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Summary 

Let x1, ••• ,Xh be independent and normally distributed -v-ariables, 

such that 0 < var X. = o2 , i=1, ••• ,n 
1. 

where A is an k x n matrix with known coefficients and 

~ = (~ 1 , ••• ,~n)' is an unknown column matrix. o2 may be known 

or unknown. Denote the experiment obtained ·by observing 

x1 , ••• ,Xh by ~A. Let A and B be matrices of dimension 

nA X k and nB X k • 

The deficiency b (~A' ~B) is computed when o2 is known, 

and for some cases, including the case BB' - AA' positive 

semid&fini t and AA' nonsingular, also when o2 is unknown. 
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~~ IntroducJJon and basic facts. 

Definition. .An experiment is a pair ~ = ((X ,v{); (P 9, 8E e)) 

where (X, vt) is a measurable space and (P9, 8E e) is a family 

of probability measures over (x~~). 

For two experiments ~ and Jr indexed by the same para-

meter set e Le Cam defined in [2] the deficiency o < G, ~> 
of ~ relative to ~- The t:.- distance between ~ and S: 
is the number t:. < ~ , T> = max ( 0 ( ~ ' 7), 0 ( s;, 6 )) . 

If o(~,:f) = o, we say that ~ is more informative than 
·---' · . .9-- and write this 

\_p 

G :=T. If also o c-,_ .... 'f > ,g. Pf ") = o, we say 
,_ 

£ C'c-' 

~ 
,.~ . .___ .. 

that and ~7 are equivalent and write this "' 'j.. 
~ ·~·· ,. .. 

For r_7 , j.. , L,} experiments with the same parameter set 

the following relations hold 

O<o(l' <l) <2 u( !i: .) 0 (~ ~ LO ~ 
"- ~~' -- (;,., = 

6 ( \.f '.r )< 6 ( ~ (r, ) 6 ( r· ,...,.. ) 
(!) ' " - b ' ~ + y ' 'j-

4 (' 

In particular t:. is a pseudometric. 

Let (; ~ ( (x,A ) , (P9 SEe)) and J' = ( ( rj, CB), 
be two experiments such that (P8 ,8E9) is deminated~ 

Q8E e) 

/~is 
and '·1:· metric space a Borel subset of a complete separable 

is the class of Borel subsets of r~ • Then Le Cam [2] has 

6 ( lf n- ) inf \\ \1 4J shown that e:, , .+ = MEJf..sup P8M - Q8 1 where vrt... is the 

set of all Markov kernels from A (J /0 (X, Vi. ) to ( ~, w). 
In this paper we will exploit certain symmetric properties 

of the experiments ~ and ~to be able to substitute the 

class vftl in the above expression with a smaller class con-

sisting of 11invariant 11 Markov kernels. 

Let G be a group of transformations acting on e x '11 , , a 
such that x • g(x), y ~ g(y) are measurable gEG and 
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-1 p Q -1 Q e ~a~ A · Pe g = ge, eg = g8 , gE G, Eoeo. Markov kernel ~s 

called invariant if M{g(B)Ig{x)) = M(B\x) gEG, B6B1E x- N 

where P8 (N) = 0, ElE®. Let },~tG be the set of invariant Ma:':'kov 

kernels from (X, ,A_) to (fL..{, ffi). It then i'ollows from [ 5] 
.....; 

that the following conditions are sufficient for 
'f ( ... .J 

0 ( {;:; , ·s- ) = 

int 
ME.)I.'<J 

{i) is dominated. 'U is a Borel subset of a 
Gl 

e.amplete··scpa.ra.ble metric SIJace and lb is the class 

of Borel subsets of 1J . 
(ii) The families (P8 , 8E ®) and ( Q9 , 9E ®) are invariant 

(iii) 
n 

There exists a a:-algebra lt in G such that the 
d 

maps (x,g) ~ g(x), (y,g) ~ g{y) are respectively 
j 

A r· ;'\' C' , x: ';t and !"'') x } measurable. 
n 

There exists a O-finite measure 'f' on(G, 4 ) such that 
(_; 

(iv) 

T(B) = 0 implies T(Bg) = O, BEffi, gEG. 

(v) The group G has an invariant mean. If in addition: 

(vi) There exists one ME}A G so that M(g(B)I g(x)) = H(B\ x) 

. BE(B, gE G~ xEX, ,;~ may be substituted with <-)1., Go = 

{ME){ I M(g{B) I g(x)) = M(BI x) BEl] , gE g , n:x} i.e. 
( .. 

we can restrict attention to invariant Markov kernels 

with 0 as exeptional set. 

A sufficient condition for (v) to hold is that is 

solvable. 

Suppose ~ p = ((X, A), (P8 , 9E 8)) where 9 = X is a 
J 

second countable locally compact topological group which is 

Hausdorf, ,.A ie the Borel subsets of X, and the Pe 's are 

given by P8 (A )=P(Ae- 1) AEA 9Ex where P is a probability 
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measure. Then~ p is called a translation experiment. If 

i~1 Q = ( (¥, cA), ( Q8 , 8E e)) is another translation experiment, 

let gE G be of the form (x, g) -+ xa-1 where 8E ®. Then 

the conditions {ii), (iii)and (vi) are satisfied, and X is 

a complete separable metric space. If we let T be the Haar 

measure on (X, LA ) , also ( v) is seen to be satisfied. Hence 
I 

6 ( G P' ~Q) = int sup \\P8M - Q8 \\ provided (P8 , e~ e) is 
MEvi.tGo 8 

dominated and X is solvable. Torgersen [5] has shown that 

in this case every invariant Markov kernel with 0 as the 

exeptional set may be written M(B!x) = N(Bx- 1) where N is 

a probability measure over (x ,J ) and that o ( ~ P' ~. Q) = 

inf \IN>,<- P- Q\\ where N * P (A)= NxP (t(x1,x2)\x1x2 EA}). 

