for each

patient over a period of time. There may be minimum (and possibly maximum)

time lags between some of them. These therapeutic treatment activities tend to be

personnel-intensive. Activity durations are as a rule deterministic. Patients often

prefer to use the same therapist across sessions.

Chien et al [32] solve such a problem using a genetic algorithm, combined

with a schedule generation method that decodes the chromosomes. They base

their work on a hybrid shop scheduling problem. Their version of the problem

is multi-modal, and they choose start times for each activity. All machines (re-

sources) have capacity one. In addition to some minimum time lag constraints

between pairs of activities, there is a maximum time span constraint for the com-

pleted treatment of each patient. They validate their algorithm by comparing res-

ults for small problem instances with the results from a corresponding mixed in-

teger program. This is a problem formulation that fits our APSP description per-

fectly. Another paper that integrates planning and scheduling is by Braaksma et

al [18]. However, here they use an online approach, where each new request is

scheduled immediately, using an integer programming approach. There is no res-

cheduling of previously scheduled patients. The authors aim to optimise various

patient and treatment related preferences, as well as resource utilisation. They use

discrete event simulation to test their approach for a small but real hospital clinic.
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Ogulata et al [111] plan physiotherapy treatment on a one week rolling horizon.

Three problems are solved sequentially: the choice of patients to include for the

week, the assignment of patients to physiotherapists, and an assignment of patients

to two-hour periods on a day during the week. The last step is scheduling-like, but

they do not include any resource capacity constraints, and so can produce plans

that overload the physiotherapists. The point of the last step is only to balance the

load between periods. The introduction of these periods is in itself an improve-

ment over current practice, since they drastically reduce patient waiting time on

the day (in the current practice, all patients show up in the morning, draw a num-

ber, and wait for their turn). Griffiths et al [65] present a planning tool. They use a

three stage local search based approach to schedule patients for physiotherapy in a

rehabilitation clinic. The objective is to minimize the violation of constraints, and

each sequential stage considers a separate group of constraints in decreasing or-

der of importance. A combination of simulated annealing and tabu search is used

on the third stage. Schimmelpfeng et al [137] consider a problem of scheduling

all treatment activities in a rehabilitation hospital on a horizon of several weeks

(one month in their tests). They present a mixed integer model that defines the

problem, where resources, a day, and a time slot are assigned to each patient.

Assignments of groups for group therapy are also made. This monolithic model

cannot be solved, however, for medium or large size instances. They therefore

propose a hierarchy of three models that are solved sequentially: In model 1, pa-

tients are assigned to days. In model 2, they are given a time slot, while in model

3 they are assigned to resources (and, possibly, to therapy groups). Obviously,

this approach reduces the complexity of the problem. However, it has the same

weaknesses as we discussed in Section 2.1 related to the separation of planning

and scheduling decisions. Using small test instances, they quantify this loss to be

about 5-10% in the number of scheduled patients, compared to solutions for the

monolithic model.

Again, many of these problems, and in particular those without special group

therapy preferences, bear strong resemblance with our generic APSP model. This

indicates that our results are of relevance also for rehabilitation scheduling prob-

lems.
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3.3.4 Diagnostic services

In addition to giving treatment, hospitals also have various clinics that provide dia-

gnostic services. Some of these have APSP-like scheduling problems that can in-

volve a large number of elective patients. These problems can have multiple activ-

ities per patient. They can also be multi-modal, where each mode involves several

resources, some of which may have setup times. Activity durations may depend

on the examination procedure, the age and medical condition of the patient, and

often also on the chosen mode. Patients are inserted, often from a waiting list, into

a schedule that may span weeks or months, and which already contains appoint-

ments that have been fixed and communicated to the respective patients. Typical

objectives are to schedule as many patients as possible within the planning period,

maximise resource utilisation, and to prioritise the patients in time according to

their respective medical urgency. As these problems often involve outpatients,

start times have to be chosen and communicated to the patients several weeks be-

fore the appointment date. This is different from the typical admission planning

for inpatients. However, since we in the APSP integrate planning and scheduling

also for inpatient admission planning (even if only the date is communicated to

the patient), the underlying optimisation problems that we consider for the two

applications are very similar.

The only previous paper that we have found that explicitly addresses a dia-

gnostic clinic is that of Serrano et al [139], in which the flow of patients through a

gastroenterological clinic is studied on a one day horizon. They model the prob-

lem as a flexible job shop problem with three operations (activities): bed assign-

ment, examination, and recovery. Their approach makes use of several different

dispatching rules, which they show improves patient waiting time, length of stay,

and resource utilisation, compared to the current practice in the clinic. There are

other papers concerning diagnostic services in the appointment scheduling literat-

ure (for example [115]), but as explained above, these are not directly relevant to

the APSP. The lack of relevant literature about APSPs in diagnostic services is a

bit surprising, since we do find such problems in hospitals, at least in Norway. The

reason may be the same as for admission planning for inpatients: that the com-

bined planning and scheduling for many patients on a long time horizon is com-

putationally very demanding. Yet, in Paper IV, we present an exact method that

solves such a typical multi-mode outpatient appointment planning and scheduling
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problem to optimality in a very short time.

