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Summary

Let X‘l"”’xn be independent and normally distributed variables,
such that O < var X; = ¢° , i=1,...,n and E(X;,...,X )" = A'B
where A is an k X n matrix with known coefficients and
B = (B1""’Bn)' is an unknown column matrix. o2 may be known
or unknown. Denote the experiment obtained by observing
}{1,...,)(n by E A Let A and B ©be matrices of dimension
n, X k and np X k .

The deficiency 6(51&’ EB) is computed when 02 is known,
and for some cases, including the case BB' - AA' positive

semidefinit and AA' nonsingular, also when 02 is unknown.



2.__Introduction and basic facts.

Definition., An experiment is a pair g =((x,u{); (Pe,ee 0))

where (x,A) is a measurable space and (PQ,GG ) is a family
of probability measures over (X,.).

For two experiments 5 and '3? indexed by the same para-
meter set ® Le Cam defined in [2] the deficiency ﬁ(g,‘;)
of g relative to & . The A- distance between ¢& and ¥
is the number A(g,?) = max (3(& ,F), 6(@',5)).

If 5(2?),‘3.') = 0, we say that é’, is more informative than

L ——r

‘% and write this LC‘; Z’I. If also 6(‘3",?,:33 = 0, we say
{. o~ o
that g and <~ are equivalent and write this & ~ .

For E: 4, (JA/ experiments with the same parameter set ©

the following relations hold
0<s(f,I)<2 (L&) =0
6§, T8 (&G +8(G, )
In particular A is a pseudomet;c'ic.

Let £ = ((x,4), (B 6€0)) ana ¥ = ((Y,8), %9
be two experiments such that (P,,0€8) is deminated, Qé, is
a Borel subset of a complete separable metric space and LJ.:
is the class of Borel subsets of /g, . Then Le Cam [2] has
shown that 6(2{,'}’) = g’qré:&sup \\Peﬁ - Qll where M is the
set of all Markov kernels from (x,%’_) to (‘7},},@).

In this paper we will exploit certain symmetric properties
of the experiments & and ‘¥ to be able to substitute the
class ‘/l/(, in the above expression with a smaller class con-
sisting of "invariant' Markov kernels.

Let G Dbe a group of transformations acting on @, ¥, ’%

such that x » g(x), v 2 g(y) are measurable gcG and



Py & =1 Pgy, Qg8 -1 Qgy, 8€G, 8€@., A Markov kernel is
called invariant if M(g(B)lg(x)) = M(Blx) gee, Bixe x- N
where Py(N) = 0, 660, Let thiG be the set of invariant Markov
kernels from (X,A4) +to (fj,é%). It then follows from [5]

1 ‘/‘J
o

that the following conditions are sufficient for 8 (;

<

=9 T =
inf  sup || PgM - Q|
MeNM, © ”
(i} (Pg,0€8) is dominated, '/ is & Borel subset of a

complete scparable metric space and CE) is the class
of Borel subsets of 14 .

(ii) The families (Py,9€@) and (Qy,0€@) are invariant

(iii) There exists a o'-algebra g in G such that the
maps (x,g) = g(x), (v,g) * g(y) are respectively
Asx {? and % x (,  measurable.

(iv) There exists a O-finite measure1'on(G,g ) such that
T(B) = 0 implies 7(Bg) = O, BECB.,gEG./

(v) The group G has an invariant mean. If in addition:

(vi)  There exists one MEM , so that M(g(Ble(x)) = M(Blx)
Be(®, ecq, x€x, M, may ve substituted with M, -
(MM | M(g(B) | g(x)) = M(Blx) B , gég, xcx} i.e.
we can restrict attention to invariant‘Markov kernels
with O as exeptional set.

A sufficient condition for (v) +to hold is that é} is
solvable.

Suppose gP = ((X,u"{),(PG, 0€0)) where © =X is a
second countable locally compact topological group;which is
Hausdorf, u4 is the Borel subsets of X, and the DPy's are
given by P9(1&)=P(A6'1) AEJ% g€X where P 1is a probability



measure. ThenéiP is called a translation experiment. If
%,Q = (Cx,u4), (Qe,GECD) is another translation experiment,
let g€ G be of the form (x,g) = %8~ where 6€0©, Then
the conditions (ii), (iii)and (vi) are satisfied, and ¥X is
a complete separable metric space. If we let T be the Haar
measure on (x,d@), also (v) is seen to be satisfied. Hence
6(gP, go) = MEiunﬁ;Go sup gk - Qgll provided (Py,0c®) 1is
dominated and X is solvable, Torgersen [5] has shown that
in this case every invariant Markov kernel with @ as the
exeptional set may be written M(B|x) = N(Bx'1) where N is
a probability measure over (x,u‘f ) and that 6(8 ps E’,Q) =
inf ||N * P - Q|| where N * P (4A) = NxP (i(x1,x2)|x1x2 €Al).
The following result, also from [5]and valid under the
same conditions, gives a direct method to determine & for
translation experiments, If NO is a least favourable dis-
tribution for all level &4 € [0,1] for testing H: Py"e€®
against Q where Pg"(4) = P(9'1A) 0c @, AcA, then &( EP’% Q) =

lw, * 2 - ql

The purpose of this paper is to use the above results to
compute the deficiencies between linear normal experiments,
These experiments may be described as follows: Let A be a
known kan matrix and %;A the experiment given by the
independent normally distributed variables X1,...,X£ ~ with
var X, =92 i =1,..,n, and E(X1,..,XhA.)" - A'8  where

k

B = (81,..,Bk)' € R°. To avoid trivialities we shall assume

n, > k> 1.

