
STATISTICAL RESEARCH REPORT 
Institute of Mathematics 
University of Oslo 

No 8 

August 1976 

ON THE REVERSIBILITY OF THE INPUT 
AND OUTPUT PROCESSES FOR A GENERAL 

BIRTH-AND-DEATH QUEUEING MODEL 

by 

Bent Natvig 



- 1 -

ABSTRACT 

In this paper we consider the general birth-and-death q~eueing 

model of Natvig (1975). Define the input and output processes by 

the steady-state behaviour of respectively successive input and 

output intervals. Ignoring balking customers, two cases are 

considered. In the first case we treat a lost customer neither 

as an input nor as an output, then secondly as both. For both 

cases we show the input and output processes to be reverse 

processes. One mistake and two erroneous comments in Natvig (1975) 

are also corrected. 

GENERAL BIRTH-AND-DEATH QUEUEING MODEL ; STATE-DEPENDENT ; 

BALKING ; DEFECTIVE CUSTOMERS ; LOSS ; STEADY-STATE ; 

INPUT PROCESS ; OUTPUT PROCESS ; REVERSIBILITY 
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1. INTRODUCTION 

Define the input and output processes by the steady-state 

behaviour of respectively successive input and output intervals, 

bearing in mind that the precise interpretation of "input" and 

"output" varies throughout the paper. Let us denote the stationary 

distributions of the number of customers in the system, just before 

the commencement of an input interval and just after the completion 

of an output interval by the letters TI and q respectively. 

Talking about steady-state in connection with the input and out

put processes it is tacitly understood that the n- and q-distri-

butions exist. 

These processes are considered for the £allowing birth-and-death 

queueing model. There are N waiting positions (0 ~ N :::;oo), 

s servers ( 1 ~ s ~ oo) and an arbitrary queueing discipline. Let 

an index n indicate that the quantity in q~estion depends on the 

number of customers in the system (the number being served plus 

the number queueing), but not on time t • The instantaneous 

arrival rate is A. , the probability of balking (i.e. not trying 

to obtain service) being .- and hence ':In is the 

arrival rate of customers trying to obtain service. The instan

taneous service rate of each server is vn , and the defection 

rate of customers from the system before service completion 

is yn • Hence the instantaneous departure rate, IJ.n , of 

customers having joined the system, is given by 

IJ. = n 

nv + y n n 1 < n < s 

s<n<s+N. 
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In our paper Natvig (1975) three cases were considered giving 

the following results: 

1. We started by ignoring both balking and lost customers. 

For s + N > 1 it was shown that the input and output processes 

are identical iff s + N = o:> , A = 'A n > 1 in which case they n o -
are Poisson (A.0 ). In the case s = 1 N = 0 the input and 

output processes are identical to a renewal process which is not 

Poisson. The steady-state joint distribution of the input and 

output numbers during an interval is infinitely divisible iff 

s + N = oo A.n = A. 0 and IJ.n = 11\-l n > 1 corresponding to 

the M/Mfr:o model. The sufficiency part of this statement is due 

to Milne (1971). 

2. Next, with again no balking and registering losses "both as 

inputs and outputs,it was shown for s + N > 1 that the input and 

output processes are identical iff 'An = A.0 

and again Poisson (A.0 ) • In the case s = 1 N = 0 the input 

and output processes are identical to a renewal process which in 

general is not Poisson. 

3. Finally, by registering balking and lost customers both as 

inputs and outputs, it was shown that the input and output proces

ses are Poisson ('A) , thus generalizing Boes (1969). 

In the first two cases we showed the input and output processes 

to be different if they are non-renewal. This was done by simply 

stating that a single input and output interval are differently 

distributed, which is in fact wrong according to Conolly and 

Chan (1976) treating the specialization of the model above with 

(N,s) = (oo,1) • However, our conclusion is nevertheless correct 

since we can show the input and output processes to be reverse 

processes in both cases. The deduction of this result which is 
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the main contribution of this paper, will be given in Section 2. 

For the third case the input and output processes are identical 

and hence obviously reverse processes. 