3.3.5 General approaches

There are also a few studies that are more general in terms of application area.

Podgorelec and Kokol [121] present a genetic algorithm for a general activity

scheduling problem that is relevant to various applications, such as examinations,

laboratory tests or rehabilitation therapies. They choose the start time for each

activity. They consider scheduling both on equipment and personnel, and also

choose which resources to use for each activity (i.e. the problem is multi-modal).

They test their algorithm on one small synthetic instance, without offering any

insight into the quality of the results. They use machine learning to tune the

parameters of the algorithm.

Also, Gartner and Kolisch [60] aim to optimise the flow of patients in the entire

hospital, based on definitions of all clinical pathways. They include planning

decisions, but not scheduling.

3.4 Project scheduling
As mentioned in Section 2.2, parts of the work in this thesis use a model that ex-

tends the classical resource constrained project scheduling problem (RCPSP). In

this section, we therefore provide an overview of the most relevant related work

in project scheduling. The literature for the RCPSP is substantial, and good in-

troductions to the problem and relevant solution methods can be found in, for

example, Neumann et al [107] or Artigues et al [2]. See also Kolisch and Hart-

mann [91, 92] for an overview of scheduling heuristics and heuristic search meth-

ods. Lombardi and Milano [95] provide a survey of optimisation methods for

multi-mode RCPSP’s, where they highlight the challenges in combining resource

allocation and scheduling.

In [76], Hartmann gives an overview of papers that have addressed differ-

ent extensions to the RCPSP. The most relevant earlier work concern the single-

project MRCPSP/Max (we have not found any previous papers for the multi-

project version). This is sometimes also called the multi-mode RCPSP with gen-

eralised precedence relations (MRCPSP-GPR). As a generalisation of the RCPSP,

the problem is NP-hard. Since the feasibility of a schedule can be verified in

polynomial time, the problem of deciding whether a MRCPSP/Max instance is

solvable is NP-complete [78]. Some authors use a sequential (or decomposition)
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approach [107], where the problem is decomposed into a mode assignment prob-

lem (MAP) and a RCPSP/Max subproblem. First the MAP is solved to give a

feasible mode assignment, and then each such assignment is evaluated by solv-

ing the resulting RCPSP/Max. Both of these subproblems are in general NP-hard

[40]. The MAP is NP-complete when the number of non-renewable resources

exceeds one [90]. Note, however, that for most APSP instances all resources are

renewable. The feasibility problem for the RCPSP/Max is NP-complete [7, 107].

The literature for the MRCPSP/Max is very limited, and we provide an over-

view in the following. De Reyck et al [40] claim to be the first to address this

problem, in 1999. They use the sequential approach, presenting a tabu search

method for the MAP, and using a truncated branch-and-bound method to solve

the RCPSP/Max subproblem. They compare this with several other approaches

based on enumeration or local search, and demonstrate the tabu search’s super-

ior performance on a set of artificially generated test instances. They analyse the

performance also as a function of test instance characteristics, and show that in-

stances with less availability for renewable resources are more difficult to solve.

Also, instances with a medium level of availability for non-renewable resources

prove the most difficult. Heilmann [77] proposes a multi-pass construction al-

gorithm. In contrast to [40], Heilmann uses the integration approach, where a

mode is chosen for one activity at the time, as an integral part of the schedule gen-

eration. For each pass of the algorithm, the order in which activities are inserted,

and the choice of mode for each activity, are both chosen by roulette selection.

These samplings are based on probabilities given by activity-priority rules and

mode-priority rules, respectively, and the combination of such rules vary from one

pass of the algorithm to the next. As in [58], Heilmann’s schedule construction

algorithm performs backplanning steps to handle maximum time lag violations.

He also employs a series of feasibility tests after each activity insertion, in order to

interrupt the construction of an infeasible schedule as early as possible. Heilmann

tests his method on randomly generated instances and shows that the combina-

tion of many different priority-rules contributes to its performance. He also shows

improved performance compared to the tabu search of De Reyck et al [40], but

only for shorter computation time limits. Heilmann’s algorithm produces feasible

solutions for all test instances, which is not the case for De Reyck et al’s tabu

search. These results are not surprising. We too have observed that the sequential
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approach (which is used in [40]) is not well suited for heuristic schedule construc-

tion. The reason is that for a given MAP solution, the chances of finding a feasible

solution to the corresponding RCPSP/Max subproblem is quite small. Hence, a

lot of computational effort is wasted. The integration approach has a much better

chance of producing feasible schedules. Similar observations are made in [107].

