STATISTICAL RESEARCH REPORT
 No 5
 Institute of Mathematics
 Mai 1976
 University of Oslo

DEFICIENCIES IN LINEAR NORMAI EXPERIMENTS. by

Anders Rygh Swensen

CONTENT

1. Summary 1
2. Introduction and basic facts 2
3. The case of known variance σ^{2} 6
4. The case of unknown variance σ^{2} 11
5. Examples 24
6. References 28

Summary

Let X_{1}, \ldots, X_{n} be independent and normally distributed variables, such that $0<\operatorname{var} X_{i}=\sigma^{2}, i=1, \ldots, n$ and $E\left(X_{1}, \ldots, X_{n}\right)^{\prime}=A^{\prime} \beta$ where A is an $k \times n$ matrix with known coefficients and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ is an unknown column matrix. σ^{2} may be known or unknown. Denote the experiment obtained by observing x_{1}, \ldots, x_{n} by ξ_{A}. Let A and B be matrices of dimension $n_{A} \times k$ and $n_{B} \times k$.

The deficiency $\delta\left(\xi_{A}, \xi_{B}\right)$ is computed when σ^{2} is known, and for some cases, including the case $B B^{\prime}$ - AA' positive semidofinit and $A A^{\prime}$ nonsingular, also when σ^{2} is unknown.
2. Introduction and basic facts.

Definition. An experiment is a pair $\mathcal{E}=\left((X, A) ;\left(P_{\theta}, \theta \in \Theta\right)\right)$ where (X, \mathcal{A}) is a measurable space and $\left(P_{\theta}, \theta \in \Theta\right)$ is a family of probability measures over (X, \mathcal{A}).

For two experiments \mathscr{G} and \vec{F} indexed by the same parameter set Θ Le Cam defined in [2] the deficiency $\delta(\mathcal{G}, \mathcal{F})$ of \mathscr{G} relative to \mathcal{F}. The Δ-distance between \mathscr{G} and \mathcal{F} is the number $\Delta(\xi, \mathcal{\xi})=\max (\delta(\mathcal{E}, \mathcal{F}), \delta(\mathcal{\xi}, \mathcal{\xi}))$.

If $\delta(\mathscr{G}, \mathcal{F})=0$, we say that \mathcal{G} is more informative than F and write this $\mathscr{G} \geq \mathcal{F}$. If also $\delta(\mathscr{F})=0$, we say that \mathscr{G} and \mathscr{F} are equivalent and write this $\mathscr{G} \sim \mathscr{F}$.

For \mathscr{G}, \vec{G}, G experiments with the same parameter set Θ the following relations hold

$$
\begin{aligned}
& 0 \leq \delta(\xi, \mathcal{F}) \leq 2 \quad \delta(\underline{G}, \underline{G})=0 \\
& \delta(\underset{G}{G}, \mathcal{F}) \leq \delta(\underline{G}, G)+\delta(G, \mathcal{F})
\end{aligned}
$$

In particular Δ is a pseudometric.

$$
\text { Let } \underset{E}{y}=\left((x, 4),\left(P_{\theta} \theta \in \Theta\right)\right) \text { and } \tilde{y}=\left((y, B), Q_{\theta} \in \Theta\right)
$$ be two experiments such that $\left(P_{\theta}, \theta \in \Theta\right)$ is deminated, Y is a Bore subset of a complete separable metric space and is the class of Bored subsets of Y. Then Le Cam [2] has shown that $\delta(\xi, F)=\inf _{M \in M} \sup \left\|P_{\theta} M-Q_{\theta}\right\|$ where \mathcal{M} is the set of all Markov kernels from ($x, 4$) to (y, B).

In this paper we will exploit certain symmetric properties of the experiments \mathcal{G} and \mathcal{F} to be able to substitute the class M in the above expression with a smaller class consisting of "invariant" Markov kernels.

Let G be a group of transformations acting on Θ, x, y such that $x \rightarrow g(x), y \rightarrow g(y)$ are measurable $g \in G$ and
$P_{\theta} g^{-1}=\operatorname{Pg}_{\theta}, Q_{\theta} g^{-1}=Q g_{\theta}, g \in G, \theta \in \otimes$. A Markov kernel is called invariant if $M(g(B) \mid g(x))=M(B \mid x) g \in G$, $B \in B x \in X-N$ where $P_{\theta}(\mathbb{N})=0, \theta \in \Theta$. Let N_{G} be the set of invariant Markov kernels from (x, A) to (Y, B). It then follows from [5] that the following conditions are sufficient for $\delta(\mathcal{G}, \mathcal{F})=$ $\inf _{M \in M_{G}} \sup _{\theta} \| P_{\theta} M-Q_{\theta \|}$ complete scparable metric space and \mathbb{Q} is the class of Borel subsets of Y.
(ii) The families $\left(P_{\theta}, \theta \in \Theta\right)$ and ($\left.Q_{\theta}, \theta \in \Theta\right)$ are invariant
(iii) There exists a $\sigma=-a l g e b r a \quad$ in G such that the maps $(x, g) \rightarrow g(x),(y, g) \rightarrow g(y)$ are respectively $A x G$ and $A \in G$ measurable.
(iv) There exists a o-finite measure τ on (G, G) such that $T(B)=0$ implies $T(B g)=0, B \in \mathcal{B}, g \in G$.
(v) The group G has an invariant mean. If in addition:
(vi) There exists one $\mathbb{M} \in M_{G}$ so that $\left.M(G) \| g(x)\right)=M(B \mid x)$ $B \in \mathbb{C}, g \in G, x \in X, M_{G}$ may be substituted with $M_{G o}=$ $\{M \in M \mid M(g(B) \mid g(x))=M(B \mid x) B \in \mathbb{B}, g \in G, x \in x\}$ i.e. we can restrict attention to invariant Markov kernels with \varnothing as exeptional set.
A sufficient condition for (v) to hold is that g is solvable.

Suppose $\mathscr{E}_{P}=\left((X, \mathcal{A}),\left(P_{\theta}, \quad \theta \in \Theta\right)\right)$ where $\Theta=X$ is a second countable locally compact topological group which is Hausdorf, A is the Borel subsets of x, and the P_{θ} 's are given by $P_{\theta}(A)=P\left(A \theta^{-1}\right) \quad A \in A \quad \theta \in X$ where P is a probability
measure. Then G_{P} is called a translation experiment. If $G_{Q}=\left((x, \mathcal{A}),\left(Q_{\theta}, \theta \in \Theta\right)\right)$ is another translation experiment, let $g \in G$ be of the form $(x, g) \rightarrow x^{-1}$ where $\theta \in \Theta$. Then the conditions (ii), (iii)and (vi) are satisfied, and X is a complete separable metric space. If we let τ be the Haar measure on (x, A), also (v) is seen to be satisfied. Hence
 dominated and X is solvable. Torgersen [5] has shown that in this case every invariant Markov kernel with \varnothing as the exeptional set may be written $M(B \mid x)=N\left(B x^{-1}\right)$ where N is a probability measure over (X, A) and that $\delta\left(\mathscr{E}_{P}, \&_{Q}\right)=$ $\inf \|N * P-Q\|$ where $N * P(A)=N x P\left(\left\{\left(x_{1}, x_{2}\right) \mid x_{1} x_{2} \in A\right\}\right)$. The following result, also from [5]and valid under the same conditions, gives a direct method to determine δ for translation experiments. If N_{0} is a least favourable distribution for all level $\alpha \in[0,1]$ for testing $H: P_{\theta}$ " $\theta \in \theta$ against Q where $P_{\theta}^{\prime \prime}(A)=P\left(\theta^{-1} A\right) \theta \in \Theta, A \in A$, then $\delta\left(G_{P}, G_{Q}\right)=$ $\left\|N_{0} * P-Q\right\|$.

The purpose of this paper is to use the above results to compute the deficiencies between linear normal experiments. These experiments may be described as follows: Let A be a known $\mathrm{kxn}_{\mathrm{A}}$ matrix and \hat{E}_{A} the experiment given by the independent normally distributed variables $X_{1}, \ldots, X_{h_{A}}$ with $\operatorname{var} X_{1}=\sigma^{2} \quad i=1, \ldots, n_{A}$ and $E\left(X_{1}, \ldots, X_{H_{A}}\right)!=A^{\prime} \beta \quad$ where $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)^{\prime} \in \mathbb{R}^{\mathbf{k}}$. To avoid trivialities we shall assume $n_{A} \geq k>1$.

The parameter set is $]-\infty, \infty\left[\right.$ if σ^{2} is known, and
$]-\infty, \infty\left[{ }^{k} \mathrm{x}\right] 0, \infty\left[\right.$ if σ^{2} is unknown.
From theorem 3.1 in [1] it follows that if A and B are matnces of dimension $k \times n_{A}$ and $k \times n_{B}$, then $\mathcal{G}_{A} \geq \mathscr{G}_{B}$ if and only if $A A^{\prime}$ - BB' is positve semidefinite when σ^{2} is known, and $\mathscr{G}^{\varphi} \mathrm{A} \geq \bigotimes_{B}$ if and only if $A A^{\prime}-\mathrm{BB}^{\prime}$ is positive semidefinite and $n_{A} \geq n_{B}+\operatorname{rank}\left(A A^{\prime}-B B^{\prime}\right)$ when σ^{2} is unknown. Then $\mathcal{G}_{\mathrm{A}} \sim \mathscr{G}_{\mathrm{B}}$ if and only if $\mathrm{AA}^{\prime}=\mathrm{BB}^{\prime}$ if σ^{2} is known, and $\mathscr{G}^{4} \sim \mathcal{E}_{\mathrm{B}}$ B if and only if $\mathrm{AA}^{\prime}=\mathrm{BB}^{\prime}$ and $n_{A}=n_{B}$ if σ^{2} is unknown.