2

The parameter set is J- wo,of¥ if 0° is known, and



2 is unknown.

]- o, o[¥x Jo, o[ if o
From theorem 3.1 in [1] it follows that if A and B

are matnces of dimension k x n, and k x ng then

gA > 83 if and only if AA' - BB' 1is positve semidefinite

2
when 02 is known, and (g A > gB if and only if AA' - BB!'

is positive semidefinite and n, > ng + rank (AA' - BB') when
o is unknown. Then & , ~ €, if and only if AA' = BB'
if o isdmown, and ¢ , ~ %, if and only if AA' = BB

2

and n, = ng if © is unknown.

In the computation of 6(%1&_’ :’ng) we may therefor choose
the experiments within the equivalence classes determined by
AA', BB' when 62 is known, and (AA', n,), (BB, nB) when

2

a: is unknown.



3, The case of known variance @2

Proposition 3.1 Suppose AA' = I, BB' = A where A is a

k x k¥ diagonal matrix with diagonal elements Ai”"’ Ak_’:: 0.
oy | 2

Then 8(,, ’éB) = E|1-—A§L1 ,/Ai exp ( #(8;-1) ¥, | where

Yq4,..., Y are independent and identically N(0,1) distri-

buted.

Proof

,

/

/

We may choose A = (

Cf.'o 0.;..01\

where the last

oo 3
[N Y

\'000001 O.oooo/
n, - k columns consist of only zeros, and
-./N/A1...o 0...0

\ where the last

o 6o

ng - k columns consist of only geros. Without less of

{
B =
\

)
/

Qoesoes

generality we may assume that Aay..,07 >0 and A1+1 = ses =
A, =0 0<1<k. This means that (. , is given by the
independent, normally distributet variables Xy5+05 X, where

1,..,k

\

w
(=
]

i 2 .
EX- = = VaI'Xi =U l=l,o.’ nA

-~ 0 i=k+1,.., n,

Similarly é:B is given by the independent, normally distri-

butet variables Y,,.., L where
, 1 !

e

q’..’l

EYi =

0 i=1+1,..,

np

\

By sufficiency Xk+1"" Xn, may be deleted from ? and



Y1+1,..., YnB may be deleted from gB‘ Furthermore, in the

same way as in the proof of proposition 2.1 in [1], it may be

1iqr+-s Xn, may be deleted in & p, Finally
Yy

we may replace Y1,.., Y1 with Z1,..., Zl where Zi =T
A
i

shown that X

i= 1,0.., lo
Now f’f A and ?B are translation experiments for addition
[
in R, Since addition in RY is commutative and E’g p @end

1{’3 are both dominated, we may use the method indicated in

section 2 to find 6(59A, GB) Let Pg Be Rl ve the measure

defined by X Xl independent and normally distributed with

1’.‘

EX; = Bi, varX; = oz,i = 1,..1 and Q be the measure defined

by Y1,.., Yl inde2pendent and normally distributed with

g.

=Z1—'i = 1,...,1. Then the least favourably

distribution NO for testing He- PB,BE Rl against the alter-

native K ; Q is given by the independent variables U1,..,Ul

where Ui = Q0 with probability 1 if Ai > 1 and Ui is
T3 . A . o

N(o, © A«-i.q) distributed if A; < 1. Hence 6(2f A’L_,B) =

In, * 2 - qQll. But N, * P has density A<1 ga ® («fl L)

X.
Ai_>;_1 ; o) (~6l-) with respect to the Lebesgues measure in ]Rl.
|

Proposition 3,2 If rank A' =k, then 6(¢,,&5) =

E |1 - . {31 exp ( - & (Ai-—1) Y12 )| where Ayyees,By are

the solution of get [BB' - MA']= 0, and Y,,..., ¥ are
independent N(O,1) distributed.
Proof Since BB' 1is positive semidefinit, there exists a

kxk nonsingular matrix F such that F'AA'F = I and




F'BB'F = A where A1','...,Ak >0 and A1""’Ak are the
solutions of .det(BB' - X\ AA') = O. |

Let A = F'A, B=P'B. If By and Qg are, respectively,
the probability measures inn g A and g B corresponding to
the parameter value B, then since A'FB = B , 0( ESA’ EB) =

wfﬁg\\gm M-v%@\l=6(gx,§§)