The following result, also from [5]and valid under the 

same conditions, gives a direct method to determine 6 for 

translation experiments. If N is a least favourable dis-o 

tribution for all level d.. E [o, 1] for t-esting H: P8 "8E f> 

against Q where Pe" (A) = p(e-1 A) 9E ®, AE.A, then o ( Gp,~ Q) = 

\\N *P-Q\\. 
0 

The purpose of this paper is to use the above results to 

compute the deficiencies between linear normal experiments. 

These experiments may be described as follows: Let A be a 

known kxnA matrix and ~A the experiment given by the 

independent normally distributed variables X1, ••• ,lhA with 

var x1 = a 2 i = 1, •• ,nA and E(X1, •• ,~A)' - At~ where 
k 13 = (13 1, •• ,13k)' EJR. To avoid trivialities we shall assume 

nA ?. k ?: 1. 

The parameter set is ]- co,co(k if a 2 is known, and 
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]- co, co[k x ]0, co[ if cr 2 is unlmown. 

From theorem 3.1 in [1] it follows that if A and B 

are matnces of dimension k x nA and k x nB , then 

lP > 'R if and only if AA' BB' is posi tve semidefinite GA -- GB 

when a2 is known, and ~ A?.: £ B if and only if AA' - BB' 

is positive semidefinite and nA ~ nB +rank (AA 1 BB') when 

2 '..P cr is unknown. Then G A rv ~ B if and only if AA 1 = BB 1 

if cr 2 is kno'Wil., and ~ A "' ~ B if and only if AA 1 = BB 1 

d l"f _2 an nA = nB .., is 1.h-vlirn. own. 
I ~ . 

In the computation of o ( G A' (;B) we may therefor choose 

the experiments within the equivalence classes determined by 

AA', BB 1 when cr 2 is kno~~, and (AA 1 , nA), (BB 1 , nB) when 

cr.-2 is unknown. 
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2..! The case _9f known variance G2 

]2:'o;QOSi tion ]._. 1 Suppose AA' = I, BB' = 6. where 6. is a 

k x k diagonal matrix with diagonal elements .ll 1 , ••• , b.k~o .. 

Then & ( GA' GB) = Ell-~f\1 ~ exp ( ~(6.. - 1) Y. 2 where o.Jtli 1 1 
J. 

Y1, .•• , Yk are independent and identically N(0,1) distri-

buted. 

Proo.! 

We may choose 

/1 •••• o 
A = ( : 

\ . 
o ..... 0 ·,, 

~ ) where the last 

·· .. 0 •••• 1 
I o •••. 0 / 

columns consist of only zeros, 

-/ Ji~ .. . o 
I • • 

B = t : • 
\ . . 
\0 J~ 

~- •• 0 -~ 
• i ., . / o ••. 0/ 

columns consist of only zeros. 

and 

where the last 

Without lo.ss of 

generality we may assume that l:!:1, •• ,l:!1 > 0 and 6.1 +1 = ••• = 

6.k = 0 This means that ~ 
GA is given by the 

independent, normally distributet variables x1 , •• , Y . where -nA 
i==l, •• ,k 

i = k + 1, •• , nA 

var X. =a 2 
1 

i == 1, •• , nA 

~ IJ 

Similarly G B is given by the independent, normally distri-

butet variables Y1 , •• , Y~ where 
nB 

EY. = 
1 

;- JA ~ ~ i i = ~, •• , 1 
,,I 

L 0 i = l + 1 , •• , nB 

2 var Y i = o i = 1 , •• , nB 

By su.fficiency Xk+ 1, •• , XnA may be deleted from and 
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Y1+1, ••• , YnB may be deleted from ~ B" Furthermore, in the 

same way as in the proof of proposition 2.1 in [1], it may be 

shown that . ~ X1+1 , ••• , XnA may be deleted 1n C A .. Finally 

Z. = Y1 we may replace Y1, •• , Y1 with z1, ••• , z1 where 
l J:; 

i = 1, .... , 1 .. 

are translation experiments for addition Now 
~p 

and (Sf 
G· A 0B 

in :ml. Since addition 1 ~ in :R is commutative and G A and 

~B are both dominated, we may use the method indicated in 

section 2 to find & (~ A' ~B). Let Pf3 ,.BE :R1 be the measure 

defined by x1 , •• x1 independent and normally distributed with 

EXi = fji' varXi = a 2 ,i = 1, •• 1 and Q be the measure defined 

by Y1 , •• , Y1 independent and normally distributed with 
2 

EYi = 0, var Yi =~,i = 1, ••• ,1. Then the least favourably 

d1stribution N0 for testing 1 H :-·· Pf3,f3 E R against the alter-

native K : Q is given by the independent variables u1, •• ,u1 

where u. = 0 
l 

with probability 1 if t,. > 1 l ~~ 
and ui is 

N ( 0 , cr !1."1> distributed if !::. i < 1. Hence & ( ~ A' t~ B) = 
l 

I\N0 * P0 - Q II. 
. n 1 xi 
b. i ~ _1 .(j G') (~ 6 ~) 

But N0 * P0 

n J'l:.-! U:.---:x. 
has densitv . .2: cp (..J-L-1) " fl.< 1 ()" ()" 

l 

with respect to the Lebesgues measure in m1 . 
0 

R££1>.. o .§it i qn l.t_?, If rank A' = k, then &(~A'GB) = 
E 11 n ( 1 (!::.. -1) yi 

2 ) I where !::.1, ••• ,llk are - exp - 2 
ll. >·1 l 

l 

det [BB' the solution of - f...AA' ]= o, and Y1, ••• , yk are 

independent N(0,1) distributed. 