In the computation of $\delta\left(\underset{\sim}{\mathscr{G}}, \mathscr{G}_{B}\right)$ we may therefor choose the experiments within the equivalence classes determined by $A A^{\prime}, B B^{\prime}$ when σ^{2} is known, and ($A A^{\prime}, n_{A}$), ($B B^{\prime}, n_{B}$) when σ_{i}^{2} is unknown.

3. The case of known variance G^{2}

Proposition 3.1 Suppose $A^{\prime}=I, B^{\prime}=\Delta$ where Δ is a $k x k$ diagonal matrix with diagonal elements $\Delta_{1}, \ldots, \Delta_{k} \geq 0$. Then $\delta\left(\mathscr{G}_{A}, \dot{G}_{B}\right)=E| |-\Lambda_{i} S_{1} \sqrt{\Delta_{i}} \exp \left(\left.\frac{1}{2}\left(\Delta_{i}-1\right) Y_{i}{ }^{2} \right\rvert\,\right.$ where Y_{1}, \ldots, Y_{k} are independent and identically $N(0,1)$ distributted.

Proof

We may choose $A=\left(\begin{array}{cc}1 \ldots \ldots 0 & 0 \ldots \ldots 0 \\ \vdots & \vdots \\ 0 \ldots 1 & 0 \ldots0\end{array}\right)$ where the last $n_{A}-k$ columns consist of only zeros, and
$n_{B}-k$ columns consist of only zeros. Without loss of generality we may assume that $\Delta_{1}, \ldots, \Delta_{I}>0$ and $\Delta_{I+1}=\ldots=$ $\Delta_{k}=0 \quad 0 \leq I \leq k$. This means that G_{A} is given by the independent, normally distribute variables $X_{\mathcal{1}}, \ldots, X_{n_{A}}$ where $E X_{i}= \begin{cases}\beta_{i} & i=1, \ldots, k \\ 0 & i=k+1, \ldots, n_{A}\end{cases}$ $\operatorname{var} X_{i}=\sigma^{2} \quad i=1, \ldots, n_{A}$

Similarly G_{B} is given by the independent, normally distribute variables $Y_{1}, \ldots, Y_{n_{B}}$ where
$E Y_{i}=\left\{\begin{array}{ll}\sqrt{\Delta_{i}} \beta_{i} i & =1, \ldots, 1 \\ 0 & i=1+1, \ldots, n_{B}\end{array} \quad \operatorname{var} Y_{i}=\sigma^{2} i=1, \ldots, n_{B}\right.$
By sufficiency X_{k+1}, \ldots, X_{A} may be deleted from ${ }^{\circ} \mathrm{A}$ and
Y_{I+1}, \ldots, Y_{B} may be deleted from $G B$. Furthermore, in the same way as in the proof of proposition 2.1 in [1], it may be shown that X_{1+1}, \ldots, X_{A} may be deleted in $\&_{A}$. Finally we may replace Y_{1}, \ldots, Y_{1} with Z_{1}, \ldots, Z_{l} where $Z_{i}=\frac{Y_{i}}{\sqrt{\Delta_{i}}}$ $i=1, \ldots, 1$.

Now \mathscr{E}_{A} and \mathscr{E}_{B} are translation experiments for addition in \mathbb{R}^{1}. Since addition in $\mathbb{R}^{\mathcal{I}}$ is commutative and \mathscr{G}_{A} and ψ_{B} are both dominated, we may use the method indicated in section 2 to find $\delta\left(\xi_{A}, U_{B}\right)$. Let $P_{\beta}, \beta \in \mathbb{R}^{1}$ be the measure defined by $X_{1}, \ldots X_{1}$ independent and normally distributed with $E X_{i}=\beta_{i}, \operatorname{var} X_{i}=\sigma^{2}, i=1, \ldots I$ and Q be the measure defined by Y_{1}, \ldots, Y_{1} independent and normally distributed with $E Y_{i}=0, \operatorname{var} Y_{i}=\frac{\sigma^{2}}{\Lambda_{i}}, i=1, \ldots, 1$. Then the least favourably distribution N_{o} for testing $H: \cdots P_{\beta}, \beta \in \mathbf{R}^{I}$ against the alternative $K: Q$ is given by the independent variables U_{1}, \ldots, U_{I} where $U_{i}=0$ with probability 1 if $\Delta_{i} \geq 1$ and U_{i} is $N\left(0, \sigma \sqrt{\frac{1}{\Delta_{i}}-1}\right)$ distributed if $\Delta_{i} \leqslant 1$. Hence $\delta\left(\mathcal{G}_{\mathrm{A}}^{(G)}\right)=$ $\left\|_{N_{0}} * P_{0}-Q\right\|$. But $N_{0} * P_{0}$ has density $\prod_{i}<1 \sqrt{\frac{\Delta_{i}}{\sigma}} \varphi\left(\sqrt{\frac{\Delta_{i}}{\sigma} X_{i}}\right)$ $\Delta_{i} \geq 1 \stackrel{1}{\sigma} \varphi\left(\frac{X_{i}}{\sigma}\right)$ with respect to the Lebesgues measure in \mathbb{R}^{1}.

Proposition 3.2 If rank $A^{\prime}=k$, then $\delta\left(\mathcal{G}_{A}, \xi_{B}\right)=$ $E\left|1-\prod_{\Delta_{i}>1} \exp \left(-\frac{1}{2}\left(\Delta_{i}-1\right) Y_{i}^{2}\right)\right|$ where $\Delta_{1}, \ldots, \Delta_{k}$ are the solution of $\operatorname{det}\left[B B^{\prime}-\lambda A A^{\prime}\right]=0$, and Y_{1}, \ldots, Y_{k} are independent $\mathbb{N}(0,1)$ distributed.

Proof Since BB^{\prime} is positive semidefinit, there exists a $k x k$ nonsingular matrix F such that $F^{\prime} A A^{\prime} F=I$ and
$F^{\prime} B^{\prime} F=\Delta$ where $\Delta_{1}, \ldots, \Delta_{k} \geq 0$ and $\Delta_{1}, \ldots, \Delta_{k}$ are the solutions of $\operatorname{det}\left(B B^{\prime}-\lambda A A^{\prime}\right)=0$.

Let $\widetilde{A}=F^{\prime} A, \widetilde{B}=F^{\prime} B$. If P_{β} and Q_{β} are, respectively, the probability measures inn $\frac{\mathscr{G}}{G} \mathrm{~A}$ and $\frac{\varphi}{G} \mathrm{~B}$ corresponding to the parameter value β, then since $A^{\prime} F \beta=\widetilde{A} \beta$, $\delta\left(\mathcal{G}_{A}, \mathcal{G}_{B}\right)=$ $\inf _{M} \sup _{\beta}\left\|P_{\beta} M-Q_{\beta}\right\|-\inf _{M} \sup _{F \beta}\left\|P_{F \beta} M-Q_{F \beta}\right\|=\delta\left(\underset{G}{G} \widetilde{A}, \mathscr{G}_{\widetilde{B}}\right)=$ $E\left|1-{\prod_{i}}^{>1} \sqrt{1} \sqrt{\Delta_{i}} \exp \left(-\frac{1}{2}\left(\Delta_{i}-1\right) Y_{i}{ }^{2}\right)\right|$

Proposition 3.3 If row [B^{\prime}] $\&$ row [$\left.\mathrm{A}^{\prime}\right]$, then $\delta(\underset{G \mathrm{G}}{\boldsymbol{G}, \mathcal{G})}=2$. Proof row [$\left.\mathrm{B}^{\prime}\right] \notin$ row $\left[\mathrm{A}^{\prime}\right]$ implies (row [$\left.\left.\mathrm{B}^{\prime}\right]\right)^{\perp} \neq\left(\text { row } A^{\prime}\right)^{\perp}$. Let $\beta_{0} \in\left(\text { row } A^{\prime}\right)^{\perp} . \beta_{0} \notin\left(\text { row } B^{\prime}\right)^{\perp}$. Then $A^{\prime} \beta_{0}=0, B^{\prime} \beta_{0} \neq 0$ and $\delta\left(\dot{G}_{A}, \dot{G}_{B}\right)=\inf _{M} \sup _{\beta}\left\|P_{\beta} M-Q_{\beta}\right\| \geq \inf _{M} \sup _{t \in \mathbb{R}} \| P_{t \beta o} M-$ $Q_{t \beta} \circ\left\|=\inf _{M} \sup _{t}\right\| P_{0} M-Q_{t \beta o} \|$. But $\left\|P_{0} M-Q_{t \beta \circ}\right\| \underset{t \rightarrow \infty}{ }$ for all Markov kernels M, so that $\delta\left(\mathcal{G}_{A}, \mathscr{G}_{B}\right)=2$.

Suppose BB^{\prime} - $A A^{\prime}$ is positive semidefinit and rank $A^{\prime}=k$.
If F has the same meaning as in the foregoing proof, then $Y^{\prime}(\Delta-I)=Y^{\prime} F^{\prime} F^{\prime-1}(\Delta-I) F^{1} F Y=Z^{\prime}\left(B B^{\prime}-A A^{\prime}\right) Z$ where $Z=F Y$. Furthermore $E Z Z^{\prime}=E F^{\prime} Y^{\prime} F^{\prime}=F F^{\prime}=\left(A A^{\prime}\right)^{-1}$ and $\frac{\operatorname{det}}{\operatorname{det}}\left(\frac{\left.\mathrm{BB}^{\prime}\right)}{\left(A^{\prime}\right)}=\frac{\operatorname{det}\left(F^{\prime} B B^{\prime} F\right)}{\operatorname{det}\left(F^{\prime} A A^{\prime} F^{\prime}\right)}=\Delta_{1} \ldots \Delta_{k} \quad\right.$ so that we may write $\delta\left(G_{A}, G_{B}\right)=E\left|\frac{\operatorname{det}\left(B B^{\prime}\right)}{\operatorname{dat}\left(A A^{\prime}\right)} \exp \left[-\frac{1}{2} Z^{\prime}\left(B B^{\prime}-A A^{\prime}\right) Z\right]-1\right|$ where Z is multivariate normal with mean zero and covariance matrix (AA' $)^{-1}$. This is the result given by Le Cam in [3]

Suppose next that row [$\left.\mathrm{B}^{\prime}\right] \subset$ row [A^{\prime}] and let $\mathrm{V}_{1}^{\prime}, \ldots ., \mathrm{V}_{\mathrm{r}}$ ' be a basis for row [A^{\prime}], $0 \leq r \leq k$. Then as in the proof of theorem 3.1 in [1], we may write $A=V S$ where $V=\left(V_{1}, \ldots, V_{r}{ }^{\prime}\right)$ is a kxr matrix and S is a $r \mathrm{Xn}_{\mathrm{A}}$ matrix of rank r.