. | .
1§1[f ssp I PgM - Qg - 1

E |1 - F

Ai>1 «/Ai exp ( - % (Ai - 1) Yiz)‘

Proposition 3.3 If row [B'] ¢ row [A'], then &( gA' (L;QB) = 2,

Proof row [B'] ¢ row [A'] implies (row [B'])‘L:b(row Av) *,
Let B, €(row A')". B_ é(row B')". Then A'B_ = 0,B'B, & O

and 6(&,, &) = inf oup || Bglt - Qp |2 inf sup || Py, 20 -

%go“if %pn% M-%Mm th%M—Qwoi:é

for all Markov kernels M, so that 6(gA, gB) = 2, ]
Suppose BB' - AA' is positive semidefinit and rank A' = k.,

If F has the same meaning as in the foregoing proof, then

T (A- I)= Y'Y (a- 1) T-1FY = 20 (BB' - AA')Z  where

Z = FY, Furthermore EZZ' = EFYY'F' = FF' = (AA')~' and
dgL%:% = dzz F:BB'F = Al"’Ak so that we may write

5(€ )y o ppdet 2BB'; exp [-3 2'(BB' - AA")Z]- 1| where
pr GB/ T 8t (AAT

Z is multivariate normal with mean zero and covariance matrix
(AAv)~1. This is the result given by Le Cam in [3]

Suppose next that row [B']= row [A'] and let V{,...,Vr‘ be

é basis for row [A'], O € r<k. Then as in the proof of
")

theorem 3.1 in [1], we may write A = VS where V = (Vy'yees Vs

is a kxr matrix and S is a ran matrix of rank r.



Similarly B = VT with T a rXng matrix, By writing
a=VBso that A'B=S'VB=S'a and B'g=T'a, it follows

that 8(£,, gB)-_-iﬁf oup I BgM- o i!=iﬁf sup I pgu-0 Il =

6(88, &%;T) where P.' and Q' are, respectively, the
measures in %:S and %fm' corresponding to the parameter
value a, The following result is then an immediate conse-
quence of proposition 3.2
Proposition 3.4 If row [B'Je row [A'],
6({£A9 (JB)_E|1-A >1«/A €xp ("2 (A 1)Y |
where By,...,A, are the solutlon of det (TT' - ASS') =0

and A =7VS, B=VD, rank S=71, V= (V;',...,V.') with

Vi'yeouy V' 2 basis for row [A'].

1
If row [A']%® row [B'] then either row [A'] ¢ row [B']
or row [B'] ¢ row [A'] so that 6(513, ;E%A) =2 or G(EA, gB)=2.
; o '
Consequently A(QSA’CfB) = 2.
Suppose next that row [A']= row [B'], and let V,S,T have
the same meaning as in proposition 3.4 If then X is a solution

0, » ' is a solution of det (SS*-ATT")=0,
2 |=

of det (TT' - ASS')

3

Nothing that ml 1- el Jki exp (-5(a,7'-1) ¥,
E |1~ A <1 Jb exp (-g(A =Y, 2y |, this gives together with
prop031tlon 3.4

Theorem 3.1 Tt row [a']F row [B1], then a(§,, £p) = 2

If row A' = row B' and A =7VS, B=VT where V = (V ] 1,V

and Vl',.., Vr' is a basis for row [A'], then A(éfA,é:B) =

max (2 1= 5 e (-2@4-1) ,7), - A£:L exp (-(8;-1)Y;°))

where AT""Ar are the solutions of det (TT'-ASS') = 0 and

Yy,..,Y. are independent and identically N(0,1) distributed.
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. . . . . 2
. Consider now.linear normal e periments where @ is

unknown, By fixing the paiameter 02; we obtain exPeriments

for which & can be“foﬁndﬁb'the methods of this section,

This means that a & computed for known o always gives a

lower bound for the corresponding & with 0? unknown,
From theorem 2.1 it then follows that the A-distance
is 2 Dbetween the experiments given by X1"‘Xn independent
and normally distributed with var Xi=02, EX=c+Bti 1= 1,..,n,
and Y1""’Yn independent and normally distributed with
var Y, = 0%, EY,= asBty+ pt,° i =1,..,n whether o is
known or not., The A-distance is thus of no help if we want
to determine the amount of information obtained by observing

Y1,.., Y instead of X1 X

n 19 n”
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4. The case of unknown variance 02

Sfome of the notations which will be used in this section
are:
If (X,T) is a topological space, let (R (x) =o( {B] B€ w})

be the Borel sets in ¥.

P 2

]_-;n»p B1s---5 Bl’ 02: le N, 81,--’ Bl,o are the
probability measures over ( rRLxm*, (R( R xR*)) given by

Xyy..,X;, S independent Xy ~ N(Bi’ o) i=1,..,1, S/o'z ~x 2n1

19
9}
and by Y,,..,Y;,T independent Y, ~N(Bi ZE; ),i=1,..,1,

T/02 ~X 2n2 where A,,..,44>0 are known.