~~oof Since BB' is positive semidefinit, there exists a 

k x k nonsingular matrix F such that F' AA' F = I and 
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F'BB 1 F = 11 where ~ 1 ·; ... '~k ~ 0 and ~ 1 , ••• '~k are the 

solutions of .det(BB 1 -A AA') = o. 
rv rv 

Let A= F 1 A, B = F 1 B. If . P~ and ~ are, respectively, 

the probability measures inn£ A and c~ a· t GB correspon ~ng o 

the parameter value ~' then since 
~ 

A I Fl3 = .Al3 

inf sup 11 P13M - Q!3 1\- inf sup 1\ PFj3 M - QF!3 
H 13 M ]1:1 

, 6 ( CA' GB) = 

II = 6 ( G A' ~B) = 

E 11 tl 
~. > 1 
~ 

~ 
- 2 

_Pro12osition 3.3 If row [B 1 ] ¢ row [A 1 ], then 6 ( z;A, (;B) 

Proof row [B 1 ] ¢ row [A'] implies (row [B'] t~(row A') J... .... ,. ____ ,_ 

Let J. 
13 0 E (row A' ) • 13 0 4 (row B' )J.. Then A'~o = O,B'I3 0 ~ 0 

and ~ ~ inf II PI3M - Ql3 ~~~ inf II p~o M.-6 ( A' GB) = sup sup 
M ~ M tEJR 

Qt!3.o II= inf sup II P0 M- Qt~o IL But 1\ Po M- Q'Wo II ~ 2 
M t t-+co 

for all Markov kernels M, so that ~ 1£ 6 ( vA' GB) = 2. 0 
Suppose BB' - AA' is positive semidefinit and rank A' 

If F has the same meaning as in the foregoing proof, then 

Y' (~- I);: Y'F'F'-1 . (Ll- I) F- 1FY = Z' (BB' - AA' )Z where 

Z = FY. Furthermore EZZ 1 = EFYY 1 F' = FF' = (AA')-' and 

det (BB 1) det fF'BB'Fj 
<re--t~""(A".Ary = det F'll'F 

6 ( .~e If ) _ ~ ~ det t BB' ' 
1-, A' G B - .w <ia't AA' 

= b- 1 ••• ~k so that we may 'Write 

exp [-t Z'(BB'- AA')Zl- 1\ where 

= 

Z is multivariate normal with mean zero and covariance matrix 

(AA•)-1• This is the result given by Le Cam in [3] 

= 

k. 

Suppose next that row [B·]~row [A•] and let V1,··~,Vr' be 

a basis for row [A'], 0 ~ r~ k. Then as in the proof of 

theorem 3. 1 i.n [ 1], we may write A = VS where V = (V 1 1 , •• , V r') 

is a kxr matrix and S is a rxnA matrix of rank r. 

2. 
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Similarly B = VT with T a r x nB matrix. By writing 

C.=V'f3so that A'~=S'V~=S'a. and B'13=T'a., it follows 
. . 

that 6 (~A, GB) = i~f s~p II P13M- % 1\ = i~f scip II PC. M- Q~ \I = 

l) ( !g · <; ) where P ' and Q ' are, respectively, the 0S' '-'T C, a. 
measures in lv Gs and c~ corresponding to the parameter GT' 
value a.. The following result is then an immediate conse­

quence of proposition 3.2 

R;'_<?~i ti~]l_2..'!_4. If row [ B' ]c: row [A'], 

6( ~·A, GB) =E!1- fl.r:11 jAi exp (-i (~i-1) yi2 I 
. l 

where A1 , .•• ,~r are the solution of det (TT' -ASS') = 0 

and A= VS, B = VT, rankS= r, V = (V1 ', ••• ,Vr') with 

V1 ',.~., Vr' a basis for row [A']. 

If row [A']t row [B'] then either row [A']¢ row [B'] 

or row [B'] ¢ row [A 1 ] so that b ( ~B' GA) = 2 or 6 ( i;A, ~B)=2. 
Consequently A ( ~A' /§B) = 2. 

Suppose next that row [A']= row [B 1 ], and let V,S,T have 

the same meaning as in proposition 3.4 If then X is a solution 

of det CrT' - A.SS') = o, ~- 1 is a solution of det (ss• .... lTT 1 )=0. 

Nothing that E\1- ~f} 1 J~i exp (--!(Ai- 1-1) Yi 2 I= 

rl J l 2 
E I 1- ~ ~1 A. exp (-~(~.-1)Y. ) I~ this gives together with 

i l l l 

proposition 3.4: 

If row A' = rO\v B' and A = VS, B = VT 

and V1', .. , Vr' is a basis for row [A'], 

mac (E I 1- ~lJ1 exp (-~(~i-1) Yi 2 ~,E~- A~~ 
l l 

where A1 , •• ,Ar are the solutions of det (TT'-XSS') = 0 and 

Y1, •• ,Yr are independent and identically N(0,1) distributed. 
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. Consider now _linear normal e peximents where a 2 ia 

unknown. l3y fuing the par~etei' o 2.~ we obtain experiments 
. l 

. " 

.for which 6 can be·-.found·by the methods of this section. 

This means that a 6 computed for known cr 2 always gives a 

lower bound for the corresponding o with o 2 unknown. 