Similarly $B=V T$ with T a $r x n_{B}$ matrix. By writing $\alpha=V^{\prime} \beta$ so that $A^{\prime} \beta=S^{\prime} V \beta=S^{\prime} \alpha$ and $B^{\prime} \beta=T^{\prime} \alpha$, it follows that $\delta\left(\mathscr{G}_{A}, \mathscr{G}_{B}\right)=\inf _{M} \sup _{\beta}\left\|P_{\beta} M-Q_{\beta}\right\|=\inf _{M} \sup _{\alpha}\left\|P_{\alpha}^{\prime} M-Q_{\alpha}^{\prime}\right\|=$ $\delta\left(G_{S}, \mathscr{G}_{T}\right)$ where P_{C}^{\prime} and $Q_{\alpha}{ }^{\prime}$ are, respectively, the measures in \mathscr{G}_{S} and $\mathscr{S}_{\mathrm{S}} \mathrm{T}$, corresponding to the parameter value a. The following result is then an immediate consequince of proposition 3.2

Proposition 3.4 If row [B^{\prime}]c row [A^{\prime}],
where $\Delta_{1}, \ldots \Delta_{r}$ are the solution of $\operatorname{det}\left(T T^{\prime}-\lambda S S^{\prime}\right)=0$ and $A=V S, B=V T$, rank $S=r, V=\left(V_{I}, \ldots, V_{r}{ }^{\prime}\right)$ with $V_{I}{ }^{\prime}, \ldots, V_{r}{ }^{\prime}$ a basis for row [A^{\prime}].

If row [$\left.A^{\prime}\right] \nmid$ row $\left[B^{\prime}\right]$ then either row $\left[A^{\prime}\right] \&$ row $\left[B^{\prime}\right]$ or row [B'] \ddagger row [A'] so that $\delta\left(\mathcal{G}_{\mathrm{B}}, \mathscr{G}_{\mathrm{A}}\right)=2$ or $\delta\left({\underset{G}{A}}^{\varphi_{G}} \dot{G}_{\mathrm{B}}\right)=2$. Consequently $\Delta\left(\dot{G}_{A}, \xi_{B}\right)=2$.

Suppose next that row [A']= row [B^{\prime}], and let V, S, T have the same meaning as in proposition 3.4 If then λ is a solution of $\operatorname{det}\left(T T^{\prime}-\lambda S S^{\prime}\right)=0, \quad \lambda^{-1}$ is a solution of $\operatorname{det}\left(S^{\prime}-\lambda T T^{1}\right)=0$. Nothing that $\mathbb{D} \left\lvert\, 1-\prod_{i}<1 \quad \sqrt{\Delta_{i}} \exp \left(\left.-\frac{1}{2}\left(\Delta_{i}{ }^{-1}-1\right) Y_{i}{ }^{2} \right\rvert\,=\right.\right.$ $E\left|1-\Gamma_{i}<1 \sqrt{\Delta_{i}} \exp \left(-\frac{1}{2}\left(\Delta_{i}-1\right) Y_{i}{ }^{2}\right)\right|$, this gives together with proposition 3.4:

Theorem 3.1 If row [$\left.A^{\prime}\right] \neq$ row $\left[B^{\prime}\right]$, then $\Delta\left(\mathscr{E}_{A}, \mathscr{G}_{B}\right)=2$
If row $A^{\prime}=$ row B^{\prime} and $A=V S, B=V T$ where $V=\left(V_{1}{ }^{*}, . V_{r}{ }^{\prime}\right)$ and $V_{1}, \ldots, V_{r}^{\prime}$ is a basis for row $\left[A^{\prime}\right]$, then $\Delta\left(\mathcal{G}_{A}, \varphi_{B}\right)=$ $\max \left(E \left\lvert\, 1-\Delta_{i}^{!}>1 \exp \left(-\frac{1}{2}\left(\Delta_{i}-1\right) Y_{i}{ }^{2}\right)\right., \operatorname{Ei}-\square_{i}<1 \exp \left(-\frac{1}{2}\left(\Delta_{i}-1\right) Y_{i}{ }^{2} \|\right)\right.$ where $\Delta_{f}, \ldots, \Delta_{r}$ are the solutions of $\operatorname{det}\left(T T^{\prime}-\lambda S S^{\prime}\right)=0$ and Y_{1}, \ldots, Y_{r} are independent and identically $\mathbb{N}(0,1)$ distributed.

- Consider now linear normal e periments where a^{2} is unknown. By fixing the parameter σ^{2}, wé obtain experiments for which $\dot{\delta}$ can befound the methods of this section. This means that a δ computed for known σ^{2} always gives a lower bound for the corresponding δ with σ^{2} unknown.

From theorem 2.1 it then follows that the Δ-distance is 2 between the experiments given by $X_{1}, \ldots X_{n}$ independent and normally distributed with var $X_{i}=\sigma^{2}, E X_{1}=\alpha+\beta t i \quad i=1, \ldots, n$, and Y_{1}, \ldots, Y_{n} independent and normally aistributed with $\operatorname{var} Y_{i}=\sigma^{2}, E Y_{i}=\alpha+\beta t_{i}+\gamma t_{i}^{2} \quad i=1, \ldots, n$ whether σ^{2} is known or not. The Δ-distance is thus of no help if we want to determine the amount of information obtained by observing Y_{1}, \ldots, Y_{n} instead of X_{1}, \ldots, X_{n}.

4. The case of unknown variance σ^{2}

Some of the notations which will be used in this section are:

If (X, τ) is a topological space, let $Q(X)=\sigma(\{B \mid B \in T\})$ be the Borel sets in X.
$P_{1, n_{1}}, \beta_{1}, \ldots, \beta_{1}, \sigma^{2}, Q_{1}, n_{2}, \beta_{1}, \ldots, \beta_{1}, \sigma^{2}$ are the probability measures over $\left(\mathbb{R}^{1} \times \mathbb{R}^{+},\left(B\left(\mathbb{R}^{l} \times \mathbb{R}^{+}\right)\right)\right.$given by X_{1}, \ldots, X_{1}, S independent $X_{i} \sim N\left(\beta_{i}, \sigma\right) i=1, \ldots, I, S / \sigma^{2} \sim X^{2} n_{1}$ and by Y_{1}, \ldots, Y_{i}, T independent $\quad Y_{i} \sim N\left(\beta_{i} \sqrt{\frac{\sigma}{\Delta_{i}}}\right), i=1, \ldots, 1$, $T_{f \sigma^{2}} \sim X^{2} n_{2}$ where $\Delta_{1}, \ldots, \Delta_{1}>0$ are known.
$P_{1,}^{\prime} \beta_{1}, \ldots, \beta_{1}, \sigma^{2}, Q_{1}{ }_{1}, \beta_{1}, \ldots, \beta_{1}, \sigma^{2}$ are the probability measures over $\left(\mathbb{R}^{1}, \mathcal{S}\left(\mathbb{R}^{1}\right)\right)$ given by X_{1}, \ldots, X_{1} independent $X_{i} \sim N\left(\beta_{i}, \sigma\right) i_{\sigma}=1, \ldots 1$ and by Y_{1}, \ldots, Y_{1} independent $Y_{i} \sim N\left(\beta_{i}, \sqrt{\frac{\sigma}{\Delta_{i}}}\right) i=1, \ldots, 1$

$$
\varphi(x)=(2 \pi)^{-\frac{1}{2}} \exp \left(-\frac{x^{2}}{2}\right), \Phi(x)=\int_{-\infty}^{x} \varphi(u) d u
$$

$$
\gamma_{n ; t}(x)=\left(I\left(\frac{n}{2}\right) 2^{n} / 2\right)^{-1} x^{n} / 2-1 \exp \left(-\frac{x}{2 t}\right) t^{-n / 2}
$$

$$
x>0 t>0 \quad \Gamma n, t(x)=\int_{0}^{x} \gamma n, t(u) d u
$$

\# (S) is the number of olamente in S if S is finite.