2 are the probability

' 2 ' '
P 1381,--,81;0 ’ Q lpB1"°’Bl! o
measures over ( ]Rl,&( IRl)) given by Xi,..,X; independent

X. ~N(B.,0) i =1,..1 and by Y,,..,Y; independent
i i o 1 1

Yi ~ N(Bis ﬁ) i=1,.,1
2
o(x) = (21)7F exp(F) , 2x) = [ o) au
Vg 0 = OG) 2 Y2)7 /21 exp (- Fp) t 72
x>0 t20 TIn,t (x) = T vy n,t (u) du
0]

# (S) is the number of olements in S if § is finite,

-~ e s 2in o

Suppose first that AA' = I, BB' = A where A is a dia-
gonal matrix with diagonal elements A1,...,Ak > 0. Without
loss of generality we may assume that A‘l”“’Al-m > 1,

A, <1 and A

O <Bympreresty

141 =eeee=08y =0 where k2120

In the same manner as in section 3 we may consider a situation .
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where

2
A"k!B1’ o 98130 ’

1

1 + 1 +
2, = (@ xR, @ xR, (P

(Bys-..By,0%) € BT xRY)) if n, >k

=
]

(!, @),y 5 o2 (BgeesPy,0%) € RY xE))

Mo
oy)
1

((B xR 9 (]R X\]R )’(Ql,nB-l,B19-'961!02’

(Byser,By,0%) €BY xRY)) if ny > 1

"
|

1 1 2 1 +
= (@, @025 p 02 1 (Brenf,00) € (B xR)
if np =1
The reduction is quite analogous with what was done in

section 3 except that sufficiency now gives that Xk+1 X
90,

n
n, A
must be replaced with S = T X;° when n, >k and that
ikt ng
~ o . 2
.. 1 - >
Y]'”;;‘;Ynﬁ mist be replaced with T = Z Y when np > 1.
i=1+1

Consider now the group ]Rl xR with group operation
1 1.1 . 1
Xy = (y1 + .y Xy, 91t Jy Xy, XY ) if x = (x1,..,x1,x ),
v = (y45-4,74,7) € R xR* IT may be shown that this group is
solvable and consequently has an invariant mean. With the stan-

1 x R*  the group operation is continuous.

dard topology for R
Hence Bl xR* is a topological group.

Proposition 4.1 If n, = k and np = 1, 6(51&’ gB) = 2

Proof Tet the group G be given by
1
g(X1,..,Xl) = («'81 X1 + g1v'-7 g Xl + gl)
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{ 1! [T 1
g(Y-];-':yl;t) = ( g ¥ +«g,1’-*'9 g yl + gl’g t)

g(By,.r.,B1,0°) = (Jg1ﬁ1 + Bpareeny J&?Q + g, g0°)

where (g,...,8, &) € K- +R*. It may be verified that the

agsumptions (i) - (v) given in section 2 are satisfied so
that we may restrict attention to the set of invariant Markov
kernels M G. It is furthermore not difficult to show that
every MEJ&G must have O as exeptional set i.euﬂiG =J%Go

Assume 8(f ,,£5) =8 <2 and let €>0 so that

d + € <2, Then there exists MEﬁQG so that
o)

n.P'l,B-]’o.yBl;,oz M‘Ql,nﬁnl;B-t,tc’Bl,o?z “ < ¢ + 6

' (61,00,61,0’2) E IR. XIR+
A~
Suppose B,x...x B} x BEK where K is compact and B; €h{R)
i=1,..,1, B (@®*). Then

M(ByX.... B x Blx;,..,xq) = M(JQB, +g %o« o X ./g—1 By + glxg1 B|

1!
- g '\,}g X-] + g1!°-’ g Xl + gl)
1

1

|
. : 1
Now let g1 - 0. Then ,/gi B1 + g1x.,.x,Jg B1 + 8 x8 B=»g
so that M( B1X..,XleB | X,,...,xl) = 0 which isa.contradiction

since :m; XR* is O-compact and probability measures on
ol

metrib spaces are regular, £
Proposgtion 4.2 If ny, =k, ng =1,
¢ % I p ‘ 1
5(Sar op) = I P'1,0,..,0,1 = Q'1,0,..,0,1 |

Proof The proof is analogous to a part of the proof of
proposition 2,1 i [1].
Let G be the group given by

g(Xy,..,%)) = (Jg1x1 + Byreens Jgixi + &)
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s
8(yqreas¥7) = (BT + Byseers «/glyl + 8)

\ (f T 1.2
g(B1’~-’Bls€2) = 851 +g1’-'y\/;Bl+gl:go )

(g19'-9g19g1) € IRl X1R+
It is easily verified that
5(A,, 2n) = inf sup \pr, ‘ 2 M - Qt
gA’ 2B MGLM,G (81,-03 1 0-2) l’Bi,OO,BIQG 1,81,0l:81?
2 . |
ag = nf Ppr. .. M - ! .
n Mé.M(} h 1;0,..,0,1 Q 1,0,..,0,1 H