From theorem 2.1 it then follows that the ~-distance 

is 2 between the experiments given by x1, •• xn independent 

and normally distributed with var X. = cr 2 , EX= a.+ 13ti i = 1, •• ,n, 
l. l. 

and Y1s ••• ,Yn independent and normally distributed with 

2 I Q . 2 1 2 var Yi = cr , EYi= CY.+~t1+ (ti i = , •• ,n whether cr is 

known or not. The ~-distance is thus of no help if \VB want 

to determine the amount of information obtained by observing 
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4. The case of unknown var.:J_ance cr ~. 
come of the notations which will be used in this section 

are: 

If (X? T) is a topological space, let (~,(X) =cr( {BI :BE,-}) 

be the Borel sets in x. 
p 2 Q z 
~,n1, f31, ••• , 131, a' l, n2, f31, ... , 131,0' 

probability measures over ( JR1 xJR+, ffi( JR1 xJR+)) 

x1, •• ,X1 , S independent x1 ~ N(~i' a) i=1, •• ,1, 
cr 

are the 

given by 

s ;cr2 rvx 2n1 

and by Y1, •• ,Yi,T independent Yi ~N(~i ~),i=1, •• ,1, 

T ja 2 rv X 2n2 where ~ 1, ... ,~ 1 >0 are known. 

P' 2 Q' 2 l,f3 1, •• ,f31 ,cr , l,f3 1, •• ,f31 , cr are the probability 

measures over ( :m.1 ,~ ( JR.1 )) given by x1, •• , JS. independent 

X. rvN(f3.,cr) i = 1, •• 1 and by Y1, •• ,Y1 independent 
1 1 0 

Y1 rv N(f3i' ~) i = 1,.,1 

2 X 
cp (X) = ( 2TT ) -t exp ( _2C2 ) , iP (X) = J cp ( U) d U 

-CD 

y n;t (x) = (r(~) 2 n/2)-1 xn/2-1 exp (- tt) t -n/2 
X 

x >o t > 0 rn,t (x) = J y n,t (u) du 

0 

" is the number of &laaente in S i:f S is :finite. /:,! (S) 

___ ....__ 

Suppose first that AA' = I, BB' = ~ where ~ is a dia­

gonal matrix with diagonal elements ~ 1, ••• '~k ~ 0. Without 

loss of generality we may assume that ~ 1 , ••• ,6l > 1, -m-

0 < ~l-m+ 1 , ••• ,~ 1 < f and Ll 1+1 =· •.. = 6k = 0 where k 2: 1 ?: 0 

In the same manner as in section 3 we may consider a situation 
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where 

~A = ( (R1 x R+, (IR1 x JR.+), (P1 k Q n 2 
(:; ,nA- ' 1J1'""'t-'l,a' 

( f3 1 , •• , 13 1 , a 2 ) E IR l x R + )) if n A > k 

(R 1) ) ' ( P ' 1 Q n a 2 , (13 1 ' • • , f3l, cr 2) E JR l x JR +) ) 
't-'1····t-'l' .. 

(JRl X JR+), (Q 2 
l,nB-l,f3 1 , •• ,f3 1 ,o 

(f3 1 , •• ,!3 1 ,a 2 ) E JR1 xJR+)) if nB > 1 

(JRl)),Q'l Q Q ~2 ,(131, •• ,131,a2) E (Rl xJR+)) 
'~'1•••Jt-'l'v 

The reduction is quite analogous with what was done in 

section 3 except that sufficiency now gives that 

must be replaced with 
nA 

s = :E x. 2 
i=k+1 l 

replaced with 

when 
nB 

T = E 
i=l+1 

X k+ 1, •• , X 
nA 

and that 

Consider now the group R1 x JR.+ with 

xy = (y1 + ~x1 , •• ,Yl + ~x1, x1y1) if 

group operation 
1 x = (x1, •• ,x1 ,x ), 

y = (y 1, ... , y 1, y 1) E JR. x JR.+ IT may be shown that this group is 

solvable and consequently has an invariant mean. With the stan­

·dard topology for JR1 xJR+ the group operation is continuous. 

Hence R1 x JR.+ is a topological group. 
lP 

nB = 1' 6 ( ~ A' G B) = 2 

Proof Let the group G be given by 

g(x1' •• ,xl) = c);! x1 + g1' •• ,j;! xl + gl) 
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g(y1, •• ,y1,t) = <¥Y1 +_g1, ••• , R'Y1 + gl,g1t) 

g{~1'"""'~l,o2) = (Jg1~1 + g1, ••• , ~~ + gl, g1o2) 

where (g1, ••• , g1 , g 1) E :rR1 +JR.+. It may be verified that the 

assumptions (i) - (v) given in section 2 are satisfied so 

that we may restrict attention to the set of invariant Markov 

kernels u\t G. It is furthermore not difficult to show that 

every MEJtG must have ~ as exeptional set i. e.)tG =,JV[Go 
In If 

Assume 6 ( G A' G B) = 6 < 2 and let f > 0 so that 

6 + e < 2. Then there exists MEJv1.G so that 
0. 

II P' 2 M-Q - ~2 \\ < € + 6 l,f31, •• Jf3l~cr l,~-l,t31, •• ,t31,0' 
-. ( 2) 1 + fl 1 , •• ,f3 1 ,o EJR xJR 

Suppose B1x ••• x B1 x Be K where K is compact and Bi E(8 OR) 

i=1, •• ,1, BEl£0R+). Then 

n.., n· 1 
M(B1:x: •• •- :B1 X Bl x1, •• ,x1 ) = M{.Jg :a, +~x ••• x 4g B1 + g1xg Bl 

· R' x1 + g1 ' • • ,j;l' xl + gl) 

1\T 1 t 1 0 Th IT B . . J1' B 1 B .l'l ow e g ~ • en '-/ g 1 + g 1 x. p • x g 1 + g1 x g _. 0 

so that M( B1x ••• XB1xB I x,, ••• ,x1) = 0 which isa.contradiction 

since JR1 X JR.+ is a -compact and probability measures on 

metric spaces Gre regular. 0 

Prgpoattion 4.2 If nA = k, nB = 1, 

Proof The proof is analogous to a part of the proof of 

proposition 2.1 i [1]. 