Suppose first that $A^{\prime}=I, B^{\prime}=\Delta$ where Δ is a diagonal matrix with diagonal elements $\Delta_{1}, \ldots, \Delta_{k} \geq 0$. Without loss of generality we may assume that $\Delta_{1}, \ldots, \Delta_{\mathrm{I}-\mathrm{m}} \geq 1$, $0<\Delta_{I-\mathrm{m}+1}, \ldots, \Delta_{I}<1^{\prime}$ and $\Delta_{I+1}=\ldots . \Delta_{k}=0$ where $k \geq 1 \geq 0$ In the same manner as in section 3 we may consider a situation
where

$$
\begin{aligned}
& G_{A}=\left(\left(\mathbb{R}^{1} \times \mathbb{R}^{+}, \quad\left(\mathbb{R}^{1} \times \mathbb{R}^{+}\right),\left(P_{1}, n_{A}-k, \beta_{1}, \ldots, \beta_{1}, \sigma^{2},\right.\right.\right. \\
& \left.\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right) \in \mathbb{R}^{1} \times \mathbb{R}^{+}\right) \text {) if } n_{A}>k \\
& \mathscr{G}_{A}=\left(\left(\mathbb{R}^{I}, \quad\left(\mathbb{R}^{1}\right)\right),\left(P_{\left.\left.1, \beta_{1}, \ldots, \beta_{1}, \sigma^{2},\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right) \in \mathbb{R}^{I} \times \mathbb{R}^{+}\right)\right), ~\left(\beta_{1}\right)}\right.\right. \\
& \text { if } n_{A}=k \\
& {\underset{G}{B}}^{G_{0}}\left(\left(\mathbb{R}^{1} \times \mathbb{R}^{+}, \quad\left(\mathbb{R}^{1} \times \mathbb{R}^{+}\right),\left(Q_{1}, n_{B^{-1}, \beta_{1}}, \ldots, \beta_{1}, \sigma^{2},\right.\right.\right. \\
& \left.\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right) \in \mathbb{R}^{I} \times \mathbb{R}^{+}\right) \text {) if } n_{B}>1 \\
& { }_{G} B=\left(\left(R^{1}, \quad\left(\mathbb{R}^{I}\right)\right), Q_{1}{ }_{I}, \beta_{1}, \ldots, \beta_{1}, \sigma^{2},\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right) \in\left(R^{1} \times \mathbb{R}^{+}\right)\right) \\
& \text {if } \quad n_{B}=1
\end{aligned}
$$

The reduction is quite analogous with what was done in section 3 except that sufficiency now gives that $X_{k+1}, \ldots, X_{n_{A}}$ must be replaced with $S=\sum_{i=k+1}^{n_{A}} X_{i}^{2} \quad \underset{n_{B}}{\text { when }} n_{A}>\boldsymbol{k}$ and that $Y_{1+1 ; \ldots ; Y^{n_{B}}}$ mist be replaced with $T=\sum_{i=1+1}^{n_{B}} Y_{i}{ }^{2}$ when $n_{B}>1$.

Consider now the group $\mathbb{R}^{1} \times \mathbb{R}^{+}$with group operation $x y=\left(y_{1}+\sqrt{y^{1} x_{1}}, \ldots, y_{1}+\sqrt{y^{\top} x_{1}}, x^{1} y^{1}\right)$ if $x=\left(x_{1}, \ldots, x_{1}, x^{1}\right)$, $y=\left(y_{1}, \ldots, y_{1}, y^{1}\right) \in \mathbb{R} x \mathbb{R}^{+} \quad I T$ may be shown that this group is solvable and consequently has an invariant mean. With the standard topology for $\mathbb{R}^{l} \times \mathbb{R}^{+}$the group operation is continuous. Hence $\mathbb{R}^{I} \times \mathbb{R}^{+}$is a topological group.

Proposition 4.1 If $n_{A}=k$ and $n_{B}=1, \delta\left(\bigcup_{G A}^{\varphi}, \varphi_{B}\right)=2$ Proof Let the group G be given by

$$
g\left(x_{1}, \ldots, x_{1}\right)=\left(\sqrt{g^{1}} x_{1}+g_{1}, \ldots, \sqrt{g^{\top}} x_{1}+g_{1}\right)
$$

$$
\begin{aligned}
& g\left(y_{1}, \ldots, y_{1}, t\right)=\left(\sqrt{g^{1}} y_{1}+g_{1}, \ldots, \sqrt{g^{1}} y_{1}+g_{1}, g^{1} t\right) \\
& g\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right)=\left(\sqrt{g^{1} \beta_{1}}+g_{1}, \ldots, \sqrt{g_{1}^{1}}+g_{1}, g^{1} \sigma^{2}\right)
\end{aligned}
$$

where $\left(g_{1}, \ldots, g_{1}, g^{1}\right) \in \mathbb{R}^{1}+\mathbb{R}^{+}$. It may be verified that the assumptions (i) - (v) given in section 2 are satisfied so that we may restrict attention to the set of invariant Markov kernels M_{G}. It is furthermore not difficult to show that every $\mathbb{M} \mathcal{M}_{G}$ must have ϕ as exeptional set i.e. $M_{G}=M_{G o}$

Assume $\delta\left(\underset{G}{\varphi}, \mathscr{G}_{\mathrm{B}}\right)=\delta<2$ and let >0 so that
$\delta+\varepsilon<2$. Then there exists $M \in M_{G_{0}}$ so that
$\| P^{\prime}{ }_{1, \beta_{1}, \ldots, \beta_{1}, \sigma^{2} M-Q_{1}, n_{B}-1 ; \beta_{1}, \ldots, \beta_{1}, \sigma^{2}\left\|<\varepsilon+\delta, \beta_{1}\right\|}$

$$
\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right) \in \mathbb{R}^{I} \times \mathbb{R}^{+}
$$

Suppose $B_{1} \times \ldots \times B_{I} \times B C K$ where K is compact and $B_{i} \in(\mathbb{B})$ $i=1, \ldots, 1, \quad B \in B\left(\mathbb{R}^{+}\right)$. Then
$M\left(B_{1} \times \ldots B_{1} \times B \mid x_{1}, \ldots, x_{1}\right)=M\left(\sqrt{g^{1}} B_{1}+g_{1} x_{1} \ldots x \sqrt{g^{1}} B_{1}+g_{1} x g^{1} B \mid\right.$

$$
\left.\sqrt{g^{\prime}} x_{1}+g_{1}, \ldots, \sqrt{g^{\top}} x_{1}+g_{1}\right)
$$

Now let $g^{1} \rightarrow 0$. Then $\sqrt{g^{1}} B_{1}+g_{1} x \ldots x \sqrt{g^{1}} B_{1}+g_{1} x g^{1} B \rightarrow \varnothing$ so that $M\left(B_{1} X \ldots B_{1} x B \mid x, \ldots, x_{1}\right)=0$ which is a contradiction since $\mathbb{R}^{1} \times \mathbb{R}^{+}$is σ-compact and probability measures on metric spaces are regular.

Propoation 4.2 If $n_{A}=k, n_{B}=1$,

$$
\delta\left(\mathscr{Y}_{A}, \mathscr{W}_{B}\right)=\left\|P^{\prime} 1,0, \ldots, 0,1-Q^{\prime} 1,0, \ldots, 0,1\right\|
$$

Proof The proof is analogous to a part of the proof of proposition 2.1 i [1].

Let G be the group given by

$$
g\left(x_{1}, \ldots, x_{1}\right)=\left(\sqrt{g^{1} \mathbf{x}_{1}}+g_{1}, \ldots, \sqrt{g^{1} x_{1}}+g_{1}\right)
$$

$$
\begin{aligned}
& g\left(y_{1}, \ldots, y_{1}\right)=\left(\sqrt{g^{1}} y_{1}+g_{1}, \ldots, \sqrt{g^{1}} y_{1}+g_{1}\right) \\
& g\left(\beta_{1}, \ldots, \beta_{1}, \epsilon^{2}\right)=\left(\sqrt{g^{1} \beta_{1}}+g_{1}, \ldots, \sqrt{g^{1} \beta_{1}}+g_{1}, g^{1} \sigma^{2}\right) \\
& \left(g_{1}, \ldots, g_{1}, g^{1}\right) \in \mathbb{R}^{1} x \mathbb{R}^{+}
\end{aligned}
$$

It is easily verified that
$\delta\left(\xi_{A}, G_{B}\right)=\inf _{M \in M_{G}} \sup _{\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right)} \quad \|_{1}^{1}{ }_{1}, \beta_{1}, \ldots, \beta_{1}, \sigma^{2} M^{Q_{1}}{ }_{1, \beta_{1}, \ldots, \beta_{1}}$,
$\sigma^{2} \|=$

$$
\inf _{M \in M_{G}}
$$

$$
\left\|P_{1}^{\prime} ; 0, \ldots, 0,1^{M-Q^{\prime}} 1,0, \ldots, 0,1\right\|
$$

Suppose $\mathbb{M} E M_{G}$. Since $M\left(a_{-} \mid X_{1}, \ldots, \dot{x}_{I}\right)$ is a probability measure over a complete separable metric space, $M\left(\cdot \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{1}\right)$
is regular. Thus, for $\varepsilon>0$ there exists K compact so that $M\left(K \mid x_{1}, \ldots, x_{1}\right)>1-\varepsilon$. Let $\left\{x_{1}, \ldots, x_{1}\right\} \cup K \subset \prod_{i=1}^{1}\left[a_{i}, b_{i}\right]$. Then
$M\left(\prod_{i=1}^{1}\left[a_{i}, b_{i}\right] \mid x_{1}, \ldots, x_{1}\right)=M\left(\prod_{i=1}^{1} \sqrt{g^{1}}\left[a_{i}, b_{i}\right]+g_{i} \mid \sqrt{g^{1}} x_{1}+g_{1}, \ldots, \sqrt{g^{1} x_{1}}+g_{1}\right)$
$=M\left(\prod_{i=1}^{1} \sqrt{g^{1}}\left(\left[a_{i}, b_{i}\right]+x_{i} \mid \dot{x}_{1}, \ldots, \dot{x}_{1}\right)>1-\varepsilon\right.$ by inserting $g_{i}=x_{i}-\sqrt{g^{1}} x_{i}$
$i=1, \ldots, 1^{\circ}$ Now let $g^{1} \rightarrow 0$. Then $M\left(\left\{x_{1}, \ldots, x_{1}\right\} x_{1}, \ldots, x_{1}\right)>1-\epsilon$, so that $M\left(B \mid x_{1}, \ldots, x_{1}\right)=I_{B}\left(x_{1}, \ldots, x_{1}\right) \quad B \in\left(B\left(\mathbb{R}^{I}\right) . \quad \square\right.$
Let us now consider the case where $n_{A}>k$. Fist we need a lemma.