It is interesting to note, however, that the above decomposition can work well

with exact methods, for example when using logic based Benders’ decomposition

(see Paper IV). In this case, the performance is highly dependent on the strength

of the relaxed scheduling constraints that are used in the MAP master problem,

as well as the cuts that are added when the RCPSP/Max slave problem is proven

infeasible. One could imagine that if similar mechanisms are used with care, they

could also strengthen a heuristic sequential approach. In [78], Heilmann intro-

duces the first exact method for the MRCPSP/Max, based on a branch-and-bound

procedure. The search maintains a fictitious schedule, which is a solution to a

minimal problem, where activity durations, resource demands, and minimum and

maximum time lags are calculated as a minimum across all activity modes that

are still available for each activity. Branching rules are chosen dynamically; at

each node in the search tree, a choice is made whether to choose a mode for an

activity, or to resolve a resource conflict in the current fictitious schedule. The

branching rule to use next depends on the criticality of each decision, based on

the maximum makespan lower bound across all branching alternatives. Computa-

tional results demonstrate that this approach is superior to the tabu search in [40],

both in terms of the number of problems that are solved to feasibility, and in terms

of gaps to lower bounds. The largest test instance has 50 activities and 5 modes

for each activity. Sabzehparvar and Seyed-Hosseini [131] present a geometrical

formulation of the problem, inspired by rectangle packing models. This formula-

tion is based on the requirements that multidimensional volumes that are spanned

by the activity duration and the demand of different resources, do not overlap.

The approach uses a continuous representation of time, which is advantageous for

problems with a high time resolution. On the down side, the approach performs

best when the demand is distributed uniformly in time, and where there are not too

many resources in each mode. They show that their formulation is more efficient

than that of [40] when there are less than tree resources in the problem. Barrios

et al [6] present an approach in which they first solve a simpler problem: a mode
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assignment problem where the objective function is some easily calculable ap-

proximation of the makespan for the corresponding MRCPSP/Max problem. This

simpler problem is solved using a genetic algorithm. The resulting solutions are

then converted and used as initial solutions for the MRCPSP/Max problem, which

is again solved by a genetic algorithm, using the integration approach. They in-

tegrate different useful mechanisms into their method, such as repair heuristics

and suitable schedule justification methods. Barrios et al show that the result-

ing overall method is competitive with the state-of-the-art algorithms for medium

and large size problem instances, and that it performs better than the tabu search

in [40]. In their discussion of future research opportunities, they mention that

the mode assignment could be combined with a solving of the RCPSP/Max, in

a decomposition based method. In [5], the same authors follow a very similar

approach to the one in [6], but in this case the simplified assignment problem

is solved using a simulated annealing algorithm. They also propose a method

for improving the solutions of this simplified problem by attempting to modify

the choice of mode for each activity in turn. They show that this gives an im-

provement for the overall algorithm. At the second level, like in [6], they solve

the MRCPSP/Max using a genetic algorithm, but this time a different one. Like

in [6], Bagherinejad and Majd [4] also use a double genetic algorithm. They,

however, first solve the approximate mode assignment problem, and then enter

a second phase where they only solve the RCPSP/Max resulting from using the

best assignment solution. They do not seem to reconsider the mode choices at the

second level. Calhoun et al [23] present a tabu search for a goal programming for-

mulation of the MRCPSP/Max. Their move operators work directly on the mode

assignment variables. The evaluation of each move involves the choice of a new

start time for the activity in question. When the move leads to a violation of time

constraints, a penalty is added to the objective value. If such a move is performed,

then only moves that may resolve this violation are allowed until the schedule is

once again feasible. While interesting, this approach would probably not work

well for most APSPs, because of the combination of tight time lag constraints,

mode consistency constraints and project disjunction constraints. For the same

reasons, local search methods that operate directly on a full schedule representa-

tion, like the one proposed by Dauzère-Pérès et al [39] for the multi-resource job

shop scheduling problem, would also be unsuitable for the APSP.
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Many algorithms for the simpler RCPSP/Max [58] and the MRCPSP [97]

combine the use of a schedule generation scheme (SGS) with some higher level

logic that determines the order in which activities are inserted. In an integration

setting, the mode for each activity is chosen as a part of the schedule generation.

For problems with maximum time lag constraints, the SGS includes unschedul-
ing or backplanning steps [58]. For the MRCPSP/Max, only the priority based

sampling method of Heilmann [77] uses an SGS. This is the approach that we

take in Paper III, although our algorithm also considers the insertion order among

projects, and our SGS is modified to handle all the constraints of the APSP.