Suppose MeJ‘aic_ . Since M(-|x,,..,%) is a probability
measure over a'complete separable metric space, M(-° |x1,..,il)
is regular. Thus, for € > 0 there exists K compact so
that M(K[x,,..,%x;) > 1-e. Let lx;,..,xlukc i(j.i [a;,b,].
Then

( } [al, 1]|x1""xl) _]n(f7 vrﬂtal, l]+g |JFT;1+g1,.., g x1+gf

“""' .—-)‘i L. P - - - -
M( i:L Jg1({ai,bi]+xi |%,,..,%) > 1-€ by inserting gi=xi—Jg'xi

i=1,..,1° Now let g = 0. Then M(lx,,..,xll x;,..,x) >1-¢,
so that M(Blx,,..,%;) = Iz(%,,..,%x) BB ®H. 7

Let us now consider the case where nA_> k. PFist we need

a lemma,

( -
;'m,e_..mm____a_ﬂ;:,,l Let > i=(xi"/4i)’(POI,G?(BI'%)E@ix@B)) i=1,2

=0y,

such that (Qg. ¢ (0-,9 )E® .X@ ;) j=1,2 are diminated and
393 J J 3

ﬁ% ), (Qg. 185 (e j,93)€ ®jx® z)) J=1.2 be four experiments

2¥3 j=142 are Borel subsets of complete separable metric

spaces and Cg j=1,2 are the classes of Borel subsets of

{A,J j=1.2.




X P
3" 704,03

'g=((x1 xxz.u‘h xv4.2),(P91,9
‘ (91: 29 3)E® X®2x®3))

-

T (Y, 2,8, 23, o 105 X %0,

(919 2 3) ® X®2 X®3))
Then if &, > $,, 8(%,7) <8(f, D).
Proof From the assumptions it follows that there exists a

Markov kernel M, from OQPCSZ) to (:}2,p42) such that

P M, = Q
82785 72 7 70,,8 g
from (X1,u41) to (Qé1,Qﬁ1), Then M, x M, is a Markov kernel

(62,93)€®2 x 85. If M; is a Markov kernel

4

8 \:

Y4,0, x To 0, | = I2,_,5,"

Proposition 4,3 If n, - k >ng -1+ m2>0, then

1, - Q
17 %0, |

(& dp) - I®'ym,0,..,0,1 =~ Y1-m,0,..,0,1 ! O
Remark If n, - k = ng - 1l =m=0 proposition 4.2 and

4.3 give the same result,

Proof Let n,=n,~k, ng-l=n,. The proof will be carried out
only for ng,nq > 0, the proofs of the cases nﬁ=0, n, > 0 anhd

ny >0, n2=0 are quite analoguous,
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2|l >

Sup
6(&p Ep)= W (By,.n,Py,00 B1,0,8,,.0,80,02 0 0 8.,..,8,,0

inf su'
M (8,058,012

M-
1,04s84,-4481 1,0,..,0,1 Ql’n2'51’"’Bl-m’o’“’o’”\
=6( é'A, g'B) where
‘éA' is given by X,,..,X;,5 independent, X N(B;,1) i=1,..,1
n and %B is given by Y1,..,Y1,T independent
Y AN(B B '5 i= 1,.,,1 G By sufficiency S may be deleted
Do

in GQA' and T in 83‘. Then proposition 3.1 gives

} - \ e
) W 5% _ _
5(8y » &5 ) 28(E " ¢ =11 m0,..,0,7%1m,o0,..,
But by lemma 4.1 the other equality also must hold since we may
. W oo Fay . W . .
write éA= ot éB= g"f with é 4 given by X1""Xl-m’ 82 given by
Xl-m+1"”X1’S’ 251 given by Y.,..,Y; o and ¢ o given by

Yl—m+1""Y1’ T. Then the assumptions of the lemma are satisfied.

In par‘l:iculartf'2 > gz follows from proposition 2.1 in [1] ]

Suppose now that n, > k and ng > 1. With the group operation

defined in the heginning of this section and with the standard topo-

logy ]Rl xR* becomes a locally topological group which is Hausdorf
and statisfies the second axiom of countability.
Let X,,..,%;,5 be independent X.NN(O,1) i=1,..,1,S"‘X2nA .

Then (X,..,X,8)(B,,..,B1,0%)=(CX+B,,..,0%+B,,0°5) and

2
PlgnA-kgB1,oc’Bl,02(B) Pl nA—k O’.¢’0’1((X19o-yleS)(B1’--;Bl$g )GB)=

-1 1 + e
Pl,nA-k o,_.,0,1(B(B1s--,Bl,° )™') Be (R xR"). Similarly

-1 1 +
N, ng-1,8,,..,8,,02(8)7%, 0 -1,0,..,0,1(B(E 5. ,B1)7 ) BE @& xRT)

so that g A and ZSB are transtation experiments.

Since 1P 2 (B4,..,87,07) € BT xR} and

l9nA‘k981s'0;Bl,0
i 2 1 +
in,nB-l,m,..,el,o?lﬁﬁ*?.--.gyo ) ER"XR b are
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dominated and ZB; xRt is solvable, the method described in
section 2, may be applied.