Lemma 4.1 Let $\left.Q_{i}=\left(x_{i}, A_{i}\right),\left(P_{\theta_{2}}, \theta_{3}\left(\theta_{i}, \theta_{3}\right) \in \Theta_{i} X \Theta_{3}\right)\right) \quad i=1,2$
$\tilde{f}_{j}=\left(\left(y_{j}, B_{j}\right),\left(Q_{\theta_{j}}, \theta_{3},\left(\theta_{j}, \theta_{3}\right) \in \Theta_{j} X{ }_{3} \Theta_{3}\right)\right) \quad j=1.2$ be four experiments such that $\left(Q_{\theta_{j}, \theta_{3}}\left(\theta_{j}, \theta_{3}\right) \in \Theta_{j} X \Theta_{3}\right) j=1,2$ are diminated and
$讠_{j} j=1.2$ are Bored subsets of complete separable metric spaces and $\widehat{Q}_{j} j=1,2$ are the classes of Bored subsets of $Y_{j} j=1,2$.

Let $\tilde{\mathscr{G}}=\left(\left(x_{1} \times x_{2}, A_{1} \times A_{2}\right),\left(P_{\theta_{1}}, \theta_{3} \times P_{\theta_{1}}, \theta_{3}\right.\right.$

$$
\left.\left.\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \in \Theta_{1} x \Theta_{2} x \oplus_{3}\right)\right)
$$

$$
\tilde{\tilde{f}}=\left(\left(y_{1} \times y_{2}, B_{1} \times B_{2}\right), Q_{\theta_{1}}, \theta_{3} \times Q_{\theta_{2}}, \theta_{3}\right.
$$

$$
\left.\left.\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \in \Theta_{1} \mathrm{x} \Theta_{2} \mathrm{x} \Theta_{3}\right)\right)
$$

Then if ${\underset{G}{G}}_{2} \geqslant \mathscr{F}_{2}, \delta(\underset{G}{\tilde{G}}, \tilde{f}) \leq \delta(\underset{G}{\mathscr{G}}, \tilde{\Psi})$.
Proof From the assumptions it follows that there exists a Markov kernel M_{2} from $\left(\alpha_{2}, \mathcal{B}_{2}\right)$ to $\left(y_{2}, A_{2}\right)$ such that $P_{\theta_{2}}, \theta_{3} \quad M_{2}=Q_{\theta_{2}}, \theta_{3}\left(\theta_{2}, \theta_{3}\right) \in \Theta_{2} \dot{x} \Theta_{3}$. If M_{1} is a Markov kernel from $\left(x_{1}, A_{1}\right)$ to $\left(y_{1},\left(\mathcal{S}_{1}\right)\right.$, Then $M_{1} \geq M_{2}$ is a Markov kernel from $\left(x_{1} \times x_{2}, A_{1} \times A_{2}\right)$ to $\left(y_{1} x y_{2}, \theta_{1} \times \Theta_{2}\right)$ and $\| P_{\theta_{1}}, \theta_{2} \times P_{\theta_{2}}, \theta_{3} M_{1} \times M_{2}-$.

$$
{ }_{\theta_{1}}, \theta_{2} \times P_{\theta_{2}}, \theta_{3}\|=\| P_{\theta_{1}, \theta_{3}} M_{1}-Q_{\theta_{1}}, \theta_{3} \|
$$

Proposition 4.3 If $n_{A}-k \geq n_{B}-1+m \geq 0$, then $\delta\left(\dot{G}_{A}, \dot{G}_{B}\right)={\| P^{t}}_{I-m, 0, \ldots, 0,1-Q^{Q^{i}}}^{I_{-m}, 0, \ldots, 0,1} \|$

Remark If $n_{A}-k=n_{B}-1=m=0$ proposition 4.2 and 4.3 give the same result.

Proof Let $n_{1}=n_{A}-k, n_{B}-1=n_{2}$. The proof will be carried out only for $n_{1}, n_{1}>0$, the proofs of the cases $n_{1}=0, n_{2}>0$ and $n_{1}>0, n_{2}=0$ are quite analogous.
$\delta\left({\underset{G}{A}}_{\varphi}^{\psi}, \dot{G}_{B}\right)=\inf _{M}\left(\beta_{1}, \sup _{1}, \sigma^{2}\right) \| P_{1, n_{1}}, \beta_{1}, \ldots, \beta_{1}, \sigma^{2 M-Q_{1}, n_{1}, \beta_{1}, \ldots, \beta_{1}, \sigma^{2 \|} \geq}$ $\inf _{M} \sup _{\left.1, \ldots, \beta_{1}, \sigma^{2}\right)} \| P_{1, n_{1}}, \beta_{1}, \ldots, \beta_{1-m}, 0, \ldots, 0,1^{M-Q_{1}, n_{2}, \beta_{1}, \ldots, \beta_{1-m}, 0, \ldots, 0,1 \|}$ $=\delta\left(\mathscr{G}^{\prime} A, \mathscr{G}^{\prime} B\right) \quad$ where
\mathcal{G}_{A}^{\prime} is given by X_{1}, \ldots, X_{1}, S independent, $X_{i} \sim N\left(\beta_{i}, 1\right) i=1, \ldots, 1$ $S \sim X^{2} n_{1}$ and G_{B}, is given by Y_{1}, \ldots, Y_{1}, T independent $Y_{i} \sim N\left(\beta_{i}, \frac{1}{\sqrt{\Delta_{i}}}\right) \quad i=1, \ldots, I \quad T^{\sim} X^{2} n_{2}$. By sufficiency S may be deleted in $G_{A} A^{\prime}$ and T in \mathscr{G}_{B}^{\prime}. Then proposition 3.1 gives

But by lemma 4.1 the other equality also must hold since we may write $\mathscr{G}_{A}=\tilde{G}, \mathscr{G}_{B}=\tilde{F}_{2}$ with given by $X_{1}, \ldots, X_{1-m}, \xi_{2}$ given by $X_{1-m+1}, \ldots, X_{1}, S, \widetilde{\Psi}_{1}$ given by Y_{1}, \ldots, Y_{1-m} and Ψ_{2} given by $Y_{1-m+1}, \ldots, Y_{1}, T$. Then the assumptions of the lemma are satisfied. In particular $\mathscr{C}_{2} \geq \mathscr{G}_{2}$ follows from proposition 2.1 in [1].

Suppose now that $n_{A}>k$ and $n_{B}>1$. With the group operation defined in the beginning of this section and with the standard toology $\mathbb{R}^{l} \times \mathbb{R}^{+}$becomes a locally topological group which is Hausdorff and statisfies the second axiom of countability.

Let X_{1}, \ldots, X_{1}, S be independent $X_{i} \sim N(0,1) \quad i=1, \ldots, I, S \sim X^{2} n_{A-k}$
Then $\left(X_{1}, \ldots, X_{1}, S\right)\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right)=\left(\sigma X_{1}+\beta_{1}, \ldots, \sigma X_{1}+\beta_{1}, \sigma^{2} S\right)$ and
 $P_{1, n_{A}-k, 0, \ldots, 0,1}\left(B\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right)^{-1}\right) B \in\left(\mathbb{R}^{1} \times \mathbb{R}^{+}\right)$. Similarly $Q_{1}, n_{B^{-1}}, \beta_{1}, \ldots, \beta_{1}, \sigma^{2}(B)^{=Q_{1}}, n_{B^{-1}}, 0, \ldots, 0,1\left(B\left(\beta_{1}, \ldots, \beta_{1}\right)^{-1}\right) B \in\left(\mathbb{R}^{1} \times \mathbb{R}^{+}\right)$ so that \mathscr{G}_{A} and \mathscr{G}_{G}, are transtation experiments. Since $\left\{P_{1, n_{A}}-k, \beta_{1}, \ldots, \beta_{1}, \sigma^{2} \mid\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right) \in \mathbb{R}^{1} \times \mathbb{R}^{+}\right\} \quad$ and

$$
\left\{Q_{1}, n_{B}-1, \beta_{1}, \ldots, \beta_{1}, \sigma^{2} \mid\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right) \in \mathbb{R}^{1} \times \mathbb{R}^{+}\right\} \text {are }
$$

dominated and $\mathbb{R}^{l} \times \mathbb{R}^{+}$is solvable, the method described in section 2, may be applied.

If $B \in \mathbb{B}\left(\mathbb{R}^{1} \times \mathbb{R}^{+}\right)$, then $P^{\prime \prime} 1 ; n_{A}-k, \beta_{1}, \ldots, \beta_{1, \sigma}(B)=$
$P_{1, n_{A}-k ; 0, \ldots, 0,1}\left(\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right)^{-1} B\right)=P_{l_{n_{A}}-k, 0, \ldots, 0,1}\left(\left(X_{1}, \ldots, X_{1}, S\right)\right.$
$\left.\in\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right)^{-1} B\right)=P_{1, n_{A}-k, 0, \ldots 0,1}\left(\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right)\left(X_{1}, \ldots, X_{1}, S\right) \in B\right)=$
$\left.P_{1, n_{A}}-k, 0, \ldots, 0,1\left(X_{1}+\beta_{1} \sqrt{s}, \ldots, x_{1}+\beta{ }_{1} \sqrt{s}, \Omega \sigma^{2}\right) \in B\right)=$
 $\int_{i=1}^{1}\left(x_{i}-\beta_{i} \sqrt{\frac{S_{\sigma}^{2}}{\sigma}}\right) \frac{1}{\sigma} 2 \gamma_{n_{A}-k, 1}\left(\frac{S_{2}^{\sigma}}{\sigma} 2\right) d x_{1} \ldots d x_{1}, d s$. Thus B
$P^{\prime \prime} 1, n_{A}-k, \beta_{1}, \ldots ; \beta_{i} ; \sigma^{2}$ has density $\prod_{i=1}^{1} \varphi\left(x_{i} \because \beta_{i} \sqrt{\left.\frac{S_{\sigma}^{2}}{\sigma}\right) \frac{1}{\sigma}} 2 \gamma_{n_{1}-k,\left(\stackrel{S}{f}_{2}^{2}\right.}\right)$
with respect to the Lebesgues measure.
Similarly $\quad Q_{I, n_{A}=1,0, \ldots, 0,1} \quad h^{\text {as density }} \prod_{I=1}^{I} \cdot \sqrt{\Delta_{i}} \varphi\left(x_{i} \sqrt{\Delta_{i}}\right) \gamma_{n_{B^{-1}}}(s)$ with respect to the Lebesgues measure.

