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ABSTRACT.

Let {anz;o be a Markov chain with finite state space. We
study the experiment grl of observing Xn in order to obtain
information about the initial state X0 . The sequence
{En}fﬂ is proved to have a limit goo , which is characterized
in terms of properties of the given chain. A measure for the in-
formation contained in gn is proposed, and an asymptotic expres-
sion is derived. If states of the chain are lumped, then some
information may get lost. Two methods of measuring the loss are
studied, the deficiency and the insufficiency. They are shown to

have equal asymptotic properties.

Key words: Markov chain, 1limit experiment, information,

lumping, insufficiency.



1« Introduction.

Let {ani;o be a Markov chain on the finite state space
X = {1,2,¢0.,7} , with transition matrix P . We shall consider
a statistical model where Xn is observed in order to obtain
information about the initial state XO « Thus XO is the un-
known parameter, and parameter set = sample space = the state
space of our chain.

Such models are frequently appearing in genetics. One observes
some generation of a population and wants information about
previous generations. An example is given in section 3.

The main question is, how can we measure the information ?

Le Cam has in [7] introduced an information-distance between
experiments, the deficiency, which generalizes Blackwell's ([1])
relation "more informative". The deficiency gives rise to a .
semi-metric in the set of experiments, the A&-distance.

Letgl1 be the experiment of observing Xn + The information
contained in gn of course decreases as n grows. It is shown
that the sequence {gnl has a limit %oo (in the A-metric).
Section 4 is devoted to characterizing the 1limit experiment iﬁ
terms of properties of the given Markov chain. It turns out that
if the chain is aperiodic, then Ekp is simply the experiment of
observing the recurrent class into which the chain ends up. We
note that the limit E-.oa exists, even though the sequence {P"}
diverges.

Invsection 5 we show how the A~distance provides us with a
measure of the information contained in Xn « The quantity studied
is o, = 4 En, 8CO). It is shown that &  asymptotically

LT-1.n

behaves like o s where



p=max {|A| ¢ X eigenvalue of P, |A| < 1}

and T 1is an integer, T > 1 .

The computations needed are based on a formula of P derived
from a result on linear operators in finite dimensional spaces
taken from Dunford-Schwarz [2] . The formula involves the
spectrum of P and is given in section 2.

Section 8 treats the subject of lumping states of a Markov
chain. Kemeny and Snell [6] have defined the concept lumpability
of a Markov chain. In this paper we study how information gets
lost by lumping. The efficiency of lumping may be measured both
by deficiency and insufficiency, a concept introduced by Le Cam
in [8].

Some results on insufficiency are given in section 7 for finite
experiments. We note that the given results are valid for quite
more general experiments. The given proofs, however, turn out
to be very "clean" and may illustrate the technique of proving
the general results.

It is proved in section 8 that in the present case, the de-
ficiency and the insufficiency behave asymptotically in the same
manner. As is pointed out by Le Cam in [8], this may not always
be the case.

Sections 1-6 corresponds to Lindqvist [10]. The theory is,

however, rewritten and some proofs are simplified.



2. Preliminaries.

If A= (aij) is a m X n-matrix with complex entries, we
shall define the norm [|All of A by
lAll = max Z|a

s
i 3 1

L3

We note that convergence in this norm is equivalent to convergence
in each entry.
A m X n-matrix M = (mij) is called a Markov matrix if

n

miy2 O for all i,j and j§1mij =1 for all i .
The set of Markov-matrices with dimension m X n is denoted

(v¥£bn.. The set/ﬂ@m’n is compact in the metric space of m X n-

matrices with metric induced from | o ||

We shall need a suitable representation of powers of matrices.
A complex r X r-matrix T may be considered as a linear operatof
in € with scalar field C . Let A ...,  be the distinct
eigenvalues of T . If A 1is an eigenvalue, we define the index
v(A) of A +to be the smallest non-negative integer v such that
(MI-T)Yx = 0 for every vector x such that (kI-T)v+1x =0 .
We shall put m; = v(xi) 3 i=1,...,s . It is seen that m; >
for all i .« The index of an eigenvalue may alternatively be
defined as follows: Let Y¥(t) ©be the minimal polynomial of T ,
i.e. Y¥(t) is a complex polynomial with leading coefficient 1

and of lowest degree such that ¥(T) = 0 . It may be shown

(see Gantmacher [4]) that we may write

YA) = Oehy) TOny) Zyeen, (Am2) ©
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Hence the index of xi is the multiplicity of ki as a root of
the minimal polynomial of T .

Theorem 8 of ch. VII in Dunford-Schwarz [2] now states that
if f is a polynomial with complex coefficients, then we have
the expansion

s ™71 (1-x,1)7

- i 2@yz. .
£(T) 151 jzo ” f (xl)zl (2.1)

where Z1,...,Zs are complex I X r-matrices which are independent

of f and satisfy

(i) Z; #0 3 i=1,4e.,8
(i1) 2% = 2. 5 i=1,..4,8
(iii) Z;%, =0 ;3 for i#Kk
(iv) § z, =1.

i=1

If T is given, then the component matrices Z1,...,Z may

s
easily be determined, by inserting suitable f£(t) in (2.1). In
fact, for any i=1,...,8 there exists a polynomial fi(t) such
that 2, = fi(T) . The idea of the construction is to define

fi(t) so that f§3)(kk) =0 for k #1i, J=05eee,m;=1

Putting f£(t) = t% in (2.1) we obtain an expansion of T" ,

which is the fundamental formula used in this paper

m, -1 j
s i ' (T-Xx.I) : .
™= v 3 -—-—Ea——-n(a)x?'Jzi (2.2)
i=1 j=o0 jl

(o) _

where n(r) =n(n-1)ee.(n-r+1) if r>1 and n =1 .



A finite experiment will here be defined as an experiment with

finite parameter set ® = {1,2,...,r} and finite sample space
X = {1,2,¢¢4,8} « Such an experiment is completely given by a
matrix P = (pej')e M’!T,S ; the o-th row vector defining the
probability distribution over X when 6 is the "“true" parameter.
We shall use the symbol gP for the experiment defined by P .
In [7] Le Cam introduced an information distance between ex-
periments: the deficiency. The deficiency is defined in terms of
risk-functions. It follows, however, from [7] that for finite

experiments an equivalent definition may be given as follows:

Let ZP and gQ be experiments such that P Emr,s 9
Q GM?T T Then the deficiency of EP relative to EQ is
b4

given by
6(€Ps 'Q) = inf“lPM'Q“ t M E(W-S,'t} .

The quantity G(E,P, EQ) is interpreted as the maximal loss of
information by observing EP instead of 2Q .

It follows from the above definition that the deficiency equals
0 if and only if 81, is sufficient for «‘ij Q according to
Blackwell's definition (see}[1 1). if 6(8P’5Q) = 0 , then we

say that _& p 18 more informative than Q= We write this

%P b ZQ . Accordingly, ZP > EQ if and only if there exists

M€ such that PM = Q . This result will be referred to as

s,%t
the randomization criterion.