Let G ·be the group given by 

g(~1'""'~1) = <Jg 1 ~1 + g1, ••• , ~~ + gl) 
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g(y1, •• ,yl) = ~~1 + g1~···' ~yl + gl) 

g(~1'""'f3l,E 2 ) = w,f31 + g1, •• ,¥~1 + gl,g1o 2) 

( 1) 1 + g1, •• ,gl,g E JR. xJR 

It is easily verified that 

1\P' .. r1- Q' II. l;o, •• ,o,1 1,o, •• ,o,1 

Suppose ME }VLG • Since M(q-1 x1 , •• , x1 ) is a probability 

measure over a complete separable metric space, M(· lx1, •• ~x1 ) 

is regular~ Thus, for € > 0 

that M(Kix1, •• ,x1 ) > 1-&. Let 

there exists K c~mpact so 

tx1, •• ,x1 f UK c n [ai' bi]. 
1~.1 

1 J·--:n (3'_ 
= M( fl g 1([a.i,bi]+xi l:x1, .. ,x1 ) > 1-e by inserting gi=x1-..Jg xi 

1=1 

i = 1, •• ,1° Now let g 1 .,.. 0. Then M({x1 , •• ,x1H x 1, •• ,x1 ) >1-e, 

so that !JI(BI x1 , •• ,x1 ) = IB(x1' • .,~) BE CB (1R1 ). 0 
Let us now consider the case where nA > k. Fist we need 

a lemma. 

~-~_4.:..1. Let G i=(Xi,,A_.i),(P0 e .(e1 ,e 3)E®iX93)) i=1,2 
J.' , 

',(.=((i)..,(B.),(Q9 . 8 (8.,8,)E ®.xe 3)) j=1.2 be four experiments 
J (tJ . J ;P 3' J J 

such that (Q8 . e (O .,e 3 )E€l .X® 3 ) j=1,2 are diminated and 
J, ' J J 

~~ j j=1• 2 are Borel subsets of complete separable metric 
'-' 

spaces and (B j j=1, 2 are the classes of Borel subsets of 

1~j j=1,2. 
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Let ~= ( (X 1 X X 2, J: 1 X J. 2 ) ' (Po 9 X p 9 1 8 
6 1' 3 , 3 

(9 1 ,9 2 ,9 3 ) E e1 X 9 2 X 9 3)) 

'J = ( < ~~ 1 x l~ 2 '·~ 1 x C"b 2 ) ' Qe 9- x Qe e 
. 1' 3 2' 3 

(8 1 ,8 2 ,8 3) E 9 1 X 9 2 x 9 3)) 

Then if :S 2 ?. (; 2 , o < ~ , t ) ~ 6 < ~ , J) · 

J-!92_f. From the assumptions it follows that there exists a 

Markov kernel M2 from 6<. 2 lD 2 ) to such t:r...a. t 

_?roposi ~j._on 4.3 If nA - k > nB - 1 + m ~ 0, then 

&(GA'~B) = IIP•l-m,o, •• ,0,1- Q;l-m,o, •• ,0,1 II 0 

3~mar~ If nA- k = nB- 1 = m = 0 proposition 4.2 and 

4.3 give the same result. 

R£~9~ Let n 1=nA-k' nB-l=n2• The proof will be carried out 

only for n 1, n1 > 0, the proofs of the cases TI.t =0, n2 > 0 and 

n 1 > O, n2::::0 are quite. analoguous. 
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where 

is given by x1, •• ,xl,s independent, x.~N(~.,1) i=1, •• ,1 
l l 

~B' is given by Y1, •• ,Y1 ,T independent 

i= 1' •• '1 
2 

T"-'X n • 
2 

By sufficiency S may be deleted 

in GA' and T in ~B'· Then proposition 3.1 gives 

o(~ ~ ) >&(~ ' + ')=\IP' -Q' 11 A ' l::> B -~ ,') A ' G B 1-m, 0, •• , 0, 1 1-m, 0, •• , 0, 1 • 

But by lemma 4.1 the other equality also must hold since we may 

. t ~~ .~ i.J /':!,., . th W . b X X lg . b wr1 e GA= G' l:.1 B= .!;· Wl 0 1 g1ven y 1, •• , l-m' G 2 g1ven y 

Xl-m+ 1, •• ,X1 ,s, j:'1 given by Y1, •• ,Yl-m and ]: 2 given by 

Yl-m+ 1, •• ,Y1 , T. Then the assumptions of the lemma are satisfied. 