3.5 Parallelisation

The success of any search method depends partly on its software implementation,

and on how efficiently this implementation uses the available hardware. Some of

the work in this thesis exploit traditional task-parallelism on multi-core CPU’s.

However, during the last few years, various hardware platforms for massively par-

allel ‘same program multiple data’ (SPMD) computations have also become more

easily available for scientific computing. These include Field Programmable Gate

Arrays (FPGAs), multiple-core CPUs, and General Purpose Graphical Processing

Units (GPGPUs) [19]. The GPGPU lends itself as an easily accessible compu-

tation platform, having over the last few years evolved from a highly specialised

graphics processor unit (GPU) to become an affordable general purpose com-

putation device that can be installed in most computers. This development has

been supported by a parallel development of higher level programming models,

languages, and tools [112, 108, 66]. The GPGPU’s computational efficiency, in

terms of floating point operations per time unit, is today significantly higher than

that of top end CPUs, and the trend is that this gap is increasing [151].

The GPGPU has been successfully applied to increase computational effi-

ciency in a range of different areas, such as sorting, searching, graph algorithms,

string matching [136], numerical solving of differential equations, computer vis-

ion, and numerical linear algebra [112]. In Paper II, we addressed the question

of how this technology could be best exploited in local search algorithms for

permutation-like problems. At the time, very little work had been reported about

the use of GPGPUs for search methods in general, and in particular for local

search based algorithms. Previous use of this technology was mostly for evolu-
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tionary algorithms, which lend themselves very naturally to SPMD parallelisation.

In particular, parallel fine-grained (cellular) genetic algorithms have been adapted

to the GPU architecture over a number of years [151, 153]. Some authors have

also used the GPU for genetic programming [75, 93]. An excellent recent intro-

duction to the use of GPGPUs for local search can be found in [20]. The survey in

[138] also gives a good overview of existing GPGPU implementations for com-

binatorial optimisation.
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Chapter 4

Contribution

In this chapter, we summarise the contributions of each paper. We also discuss

possible extensions and future research opportunities.
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PAPER I: LOCAL SEARCH FOR THE SURGERY ADMISSION
PLANNING PROBLEM

A. Riise and E.K. Burke. In Journal of Heuristics, Springer US, 17(4) (2011), pp.
389-414

In this paper, we consider an admission planning and scheduling problem,

where an operating room, a day, and a start time have to be chosen for each patient.

Doctors are preassigned to each patient, but have associated capacity constraints:

each surgeon can only participate in one surgery at a time. We present a metaheur-

istic approach based on a combination of iterated local search and variable neigh-

bourhood descent. Two neighbourhood operators, relocate and two-exchange, are

used. A high level solution representation is defined by a sequence of surgeries

for each room/day combination. The relocate operator moves a surgery from its

current position in such a sequence to another position, possibly in the sequence of

another room and/or day. Correspondingly, the two-exchange operator swaps the

positions of two surgeries. Following such an operation, and before the neighbour

solution can be evaluated, a heuristic is used to create a schedule that is feasible

with respect to surgeon capacities.

The paper presents computational results for a realistic set of test instances.

These were generated based on the characteristics of the admission planning prob-

lem in Bærum hospital, a medium sized Norwegian hospital. In addition, the

paper provides a search space analysis for each of the two neighbourhood operat-

ors, and for three different objective functions: surgeon overtime, patient waiting
time, and a linear combination of the two. Fitness landscape ruggedness and a

fitness-distance correlation between local optima are analysed (see [82] for an

introduction to these concepts). The paper shows that although all three fitness

surfaces are comparatively smooth for both operators, with a high one-step fitness

correlation value, they have quite different characteristics and pose different chal-

lenges for local search algorithms. The waiting time objective seems to present

a fitness surface that is quite suitable for guiding the local search algorithm. The

overtime fitness surface, on the other hand, contains distinct levels of similar ob-

jective values, and it is difficult for our local search algorithm to move from one

level to another. This indicates that more powerful move operators or diversific-
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ation mechanisms could be necessary for problem instances where the overtime

objective is present.

As we discussed in Chapter 2, planning and scheduling should be integrated

for long term admission planning, to ensure that the admission plan can later be

refined into a feasible and high quality surgery schedule. One of the main contri-

butions of this paper is that we present, and analyse, a search method for such a

joint admission planning and scheduling problem. We are not aware of any other

paper that tackles a similar problem on more than a one week planning horizon.