Le Cam [7] also introduced a distance in the set of experiments

It is defained by



A( gPy 8Q) = 6(£P’EQ) v 6(5(2’8]?)

(V denotes maximum) and is easily seen to have the properties
of a semi-metric. If A(EP, ﬁq) =0, then Z)P and £Q are
said to be equivalent ; in symbols P~ Q"

Let {E(n)}f=1 be a sequence of experiments and let g be
an experiment, all with the same parameter set.

Then we say that ﬁ (n) converges to g » in symbols
E(n) *ﬁ as n = if A(g(n),g) -0 as n-=o©,
The 1imit Z is uniquely determined up to A-equivalence. In
the case of finite parameter set, to each sequence {g(n)} of
experiments there exists a sub-sequence ig(n')} and an ex-
periment g such that Z (n') 8 .

This follows from a remark on p. 228 in Torgersen [11], which
states that the set of (standard) experiments is compact in the

metric & . As a consequence of this we have:

Lemma 2.1,

Let {g (n)} be a sequence of experiments with common finite
parameter set @ . Assume that € (1) > 8(2) > «se » Then there

is an experiment g such that

(1) a(f™) €y loas noow,
(ii) g(n) > 8 for each n .

/ 1
Proof: There is a subsequence {g(n )} and an g such that

s ky 5o | (2.3)
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{ T
Given n , choose n' >n . Then since E (n) = 8 (n') ’

NAOR SPTIACOR ACRINNITT (CON SWRTE LD S

Letting n' =< it is seen that 6(€(n),8) = 0 and hence

AN
Tt follows that
s <‘€‘n+”,2) - s(E, B
< oG, B0 . s(8@) g @)y
TR ASING AN S

]

Hence the sequence {A(%(n),z )M is monotonically decreasing

and thus convergent.

By (2.3) we must have A(g(n),%) \l 0 .

If the %(n) are finite experiments, then under some conditions,

the 1imit experiment will also be a finite experiment.

Lemma 2.2,

Let {g(n)} be a sequence of finite experiments which may be

defined by matrices p(n) e(Wlf 5 -
b
n

Assume that the sequence | Sn} is bounded. If {g(n)} con-
verges, then the limit experiment é is a finite experiment

(i.e. may be given by a finite Markov matrix).

Proof. Let s = max 8, ° Extend the matrices P(n) to 1rXs-

matrices Q(n) by adding colums of zeros. Of course



g (@) ~ gP(n)

4
By compactness ofw there is a subsequence Q(n ) which

r,s ’
converges to a matrix Q Ewr s It remains to prove that
?

A 2 < 1om)
EQ(n) ")(é.Q . Clearly (€Q(n)?gQ) - 1Q Q“
Hence ‘é (n') 6% Q° By uniqueness of limits of experiments,
Q .
this implies 2 ~ E Q°
Some other notations which will be used are:

If B1""’Bn are quadratic matrices, then we denote by diag(B1,

cee ,Bn) the matrix

B‘I O «s. 0O
0 Bpere O

\O LI B B B BN Bn

(WIO is the set of rXr Markov matrices M = (mij) with identi-

cal row vectors, i.e. there exists Myseees, >0, ij =1

such that mij = mj for all i,j .

M, o 1is the set of real rXr-matrices N = (nij) with identical

rows and with row sums equal to O , i.e. =0 .

[ Minglpt

n. .
j=1 9
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3. The model.

We shall in this paper consider a finite, discrete Markov

chain {X fn with state space ¥ = {1,2,e0.,r} and transition

n’' n=0

matrix P = (p; ) . The elements of P will be denoted pij(n) )

J
so that for i,j = 1;2,eee,T

pign) = Pr(X, =j|X =1) | (3.1) .

We let 8 = XO be the parameter and let our experiment consist in

observing X . Thus the parameter set © = x. Since by (3.1)
the @6~-th row vector of P* defines the probability distribution

of Xn given that Xo =8 , it follows that the experiment of
observing Xn is given by P® . We shall denote if by gg n

It seems reasonable that the information obtained about Xo
by observing Xn decreases as n grows. In fact, if 0O <m<n
then P* = PPP*™™ and the randomization criterion shows that

gm > gn . Hence €1 > 52 > ... and by lemma 2.1 there exists

an experiment zoo such that A En,gm) \l 0 and g 0 ?_goo .
We remark that the limit experiment %Z<x> exists for any P .
Hence the experiment given by P owill converge even if P*  does
not converge. In section 4 we shali characterize and give an |
interpretation of the experiment gm in terms of the properties
of the given Markov chain.

At first sight one may think that the information about XO
may be increased by observing the chain on times n, < n, <eo o< n,
instead of merely observing at n, . However, by the Markov

property, the conditional distribution of X ,...,X given Xn
. o s 1

is independent of 6 , so Xq is sufficient for the vector
. 1
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(Xn seees X ) « A question that may arise concerning the given

1

model is ¢+ Let P and Q be transition matrices of the same

dimension r . Let {8]1} and igfn} be the corresponding se-

quences of experiments according to the model given here.

Assume that P and Q represent equivalent experiments, i.e.
%1 ~§1 « Will this imply that gn ~§—_n for all n ? That

this is not true is seen from the following simple example 3

11 11
P=(22 ’ Q=2 2
10 0 1 (3.2)
2 1) 13
p2_ |4 1 ’ B=(* 4,
1 1 o 1
2 3 |

Clearly AJg? . That # is seen from the g-criterion
1 1 2 2 ¥

(see Torgersen [11] , for computation see e.g. Lindqvist and
Torgersen [9]).
Defining $(x1,x2) = |x1 - 2X2\ yields

¢(§2> =142 = w(j-}) .

We remark that P and Q , given in (3.2) defining equivalent
experiments, have gquite different properties as transition matrices
for Markov chains. P defines an aperiodic irreducible chain,

whence Q defines a chain where state 2 is absorbing.
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Example 3.1.

This example is taken from Feller [3] . We consider a parti-
cular pair of genes, say a and A . ZEach individual belongs to
one of the three genotypes (a,a) , (a,4) or (4,A) . Our popu-
lation consists of N individuals. However, we shall introduce
the genes themselves as elements of the population, so that we deal
with a population of 2N elements which are either a or A .

Here N is a fixed number.

Under the assumption of random mating we may assume that the

2N genes of any generation are formed in 2N independent trials i
if the parent population consists of j a-genes and 2N-j A-genes,

then each trial results in a or A with probabilities

= j/2N , q. = 1-p.

P i i

dJ
respectively.
Hence we have a Markov chain with state space X = {0,71,0..,2N}

and transition prohabilites given by the binomial distribution :

0. =(2N)Pk 2N-k
LR

The states O and 2N are absorbing, i.e. {0} and {2N} are
recurrent classes, whence 1,2,+..,2N=1 are transient states.