~ > w [ J In particular G 2 -· c2 follows from proposition 2.1 in 1 • O 

Suppose now that nA > k and nB > l. With the group operation 

defined in the beginning of this section and with the standard topo­

logy R1 xm+ becomes a locally topological group which is Rausdorf 

and statisfies the second axiom of countability. 

be independent X. "' N ( 0, 1 ) i= 1 , •• , 1, S "' X 2 
l nA-k 

2 2 Then (X1, •• ,x1 ,s)(~ 1 , •• ,{3 1 ,a )=(crX1 +~ 1 , •• ,aX1+13 1 ,a S) and 
2 

Pl n -k Q Q a 2(B)-Pl n k o o 1((X1, •• ,xl,s)(f31, •• ,131,~ )EB)= 
, A '1-' 1 ' •• '1-' 1, - , ·A- ' ' •• I , 

Pl,nA-k,0, •• ,0,1(B(f:3 1, •• ,(3 1 ,cr 2)-1) BE OR1 xJR+). Similarly 

Q1 1 Q Q a 2(B)=Ql 1 o 0 1(B(f:31, •• ,f:31)- 1) BE OR1 xR+) 
'nB- '~--' 1 ' • • 'P 1' 'nB- ' ' • • ' ' 

so that ~~ and ~ are transtation experiments. 
(,A '-'B. 

Since {p1 n k 8 Q cr21 (f3 1, •• ,f:3 1 ,a 2) E m1 x JR+J and 
'A-,. 1, •• ,~--'1' 

{Ql n 1 n Q a21 '~ 1 , •• ,B1 ,a 2) ~ :R1 x :a+} are 
, B- , 1-' 1 , •• , 1-' 1, ' I p- . 
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dominated and m1 xm+ is solvable, the method described in 

section 2, may be applied. 

If :BE(~ OR1 X m+)' then P"l r.l 0 2 (B)= 
'nA-k,~1, •• ,~1 o 

' 
Pl n k•O 0 1((~1'""'13l,o 2 )- 1 B) = Pln k o o 1((X1, •• ,xl,s) 

' A- ' , •• , ' A- ' , •• , ' 

E(l31, •• ,13l,o2)-1B) = Pl,nA~k,0, •• 0,1((131, •• ,13l;02)(X1, •• ,Xl,S)EB)= 

p ( (:r. + 13 .. r::· . {;: 2 
l,nA-k;O, •• ,0, 1 1 .J..JS, • • ,X'r~-13 1-JS,S cr ) EB)= 

JrB(x1 + f3 1 j;, .. ,~ + 13 1 ,Js,s o 2 ) 1:~ cp (xi)YnA-k,1(s)dX1 ~.o.x1 ,as-= 
J Cl1 (xi-13iJ"j2) J.2 YnA-k,1(~2)dx 1 .... dx1 ,ds. Thus 

B 

0 . ~· 1 s) P"l n k o .. (,;)·, .. 0 2 has density cp (x.:..: 13. 2)-0 2 Yn k 1(::;-2 
·' A- '~1, •• ,~1' 1 1 1 0 A-' .._, 

with respect to the Lebesgues measure. 

Similarly has density~ ·JA~~(xi~)yna~1(S), 
with respect to the Lebesgues measure. 

then 6 ( ~ A' (k B)= ltl'"l n k- o' 0 n:a-1 -
.~.... 0 ' A- ' , • • ' 'Iltt-'K 

Ql, nB-1, 0, •• 0, 1\\ = 
l 

(s)-Ct1.1 If: cp (x. ft:) Yn 1 1(s)ldx1 •• dx1 ,ds 
l- -J' J. 1-J n i B- , ' 

Proof Let We must show 

that N =6 x •• x 6 x &n2 is a least favourable distribution for 
0 0 0 ~ 

testing. 1 

H= lP"1 R o 0 2 : (13 1, •• ,f3 1 ,o 2) E m.1 x JR+l against Q 
;n1,~1, •• ,~l' 

at all levels ~ • Then the proposition will follow from the 
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results given i section 2. 

The strongest ci_ -level rest for ~0 against Q is given 

by: 

6N.,(X1 , •• ,X., s) =1 ~=>nl ;;~ \fJ(X.$. )y n2 , 1 (s)>cfl\fJ(X.) 
0 .L "1 1. .Ll. "1 ~ 1.= ~= 

~ 1 2 exp ( -z I: (h. . -1 ) X. ) 
<=> . 1 ~ ~ 

~= 

(- S/2(1-n1/n2)) > C' (=>. (X1, •• ,X:t_,S) 

( i ) 0., = p 0 0 n,.,/· ( K) l,n1 , , •• , , ··~ n 1 
(ii) 'K8 = { (x1 , •• ,JS_) I (x1 , •• ,~, s) 

1 
{ (x1 , •• , x1 ) I 1t I: (h.. -1 ):x:. 2 <-

. 1 ~ 1. 
1.= 

E K where 

E K I= 
n2-n1 

log C' + log[S 2 

exp(- ~(1-n1/n2 ))]! is an ellipse which may be dege­

nerate since ~i = 1 is possible. 
max . 'n2-n1 n 

Let k 3 = 8 logs ~----z-- exp(- s/2(1- 1/n2)) 

(iii)ISc1 ,~.,:x:1= {s l(x1 , •• ,;_,s) E K}=(k1 (:x:1, •• ,x1 ), 

Then 

.L 

be the expectation taken relative to 

-. 

E(.) Q cr2 [IK(X1 , •• ,x1 ,s)] = 
~1'""'~--'1' 
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E 2E 2[ IJ f3 1 , •• , f3 l , cr f3 1 , •• , !3 1 , cr IK (X 1 , • ,. , x1 , S ) S . But 

Eo o ·cr2(IK(x1 , •• ,x1 ,s)ls) is a function of (X1,.,,x1 ,s) ... 1, •• , ... 1; 

only through S. Thus the distribution is independent of 

Consequently P "l 0 o 0 2 (K) = 
,n1,~o~1, •. ,..,l, 

E0 . O 0 2 ~ . 0 0 2(IK(X1, .• ,x1 ,s~ S]. Futhermore 
, •• , ' -~1, •• , ... 1, 

E0 0 02(IK(X1 , •• ,X1 ,s)ls] ~ E0 O 0 2[IK(X1, •• ,x1 ,S}tS) ... 1, •• , ... 1, , •• , ' 

since K9 is an ellipse with center in (o, •• , o) E JR1 , 

and the probability for {X1, •• ,X1 ) E K8 where {X1, •• ,x1 ) 

are independent Xi~ N(~i J~2 ,1) i=1, •• ,l, is maximized 

when the center in the ellipse and the distribution coincide. 