Our finding is in agreement with Reich (1957) where it is proved 

that a stationary birth-and-death process is reversible, i.e., 

Here the p. •s 
l 

p.P .. (t) == p.P .. (t) 
l lJ J Jl 

i,j == 0,1, ••• 

are from the stationary distribution of the number 

of customers in the system at an arbitrary point of time, hence

forth denoted by the letter p and the Pij's are transition 

proba-bilities. Note, however, that he does not define the input 

and output process·es in terms of the n- and q-distributions .. 

According to Natvig (1975) this difference can be decisive since 

for s + N ==co there are cases where the p-distribution exists 

and not the n- and q-distributions which in fact are identical, 

and vica versa. 

The author has recently received a paper by Venter &ld Swanepoel 

(1971) overlappping some of the results in Natvig (1975) for the 

special case N =co • They also show the input and output proces-

ses, as defined by this author, to be identical. However, we will 

in Section 3 make an attempt to correct an apparent mistake in 

their argument, leading to a conclusion being in opposition to 

ours. In this section we will also correct two erroneous comments 

in Natvig (1975) including one on a reversibility argument by 

DaJ.ey (1975). 

Finally in Section 4 we arrive at the common expectation of the 

input and output intervals for the two first non-trivial cases 

above. This is also done in Conolly and Chan (1976) for their 

specialization using a somewhat intuitive approach based on the 
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p-distribution rather than the rr- and q-distributions. 

2. ON THE REVERSIBILITY OF THE DIJPUT AND OUTPUT PROCESSES 

We start by treating the case where both balking and lost 

customers are ignored. Denote the output interval separated by 

the departure of the nth and (n+1)th customer by Dn and let 

Zn be the num·ber of customers in the system just after the depar

ture of the nth customer. Let m = s + N and introduce 

(i=O, ••• ,m-1) 

gn(x,y)dx dy = P(x ~Tin~ x+dx , y ~ Dn+i ~ y+dy) 

* Let gn(z,w\i) be the Laplace Transform (L.T.) of gn(x,y\i). 

* * Extending the argument leading to (2.16) (a " " on the number of an 

eq~ation refers henceforth to the paper Natvig (1975)) one realizes 

* m-1 m-1 ( )* ( )* 
gn(z,wJi) = L ~ yi j+1-i (z) y. k+1-j (w), 

j =max ( 0 , i -1 ) k=max ( 0 , j -1 ) J 

0 < i < m-1 • 

* Here y~j) (.) is the L.T. of the density function associated 

with the following degenerate r.v. 

the length of an output interval starting with k customers 

in the system during which there are j arrivals (which 

are not lost) 

(k=O , 1:5;j:SU ; 1Sk<m-1 , 0<j5_m-k) • 

The latter L. T. * is given by (2.15) • 

Denote the L.T. of the steady-state version of gn(x,y) by 

* g ( z, w) • Then 
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* g (z,w) == 

m-1 
l:: 

i=o 

m-1 m-1 (j+1-i)*c ) (k+1-j)*c ) l:: l:: n. y. z y. w, 
j=max(O,i-1) k=max(O,j-1) l l J 

where the TT. 1 S 
l 

are from the * rr-distr~bution given by (2.7) 

This follows since the n- and q-distributions are identical. 

(2.1) 

• 

Now denote the input interval separated by the arrival of the 

nth and (n+1)th customer by Tn and let 

fn(x,y)dx dy = P(x ~ Tn ~ x+dx , y ~ Tn+1 ~ y+dy) • 

Denote the L~T. of the steady-state version of fn(x,y) by 

* f (z,w). By an argument completely parallel to the one leading to 

(2.1), we get 

* f (z,w) = 
m-1 min(i+1,m-1) min(j+1,m-1) (i+1-j)* (j+1-k)* 

l:: l:: L TTi yi+1 (z) yJ.+1 (w) 
i=o j=o k=o 

where the n. 's 
l 

* (2.7) whereas 

are still from the 
* yk ( j) (.) 

n-distribution given by 

* is now given by (2.2) • We will in 

the following establish the relation 

* * g (z,w) = f (w,z) 