The presented local search based method could be generalised to work on the gen-

eric APSP model presented in Paper III. Such an iterative improvement algorithm

could use the SGS developed in Paper III instead of the tailored schedule con-

struction heuristic used in Paper I. The search space analysis methodology used

in Paper I would be useful in the design of such an algorithm. Although tight

time lag constraints would make such an algorithm unsuitable for many APSPs, it

could work well for problems without such constraints.
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PAPER II: ON PARALLEL LOCAL SEARCH FOR
PERMUTATIONS

A. Riise and E.K. Burke. In Journal of the Operational Research Society, Palgrave
Macmillan, 65(5) (2014)

Motivated by the arrival of easily available hardware for massively parallel

computing, such as the GPGPU, Paper II investigates some ways in which this

technology can be exploited in methods based on local search.

One obvious benefit is the significant speed-up that can be gained by evalu-

ating a large number of neighbourhood solutions in parallel. Many papers have

now been published to this effect. On the other hand, this is not necessarily an

improvement over a local search that employs intelligent neighbourhood filtering

techniques. However, we show that the ability to evaluate large neighbourhoods

very efficiently enables another mechanism for performance improvement. At

each iteration we can select and apply many improving moves, simultaneously.

The idea is that once all neighbours are evaluated, and several are found to be

improving, it would be a waste of computation effort to apply only one of them.

Instead we select a set of improving moves and apply them all. The requirement is

that these moves are independent, in the sense that the improvement that is gained

from each move is independent of the application of any of the others. To select an

optimal set of such independent moves amounts to solving the weighted version

of the maximum stable set problem, which is known to be NP-hard on general

graphs [88]. Since this choice is made at every iteration, efficiency is critical.

We therefore select these moves using a simple heuristic, rather than solving the

selection problem to optimality.

We ran a series of experiments on various Travelling Salesman Problem (TSP)

instances to evaluate the benefits of applying several improving moves in paral-

lel (parallel moves) instead of applying only the best move at each iteration (se-
quential moves). Since both algorithms are stochastic, we performed many runs

for each test instance. Figure 1 shows a qualified run time distribution (QRTD)

[82] for the problem instance ‘d657’. This is the fraction of all runs that reached

a certain solution quality (in this case within 0.5% of the optimal value), as a

function of computation time. The figure shows that the algorithm using parallel
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Figure 1: QRTD for the algorithms with

‘parallel’ and ‘sequential’ moves, for the

problem instance d657, at a 0.5% gap from

the optimum.

moves is considerably faster in reach-

ing this objective value. Combined,

the parallel neighbourhood evaluation

and the simultaneous application of

independent improving moves give

speed-ups of up to several hundred

times compared to a classical, sequen-

tial, best improvement search.

The above neighbourhood explora-

tion and move applications are embed-

ded in an iterated local search, which

is performed on the CPU. We demon-

strate how the use of an adaptive di-

versification strength contributes to the

search efficiency of the algorithm. We also show how a targeted exchange of good

partial solutions between the current and best found solutions improves the effi-

ciency of the iterated local search. The idea is that even if the current solution is

not better than the best solution, it may contain good partial solutions (sub-tours

in the TSP) that could improve the best solution further. Equally, the best solu-

tion can contain good partial solutions that when inserted into the current solution

makes that the new best solution. These are both very general mechanisms, and

their effects on search efficiency are independent of the implementation of the low

level local search.

Since the time of writing Paper II1, many papers have reported the use of this

technology for local search methods. Many authors simply implement a paral-

lel neighbourhood exploration on the GPGPU, and demonstrate a speed-up com-

pared to a sequential, CPU based, implementation. In Paper II we go further, and

explore how this parallel neighbourhood exploration can enable a parallel applic-

ation of multiple improving moves. This, and the other efficiency enhancement

techniques described above, are main results of the paper. The original aim of

this research was to exploit GPGPU based SPMD parallelisation to solve the ad-

mission planning problem more efficiently. We presented preliminary results for

1Note that the paper was originally submitted on on 21s t February 2012, and not on 24t h

January 2013, as it says on the published paper.
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this in the Meta 2010 conference. However, as we started to design a general

model for the APSP (see Sections 2.1 and 2.2), we came to the conclusion that

the most promising algorithms have a complexity that makes them unsuitable for

SPMD parallelisation. Therefore, as we presented this general APSP model in

Paper III, we proposed instead an iterative improvement method that uses CPU

based task parallelism. However, as new types of processing hardware becomes

available (such as the recent Intel Xeon Phi Coprosessor), their potential should

be explored. It is likely that this line of research will contribute significantly to

the efficiency of future planning and scheduling methods.
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PAPER III: MODELLING AND SOLVING GENERALISED
OPERATIONAL SURGERY SCHEDULING PROBLEMS