Proposition 4.4 If $m=0$ i.e. $\Delta_{1}, \ldots, \Delta_{1} \geq 1$ and

$$
Q_{1}, n_{B}-1,0, \ldots 0,1 \|=
$$

$\int \mid \prod_{i=1}^{1}\left(x_{i}\right) \gamma_{n_{A}-k}, \frac{n_{B^{-1}}}{n_{A}-k}$ (s) $-\prod_{i=1}^{1} \sqrt{\Delta_{i} \varphi}\left(x_{i} \sqrt{\Delta_{i}}\right) \gamma_{n_{B}-1,1}(s) \mid d x_{1} \ldots d x_{1}, d s$ Proof Let $n_{A}-k=n_{1}, n_{B}-1=n_{2}$ and let $\delta_{X}(B)=I_{B}(x)$ we must show that $N_{0}=\delta_{0} x . . x \delta_{0} \times \delta \frac{n_{2}}{n_{1}^{\prime}}$ is a least favourable distribution for testing.
$H=\left\{P_{1}^{\prime \prime} n_{1}, \beta_{1}, \ldots, \beta_{1}, \sigma^{2}:\left(\beta_{1}, \ldots, \beta_{1}, \sigma^{2}\right) \in \mathbb{R}^{1} \times \mathbb{R}^{+}\right\}$against Q at all levels α. Then the proposition will follow from the
results given i section 2 。
The strongest α-level rest for $H_{N o}$ against Q is given by:
$\delta_{N_{0}}\left(x_{1}, \ldots, x_{1}, s\right)=1 \Leftrightarrow \prod_{i=1}^{1} \sqrt{\Delta_{i}} \varphi\left(x_{i} \sqrt{\Delta_{i}}\right) \gamma n_{2}, 1(s)>\left.c\right|_{i=1} ^{1} \varphi\left(x_{i}\right)$
$\gamma_{n_{1}, 1}\left(s \frac{n_{1}}{n_{2}}\right) \frac{n_{1}}{n_{2}} \Leftrightarrow \exp \left(-\frac{1}{2} \sum_{i=1}^{1}\left(\Delta_{i}-1\right) x_{i}{ }^{2}\right) s^{\frac{1}{2}\left(n_{2}-n_{1}\right)} \exp$
$\left(-s / 2\left(1-n_{1 / n}\right)\right)>C^{\prime} \quad \Leftrightarrow \quad\left(x_{1}, \ldots, x_{1}, s\right) \in K \quad$ where
(i) $\alpha=P_{1, n_{1}}, 0, \ldots, 0, n_{2} / n_{1}$ (K)
(ii) $K_{S}=\left\{\left(x_{1}, \ldots, x_{1}\right) \mid\left(x_{1}, \ldots, x_{1}, s\right) \in K\right\}=$
$\left\{\left(x_{1}, \ldots, x_{1}\right) \left\lvert\, \frac{1}{2} \sum_{i=1}^{1}\left(\Delta_{i}-1\right) x_{i}^{2}<-\log C^{\prime}+\log \left[S^{\frac{n_{2}-n_{1}}{2}}\right.\right.\right.$
$\left.\left.\exp \left(-\frac{\mathrm{S}}{2}\left(1-{ }^{n} 1 / n_{2}\right)\right)\right]\right\}$ is an ellipse which may be degenerate since $\Delta_{i}=1$ is possible.
Let $k_{3}=\max _{s} \log s \frac{n_{2}-n_{1}}{2} \exp \left(-s / 2\left(1-n_{1 / n_{2}}\right)\right)$
(iii) $K_{x_{1}, \ldots, x_{1}}=\left\{s \mid\left(x_{1}, \ldots, x_{1} ; s\right) \in K\right\}=\left\langle k_{1}\left(x_{1}, \ldots, x_{1}\right)\right.$,

$$
\begin{aligned}
& \left.k_{2}\left(x_{1}, \ldots, x_{1}\right)\right\rangle \text { where } \\
& k_{1}\left(x_{1}, \ldots, x_{1}\right) \frac{n_{2}-n_{1}}{2} \exp \left(-\frac{1}{2} k_{1}\left(x_{1}, \ldots, x_{1}\right)\left(1 \frac{n_{1}}{n_{2}}\right)\right)= \\
& k_{2}\left(x_{1}, \ldots, x_{1}\right) \frac{n_{2}-n_{1}}{2} \exp \left(-\frac{1}{2} k_{2}\left(x_{1}, \ldots, x_{1}\right)\left(1-\frac{n_{1}}{n_{2}}\right)\right)
\end{aligned}
$$

Then

$$
\begin{array}{r}
P_{1 ; n_{1}}, 0, \ldots, 0, \frac{n_{2}(K)}{n_{1}}= \\
k_{2}\left(x_{1}, \ldots, x_{2}\right)
\end{array}
$$

Let $E_{\beta_{1}, \ldots, \beta_{1}}, \sigma^{2}$ be the expectation taken relative to $P^{\prime \prime}{ }_{I}, n_{1}, \beta_{1}, \ldots, \beta_{1} ; \sigma^{2} \quad$ Then $P^{\prime \prime}{ }_{1}, n_{1}, \beta_{1}, \ldots, \beta_{1}, \sigma^{2(K)}=$

$$
E_{\beta_{1}}, \ldots, \beta_{1}, \sigma^{2}\left[I_{K}\left(X_{1}, \ldots, X_{1}, s\right)\right]=
$$

$E_{\beta_{1}, \ldots, \beta_{1}, \sigma^{2}} E_{\beta_{1}}, \ldots, \beta_{1}, \sigma^{2}\left[I_{K}\left(X_{1}, \ldots, X_{1}, S\right) \mid S\right]$. But ${ }_{E_{\beta}}, \ldots, \beta_{1}, \sigma^{2}\left(I_{K}\left(X_{1}, \ldots, X_{1}, S\right) \mid S\right)$ is a function of ($\left.X_{1}, \ldots, X_{1}, S\right)$ only through S. Thus the distribution is independent of $\left(\beta_{1}, \ldots, \beta_{1}\right)$. Consequently $P_{1}{ }_{1} n_{1}, \beta_{1}, \ldots, \beta_{1}, \sigma^{2(K)}=$ $\left.{ }^{E_{0}}, \ldots, 0, \sigma^{2} E_{\beta_{1}}, \ldots, \beta_{1}, \sigma^{2\left[I_{K}\right.}\left(X_{1}, \ldots, X_{1}, S\right) \mid S\right]$. Futhermore $E_{\beta_{1}}, \ldots, \beta_{1}, \sigma^{\left.2\left[I_{K}\left(X_{1}, \ldots, X_{1}, s\right) \mid S\right] \leq E_{0}, \ldots, 0, \sigma^{2\left[I_{K}\right.}\left(X_{1}, \ldots, X_{1}, s\right) \mid s\right]}$ since K_{s} is an ellipse with center in $(0, \ldots, 0) \in \mathbb{R}^{1}$, and the probability for $\left(X_{1}, \ldots, X_{1}\right) \in K_{B}$ where $\left(X_{1}, \ldots, X_{1}\right)$ are independent $X_{i} \sim N\left(\beta_{i} / \sqrt{\frac{s}{\sigma}} 2,1\right) i=1, \ldots, 1$, is maximized when the center in the ellipse and the distribution coincide.

Thus $P_{1}{ }_{1}, n_{1}, \quad \beta_{1}, \ldots, \beta_{1}, \sigma^{2(K)} \leq$

Finally if we show that $P_{1}{ }_{1}, n_{1}, 0, \ldots, 0, \sigma^{2(K)} \leq$
$P_{1}^{\prime \prime} n_{1}, 0, \ldots, o_{1} n_{2}(K)=\alpha \dot{\alpha}, \sigma^{2}>0$, theorem 3.7 in [4] will give that N_{0} is the least favourable distribution. Let $\alpha\left(\sigma^{2}\right)=P_{1}{ }_{1, n_{1}}, 0, \ldots, \sigma^{2(K)}=$ $\int \prod_{i=1}^{1} \varphi\left(x_{i}\right)\left[r_{n_{1}, \sigma^{2}}\left(k_{2}\left(x_{1}, \ldots, x_{1}\right)\right)-r_{n_{1}}, \sigma^{2}\left(k_{1}\left(x_{1}, \ldots, x_{1}\right)\right)\right] d x, \ldots, d x_{1}$ $\frac{1}{2} \sum_{i=1}^{1}\left(\Delta_{i}-1\right) x_{i}^{2}<k_{3}$
$=\prod_{\frac{1}{2} \Sigma\left(\Delta_{i}-1\right) x_{i}^{2}<k_{3}}^{\prod_{i=1}^{1}}\left(x_{i}\right)\left[n_{n_{1,1}}\left(\frac{1}{\sigma} 2 k_{2}\left(x_{1}, \ldots, x_{1}\right)\right)-\right.$ $\left.\left.\Gamma_{n_{1,1}\left(\frac{1}{\sigma}-2\right.} k_{1}\left(x_{1}, \ldots, x_{1}\right)\right)\right] d x_{1} \ldots, d x_{1}$