By interchanging the order of summation in (2.1) we get 

* g (z,w) = 

* m-1 
l:: 

k=o 

min(k+1,m-1) 
l:: 

j=o 

min(j+1 ,m-1) 
2: 

i=o 
(j+1-i) ( ) TTi yi Z 

Hence what remains to be shown, is that 

Y ~j+1-i)*(z) (k+1-j)*c ) 
TTi l Yj w ' 

·* (k+1-J) ( ) y. w • 
J 

(2.2) 

(2.4) 
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* is given by (2.15) , is identical to 

(k+1-j)*c ) (j+1-i)*c ) 
TTk yk+1 itT y j+1 Z ' 

with y~j)*(.) * from (2.2) for 0 < k < m-1 , 0 < j < - - -

(2. 5) 

min(k+1,m-1) , 0 ~ i ~ min(j+1,m-1). By restricting to the case 

with j > 0 , i > 0 , (2.5) is identical to 

k ~ A· k+1 l.lv Ai j+1 l.lv 
n (~)no ~ n A +IJ. +w ~ n :>.. +IJ. +z 

v=1 r-v r-j v=j v v r-1 v=i v v 
= 

i :>..v l.lk+1 k :>..v 
= IT (il"" )no )\ +1J. +w 11 :>.. +IJ. +w 

v=1 r-v k+1 k+1 v=j v v 

which is precisely (2.4). Note here and in the following that 

:>..m = 0 • Next consider j > 0 , i = 0 for which (2.5) eg~als 

l.lk+1 k )..v 1'o ~1 j +1 j :>..v 
= TT 0 A .&.I I +w n ).. ........ I +w ).. +Z ).. +I I +Z n A +I I +Z , k+1 ·r-k+1 v=j v·r-v o j+1 r-j+1 v=1 v r-v 

again being equal to (2.4). Now let j = 0 , i = 1 leading to 

the following expression for (2.5) 

immediately reducing to (2.4). Finally let j = 0 , i = 0 for 

which (2. 5) is eg_ual to 

k 
I1 

v=1 

).. :>..o k+1 l.lv :>..o 
(J.) 

). iTO A +w n X -I-ll +w )\o+z ·-v o v=1 v ·r-v 
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again reducing to (2.4) completing the proof of (2.3). 

It is just a matter of patience to generalize this argument to 

more than two successive intervals. Hence we have proved that the 

input and output processes are reverse processes. From the genera

lized version of (2.3) it now immediately follows that the input 

and output processes are identical if one of them is renewal. If 

on the other hand none of them are, (2.3) implies that they can not 

be identical. In particular we have the input ru1d output processes 

to be identical iff the input process is renewal, a necessary 

and sufficient condition for which was established in Natvig (1975). 

Hence the argument on the output process of this section makes 

the one in Natvig_(1975) superfluous. By setting w; 0 in (2.3) 

we realize that a single input and output interval is identically 

distributed being in agreement with Conolly and Chan (1976). The 

* associated L.T. is given by (2.14) • 

We next treat the case \Vhere balking customers are ignored 

registering losses both as inputs and outputs. In order to prove 

relation (2.3) it easily follows that we must show a modified 

(2.4), with y~j) *(.) from (2.15)* where ~m/(~m+z) is replaced 

by 1 and m by m + 1 , being identical to 

TTk y(min(k+1,m)-j)*(w) y(min(j+1,m)-i)*(z), 
min(k+1,m) min(j+1,m) 

(2. 6) 

with y~j)*(.) from (2.2)* with "-m > 0 • This identity must 

hold for 0 ~ k ~ m , 0 ~ j ~ min(k+1,m), 0 ~ i ~ min(j+1,m). 

Note that both in the modified (2.4) and (2.6) the n-distribution 

* is given by (2.7) with m instead of m-1 • 

Considering k < m , j < m , we treat the same four cases as 

earlier in this section the argument being completely parallel. 

Next let k ; m , j < m and start with the case j > 0 , i > 0 • 
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Then (2.6) is identical to 

m X A· m 1-l A. j+1 1-lv 
IT (~)rr0 ?. IT v J. 