In genetics one is often faced with the following problem 3

A process of theAabove type is observed after n generations
(we assume that the number of a- and A-genes may be counted by
some method), and one wants to draw conclusions about the initial
population. This is a special case of the model treated in this
paper. By the previous results, the infermation about the initial

generation decreases as n grows.
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4. The limit experiment 2 o

Let the sequence {En} be given as in section 3 . As is
noted there, for any transition matrix P , the corresponding
sequence {g n} converges to some experimentgoo . By lemma 2.2 ,
goo is a finite experiment. It is the purpose of this section
to determine the Markov matrix defining goo « The results might
have been developed using the expansion (2.2) together with some
facts on eigenvalues of transition matrices. However, we shall
make a probabilistic approach, using merely elementary properties

of Markov chains. The following lemma will be useful:

Lemma 4-10

]
Assume that Q is a limit at some subsequence {P*} of
{P"} . Then %oo may be represented by Q . In particular, if

™ converges, then oo Way be represented by the limiting matrix.
Proof: Analogous to the proof of lemma 2.2

The totality of states of a Markov chain may be partitioned
into equivalence classes, where the states in an equivalencé clags
are those which communicate with each other. A clé.ss of states is
called recurrent if the probability of leaving the class is O ;

it is otherwise called transient. A Markov chain is called

irreducible if there is only one equivalence class (which is then

recurrent if the state space is finite). The period of a state
is a constant in each equivalence class, so it makes sense to deal

with the concept period of a class. A class is called aperiodic
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if each state has period 1.
Given a Markov chain with state space X = { 1,2,...,7} we
may (eventually by rearranging the states) write P on the

"canonical form

0 Py eeees 00 '
P= . . . (4'1)
6 l.'...: ..P 6

=)
O

where P1""’Pv represent irreducible Markov chains, corresponding
to the v recurrent classes of the chain.

If the chain has no transient states, then R and Q may be
removed from (4.1). Otherwise, R # O and Q is a quadratic
non-negative matrix (which is not a Markov matrix) .

It is seen that

Py 0 eeeee 0 0
0 P eeeea O 0

-l B e (4.2)
O rreeeanl B

Ry &y

We shall at the outset make the assumption that the v recur-
rent classes are all aperiodic. Then by the usual 1limit theorems
of irreducible aperiodic chains, for each k , Pkn converges

to a Markov matrix Ak such that all rows of Ak are equal.
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Since there is probability O of remaining in some transient state,

we conclude that Qn =% 0 .

It remains to study the properties of Rn as n tends to
infinity. For simplicity, let the transient states be labled
1,25000,8 and let qjk be the probability of being absorbed in

the k'th recurrent class, given that one starts in state J .

v
For each j , ¥ Qi =1 o«
k=1 IF

Let the row vector of A De ék « By the limit theorem for
transition probabilities (see Karlin [5] thm. 3.1) it follows that
Rn converges and that the row vector in 1lim Rn corresponding to
transient state J may be written

(E ,EJZ’...,B' )

J1 Jv
where bjk = qjkak .

We have now shown that under the given conditions of aperiodi-

city, P converges. to a matrix B of the form

A O «.. O O \

0 Ay w. O O

: : (4.3)
B=| O A, ©

?11 :512"' T’w 0

N
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By lemma 4.1 gn i gB « The limit experiment gB may be

reduced to a minimal sufficient form:

Theorem 4.2.

Let P be given as in (4.1) and assume that Pysees, B all
représent aperiodic classes of states. ILet qjk be given as be-
fore. Then the 1limit experiment EOO is given by the rXv-mat-

rix

]

/14 O .....O

Iz.‘...

Qesr O

0
I

Q19 Q27 Qv

q’B1 q‘B2.... q‘Bv

where for Xk=1,..¢.,V , Ik ig a column vector of the same dimension

as Pk » With all entries equal to 1 .

Proof: We have to prove that gA ~ ZB « The relation
?B > gA is established by observing that BA = A,
Define now a matrix M e(W(v T by

b

51 0 «se O
M= \ ? ag:o- O
‘ O e @ 6 = & a0 a,v_

A simple computation shows that AM = B , which implies gA > gB .
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Corollary 4.3%.

If the Markov chain is irreducible and aperiodic, then {ggnl

converges to the minimal informative experiment.

Remark: The minimal informative experiment is characterized by
the fact that the probability distribution does not depend on the
parameter 6 . Any Markov matrix with equal rows will represent

the minimal informative experiment.

The experiment (;A given in theorem 4.2 may be given a reason-
able interpretation as follows ¢ Let P be given as in the
theorem. We note that absorbtion into one of the v recurrent
classes occurs with probability 1 . Thus we may define an ex-
periment consisting in observing (the label of) the absorbing
class. It is not difficult to see that the probability distribution

of this experiment is exactly the one given by the matrix A .

We shall now discuss periodic chains. At first we assume that
P is the transition matrix of an irreducible, aperiodic chain with
period d > 1 . P may then (eventually by permuting the states)

be represented on the form

O P O e o0 O
0 PZ"' 0

O O e o 0 P

_ d-1
P, O 0 ..o O /

where the matrix in block no. (i,j) has dimension
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d .
ai X qj ; i,j = 1,.oo,d ; Gi >0 for all i and E Q. =1 .

By induction (or by a probabilistic line of argument) we show

that
Pd = diag (Q1,.."Qd) (404)
where Qi has dimension ai X “i
and
Q1 = P1 P2 cee Pd
?2 = P2 P3 e 0 PdP1
Q = g F1 Fpr Fqg

It is easily verified that Q1""’Qd correspond to irreducible,
aperiodic chains, so (4.4) shows that ¢ is of the form (4.1)
with R=0 , Q=0 . Hence {P"Y%__  converges to a matrix of the
form (4.3) with no transient states and v=d . Furthermore, by
lemma 4.1 and theorem 4.2 {EHJ converges to the experiment

given by the matrix

where Ii is a column vector of all 1's with dimension
Gi ; i=1’0009d .
We remark at once that the 1limit experiment in the case of an

irreducible chain with period d has the same form as the limit
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experiment of a chain with d recurrent classes (the recurrent
classes correspond to the cyclic classes in the periodic case).
Thig may be explained as follows:

In the former case we may by observing Xn s Since n is
known , draw the conclusion as to which cyclic class X, belongs.
This corresponds to, in the latter case, knowing that XO belongs

to the same recurrent class as Xn .

We now return to the general case where P is given as in
(4.1) ana P, represents a periodic chain with period
d; 213 i=1,...,v . By (4.2) and the remarks about irreducible
periodic chains we may write (possibly by permuting states in

each recurrent class)

Pi O ... 0 O
. i
P B ° (4.5)
6 * o6 0000 P' 6
d
Rd Q

with d equal to the least common multiple (l.c.m.) of dyseeerdy
(i.e. d 4is the least positive integer so that d1,...dv all
divide d)

and Y= Zd- .