Thus < 

Finally if we show that P" . 2(K} l,n1 ,o, •• ,o,cr < 

P" n2 
l,n1 ,o, •• ,o 1 n 

give that N0 i~ 

(K) theorem 3.7 in [4] will 

the least favourable distribution. 

Let d. (cr 2 ) = 

s 
l 

= rl 
2 i=1 

~ l: (~. -1 )X. <k' 
1 1 
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Now ! P" 2 _ 1, n 1 , o, •• , o, a 
family of distributions and 

: cr 2 E ::rn.+l is an exponentaial 

d.. ( cr 2 ) = J IK (x 1 , •• , xl ' s ) 

Pl,n1,o, •• ,o,cr 2 (dx1 •• da) Hence, by theorem 2.9 in [4] 

derivation with respect to cr 2 under the intergration sign 

is permitted. 

Consider 
r k2 

f(t) = n 1 (.---) 
1' t 

> 0, t > o. 

f(t) can have only one extrmal point, t 0 • Since · f > 0 

and lim f(t) = lim f(t) = 0, this must be a maximum point and 
t"--+0 ~ en 

:f'(t) <o t>t, .f"'(t)>o 
0 

t < t • These results applied 
0 

to the intergrand in the expression for d.._' (cr 2 ) , give 
n2 

that must be a maximum point O 
n1 

It still remains to condider the case 

1~nA-k<nB-l+m and m>o. o(~A'GB) isnot 

known then. 

Suppose now that 0 < rank A = r ~ k. By the remark at 

the end of section 3 o(£ l£ )=2 
G A' b B if row (B•] ' row (A 1 ] 

If row [ B'] c: row [A' ] "Vve may write, in the same "Vfay as 

in section 3, A = VS , B == VT • Then 6 ( ~A' ~B) = 6 ( ~ s, GT) 
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If F'SS'F = I,F'TT'F = ~ with F a nonsingular r x r 

matrix, rank (B') = rank(T') = / {i I ~i > 0 }. Let S = F'S, 
rv i..O ~ If (_() ) lo . T = F' T o Then o ( r A' r: B) = o ( ~ S' r· T = o ( ;t '""s, ~'""T) and ...., \.? . .:; ~? 0 G 

the results above may be summarized in the following theorem. 

XhEi?_ore_El 4 ·-L. 

If row [ B ' ] cf. row [ A' ] , o ( 2J A, £ B) = 2 

If row (B'] c row [A'], let A= VS B = VT where 

V = V1', .• ,Vr') and V1', •• ,Vr' are a basis for row [A'], 

and let ~ 1 , •• ,~~ank {A') be the solutions of det(TT' - ~ SS')=O. 

Then 

2 • if rank(A')=nA rank(B') < nB 

E I 1- n exp(-!(~ .-1) Y. 2 ) I > l l 
if nA=rankA' , 

nB:::trank B' 
~i 0 

0<..'1.<1} 
. ., l 

nB - rank(B') ~nB - rank(B'), 1 (S) 
E I 1- · ~.. · . · p, -rank(A' ), 

nA - rank(A') X' nA - rank(A'), 1(i!-ra!lk(Bi) S) 

jj fi:1. exp [-!(6. -1 )Y. 2]1 
ll . > 1 ..jil j l l 

l 

if ;f:{i I 0 < 61 < 1l = 0 and nB-rank(B') > 

nA-rank(A') )t· 1 
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Proof 
'"'-···-~-

nA - rank (A') ?.: nB - rank (B') + 1/ { i I o<·A1 < 1} is equivalent 

with nA?. nB +rank (A')- rank (B') + {i I 0 < Ai < 1! = 
nB + 1~1 { i I 0 ::: A i < 1} , so that the third expression for 

o ( ~A' ~B) in the second half of the theorem follows from pro­

position 4.3. 
2 

Consider now the situation treated by Le Cam for a known. 

_Q_oroll_a~ 

If illl' is nonsin~~lar and BB' - AA' is positive aemi-

definit 2 

nB - rank(A') I E ICn;:. ran'k(~"J) 

I 

AA' )Z) - 1 l 

rank(A') n - rank(A 1 ) 

~ ---:.·r(~) 
~-:n.B- ra:nktA') ~ 
r..( 2 ) 

E l det BB' ) ( 1Z, (BB, 
det A.A.'} exp --z - AA')Z-11 

LnA ~ nB ?: rank (A') 

where Z is multilinear normal with expectation 0 and co-

variance matrix (AA' )-1 , and 11A - rank(A') is 
:nB - riii1!~'J s 

x2-distributed with nA- rank(A') degrees of freedom and is 

indepentdent of Z. 
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Proof 

Let F be a nonsingular matrix such that F'illt'F = I, F'BB'F = 

~. Then, since BB' - AA' is positive semidefinit and since 

~ 1 , •• ,~rank A are the solutions of det (BB' - ~AA') = o, 
t. 1, •• '~k ?: 1 • By nothing that AA' nonsingular implies 

BB' nonsingular, the corollary now follows in the same way as 

the corresponding result in section 3. 0 
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.7....!.- Exam.,E_~s 

~amEle 1 

(1 t1 

\ (l 81 ) Let A' = B' = 

\ 1 tn , sll:B A I 

rnA-
nAl 

\ Then AA' = 
nil. 