1r BB @Y x RY), then

’ 2. -1
1,nA-k;O,..,O,1((Bl’"’Bl’o )"B) = Py 0
2, -1
6(81,..,51,0 )

n B)=
l’,nA“"k,B-I".’Bl,GZ ( )

P 1((X1’-°erys)

188

- 52
B) = Pl,nA-'-k,O,..O,‘l((B1”"Bl;o )(Xy,..,%p,8)€B)=

Pl,nA-k',O,..,O 1((I1 * B ,c., 4'81\/.13 02) B)—

JIB(21 + B, Js,..,xl + By Jfs,5 0% ll“ij © (x,) Y n,-k,1(8)d%ed%,,88 =

- S5 (8
‘f j‘j]1 (xj_”sj_«/&‘z) ‘612 Ynﬁ;k.’1(‘g2)dx1...dxl,ds. Thus

. . 8241 8
P"l,nA~k,B1,-o§Bi;°2 has density {i]fp(xi- Bj Jg§)€2 Ynﬁ—kﬂﬁrz)
with respect to the Lebesgues measure.

Slmllarly QW,n =1,0,..,0,1 s density {1¥ Jl w(x:JZ )YnB_l(S)

with respect to the Lebesgues measure.

Proposition 4.4 If m=0 i.e. A1,..,A1 > 1 and

| P -1
ng-1>n,-k > 1, then 6(¢ ,, £g)=lpm ,ny-k,0,..,0, B

"Ny E
“1,n5-1,0,..0,1=
r* - Fl? A o (s
jl (x ) Y, ny-k, 7~ (s)-i=% Jkicp(XiJZZ) YnB-l,1(s)‘dx1"dX1'ds

n,-
Proof Let n,-k=n,,np-l=n, and let &, (B):IB(:) We must show

o e e 3

that N =8 x..x & x82 is a least favourable distribution for
ni
testing. 1

1

H= {P"].;n“[!B'lycc;Blgce ° (81,,.,51,02) €R X]R—Fl against Q

at all levels & , Then the proposition will follow from the
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results given i section 2.
The strongest ¢A -level rest for Hy, 2gainst Q is given

by:

] * 1
1 o
RHC N O @iES]JZ; (X o )Y i, (s)>cI;}m(xi)

n, n, . 1
) ol 1 2 2(n,-n,)
Yn1,gw 8 ) W, (- ) Ai-1)xi ) s 2 717 exp

(- s/&(1-n1/n2)) >Cr =) (X, X, 8) € K where
(1) & = Pl,n?,o,..,O, n2/n1 (%)
(i1) Ky = {(x,..,%) | (%;,..,%,8) € K b=

5 .
i(x1,..,x1) | 3 2 (A, —1)x <- log C' + log[s ?

-

s
exp(- 5(1-n1/n2))]} is an ellipse which may be dege-
nerate since Ai = 1 1is possible.

Let ky = g5 log sfngﬁaw exp(- S/2(1-n1/n2))

(iii)Kx1,;.,x1= {S ‘(x'],"yxlis) € K}z(k'](x‘ly"',xl)’

ko (Xy5 0005107 ymere

'k (x1,..,x1) 2-- exp(-% k (X1, "xl)(1=°-0)
_ P2~
k2<x1’--yxl) 2 €Xp (- 2k2(X1,..,X1)(1- “"))
n
Then Pl',n,l,o,.‘,o ‘I"fg'(K> =
1
kz(X.],--,Xz) L Sn
-~ 5 3m(x ) —— Y, 10§Tl) dsdXy,..,d%;
o 1’ 2

-% Z(Ai-1)xiz < 10g‘C'+k3~ k1(X1,.., 2)

Let By 2 pe the expectation taken relative to

1:0-181;5

pn 2 pn 2(K)=
l!n1981r*3b91§0 . .?hfp‘ 1Jn1981)"98190 ( )

B.,..,By,0° [Ty, .0 %,80] =
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B8,,..80,0% B8, .0,80,0% [1(%,,..,%,9)|s]. But
EB1,..,81;52(IK(X1,..,Xl,S)|S) is a function of (%,,.,,X;,S)

only through S. Thus the distribution is independent of

(81, LI ,Bl)l COIlsequen'tly P"l’n1 ,B1, .. ’Bl,UZ(K) =

EO,..,O,G2 Eb1,;,,51,52[IK(X1.--,Xl,SX S]. Futhermore

Es1,,,,el,62[IK(X1,--,Xl,S)lsl < By,..,0,0L (X0, %,8)18]

since K is an ellipse with center in (0,..,0) e:ml,

and the probability for (X1,..,X1) € Kg where (X1""Xl)

are independent Xi ~ N(Bi J§2 ,1) i=1,..,1, is maximized

when the center in the ellipse and the distribution coincide.