A. +1-.1 +w j:! IT A +1-.1 +z = 
v=1 v J v=j v v i v=i v v 

i Av m A.v 1-l j +1 j+1 A. v = II (~)rr0 IT A +j..t +w A. 1 
IT A +j.l +Z ' v=1 v v=j v v J+ v=i v v 

which is precisely the modified version of (2.4). This reduction 

is easily modified for the three other cases (j >0 ' i := 0)' 

(j = 0 ' i = 1) and (j = 0 
' i = 0 ). Now consider k = m-1 ' 

j =m and start with the case i > 0 • 

Then (2.6) equals 

m-1 ">-y Am Ai m 1-lv 
IT (~)rr0 X +j.l +w - TI A -t;.l +Z = 1-l· v=i V=1 V m m J. v v 

i A 1-lm m Av 
= II Cf)rr0 \n +1-.1 +w n. X +IJ. +Z v=1 v m v=J. v v 

again being the modified version of (2.4). For the other case 

i = 0 the argument is easily modified. Finally, consider 

k = m , j = m • This situation is very parallel to the one above 

and is left to the reader. 

Having established (2.3),the rest of the argument from the first 

case of this section still applies. In particular we have the L.T. 

* of the p.d.f. of the input and output interval given by (3.5) • 

3. AN ATTEMPT TO CORRECT AN APPARENT MISTAKE IN VENTER AND 

SWANEPOEL (1971) AND CORRECTIONS OF TWO ERRONEOUS COMMENTS 

IN NATVIG (1975) 

Venter and Swanepoel ( 1971) start ·by considering a discrete 

time birth-and-death process !X(t)}t = 0,1,2, .... :;.., i.e., a 
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discrete time Markov chain on {0,1,2, ••• } with one step statio-

nary transition matrix 

r- 0 0 ro Po • • • • 

q1 r1 p1 0 • • .. • 

0 g-2 r2 p2 • '"' • • 

L· • • • • • • • • • • • • -l 

It is assumed that p. >O,i>O 
~ - ' qi >0 , i ~ 1 • Let 

MB 
1 ' 

J.V-B 
12 ' . . . denote the moments of ·births and ~' ~ , . . . the 

moments of deaths. Assuming {X(t)} stationary, where the 

steady-state distri"bution is found given ·by 

they claim the processes and {~} to be identically 

distributed. This is a cornerstone in showing the input and output 

processes to be identical also in the continuous time case. 

However, their claim seems to be wrong since we in the following 

will show 

= n 

m:;:o 

, ~ = n+m) = P(M~ = m , M~ = n+m) , 

n.:::o, 
(3.2) 

indicating the reversibility of the two processes. For simplicity 

assm11e r. = 0 
~ 

i > 0 and p0 = 1 • 

m > 2 , n > 2. Then using (3.1) 

We start with the case 
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P (~ = m , M~ = n +m) = 

A m+n-3 m-1 
= ~+n-4 Pm+n-4 IT q p IT q + v=m-1 v m-2 v v=1 

co "' i+1 i+3-n 
+ i~m+n-3 Tripi v~i+3-nqv pi+2-n v~i+5-m-n qv pi+4-m-n = 

= P(MB = n 
1 

With m = 1 

P(MD 
1 == 1 

ro 
1\ 

= I: 'fT. pi 
i=o J. 

M~ = n+m) 

n = 2 we get 

co 
A 

' 
MD = 3) = I: Trk qk qk-1 pk-2 qk-1 = 2 k=2 

qi+1 pi pi+1 = P(MB 
1 = 2 ' 

MB 
2 = 3) , 

the cases m = 2 , n = 1 and m = n = 1 being completely parallel. 

We finally correct two erroneous comments in Natvig (1975) 

(p.589) and start with apologizing for one on a reversibility 

argument by Daley (1975). 

After finishing the work on Natvig (1975) we became aware that 

Daley (1975) has indicated how the result of Boes (1969) can be 

obtained by a reversibility argument. The process is represented. 
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as (Q(t) , I(t)) where Q(t) is the system state at time t and 

I(t) is a {0,1} - valued flip-flop process that changes whenever 

an arrival balks (or is lost). Then it can be checked that 

(Q(t) , I(t)) is a reversible Markov chain, from which the result 

of Boes (1969) immediately follows since we already know the input 

process to -be Poisson (A). It is not necessary, as we claimed, 

to at least verify that the two-dimensional p-, rr- and g_-distri

butions are identical. His argument could easily be used in the 

more general third case mentioned in the introduction. Our 

argument seems, however, no longer, not much shorter as commented. 