A. Riise, C. Mannino, and E.K. Burke. In Computers & Operations Research, Available
online 29 July 2015

In this paper, we present a general model for a generalised surgery schedul-

ing problem, based on a rich generalisation of the resource constrained project

scheduling problem (RCPSP). The model is multi-modal, multi-project, and in-

cludes time windows as well as minimum and maximum time lag constraints. The

model also contains some extensions to the RCPSP that we believe have not been

previously reported in the literature, such as project disjunction constraints and

mode compatibility constraints between activities (see Section 2.2). Originally, a

mixed integer approach was explored [126]. This was, not unexpectedly, unable

to provide good solutions for problem instances of realistic size, even within quite

generous time limits. The paper therefore presents an algorithm based on the use

of a schedule generation scheme (SGS; see Section 3.4). We use an adaptation

of the SGS with backplanning that has been previously used for the RCPSP/Max

[58], and for the MRCPSP/Max [77]. The SGS is modified to tackle all APSP con-

straints, including project disjunctions and mode consistency constraints. It uses

the integration approach, choosing modes as an integrated part of the schedule

generation. The high order solution representation consists of a project insertion

order; the order of insertion of each project’s activities are chosen as a part of the

SGS.

Initial solutions are generated by a repeated sampling of project insertion or-

ders. For each insertion order, the SGS is used to construct the corresponding

schedule, and the insertion order and the schedule are stored together in a pool. In

parallel, a dedicated improvement method repeatedly selects a promising solution

from the pool, and modifies the corresponding project insertion order. Simply

put, those projects that contribute the most to the objective value are moved to

an earlier position in the insertion order. The SGS is then used to construct a

new schedule, which is added back to the pool together with the modified inser-

tion order. An online learning mechanism constantly assigns CPU time to the

construction and improvement algorithms, based on their recent success in the

search. When the search is stopped, the best solution in the pool is returned.
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Our computational experiments use realistic problem instances from Bærum

hospital, for three very different planning situations: The ‘one day’ surgery sched-

uling problem contains up to nine activities per patient, while the ‘one week’

problem contains only three. Both problems are multi-modal, require several re-

sources for most activities, have minimum and maximum time lag constraints,

project disjunction constraints and mode compatibility constraints. In addition, a

long term admission planning and scheduling problem is solved. This has only

one activity per patient, but each test instance has more than 700 patients. This

problem is very similar to the admission planning problem that we considered in

Paper I, except that a number of different resources are chosen, rather than just the

operating rooms. Also, the planning horizon is longer (up to three months), and

the objective components are slightly different.

The paper presents lower bounds for the various objective components, cre-

ated by means of mixed integer linear programming. These lower bounds are used

in the evaluation of the computational results. We show that the presented model

and search method are able to produce high quality solutions for the three struc-

turally very different problems, and within run time limits that are acceptable in

the respective planning situations (2-5 minutes).

Our model was initially aimed at generalising surgery scheduling problems on

all time scales and levels of detail. Indeed, based on the comprehensive reviews of

Cardoen et al [26] and Demeulemeester et al [42], we show that the model covers

most of the aspects of deterministic surgery scheduling problems that have been

previously studied. However, the model is equally applicable to the planning and

scheduling of other treatment activities, as long as such problems fall within the

description of the APSP in Chapter 2.

We are not aware of any other paper that tackles such complex problems on

time horizons longer than a week, or that presents such a general model for de-

terministic surgery scheduling problems. In Chapter 3, we mentioned three pa-

pers that take a similar approach to a generic modelling of surgery scheduling

problems, although their models are all less general than ours. They all address

problems with at most a one week scheduling horizon. In [127] and [128], Ro-

land et al base their model on the RCPSP. In both papers, they use a SGS-based

approach, where the activity insertion order is iteratively modified by a genetic

algorithm. Their work differ from ours in various respects: First, in both papers
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they consider only one activity per patient: the surgery. By contrast, our one week

problem contains three activities per patient (surgery, recovery, and room clean-

ing), and these have minimum and maximum time lag constraints between them.

This increases the complexity of our problem significantly. Second, while the

model in [127] is multi-modal, each mode (for the surgery) contains the choice

of only one kind of resource: the operating room (the surgeons are preassigned to

each activity). By contrast, in our problem definition each surgery mode contains

both an operating room and a surgeon, and each cleaning activity mode contains

an operating room and the cleaning personnel. Again, this increases the complex-

ity of our problem. Pham and Klinkert [120] model the one week problem as a

multi-mode blocking job shop problem. The authors include the concept of block-
ing constraints that allow an activity to occupy a resource even after it has been

completed, if it is not yet possible to start the next activity for the patient. Our

model can also express this aspect, by a combination of time constraints and pro-

ject disjunction constraints. However, we do not have such blocking constraints

in any of our test problems. Pham and Klinkert solve their test instances using

mixed integer programming, with a one hour time limit. Our approach, on the

other hand, is heuristic. In our experiments we use a time limit of five minutes

for these problems, which in our experience is a more practical time limit for real

world surgery scheduling on a one week horizon.