Thus P 2(K) <

lvn—I, 81,'-58170

P 2 (X) ,(8y,..,81,07) €R" x R

n
1,1’11,0,..,0,5

Finally if we show that Pnl,n1,o,..,o,02(K) <

' Do (R) =d, a2 > o, theorem 3,7 in [4] will
1,1’11,0,-.,01 ‘r‘l‘"

give that N_ il the least favourable distribution.

%) 52(K) _

PQ

Let d (0°) = p"

1,n1,o,..,

o(x,)[T 2 -T
i n1’c (kZ(X1,..,Xl)) 1n1,02(k1(x1".’x1)_)]dx’.',dxl

2

It

1

I F—I} (xi)[rn1 1({}-‘2 k2(11,..,x1)) -
i= ’

v (Ai-1)xi‘2 <k3

[V

T 1 . .
0q, 4 (52 (%, 2)) Jaxg. ., dn

S O
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Now iP"l n. .o o gl ¢ o2 € Rl is an exponentaial
] 19 §°°y ’

family of distributions and oA (%) = JIK(11,..,xl,s)

Pl,n1,o,..,o,02(dx1..da) Hence, by theorem 2.9 in [4]

derivation with respect to 02 under the intergration sign

is permitted.

.. 1
NCORN Tloty) @220 @)

2z (Ai-1)1:i2 < ks

T o1, - . T _ ,
ny,3(@2 Ky (Xqp00,%9) Ky(xq,00,%y) 0y, 1(32 o (xys a0, X)) dxy,..,0%) .

n
By (iii) above (A’ (;1-::’-) = 0, S0 that ¢A has an extremal

) )

point in ‘ff;
Consider £(t) = To, 102) - Tn. (o) 1. >k, >0, >0
onsSi = M0\ = Iy g 2 ~%1 ’ .

f(t) can have only one extrmal point, t,e Since £ >0

and 1lim f(t) = 1im f(t) = 0, +this must be a maximum point and
0 t? o

£r(t) <0 t>t° , £r(t)y>0 t < %t . These results applied
to the intergrand in the expression for ' (62) , give

n
that 2 must be a maximum point

i, O

It still remains to condider the case

v
éB) is not

0
1TS<ny-k<ng-1l+m and m>0. G(EA,
known then.

- Suppose now that O < rank A = r < k. By the remark at
2 if row [B'] & row [ar]

If row [B']c row [A'] we may weite, in the same way as

the end of section 3 6(2‘5 ¥ "é’,B)

in section 3, A=7VS, B=VT. Then 8(¢&,, &5) =8(&q, &)
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If F'SS'F = I,F'IT'F = A with F a nonsingular rxr
matrix, rank (B') = rank(?') =/ {i | 4, >0}, Let § = s,
Forr. men 6(F, 85 =0(Ls &p) = 0(Ey &) o ana
the results above may be summarized in the following theorem.

Theorem 4,1

If row [B'] ¢ row [A'] , 6(5A,§B) =

If row [B'] € row [A'], let A = VS

, B = VT where

V = v1',.,.,Vr') and V1',..,Vr' are a basis for row [A'],
Then

[ 2 if ramk(A’):nA rank(B') < ng

Bl 1- (] exp(-3(a;-1) ¥,2)| if nj=vemxa' ,
Ai > 0 1 1

nB=rank B!

6(2A,83)=o{} 11- ﬁ ﬂeXp(- (4,-1T;%) | if ny > ny +

{1|0<A <1}

ng - rank(B') gnB - rank(B ),1 (8)
' n ~rank(At'),

ﬂBI‘a

AJD S e [-a06,-17,2]

E| 1=
n, - rank(A!) XnA - rank(A') 1{-=

ir#lilo<a; <1} =0 end np-renk(s') >

L n,~rank(A') = 1

A-:r'anlf;(j\ 1)

B -rank(B') S ~

Y1""Yrank(A') , S are independent Y. ~ N(0,1), =

X 2, n,- ~rank(A')
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Proof
n, - rank (ar) > ng - renk (B') + # { iI(}<Ai'< 1} is equivalent
with n, > np + rank (A') - rank (B') + {il o< Ay < 1} =

ng + i filo<a, < 1}, so that the third expression for

6(5A’ EB) in the second half of the theorem follows from pro-

position 4.3.

Consider now the situation treated by Le Cam for 02 known.

Corollary
If AA' is nonsingular and BB' - AA' is positive sgemi-
definit ( 2 if n, = rank (A') < ng

n, - rank(A') _ ny = rank(A')
:.T(

n. - rank(A') >
B (-3 ) 2
o, = Tank(&') “Tig = rankCA')
A I( - )
IlB - IlA

det(BB' Sy YT
y (BB ()

.
a _1ig
“&v Gp) =9 det(Ad a2(=2

AAY)Z) - 1] if rank (A') < n, < ng

S5 e o - a1

L‘nA > ng > rank (A')

where 2 is multilinear normal with expectation O and co-
n, - rank(A')
o S
fip = TROk(BT)

variance matrix (A_A')'1, and is

x2-distributed with n, - rank(A') degrees of freedom and is

indepentdent of 2.
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Froof

Let F be a nonsingular matrix such that F'AA'F = I, F'BB'F =
A, Then, since BB' - AA' is positive semidefinit and since
ByyeoyBAlhoye p 8Te the solutions of det (BB' - AAA') = O,
A1,,.,Ak >1. By nothing that AA' nonsingular implies
BB' nonsingular, the corollary now follows in the same way as

the corresponding result in section 3. N
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5. Examples