Now $\left\{P_{1}{ }_{1}, n_{1}, o, \ldots, o, \sigma^{2}: \sigma^{2} \in \mathbb{R}^{+}\right\}$is an exponential family of distributions and $\alpha\left(\sigma^{2}\right)=\int I_{K}\left(x_{1}, \ldots, x_{1}, s\right)$ $P_{1, n_{1}}, 0, \ldots, 0, \sigma^{2}\left(d x_{1} \ldots d s\right)$ Hence, by theorem 2.9 in [4] derivation with respect to σ^{2} under the intergration sign is permitted.

$$
\begin{gathered}
\alpha^{\prime}\left(\sigma^{2}\right)=\iint_{\frac{1}{2} \Sigma\left(\Delta_{i}-1\right) x_{i}^{2}<k_{3}}^{i_{i}^{1}} \varphi\left(x_{i}\right)\left(\frac{1}{\sigma} 2\right)^{2}\left[k_{1}\left(x_{1} * *, x_{1}\right)\right. \\
\end{gathered}
$$

$\Gamma_{n_{1}}, 1\left(\frac{1}{\sigma} 2 k_{1}\left(x_{1}, \ldots, x_{1}\right) k_{2}\left(x_{1}, \ldots, x_{1}\right) \Gamma_{n_{1}, 1}\left(\frac{1}{\sigma} 2 k_{2}\left(x_{1}, \ldots, x_{1}\right)\right)\right] d x_{1}, \ldots, d x_{1}$. By (iii) above $\alpha^{\prime}\left(\frac{n_{2}}{n_{1}}\right)=0$, so that α has an extremal point in $\frac{n_{2}}{n_{1}}$.

$$
\text { Consider } f(t)=\Gamma_{n_{1}, 1}\left(\frac{k_{2}}{t}\right)-\Gamma_{n_{1,1}}\left(\frac{k_{1}}{t}\right) k_{2}>k_{1}>0, t>0 .
$$

$f(t)$ can have only one extrmal point, t_{0}. Since $f>0$ and $\lim _{t \rightarrow 0} f(t)=\lim _{t \rightarrow \infty} f(t)=0$, this must be a maximum point and $f^{\prime}(t)<0 \quad t>t_{0}, f^{\prime}(t)>0 \quad t<t_{0}$. These results applied to the intergrand in the expression for $\alpha^{\prime}\left(\sigma^{2}\right)$, give that $\frac{n_{2}}{n_{1}}$ must be a maximum point

It still remains to condider the case
$1 \leq n_{A}-k<n_{B}-1+m$ and $m>0 . \delta\left(\xi_{A}, G_{B}\right)$ is not known then.

Suppose now that $0 \leq r a n k A=r \leq k$. By the remark at the end of section $3 \delta\left(\mathcal{C}_{A}, H_{B}\right)=2$ if row [B^{\prime}] \& row [A']

If row [B^{\prime}]c row [A^{\prime}] we may write, in the same way as in section 3, $A=V S, B=V T$. Then $\delta\left(\dot{G}_{A}, \dot{G}_{B}\right)=\delta\left(\xi_{S}, \dot{G}_{T}\right)$

If $F^{\prime} S S ' F=I, F^{\prime}$ TIT $=\Delta$ with F a nonsingular $r x$ r matrix, $\operatorname{rank}\left(B^{\prime}\right)=\operatorname{rank}\left(T^{\prime}\right)=\|\left\{i \mid \Delta_{i}>0\right\}$. Let $\tilde{\mathbf{S}}=F^{\prime} S$,
 the results above may be summarized in the following theorem.

Theorem 4.1

If row [$\left.\mathrm{B}^{\prime}\right] \not \subset$ row $\left[\mathrm{A}^{\prime}\right], \delta\left(\mathscr{G}_{\mathrm{A}}, \mathscr{G}_{\mathrm{B}}\right)=2$
If row [$\left.B^{\prime}\right] \subset$ row $\left[A^{\prime}\right]$, let $A=V S, B=V T$ where $\left.V=V_{1}, \ldots, V_{r}^{\prime}\right)$ and $V_{1}^{\prime}, \ldots, V_{r}^{\prime}$ are a basis for row [$\left.A^{\prime}\right]$, and let $\Delta_{1}, \ldots, \Delta_{\text {rank }}\left(A^{\prime}\right)$ be the solutions of $\operatorname{det}\left(T T^{\prime}-\Delta S^{\prime}\right)=0$. Then

$$
\left\{\begin{array}{lll}
2 & \text { if } \operatorname{rank}\left(A^{i}\right)=n_{A} & \operatorname{rank}\left(B^{\prime}\right)<n_{B} \\
E \mid 1-\prod_{0} & \left.\exp \left(-\frac{1}{2}\left(\Delta_{i}-1\right) Y_{i}^{2}\right) \right\rvert\, & \text { if } n_{A^{\prime}}=\operatorname{rank} A^{\prime} \\
& n_{B}=\operatorname{rank} B^{\prime}
\end{array}\right.
$$

$$
\delta\left(\zeta_{A}^{\psi}, \zeta_{B}\right)=\left\{\begin{array}{r}
E\left|1-\prod_{\Delta_{1}} \sqrt{\Delta_{i}} \exp \left(-\frac{1}{2}\left(\Delta_{i}-1\right) Y_{i}{ }^{2}\right)\right| \text { if } n_{A}>n_{B}+ \\
\end{array}\right.
$$

$$
E \left\lvert\, 1-\frac{n_{B}-\operatorname{rank}\left(B^{\prime}\right)}{n_{A}-\operatorname{rank}\left(A^{\prime}\right)} \frac{\gamma n_{B}-\operatorname{rank}\left(B^{\prime}\right), 1(S)}{n_{A}-\operatorname{rank}\left(A^{\prime}\right), 1\left(\frac{n^{\prime}-\operatorname{rank}\left(A^{\prime}\right)}{\left.B^{-\operatorname{rank}\left(B^{\prime}\right)}\right)}\right.}\right.
$$

$$
\Delta_{i} \sqrt{\Delta_{i}} \exp \left[-\frac{1}{2}\left(\Delta_{i}-1\right) Y_{i} 2\right]
$$

$$
\text { if } \begin{aligned}
\left\{\left\{\mid 0<\Delta_{i}<1\right\}=0\right. \text { and } & n_{B^{-}} \operatorname{rank}\left(B^{\prime}\right) \geq \\
& n_{\Lambda^{\prime}}-\operatorname{rank}\left(\Lambda^{\prime}\right) \geq 1
\end{aligned}
$$

$Y_{1}, \ldots, Y_{\text {rank }}\left(A^{\prime}\right), S$ are independent $Y_{i} \sim N(0,1), \frac{n_{A^{-r a n k}\left(\Lambda^{\prime}\right)}^{n_{B}-\operatorname{rank}\left(B^{\prime}\right)}}{} S \sim$ $x{ }^{2} n_{A^{\prime}}-\operatorname{rank}\left(A^{\prime}\right)$

Proof
$n_{A}-\operatorname{rank}\left(A^{\prime}\right) \geq n_{B}-\operatorname{rank}\left(B^{\prime}\right)+\neq\left\{i \mid 0<\Delta_{i}<1\right\}$ is equivalent with $n_{A} \geq n_{B}+\operatorname{rank}\left(A^{\prime}\right)-\operatorname{rank}\left(B^{\prime}\right)+\left\{i \mid 0<\Delta_{i}<1\right\}=$ $n_{B}+\mathscr{H}\left\{i \mid 0 \leq \Delta_{i}<1\right\}$, so that the third expression for $\delta\left(\underset{G}{4}{ }^{4} G_{B}\right)$ in the second half of the theorem follows from proposition 4.3.

Consider now the situation treated by Le Cam for σ^{2} known. Corollary

If $A A^{\prime}$ is nonsingular and $B B^{\prime}$ - AA' is positive semi-

where \mathbf{Z} is multilinear normal with expectation 0 and covariance matrix $\left(A A^{\prime}\right)^{-1}$, and $\frac{n_{A}-\operatorname{rank}\left(A^{\prime}\right)}{n_{B}-\operatorname{rank}\left(A^{\prime}\right)} S$ is
x^{2}-distributed with $n_{A}-\operatorname{rank}\left(\Lambda^{\prime}\right)$ degrees of freedom and is indepentdent of Z 。

Proof

Let F be a nonsingular matrix such that $F^{\prime} A A^{\prime} F=I, F^{\prime} B^{\prime} F=$ Δ. Then, since B^{\prime} - $A A^{\prime}$ is positive semidefinit and since $\Delta_{1}, \ldots, \Delta_{\text {rank } A}$ are the solutions of $\operatorname{det}\left(B B^{\prime}-\Delta A A^{\prime}\right)=0$, $\Delta_{1}, \ldots, \Delta_{k} \geq 1$. By nothing that $A A^{\prime}$ nonsingular implies BB' nonsingular, the corollary now follows in the same way as the corresponding result in section 3 .