\nAt l: 1 ti 2 I 
i = 

Suppose 

nA 
MA = l: 

rank A' = 2 , i.e. not all t 1, •• ,tn equal. If 
A 

2 nB 
(ti-t) , MB = l: (Si-S) , det (BB' - 6AA 1 ) = 0 

i=1 i=1 

has 2 zeroes 6 1 ,A 2 given by 

~n:MI ~~ MA + nA MB + nBnA(s-t) ± (nBMA + nAME + nAnB(t-s) -
1.. 

4nBnAMAMB)2] 

6 ( ~A' GB) may now be computed for cr 2 lmovm, and for cr 2 

unknown except when 0 < nA- 2 < nB - rankB + {il 0 < 6i < 1l 
and t i I o < 6. < 1 J > o. 

l 

-- nB Note that if "f = s 6 - ·-~~ 6 
' 1 - nA ' 2 

]J]Ca.raE_l_e~_2. If .)~i! and ,}d.a are the minimal informative and the 

maximal i~~ormative experiments respectively, 

o ( ~A' ~i) and o ( ~a' GA) give absolute measures of the 

information in the experiment ~A • Unfortunately for trans­

lation experiments on the real line both of these deficiencies 

are equal to 2 as shovm by Torgersen in [5]. Hence o (~A' ~i) == 
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0 <Jt.a, ~A) = 2 for the case when 02 is known and consequently 

also for 02 unknown. 

However, if an experiment is given by the independent, 

observations x1, •• ,xn, deficiencies may be used to compute 

the information contained in an additional observation. 

In the experiments considered in this paper, the observations 

are not identically distributed, because the distribution of 

the additional observation is dependent of the choice of the 

regression coefficients. The question then naturally arises 

whether deficiencies may be of help to determine the regression 

coefficients so the additional observation contains as much 

information as possible. 

t1 . . . . . a1n I a11 • • • • • a1n 

Let A= B = 

\~1 ! 

f 

~n 
I 

~1 ~'Y). I .. -- . 
I 

Suppose rank A = k 

Then det (BB' - IJ.A.A') = det (AA' + tt' - !:::.AA') = 

det (tt' - (1:::.-1) AA'). Since rank [tt•] = 1, the solutions 

of det(tt' - llAA') = 0 are all equal to zero, exept one. 

The solution A= 0 has multiplicity k-1. Hence 

det (tt' - !:::.AA 1 ) = 0 = det (AA') det ((tt 1 )(AA')- 1 -A I) = 

t1 

tk 

det (AA' )(-ll)k-t (6 0 - ll) = [ (-1 )k ilk + (-1)k-l 60 /J.k-1] det (AA 1 ) 

where !:::. 0 is the nonzero solution of det [ ( tt 1 ) (AA 1 ) -i - ll I] = 0 

But det[(tt')(AA')-:1 ~:::.r'] = (-l!.)k + tr (tt')(AA')- 1(-Ll)k-l + 

factors of lower order in !:::.. Hence !:::. = tr (tt')(~~,)-1 , 
0 
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and 1+ tr (tt')(AA')-1 ,1, ••• ,1 are the k solutions of 

det (BB' - nAil.') = 0 

Let X~ N(0,1). Then, by noting that tr(tt')(AA')-1 = 

t'(AA')-1t, o( ~A'GB) = E\1- Jt'(AA')-1t+1. 1 exp(-~ t'(AA')-1tx 2 )1== 

4 [ ~ (((1+t' (AA• )-1 t) 1-~<?A..fuJ.' (AA' 2-1 t)]1r) 
t' (AA' )- 1t 

~ ( ( _lo_g_ U.!.i' (4£t ~ -:-~ t)) !) J 
t' (AA, r· t 

2 for cr known. In the above expression we have written the 

integrand f, and used that Jlfl = 2Jf+. 

If Y,S are independent Y ~ N(0,1), ~=iZ+I S ~ x2n-k 

6(~A' ~B)= Jlcp(x)Y n-k,Xl~.~~l (s)- (1+t'(.A..A')-lt)t 

cp(x( 1+t' (AA' )-1t)~ Yn-k+l (s) I clxds 

= E\1 - (Il~~~~)~-10/2~-~y) ( 1+t I (AA' )-1 t) 
r ( ~1..-{..t 1.) 

(g1 exp (-~ -~-~-'"" - !t' (M' )-1 t Y2) I '>12 n-k+J. 

when cr 2 is unknown. 

If cr 2 is known and a.' (AA' )-1 s > t' (AA' )t 

the experiment where the n+1 th observation has regression 

coefficients (s 1, ••• ,sk) is more informative than the experiment 

where the n+1 th observation has regression coefficients 

(t 1, ••• , tk) Hence 6 (~A' tB) is increasing in t' (Al1.' )-1 t 

for (J 2 k nOW1l. 

Consider again the situation in example 1. If we weite 
r 1 1 2 - 1n 2 

t' = _(-J,+.·+t) t'(AA')- t = ~- (t - 2t t = = L: t. ) 
L1 ' M n+1 n+1 n i= 1 1 
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t = ~ ~= 1 ti , so that the minimal increase in o (~A' ~B) 

is obtained by letting tn+l = t , and in this case 

tf \i [ [ 1 .1. 1 .l. J o( GA' GB) = 4 ~( (n+l) log (1+n)] 2 )- ~((n log (1 +n) 2 ) 

when cr 2 is known. 

J~c~1Uvledgmen1. The problem was suggested by Dosent Erik Torgersen 

who have also pointed out improvements of several of the proofs. 
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