Now P;,...,P& ~all represent irreducible, aperiodic chains,

so it is seen that {Pndfz;1 converges to a matrix of the form

B given in (4.3) .
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Thus by lemma 4.1 we have (this is the main result of this section):

Theorem 4.4.

Consider a Markov chain with state space ¥x = {1,2,...,r} .
We assume that the transition matrix P is given by (4.1), where

P. has period di > 1 and Pi is written on cyclic form

i
0 Pi1 O «os O ‘\
0O P....0

i2

Hd
il
Qess O

O O.‘. P- -
1,di 1

Pi,di 0 0 ...0

where the matrix in block no. (k,1) has dimension G 1 X %y
(k,I=1,000,d;) (i=1,00.,V)

We assume that Q has dimension BXB , i.e. that the chain
has B +transient states (R may be O0).

Let d be the l.cum. of dy,ses,dy » Then Po (see (4.5)) |

is the transition matrix of a Markov chain with

di recurrent classes and @ transient states.

I M

‘Y'_—.
i

1
For J=1,see,B 73 k=1,¢00,Y let qjk be the probability of
being absorbed in the k-th recurrent class of this chain, given
that one starts in state j .
The experiment sequence {gn} defined by P now converges

to the experiment %;A given by the matrix
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a
o4 .
o 1'% :
o' 1d1 -
O . I. .
: .‘ . (4—06)
A, = : ... :
. . % Iu.v2
L ] l. a
O I.l.-ll.....‘l...l‘..’.l.l....“’..: I Vdvj

q11 q12A.. q1d1 e 6 9 0 00 0 0 05 P QO SDPPSOSOOSD q1Y

qB-] qBZo.. qu1 S0 esesscsecsneasossen qﬁY/

where Ih denotes a column vector of dimension h with all entries

equal to 1 .

Conversely, to each matrix A of the above form (with

Y
gsy. >0 , ¥ gy = 1) there is a transtition matrix P such that
Jk =7 Ty dk

{En} corresponding to this P converges to gA .

Proof: The last assertion is proved by noting that for any A on
the form (4.6) s 1is equivalent to an experiment p with
B on the form given in (4.3).

Now B 1is a transition matrix and it is seen that

B" = B
for n=1,..., . Hence 81 Ngg~ "'NEB so En» EB .
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Remark: Since the states of a Markov chain may be permuted; any
matrix which by a permutation of rows becomes a matrix of the
form (4.6) , is a limit experiment of a sequence {ﬁn} .

The representation of the limit experiment Eoo given by (4.6)

is minimal sufficient since an addition of columns in A and a
succeeding multiplication with a Markov matrix would not lead us
back to A . Hence the given representation is minimal in the
sense that any other minimal sufficient representation is given by

a permutation of columns in A .

What can be said about the original Markov chain by examining
the 1imit experiment ?

By the discussion in this section it follows that the 1imit
experiment depends on the recurrent classes, the periods and the
transient states. Given the 1imit experiment, however, it turns
,out that to select say the recurrent classes, we need additional
information about the chain. As an example, suppose r=3 and
A= (1,1,1)' .

Then {1,2} is recurrent and {3} +transient, or {1} is recurrent

and {2,3} transient and so on.

1 0
If A={1 0], then
o 1

{1,2}) and {3} may be two recurrent classes, or {1,2,3} may

be a recurrent class with period 2 etc.

We close this section by taking up the example given in section
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Example 4.5.
By Feller [3] , the probability ¢, of being absorbed into

state O given that the initial population has m a-genes, is

given by

€m=1 -m/2N ’ m=O,1,.-.,2N-

Hence the limit experiment is defined by

iy =
S
i -
=~ 8
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5. Rate of convergence.

In this section we set & = A(Zn,zm ) .

Assume for a moment that the Markov chain under consideration
is irreducible and aperiodic. By corollary 4.3 , the limit expe-
riment %icp is the least informative experiment. Intuitively
speaking, a decision based on this experiment may be considered
as the guessing of a parameter without taking observations. Hence
A71 measures the maximum loss when "guessing" XO instead of

basing a decision about Xo on Xn . It may thus seem reasonable

to consider A as a measure of the information contained in Xn—*

If the chain is not necessarily irreducible and aperiodic, then
An may be given a similar interpretation. More precisely, An
measures the additional information of observing Xn instead of
merely observing the recurrent class into which the chain ends up.
We shall make use of the expansion of P% given in (2.2) .
To begin with, we state some results on eigenvalues of ndn-negative
matrices and in particular of transition matrices. (See e.g. Karlin

[5]) . It is tacitly understood that every matrix is of finite

dimensione.

Theorem 5.1.

(1) Any non-negative matrix A # O has a real eigenvalue

p >0 such that |A| < u  for any eigenvalue X of A .

(ii1) If P is a transition matrix, then u = 1 and the multi-
plicity of the eigenvalue 1 1is equal to the number of recurrent

classes associated with P .
(iii) If P is the transition matrix of an irreducible periodic

Markov chain with period 4 , then the d'th roots of unity are

eigenvalues of P , each with multiplicity one, and there are no
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other eigenvalues of modulus 1 .

We remark that multiplicity here means multiplicity as a root
of the characteristic polynomial, whence the formula (2.2)
involves the multiplicity as a root of the minimal polynomial

(which may be smaller) .

Let P Dbe given as in theorem 4.4. The set of eigenvalues of
P is equal to the collection of eigenvalues of P1,...,EV »Q .
Since the chain associated with P has v recurrent classes, it
follows from theorem 5.7 that the maximum eigenvalue of Q is
i < 1 and that any eigenvalue of P with modulus 1 1is a root
of unity.

We number the distinet eigenvalues of modulus 1 :

(01 =1 9 mz,locgtp_u .

Let d be given as in theorem 4.4. Then ¢§ =1 for i=1,2,.¢,0

Since P" is bounded as n - , (2.2) shows that the index of
®,se+0s¢, are each equal to 1 . (This may also be concluded
from theorem 9, ch. VII of [2]). Hence, if Njseseshg are the
eigenvalues of P with modulus less than 1 , and with indexes

mysees,my , Tespectively, then by (2.2)

S

0 g My~ (P-in)j
®.2. + T % 37

(3)yn-]
7 X n /ALY C. (5.1) .
1+ i=1 §=0 4

P o=

1

I™Me

As is proved in section 4 by a probabilistic consideration,

u
(5.1) shows that pad converges to ¥ Z; as m > ®,
‘ i=1
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More general,
Pmd+k 4
-> Zcpljt_zi as m = o

fOI‘ k=0,1,...,d—1 .