5. Examples

Example 1
Let $A^{\prime}=\left(\begin{array}{cc}1 & t_{1} \\ \vdots & \\ 1 & t_{n_{A}}\end{array}\right) \quad B^{\prime}=\left(\begin{array}{cc}1 & S_{1} \\ \vdots & \\ 1 & S_{n_{B}}\end{array}\right)$

Then $\Lambda A^{\prime}=\left(\begin{array}{lll}n_{A} & n_{A}{ }^{\bar{E}} & \\ & & \\ n_{A} \bar{E} & n_{\Lambda}^{\Sigma} & t i^{2}\end{array}\right)$

Suppose rank $A^{\prime}=2$, ie. not all $t_{1}, \ldots, t_{n_{A}}$ equal. If $M_{A}=\sum_{i=1}^{n_{A}}\left(t_{i}-\dddot{t}\right)^{2}, \quad M_{B}=\sum_{i=1}^{n_{B}}\left(S_{i}-\widetilde{S}\right), \operatorname{det}\left(B B^{\prime}-\Delta A A^{\prime}\right)=0$
has 2 zeroes Δ_{1}, Δ_{2} given by
$\frac{1}{2 n_{A} M A} \quad\left[H_{B} M_{A}+n_{A} M_{B}+n_{B} n_{A}(\bar{s}-\bar{t}) \pm\left(n_{B} M_{A}+n_{A} M_{B}+n_{A} n_{B}(\bar{t}-\bar{s})-\right.\right.$ $\left.\left.4 n_{B} n_{A} M_{A} M_{B}\right)^{\frac{1}{2}}\right]$
$\delta\left(G_{A}, \Psi_{B}\right)$ may now be computed for σ^{2} known, and for σ^{2} unknown except when $0<n_{A}-2<n_{B}-\operatorname{rankB}+\left\{i \mid 0<\Delta_{i}<1\right\}$ and $\left\{i \mid 0<\Delta_{i}<1\right\}>0$.
Note that if $\dddot{t}=\bar{s}, \Delta_{1}=\frac{n_{B}}{n_{A}}, \Delta_{2} \frac{M_{B}}{\bar{M}_{A}}$.
Example 2 If A_{i} and $W_{\text {a }}$ are the minimal informative and the maximal informative experiments respectively,
$\delta\left(\xi_{A}, \mathscr{G}_{i}\right)$ and $\delta\left(\xi_{a}, \mathscr{G}_{A}\right)$ give absolute measures of the information in the experiment GA. Unfortunately for translation experiments on the real line both of these deficiencies are equal to 2 as shown by Torgersen in [5]. Hence $\delta\left(\mathcal{G}_{\mathrm{A}}, \mathscr{E}_{i}\right)=$
$\delta\left(M_{a}, \mathcal{G}_{A}\right)=2$ for the case when σ^{2} is known and consequently also for σ^{2} unknown.

However, if an experiment is given by the independent, observations X_{1}, \ldots, X_{n}, deficiencies may be used to compute the information contained in an additional observation.

In the experiments considered in this paper, the observations are not identically distributed, because the distribution of the additional observation is dependent of the choice of the regression coefficients. The question then naturally arises whether deficiencies may be of help to determine the regression coefficients so the additional observation contains as much information as possible.

Let $\mathrm{A}=$

$$
\left(\begin{array}{ccc}
a_{11} & \cdots . . & a_{1 n} \\
& & \\
a_{k 1} & & a_{k n}
\end{array}\right) \quad B=\left(\begin{array}{cccc}
a_{11} & \cdots & a_{1 n} & t_{1} \\
& & & \\
a_{k 1} & \cdots & a_{k n} & t_{k}
\end{array}\right)
$$

Suppose rank $A=k$
Then $\operatorname{det}\left(B B^{\prime}-\Delta A A^{\prime}\right)=\operatorname{det}\left(A A^{\prime}+t t^{\prime}-\Delta A A^{\prime}\right)=$ $\operatorname{det}\left(t t^{\prime}-(\Delta-1) A A^{\prime}\right)$. Since rank $\left[t t^{\prime}\right]=1$, the solutions of $\operatorname{det}\left(t^{\prime}-\Delta A^{\prime}\right)=0$ are all equal to zero, exept one. The solution $\Delta=0$ has multiplicity $k-1$. Hence $\operatorname{det}\left(t t^{\prime}-\Delta A A^{\prime}\right)=0=\operatorname{det}\left(A \Lambda^{\prime}\right) \operatorname{det}\left(\left(t t^{\prime}\right)\left(A A^{\prime}\right)^{-1}-\Delta I\right)=$ $\operatorname{det}\left(A A^{\prime}\right)(-\Delta)^{k-1}\left(\Delta_{0}-\Delta\right)=\left[(-1)^{k} \Delta^{k}+(-1)^{k-1} \Delta_{0} \Delta^{k-1}\right] \operatorname{det}$ (AA') where Δ_{0} is the nonzero solution of $\operatorname{det}\left[\left(t t^{\prime}\right)\left(A A^{\prime}\right)^{-1}-\Delta I\right]=0$ But $\left.\operatorname{det}\left[\left(t t^{\prime}\right)\left(A A^{\prime}\right)\right)^{-1} \Delta I^{\prime}\right]=(-\Delta)^{k}+\operatorname{tr}\left(t t^{\prime}\right)\left(A A^{\prime}\right)^{-1}(-\Delta)^{k-1}+$ factors of lower order in Δ_{0}. Hence $\Delta_{0}=\operatorname{tr}\left(t t^{\prime}\right)\left(A A^{\prime}\right)^{-1}$,
and $1+\operatorname{tr}\left(t t^{\prime}\right)\left(A A^{\prime}\right)^{-1}, 1, \ldots, 1$ are the k solutions of $\operatorname{det}\left(B B^{\prime}-\Delta A A^{\prime}\right)=0$

Let $X \sim N(0,1)$. Then, by noting that $\operatorname{tr}\left(t t^{\prime}\right)\left(A^{\prime}\right)^{-1}=$ $t^{\prime}\left(A A^{\prime}\right)^{-1} t, \delta\left(\bigcup_{G}, \mathscr{Q}_{B}\right)=E\left|1-\sqrt{t^{\prime}\left(A A^{\prime}\right)^{-1} t+1} \exp \left(-\frac{1}{2} t^{\prime}\left(A A^{\prime}\right)^{-1} t X^{2}\right)\right|=$ $4\left[\Phi\left(\left[\left(1+t^{\prime}\left(A A^{\prime}\right)^{-1} t\right) \frac{\log \left(1+t^{\prime}\left(A A^{\prime}\right)^{-1} t\right)}{t^{\prime}\left(A A^{\prime}\right)^{-1} t}\right]^{\frac{1}{2}}\right)-\right.$
$\left.\Phi\left(\left(\frac{\log \left(1+t^{\prime}\left(\Lambda A^{\prime}\right)^{-1} t\right)}{t^{\prime}\left(A A^{\prime}\right)^{-1} t}\right)^{\frac{1}{2}}\right)\right]$
for σ^{2} known. In the above expression we have written the integrand f, and used that $\int|f|=2 \int f^{+}$.

If Y, S are independent $Y \sim N(0,1), \frac{n-k}{n-k+1} S \sim X^{2} n-k$,
$\delta\left({\underset{G}{G}}_{A}, \dot{G}_{B}\right)=\int \mid \varphi(x) \gamma n-k, \frac{n-k+1}{n-k}(s)-\left(1+t^{\prime}\left(A A^{\prime}\right)^{-1} t\right)^{\frac{1}{2}}$
$\varphi\left(x\left(1+t^{\prime}\left(A A^{\prime}\right)^{-1} t\right)^{\frac{1}{2}}\right)^{Y n-k+1}$
(s) $1 d x d s$
$=E \left\lvert\, 1-\left(\frac{n-k+1}{n-k}\right)\left(\frac{n-k)}{2} \frac{\Gamma\left(\frac{n-k}{2}\right)}{\Gamma\left(\frac{n-k+1}{2}\right)} \quad\left(1+t^{\prime}\left(A A^{\prime}\right)^{-1} t\right)\right.\right.$
$\left.\sqrt{\frac{S}{2}} \exp \left(-\frac{1}{2} \frac{S}{n-1+I}-\frac{1}{2} t^{\prime}\left(A A^{\prime}\right)^{-1} t Y^{2}\right) \right\rvert\,$
when σ^{2} is unknown.
If σ^{2} is known and s. $\left(A A^{\prime}\right)^{-1} s>t^{\prime}\left(A A^{\prime}\right) t$
the experiment where the $n+1$ th observation has regression coefficients (s_{1}, \ldots, s_{k}) is more informative than the experiment where the $n+1$ th observation has regression coefficients $\left(t_{1}, \ldots, t_{k}\right)$ Hence $\delta\left(\mathcal{G}_{A}, \mathscr{G}_{B}\right)$ is increasing in $t^{\prime}\left(A^{\prime}\right)^{-1} t$ for σ^{2} known.

Consider again the situation in example 1. If we weite $t^{\prime}=\left(1, t_{n+1}\right)^{\prime}, t^{\prime}\left(A A^{\prime}\right)^{-1} t=\frac{1}{M}\left(t_{n+1}{ }^{2}-2 \bar{t}_{t_{n+1}}=\frac{1}{n} \sum_{i=1}^{n} t_{i}{ }^{2}\right)$
$\bar{I}=\frac{1}{n} \sum_{i=1}^{n} t_{i}$, so that the minimal increase in $\delta\left(G_{A}, G_{B}\right)$ is obtained by letting $t_{n+1}=\bar{t}$, and in this case $\delta\left(G_{A}, G_{B}\right)=4\left[\Phi\left(\left[(n+1) \log \left(1+\frac{1}{n}\right)\right]^{\frac{1}{2}}\right)-\Phi\left(\left(n \log \left(1+\frac{1}{n}\right)^{\frac{1}{2}}\right)\right]\right.$ when σ^{2} is known.

Acknowledgment. The problem was suggested by Dosent Erik Torgersen who have also pointed out improvements of several of the proofs.

References

[1] Hansen, O.H. and Torgersen, E.N. (1974): Comparison of linear normal experiments. Ann. Statist. 2 367-373
[2] Le Cam,I. (1964) Sufficiency and approximate sufficiency. Ann. Math. Stat. 35 1419-55
[3] Le Cam,I. (1975) Distances between experiments. 383-395 in J.N. Srivastava. (ed): A Survey of Statistical Design and Linear Models. North-Holland Publishing company.
[4] Lehman,E.I. (1959) Testing Statistical Hypotheses. Wiley, New York
[5] Torgersen,E.N. (1972): Comparison of translation experiments. Ann. Math. Stat 43. 1383-1399.