The research done in this paper forms the foundation for further research in

the AKTIV project, where the presented model is used to express general APSP

problems. Also, the algorithmic framework has been generalised as a generic

blackboard framework. This uses online learning and task parallelism to facilit-

ate collaboration between different algorithmic components. The algorithms de-

veloped in this paper are included in this framework. The presented model is also

the foundation for the research described in Paper IV.
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PAPER IV: RECURSIVE LOGIC-BASED BENDERS’
DECOMPOSITION FOR MULTI-MODE OUTPATIENT

SCHEDULING
A. Riise, C. Mannino, and L. Lamorgese. Submitted to European Journal of Operational

Research, August 2015

In this paper we address a long term appointment scheduling problem that can

be found in hospital outpatient clinics. Again, this is a special case of the APSP: a

multi-mode problem with integrated planning and scheduling. In our case study,

the problem has only one activity per patient. Each activity requires a doctor, a

room, and a scope (a piece of equipment). The scopes have setup times. Activity

durations depends on the procedure, age, and medical condition of the patient,

and on the chosen doctor’s experience. The problem is defined using the model

concepts that we developed in Paper III.

This type of APSPs lend themselves naturally to decomposition. In particu-

lar, they have several properties that make them suitable for logic-based Benders’

decomposition (LBD), as introduced by Hooker [79, 81]. Firstly, the most import-

ant objective is typically waiting time, relative to priority based due dates. This

objective depends only on the day on which each patient is scheduled, and it is

Figure 2: The three-level decom-

position of a problem with n pa-

tients. The d ’s enumerate the days.

therefore natural to use the assignment of pa-

tients to days as our master problem. Often,

as in our case study, the remaining slave prob-

lem is a feasibility problem. Furthermore, this

slave problem has a clear multi-period (daily)

structure, where the schedule for each day is in-

dependent of the schedules for other days. The

slave problem, which may be very large due

to the long planning horizon, can therefore be

split into a set of much smaller subproblems,

one for each day.

While this decomposition is effective, we

show that it is not in itself enough to solve

problem instances of a realistic size. We therefore apply a second decomposi-

tion of each daily subproblem into a master mode problem, where the mode for
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each appointment is chosen, and a slave scheduling problem (see Figure 2). The

scheduling problem determines if there exists a feasible start time for each activity,

given the mode choices as they are fixed in the master solution. For each of these

two (recursive) applications of logic-based Benders’ decomposition, we present

the corresponding Benders’ reformulation. We also present novel inequalities that

are added to strengthen the initial masters, as well as the cuts that are added from

the respective slave problems. Critical elements, such as the breaking of mode-

related symmetries, are explained.

The paper presents computational results from a case study at the gastroen-

terology laboratory at the University Hospital of North Norway, a fairly typical

Norwegian hospital outpatient clinic. The numerical results demonstrate the effi-

ciency of the proposed three-level decomposition. Based on real data from both

daily and monthly (bulk) planning situations, we show that the three-level de-

composition is vastly superior to the corresponding two-level version. Indeed,

while the algorithm using the two-level decomposition cannot solve the monthly

scheduling problems within the one hour time limit2, the proposed three-level de-

composition solves them to optimality within 5 minutes3. For daily scheduling,

both algorithms solve all problems to optimality, but the one using the three-level

decomposition is about 5 times faster on average. It also has a much smaller

variation in computation time, from instance to instance.

LBD has been applied to a variety of hard discrete optimisation problems,

including general planning and scheduling [84, 80, 9]. To the best of our know-

ledge, however, this paper presents the first application of LBD to APSPs, or to

similar patient scheduling problems. The presented method is also, as far as we

are aware, the first exact method that has been reported to solve such multi-mode

appointment planning and scheduling problems, on a horizon of several weeks,

and within a time frame that is realistic in a real planning situation. Finally, this

paper is one of very few studies of multi-level LBDs. We have found only two

other examples in the literature. Both solve problems that are very different from

the APSP: the scheduling of computation tasks on the Cell BE processor [12], and

a stochastic facility location and vehicle assignment problem [55].

2Except for one easy instance
3Except for one instance

51



The presented method is obviously applicable to the admission planning prob-

lem, and to other APSPs with a clear daily structure. For example, it should be

possible to tackle many radiotherapy or chemotherapy scheduling problems with

a minimum of adaptation. More generally, the overall structure of the recursive

decomposition may be applied also for other methodologies, or even hybrid com-

binations of such. Depending on the choice of methods, the decomposition may be

slightly different, for example including also a separate sequencing subproblem.