We are now in position to derive upper and lower bounds for

An .
Definition 5.2.
If P is a transition matrix, then we define the root of P
oy
P, A < 1}

p =max {|A] A eigenvalue of
of eigenvalues with modulus p 1is called

The maximal index T

the index of P .

In the following theorems we shall assume that p >0 , If
u
n

p =0 , then by (541) from some n on " =i§1¢& Zi s0 An =
e 8 gw.
Theorem 5.3%.

' the root and index of P

Let p and T Dbe, respectively,
0< k<K< such that for any

Then there are constants

l’l=1,2,¢--
xn T pn < An < KnT—1pn .

By the Euclidean algorithm there

Proof: Let n be given.

exist non-negative integers m,k
« ©Since %;CD by lemma 4.1 may be represented by

such that n=md+k and

-~

O0<k<a

’
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, it follows from (5.1) that

u
A .=1nf1|2coll‘ZM-Pnu
M i=1

u
I 2 et - P
m.-1 J
s 1 s (P-2y)
<z = n(J)\x 1279 | == C,ll
i=1 j=0 Je
i K nT-1pn ¢

Obviously K may be chosen independent of n .

-

It remains to prove the left ineguality. Let n , m and Xk
be given as before. Without loss of generality we may assume that

\l1| = p and that the index of %, is T . Then, applying to

the inequality lIAB|| < ||All [|Bll , for any M e(mr o

R < 7.1 - P > I, zq}‘ZM c, Pl

2% 4 ﬂ'—rr | 1
(5.2)
;

= e, B

e, 1
since C1Zi =0 for i=1,ecee;U &

Since C, = f1(P) for some polynomial f1(t) (see section 2),

we have
-1 (P-), 1)3

c.P* = P'¢c, = % —-.—r——n(J)n’Jc
1 1 =0 Je 1

The right hand side of (5.2) is independent of M so
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An IE" el

(5.3)

; To (B DY () T

= | = : cll .
”C,]” j=0 e n'T-‘l pn 1 /

The right hand side of (5.3) converges to

(P—x1I)T’1

L
(tm=1)7

-1
p Gyl

¢, >0 .

But this assures the existence of k > 0 such that

A
n

—_— >k >0 for all n .
pT1n =

Corollary 5.4.

nfm
,\/An-)p as n -,

The result of theorem 5.3% may be written

with k <k <K forany n .

What can be said about the value of kn ? We shall derive an
asymptotic expression for An in the case of an irreducible, a-
periodic chain, and show that in some cases the value of *kn is

independent of n .
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N X X
Let(quo and {Zo be defined as in section 2.

Theorem 5.5.

Let P represent an irreducible, aperiodic chain. Let the

eigenvalues of P Dbe 1,K1,...,ks . Assume that

1>\ = Aol =eee= \kpl =p > ‘kp+1\ > eee> |A]

and Iﬂ1 =m2 Seee=1 =T>mq+12...2mp (qf_p) .

Let A, = pe J ’ mj € [092“’3 H j=19-o-,q .

i(a-T4+1)@, (P-A, 1)

q

Then

inf |IN - TnH + O(nT-1pn) .
N € Lo

An

Proof: As is well known from the theory of Markov chains, P!
converges 1o a matrix Z1€(W% such that all entries of Z1 are
strictly positive.

Since Z1€ ﬁﬁto = Z1M E(Vﬂo for any square Markov matrix
M, it is seen that

b, = inf |Z,M-P%| = inf |IM-PY .
M M € o
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T=-1
(P-2, 1)

oo R e T T

Il M

k

= p(1=1) QBT o
and define Qn so that

P! = Z1 + Rn + Qn .

Now

An = inf |[|M - Z1 - Rn - Qn” .

M e,

Let (V\* be the set of matrices M - Z

in,NN(O . Then

An = inf |N - Rn - QnH .

N eN*

By (5.1), (5.4) and (5.5),
IQll = o™ o%)

and it is thus seen that

>4
It

I ye

(1=1) §{ n-T+1
n kk C

inf |IN - R |l + o(n™"T p™)
« v

k

I
;Tﬁ-1)p

obtained as

- Tl

n

(5,4)

(5.5)

M +varies

(5.6)
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Since wl’o is a closed set in the set of rXr-matrices,

there exists

Nén) EMO such that

ing N - T = m P oop
n o) n
Neffl,
We shall show that from a certain n on, the infimuwa in (5.6)

is attained by

n(®) oy (1=1) guetet gy () (5.7)

By definition of No(n) it suffices¢ to prove that from some n
on, N(n) given by (5.7) is a member of /Vl* .
The matrices No(n) are uniformly bounded in n . In fact

for any n

IA

i, @<, ) oy

inf |IN - T || + |IT_||
NeM n n

< ZHTnH by putting N=0
T=1
» §, 80 o
< T .
= 7 g (t=-1): k

Since all entries of Z are strictly positive, it is seen that

1
there exists 0 < ¥ < 1 such that ﬂ4.* contains any member of

Q/Lo with all entries of absolute value less than vy . Hence

the fact that n('r"”pn"'T+1 » 0 as n - implies that
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N(n) 644’* from a certain n on.

The proof is now complete.

Corollary 5.6.

Assume that X\, is real (i.e. M=+ p) and that q=1 . Then

there is a constant ¢ > 0 such that

-2 C as n = o,

Proof: By theorem 5.5

b =k L(T=1) T L o (T 1R)

. , (13")‘1I)T-1
with k = §2§g N - =TT C1H .

That k > C 1is a consequence of theorem 5.3.

The corollary follows.

If the Qn ‘defined in the proof of theorem 5.5 equals exactly
0O from a certain n on (this happens if T=1 and P has no
non-zero eigenvalues with modulus less than p) , then theorem
.5.5 gives rise to exact expressions for 4, from a certain n on.
The proof of theorem 5.5 also shows that if Qn = 0 and
No(n) e(V\* for n=1,2,... then we obtain exact expressions
for An for n=1,2,+... « To give an example, we shall derive

An for a general P of dimension 2X2 .
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Example 5.7

)

where 0 <a , B<1.

To avoid trivial chains, we shall assume that o+B # 0,1,2 .

The eigenvalues of P are 1 and 1-a-B and

B o a2 /o -
i ElT(B o.) - (-e B)

i.e. by the terminology of theorem 5.5, p = |1-a-B| , T=1 ,
o -
G, = — .
1 a+f ('B 8 )

and @, = O or w according to whether 1-a¢-= is >0 or <O .

We shall let NO be the N E(Vlo minimizing ||N = C1H .

c =c
Putting N =( ) yields
c =-c

I - eyl = 2le - 251V le + 5] .

A geometrical consideration shows that infimum taken over ¢ of

this expression is obtained with
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‘which yields

o)

Furthermore No EIVL * 50 by theorem 5.5 and the remarks preceding

this example we have

Jiy = pn for n=1,2,0‘0 .

Example 5.8. (Example 3.1 continued).