Ty o5y
TLet A' = : B' = .
1 t f 1 S
\ Ny / Ny
n, nlﬁ
Then AA' =
n
- A
’ i=1

Suppose rank A' = 2 , i.e. not all t1,..,tnA equal, If

Dp oy 2 Iy
My = o (B -, Mz= g (5 -5, det (BB -4MA') =0
i=1 i:=1

has 2 zeroes A,,8, given by
-Q-ﬁ-zl\-,m ggI;'B MA + Ny, MB + anA(s-t) + (nBMA + nAMB + nAnB(t..s) -
1
z
4npn M, Mp) ]
6( &A’ EB:’ may now be computed for o2 ¥nown, and for o2
unknown except when O <n, - 2 < ng - rankB + {ilo < by < 11

and {il 0<Ai<1} > 0.

o e ) My
Note that if t =8, A, = v= , A, =7~ .
1 ny 2 MA

Example 2 If A and M, are the minimal informative and the
maximal informative experiments respectively,

8 ( gA, gi) and 6( ga’ 8A) give absolute measures of the
information in the experiment g A Unfortunately for trans-
lation experiments on the real line both of these deficiencies

are equal to 2 as shown by Torgersen in [5]. Hence & ( BA’ Ei) =



- 25 =

6(Jﬂa, ZA) = 2 for the case when o2 is known and consequently
also for o2 unknown,
However, if an experiment is given by the independent,

observations X1,.,,X deficiencies may be used to compute

n’
the information contained in an additional observation.

In the experiments considered in this paper, the observations
are not identically distributed, because the distribution of
the additional observation is dependent of the choice of the
regression coefficients. The question then naturally arises
whether deficiencies may be of help to determine the regression

coefficients so the additional observation contains as much

information as posgible.

a11 e @0 o0 a1n /a‘11 ® o9 00 a1n t1
Tet A= B =
]
/
21 2n /./ -

Suppose rank A =k

Then det (BB' - AAA') = det (AA' + ' — AAA') =

det (tt' - (A-1) AA'). Since rank [tt'] = 1, the solutions

of det(tt' - AAA') = O are all equal to zero, exept one.

The solution A= O has multiplicity k-1. Hence

det (tt' = AAA') = 0 = det (AA') det ((tt')(Aa')~' -4 I) =

det (AA')(-p)E1 (8, - 8) = [(-1)Fa¥ + (-n)Ft Aoak‘1] det (AA')

where A is the nonzero solution of det [(tt')(AA')'1 -AI] =0
But detl (t+t')(2AN AT T = (<0)K + tr (tt')(anr)~(-a)5t 4

factors of lower order in A. Hence A4 = tr (tt')(AA')'l ,
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and 1+ tr (tt')(2A')"%,1,...,1 are the Xk solutions of
det (BB' - AAA') =0
Let X~ N(0,1). Then, by noting that tr(tt')(ad')™t =

$1 (L), 6 ¢( EA}ng) = Bl 1= o' (8a) 7141 exp(-% s (aa)"14x%) | =

4 [& ([C1+tr (aan)~1e) lﬁ${0+t'(AA')—lt9]%) _

£ (AAT ) %
-1
1
5 (( 1qg;sjjﬁ;4;,,.§ght>)z)]
+ (A.A'
for o known. In the above expression we have written the

integrand f, and used that Jlf\ = zjf+.
If Y,5 are independent Y ~ N(0,1), 2~ 5 ~ x®n-k ,
I T ISE Mooy n-k , R (8) _ (1411 (anr)~1p)®

m(x(1+t'(AA')'lt)% Yn-k+1 (8) | axds

- El1 - (“—k+1fh 0y ,T () (1+t (AAT)™18)

[ e o

T (E,-l{jml. )

- 2
5 emp (- gy - 36 ()T 1)

2

when O is unknown.

If 02 is known and &'(AA')71s > tr(aA')t
the experiment where the n+1 th observation has regression
coefficients (81,...,Sk) is more informative than the experiment

where the n+1 th observation has regression coefficients

(t1,...,tk) Hence 5(8A, tf,B) is increasing in t'(AA')'lt

2
for O© known.

Consider again the situation in example 1. If we weite

Ve (e v = (b 2o 2%t . = £ +.2)
=<( s T t ’ = M ‘'n+1l T n+l ~ n {2 i




t; , So that the minimal increase in NgA’ EB)

T.- 1

n

MBS

=1

is obtained by letting t ; = T , and in this case

5 (8 4 8?3) = al#([(n+1) Log (1+2)1%)- #((n Log (1 +H)%)]

when O is known.
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