Even so, such a method should exploit the general recursive decomposition tech-

nique, and the various constraint strengthening techniques that were developed in

Paper IV.
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PAPER V: SCHEDULING AND SEQUENCING
E.K. Burke, T. Curtois, T.E. Nordlander, and A. Riise. In Handbook of Healthcare

Delivery Systems, CRC Press (2010)

This book chapter gives a basic introduction to some of the planning, sequen-

cing and scheduling problems that are found in hospitals. These include personnel

rostering, patient mix planning, optimisation of master surgery schedules, and op-

erational surgery scheduling. Our contribution here was mainly to give a textbook

introduction to the overall scope and diversity of operational surgery scheduling

problems.

53





Chapter 5

Summary and outlook

In this thesis, we have considered a class of computationally hard optimisation

problems where activities related to the treatment or examination of individual

patients are to be scheduled on limited hospital resources. Common applications

include surgery planning and scheduling on various time horizons, scheduling of

non-surgical treatment such as radiotherapy or chemotherapy, and scheduling in

different diagnostic or therapeutic services.

While essentially very similar, these problems are treated separately in the

literature. Even within a more limited domain, such as surgery scheduling, there

is a big variation in problem definitions. The development of a model that can

capture the majority of these problems has been one of our goals in this thesis.

The main challenge, however, has been to solve realistic APSP instances, within

practical time limits. One of the reasons that these problems are hard to solve, is

that they integrate planning and scheduling decisions. While this often gives better

schedules, it also increases problem complexity. Such an integration has therefore

been largely avoided in the literature, especially for problems with longer planning

horizons. This is also the case for planning and scheduling in other domains.

Addressing these research challenges, we have made several contributions to

the literature: Through the included papers, we have shown that real world APSPs

can be solved, to optimality or a proven high quality, within run time limits that

are reasonable for the respective planning situations. Both exact and heuristic

search methods have been proposed. We have also shown that it is possible to

capture structurally different problems with a generalised model. One of the pro-

posed search methods, presented in Paper III, is very general, and can be applied
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directly to very different problems without any customisation. While the meth-

ods of Papers I and IV are designed for more specific problems, these too can be

generalised to cover a larger set of possible problem definitions. For example, an

obvious next step is to extend the recursive decomposition algorithm of Paper IV

to solve radiotherapy or chemotherapy scheduling problems.

However, since our APSP model captures such a wide range of real world

problems, the fact remains that most methods will be more suitable for some prob-

lem instances than for others. To achieve a truly general scheduling solver, we

have therefore designed a generic blackboard framework, in which many search

methods can be included. A choice of method(s) can be based on an analysis of

the problem instance. Also, online learning is used to allocate CPU time to dif-

ferent methods that work in parallel. The framework thus enables a collaboration

between different search methods, and allows the emphasis on each method to

change during the search. Several of the search methods that were created as a

part of the thesis work, some of which were never published, are either directly

integrated in this framework, or serve as inspiration and guidance for the ongoing

development.

In the continuation of this research, we are facing several challenges. One

challenge comes from problems with non-regular components in the objective

function. Such problems are difficult to solve because one can no longer assume

that it is optimal to start each activity as early as possible. That is, an optimal

schedule is not necessarily active [107]. This adds another level of computational

complexity to these already hard problems. Non-regular objectives, such as an

‘earliness-tardiness’ cost for activity start times, often occur in rescheduling. This

happens in applications where new information arrives more or less continuously

(new patient arrivals, cancellations, updated patient priorities, personnel illness,

etc.), and where it is preferred that the subsequent rescheduling changes activity

start times as little as possible. We are currently researching a new search method

for APSPs with non-regular objectives. This method is based on a recursive de-

composition similar to the one in Paper IV. It uses a hybrid combination of heur-

istic day assignment and exact methods for the mode assignments, sequencing,

and scheduling subproblems.

Another future topic, now that we have established working methods for de-

terministic APSPs, is to handle stochastic aspects such as variations in activity
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durations, no-shows, personnel illness, and so on. This is very challenging, both

because there is a shortage of good data, and because even deterministic APSPs

are computationally hard to solve. A pragmatic approach is therefore needed. It

would be natural to use a method based on hedging on activity durations and/or

resource availability, using discrete event simulation to tune the hedging paramet-

ers for each application (see Section 2.3). Approaches that use a scenario based

evaluation of each candidate schedule should also be investigated, and are obvious

candidates for parallelisation. These different approaches can also be combined.

Although computationally expensive, simulations should in principle include res-

cheduling as the most realistic recourse action. This would obviously require very

efficient rescheduling methods.

Finally, note that while we have focused on hospital applications, the APSP

model is formulated in general project scheduling terms, with a rich set of con-

straints. The results in Papers III and IV are therefore quite general, and thus

applicable also to planning and scheduling problems in other domains.
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