Feller has computed the eigenvalues of the transition matrix of

the chain. In our notations we have

1

p=1—2N and T =1 .

Furthermore, the requirements of corollary 5.6 are satisfied,

so that

1 n
by~ c(1 - 'é'N)

for some constant ¢ > 0 .

To end this section, let {gn} be a sequence of experiments

determined by the matrix P , and let {Yy .} be determined by Q .

n
Assume further that {gn} and {?n} have a common limit
experiment .
It is obvious that A(En,i?n) - 0, since
AR A(E,n,(z) NG S
We shall prove a result on the rate of convergence of A(gn’g:n)'
Let p , T be the root and index of P 3 o ,v be the root

and index of Q .
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Then we have

Theorem 5.9,

It (i) p >0
or (ii) p=0 and T>v
then
A(En’§n) .
nT’1pn is bounded away from O and <© as
n-—+ o,

In particular, ﬂ(ﬁn,gnfe o .

If p=0 ad T =v , then the above results may not hold.

In fact we may have

n Al
JA<8H,§n> > &5 with 0<&<op .
Remark: If P = Q , then of course A(gn,.ﬁn) =0 for all n .

Proof: Assume that (i) or (ii) holds.

Then’

a8 6-08,.6) & T ) a(8,.6)+ 88,6
nT-1 n

T-1.1n < T-1_1n -

n Y n p P

The first part of the theorem now follows from theorem 5.3, since

A(?n,§> . o»

n o150

as n~-> o,

To prove the last part, we shall apply to an example.
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11

0 75 3
|11
103 1

7 & B.

P represents an irreducibie, aperiodic chain and {gn} converges
to the minimal informative experiment. The eigenvalues of P are

1
1, "'E"’Z and

0 1
with
3 4 4
= L

o= 7|3 4 4
5 4 4
8 -4 -4

= 1 -4 -
1= 13| 8 4 A4
-14 7 7
o 0 0
z, = -1 1 0
1 -1 o0

' 1 1
°© 3z 3
icee Q=] O .;. %

[0a}
ol—
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Then Q% =2, + (- %)n 3 (0=1,2,00)
and =0 =2 =v =
p=0c=%F, T=v =1,

Now

NN IR P e Dzl = 27 .

Since 2 Zo =2.%, =0, 25 =%, we get for any 3X3 Markov matrix

2 271 2 2
M .

1Q°M =PI N12,0l 2 12,97 = 2,2 = [1(= $)75,ll = ()13,
so that

MG n,ﬁn) >eF., 8- . Q™ - P > ()"
Hence

(;})nsA(in,§H> < 2()"

In [12], Torgersen investigates the situation where g is a

dichotomy (i.e. the parameter set contains two points) and where

e

I is the experiment of taking n independent observations
of % . It is shown that if [\ is the maximal informative ex-

periment, then there exists a number c(g) such that
oY B e — '
JA((P.{,ZII)—» (&) as no o

Further it is shown that if g s g is a pair of non-equivalent
n' \
dichotomies, then A(gn’gn) - c(g,) Vv c(?) as n 2o ., The

result given in theorem 5.9 is quite analogous, apart from the fact

that we may have

%(zn,?n)‘-’ < pVa if p =0 .
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6. The minimizing Markov matrix.

We shall in this section assume that P° converges to a matrix
Z, - Then 2  is the form (4.3).
Since the set of Markov-matrices is closed in the topology
induced by the matrix norm, we may for each n pick out a Markov-

matrix Mh such that
= 1z M, - Pl .

Since P converges to ZO » 1t may seem reasonable that

M, =I and thus & =|Z - P .

n
That this is not true in'general, is easily seen in the case
= 2 . Consider example 5.7. Four each n
g, . (gt )
so that

12-P = S5 % > % = 1

From the expression An = inf ||Z M—Pnu we observe that M is
M

involved only through ZOM . Hence Mh may be replaced by any

matrix Mﬁ such that 2z 1M = ZoMﬁ . Such Mﬁ may be defined by
' . _ . 2 _ _ _

Mh = A + Mn if ZOA = 0 , Since ZO = ZOP = ZOI = ZO s A may

be chosen as the difference between two of the matrices Zo y P

or I . (In each case one has to check that M£ is non-negative).

In example 7.11 of [9] it is shown that with



M - 1-a, a, )

b 1-bn

(in the case r = 2 from example 5.7) we may choose as

a_,b
n’°n
arbitrary numvers in [0,1] satisfying

Teking a, = b, = %p yields
-1 1

Ml" =TI+ % pn

} 1 -1
ec that M =1 . R
If o < B we may put
: -0 n

b, =1, a, = 53¢ +-%- to get

-1 1

1 -8
- B ﬁa-gn
Mh - *t5 P
0 : O O

so that Mh75 I.

However, converges to a matrix A satisfying 2 A =12 .
o o

We have the following general results:

Theorem 6.1.

Let {Mh} be a sequence of minimizing Markov matrices. Then

(i) Z M, = I, as n =
with exponential speed.
(ii) There is a subsequence {Mﬁ} which converges to a

matrix A satisfying ZOA = ZO .
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Proof : Define R so that = Z, + R, -

AT ra—— n

Then “Zth'Zo“ < “Zth"Zo“Rn“+ URnH =4 + “RhH + (i) follows.

To prove (ii), note that by compactness'there is a subsequence
{M!} which converges to a Markov matrix A .

Now ZOA = Z0 , Since

IZ,A-Z ]l < 21 HA-ML L + 12,10 - 2

and the right hand side tends to O .

The result (ii) may easily be improved in a particular case :

Thecrcmw 6.2,
If the Markov chain has no vrannsient states, then we may pick

out a minimizing sequence {Mh} so that M = Z_ .

Proof: In this case,

ZO = dlag (A’l""’AV)

where A1""’Av are quadratic Markov matrices each with identical

row vectors. Let Z; be the set of all such matrices.
Purthermore, P* = diag (P?,...,Pg) .

For any M E(an,r ’ ZOM isva matrix of the form

where B1""’Bv each has identical rows. Since Mh minimizes
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Iz M -P'l , a glance at P' will make it clear that M  ought
to be chosen so that 2M € & . In other words, we have

A = inf ||M-PY .
T Mef
Let M! be so that & = IM!-P| .
Since 2 M =M whenever M € g , theorem 6.1 (i) implies that
]
Mn - ZO .
That {Nl;l} is a sequence of minimizing matrices, follows from the

fact that [z M'-PYl = M -7 .
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7. Sufficiency and insufficiency in finite experiments.

Notations:

Let A = {A1,...,Ak} be a partition of the space

X = {1,2,000,8} (k<s) .

By an A-Markov matrix W = (wij) we shall mean a matrix

W e(Vﬂk s such that for J=1,.e¢¢58 3 1i=1,e44,k
9

Wiy = 0O if j £ Ai .

As an example, let s=3 and A = {{1,2},{3}} .