For the second case mentioned in the introduction we stated 

that the joint dis_tribution of the input and output numbers during 

an interval is obviously not infinitely divisible, since lost 

customers are considered ·both as inputs and outputs. The state-

ment is correct, the argument being somewhat unprecise. This 

case, however, does only differ from the first one when s + N <co • 

Then an argument of Shanbhag (1973) leads us immediately to our 

conclusion. 

4. THE COMMON EXPECTATION OF THE INPUT AND OUTPUT INTERVAL 

Before giving our deduction it should be stated that Conolly 

and Chan (1976) are also able to obtain higher order moments by 

recursive techniques for their specialization. It should also be 

admitted that their approach seems extendable to the model of 

this paper, though perhaps then involving far more algebra than 

in their special case where there are no losses. 

We start by treating the case where both balking and lost 

* * customers are i~1ored knowing (2.14) to give the L.T., f (z) , 

associated with a single input and output interval 



- 13 -

* m-1 A i+1 ~v i i+1 ~v 
f (z) = ~ rri[A ~z TI A +~ +z + .~ pi+1-J" TI A ~ +z J 

i=o o v=1 v v J=O v=i+1-j v v 

Here the Tf. 's 
l 

* are from the rr-distri"bution given by (2.7) 

(4 .1) 

and p1 = Ai/~i , 1 < i < m • Remember that Am = 0 • The 

expectation of interest, ET , is then found by differentiation 

* ET =- f '(z)\z=o; 

m-1 i+1 ~v [1 
i+1 1 = I: rr. n "A"+U - + :E ~ 

+ 
. l 1 v~v Ao s=1 1=0 v= s s 

i ri-j 'v +f-Lv) i+1 1 
J + .~ pi+1-j \IT :E 

xs~s 
= 

J=O V=1 ~v s=i+1-j 

m-1 i+1 
_L [L + 

i+1 -1 
= :E rr. TI :E I ( 1 + l 1+pv _Ao "-s~s i=o v=1 S=1 

Now applying (2.7)* we get 

m-1 i Pv \L + 
i+1 s 

ET = TI :E :l II I: 1 v~1 (1+pv)J 1 +p. 1 T+P As+!J.s 
= 

0 i=o v=1 __ Ao S=1 l+ v 

[1 rm-2 1 i+1 Pv m-1 
Pv ) =rr ~- n T+P + II 1+pv + oJ~-;·\i=o Pi+1 v=1 v v=1 

m s m-2 i+1 p m-1 p 
+ z::: 1 II (1+pv)[ z::: _1__ n ~ + n v J-J 

s=1 As+IJ.s v=1 i=s-1 Pi+1 v=1 1+Pv v=1 1+Pv • 

Applying (2.6)* twice this reduces to 
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* where p 0 is from the p-distri·butj_on given by (2.24) • Using 

* this once more along with (2.7) , we finally get 

(
m-1 

ET = _l: 
J=O 

-1\ 
A.. p. J, 

J J I 

a result being in agreement with Conolly and Chan (1976) 

for m = oo • 

For the case where balking customers are ignored registering 

* losses both as inputs and outputs, we apply (3.5) rather than 

* (2.14) • The argument being completely parallel is left to the 

reader and gives (4.2) with m - 1 replaced by m • 

For the case where m = co , we assume that and II 
~""'n 

are 

such that then-distribution exists, i.e., we claim the denominator 

of (2.7)* to be convergent. We further assume the existence of 

a o > 0 such that * f (z) given by (4.1) is uniformly convergent 

for Re z > - o • According to Theorem 3 (p.74) in Knopp (1945), 

repeated term ·by term differentiation of f* (z) is then allowed. 

In fact the new series are now uniformly convergent in an arbitrary 

closed subregion containing 0 , thus implying the existence of 

moments of any order. 
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