0

Then W = is an A-Markov matrix.

RN N
O

1

By V, we shall denote the element (v

by
( 1 if J €A

V.. =
S N A

ji) of NW s,k defined

1 0
In the above example, VA = 0 ).
17/

QO -

By U, we shall denote the A-Markov matrix where each non-

zero entry of the i'th row equals (#Ai)-1 .

s

]

% 0
In our example U
A 0 1

-0

When no confusion can arise, we may write V and U instead of

v and U

A A
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Let Z; be a finite experiment as defined in section 2, and
let P E{mr,s be the matrix defining g .

We start this section by giving a criterion of sufficiency in
terms of matrices.

A statistic defined on the sample space X = {152,+e.,8} of

may be identified with a partition A = {A,...,A ) of x .
(A consists of the subsets of X to which the statistic assigns

the same value). Hence we shall deal with the concept sufficient

partition instead of sufficient statistic.

The experiment of observing Ai is a reduction of the experi-

ment & . It will be denoted by £% and is definea by PV, .

Theorem 7.1

Let E; be given as above. A partition A is sufficient

for P if and only if there is a A-Markov matrix W such that
P = PV,W (7.1)

Remark:

The criterion (7.1) may be reformulated as follows : Take out
the columns corresponding to a certain partition. The resulting
matrix has the property that the elements of each row are equally

proportioned. As an example, let

1
/)

I

. Then A={{1,2},{3}} is sufficient,

Wi oj—
W
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wiro
Wj—

with W =

Proof: PVA is an element of ﬂﬂqr,k , the 8-th row vector
defining the probability distribution over A1,...,Ak when 6 is
the "true" parameter. By the definition of A-sufficiency (see
e.g. Lindqvist and Torgersen [9] ch. 8), A is sufficient if and
only if £4~ £ . I the condition (7.1) holds, then this is
obviously true.

Conversely, assume that A 1is sufficient. By definition, the
conditional distribution over ¥ given A may be specified inde-~
pendent of 6 . Let W ©be the matrix defining this conditional
distribution. Then W is an A-Markov matrix and we have

Le Cam has in [8] introduced a concept called insufficiency,

in order to measure the loss of information incurred by restricting

ourselves to a function of the observations (statistic). This

measure is so defined that a statistic is sufficient if and only

if the insufficiency equals O . As will be seen, the insufficiency

happens to be generally larger than the deficiency. We state and

prove some results on insufficiency for finite experiments.

Definition 7.2,

Let E; be given by the matrix P . Let A be a partition

of x . By the insufficiency of A , denoted N(4, § ) we shall

mean the quantity

t
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na, £) =2 mel0-21

where infimum is taken over all matrices Q €a’n s.T such that
9’
A is sufficient for Q . The set of such matrices is non-void,

since it contains any Q with identical rows.

Theorem 7.3.

s E) < n B

Proof: Assume that A is sufficient for Q . By theorem 7.1
there exists an A-Markov matrix W such that

Q = QVW. Furthermore,

2 (84 %)

i

inf||PVM - P||

M

< ibrlllfllPVM -Ql +11Q - P

< lIPVWW - QWi + [|Q = B

<UP = Qs v« iwll +{Q - 2l

2lQ - Fl .

Hence A( ‘ZA, % ) = n(a, 8) .

Theorem 7.3 gives a lower bound for mn(A, Z ) . We shall,

however, also need an upper bound.

Define Y(4, § ) = inf IBV,W - B|
W .

where infimum is taken over all A-Markov matrices W. Then we have:
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Theorem 7.4.

va, 8y ene, 8y <ova, & .

Proof: Let W be an A-Markov matrix and define Q = PVW . Then

A is sufficient for Q by theorem 7.1, since

QVW = PVWVW = PVW = Q (we have WV = I) .

Hence

n(4, g ) < 2||lPW-F| so n(aA, g ) < v (4, 8 ) .

Conversely, let Q be such that A 1is sufficient for Q . Let
W TDbe given according to theorem 7.1, so that Q = QVW .
Now PVW = Q + (PV-QV)W . Subtracting P on either side yields

v (4, E) < [IPVWW-Pl| < 2]IQ-Fl| .

Hence v (4, E ) < n(4, Z ) and the proof is complete.

Example 7.5.

Assume that A = {x} « This is an extreme case. The experiment

EA is now the minimal informative experiment. Thus we have

NGRS - e IR
0

On the other hand, 7V, = (151504451)" , so that any Q such that

A is sufficient, has identical rows.

. A
H A, ) = 2int M -B| = 2a( § 4, :
ence n(a, &) MElnIOH o~ (%, Z )
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Similarly it is seen that vy (4, E ) o A E A, E ) .

The above ideas may be applied to our Markov chain experiments.

We have:

Theorem T7.6.

Consider a Markov chain with v recurrent, aperiodic classes.

In other words, we may assume that P is given by

P = diag (P"’...’PV) .

Let the partition A of ¥ ' be the collection of recurrent classes.
. Then
n(a, § o) = 2,

(where A = A gn’ g o) @as defined in section 5).

Proof: By the proof of theorem 6.2,

b, = Meiné -2

( g is defined in the proof).
Now

na, &) =2 int 116-2") (7.2)

Obviously (see remark of theorem 7.1), A is sufficient for any

Q € 2:. On the other hand, let Q be an arbitrary matrix so that
A is sufficient for Q . We contend that there is a Q' € ZZ
such that UQ'-PnH < HQ-PnH » The method of constructing such a
Q' is illustrated by defining the first row of Q'.

Assume that P, has dimension aXe and let (q1,...,qr)

1
be the first row of Q . We define the first row
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(q;,qé,...,q&,o,...,o) of Q' by sharing the amount
Qo 4qtes-td, between QqseeesQy and adding in such a way that the

proportions are not altered, i.c.

q1 :q'2 :...:qa_—'q,; :q2 -‘cu-qo"c

This is obtained by defining

q; . )
q:'j=q—1—:9-::§; s J=lse00,00 &

We remark that Qqteeetqy may always be assumeito be > 0 , since

q1+"'+qa =0 would imply HQ—PnH = 2 and we have (see Torgersen

(10D
1

ing |Q-FUl <2 - ¢ .
Q€
g
The remaining rows of Q' are defined in a similar way, so that

we end up with
Q' = aiag (Q},...,Q!) .

Since A is sufficient for Q , it follows from the remark of
theorem 7.7 that A 1is sufficient for Q' . Furthermore, since
for any J the elements of the rows of Qj are equally propor-
tioned and have sum 1 , Q3 has identical rows. Hence Q' € @? .
That |IQ'-P*] < |Q-P"| follows from the fact that P" is of

the same diagonal form as Q' and has zero's outside the diagonal.

The theorem follows from (7.2).
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8. Iumping of states.

Kemeny and Snell have in § 6.3 of [6] introduced the concept

of lumping states of a Markov chain.

There is given a Markov chain {Xn} on the state space
x = {1,2,400,7}  with transition matrix P . Let A& = {A,...,A}
be a partition of the state space.

Define a stochastic process {Xn} on A by taking Y, as the
set Aj containing X . In general, {Yh} is no Markov chain ;
in a number of situations, however, it will in fact be. TFor examples,
we refer to [6] .

According to Kemeny and Snell, a Markov chain is said to be
lumpable Ww.r.t. a partition A (in short: A-lumpable) if for
each initial probability vector 1 , {Yh} constitutes a Markov
chaiﬁ with transition probabilities independent of 1w .

If the chain given by P is A-lumpable, then the transition
matrix of the lumped chain is given by % = UAPVA ( for notations,
see section 6) .

Theorem 6.3.5 of [6] states that a chain is A-lumpable if

and only if

V,U,PV, = PV, . (8.1)

In this case we have

M - urty .

As is seen from section 4, the information contained in a Markov
chain depends on the eigenvalues of the transition matrix.
We shall state and prove a result on the eigenvalues of lumped

chains:
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Theorem 8.1.

Let P represent a chain which is lumpable w.r.t, a partitidn
A . Then any eigenvalue of % = UAPVA is an eigenvalue of P .

In other words, % "inherits" eigenvalues from P .

Proof ¢ If A is an eigenvalue of % , then there exists a
vector x such that %x = Ax . This is equivalent to UPVx = Ax ,
which implies VUPVx = AVx . By (8.1) this is equivalent to
PVx = AVx so that A 1is an eigenvalue of P with corresponding
eigenvector Vx &
Lumping of the states leads us to a reduction of the experiment

%;11 + We shall now consider the experiment j;rn with sample
space A = {A1,...,Ak§ and consisting in observing Yh . n
is defined by the r X k Markov matrix. VP 2, the §-th row vector
of which is the row vector of %ﬂ corresponding to the Aj to

A
which 6 ©belongs. An easy verification shows that vE* = Pv ,

The experiment ?n has the same parameter set as gn , so that

4

n and S:n are comparable as regards information.

In some practical situations one may find it convenient ob-
serving Yn instead of Xn o This may happen if r 1is large
and it is difficult (or expensive) to get an accurate value for

> ? « This is seen from the

X . As seems reasonable, f, n 2 n

n
. . . . . 7N
randomization criterion , since VER = PPV .

Next, it will be of interest to estimate how much information
will get lost by observing Y instead of }gl « This may be
n
measured by A(in,stn) , Which will be discussed later. We

describe now an alternative approach :
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For simplicity, assume that {EIJ converges to the least in-
formative experiment C?, and let iérgi be defined as before,
o~

Then {jﬂn} converges to the least informative experiment, since
g n Z F n 2 @ *

As is noted in section 5, An = A(gﬁ,&) measures the in-
formation contained in Xn .

" A

Define vy, = A(S:n,é}) . Examining VP® we will see that
Yo = A(j;n,C?? ’ whereAjF]n is the experiment with parameter set
{1,000,kl defined by P* and (3 is the least informative ex-

periment over the same parameter set.

A
Hence, p ©being the root of P and M being the root of P,

f/“?n’c” .
- S n o
ETZT;TE;T. B/p

The quantity n/p measures the "goodness" of our lumping as

regards the information we obtain about 6 .

By theorem 8.1, u/p <1 and u/p =1 if and only if %
inherits an eigenvalue with modulus p « Hence, we should always

A
lump in such a way that P inherits the root of P .

Example 8.2,

We shall consider the chain studied in [6] p.29, ex. 8 .
X, represents the weather in the Land of Oz on the n'th day ;
the possible values being

1 = rain , 2 = sunshine , 3 = snow .
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The transition matrix is assumed to be

/11 1)
[2 7 7

|
11 1/
I T 32

The eigenvalues of P are 1, 71- ’ -11- « A computation (see

Lindqvist [107], p.59) shows that A, =-§- (%)n .
This chain is lumpable w.r.t. A ={{1,3} , {2}} , the lumpea

chain being given by the transition matrix

A : 1\
The root of P equals , 80 by example 5.7 , Y, = (z) .

Al

Considering An and Y, @as measures of information, this shows

that very little information is lost by lumping the states.

Of course states may be lumped regardless of the resulting
chain being a Markov chain or not.

Let {Xn} , A and {Yn! have the same meaning as in the

beginning of this section.
The Markov-matrix defining the probability distribution of
Y is obtained from the one defining Xn by adding the columns

n
corresponding to each element of our partition. Hence \t (the

n
experiment of observing Yn) is given by PnVA « As is seen in

the case of lumpability, f’n Zgn .
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To ask if E’n ~ §n is the same as asking if Yn is sufficient
for Xn » Applying to theorem 7.1 we may prove by induction that
if Y1 is sufficient for X1 sy then Yn is sufficient for Xn
for each n . Hence, if Y1 is sufficient for X‘l , then it makes

sense to say that A is sufficient for ixn} .

It is noted that sufficiency of a partition A and lump-
ability of A are quite different concepts., ILumpability will in

general not imply sufficiency and conversely.

We recall that in the case of lumpability we had

o~
?1 > }— 5 2 s (this follows from the randomization criterion

A
since o 1s given by VP

If A is sufficien‘t, then 81 ~ ;1 , 82 ~ ?2 yess
80 3:12-3:22... since \&12 822.... .
If A is neither sufficient nor the chain is lumpable, then,

however, this may not be true. ZFor example,define

—~

11 1
S
P = /o 1 -;-} and let A ={{1,2} , {3}} .

i\% 0 %/"

/ 1‘ / .

/% T //% %\

Then PV = ( 1 -;- | PPV = -%- %

/
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By the Y-criterion (see Torgersen [11]) §f1 > f§:2 if and only
if Y(§?1) > Y(j&é) for all Y € ¢y . Defining Y(x1,x2,x3) =

o
‘XQ'XB‘ , however, we get Y(3F1) =0, Y(J-Z) = % (for comput=

ation of ¥( ), see [9]) .

If the relation 3:1 > 3;'2 > +es does not hold; then we
shall see that a limit experiment §5;D such that 3:n - E?Zn
may not exist. If P converges, then of course \gfgo exists
and is given by lim P V, . Thus a sequence {jrn} having

no limit necessarily springs from a periodic chain. A very simple

example is given on X = {1,2,3} by

g }

J

O O N=
O O N=

Here {1} and 1{2,3} are cyclic classes.

/1 0 0
; \
| 11 s
We have P = | 0 5 5 and it is
\ 1 |
\° 3z 3
seen that
P=P =P = ..., P-pt-p=-....

Hence the limit experiment Efco y 1f it exists, may be given by
either P V or P2 V . These experiments are, however, not

equivalent. Consequently, the sequence {S:nf has no limit.

As is noted earlier, the effectiveness of a restriction to
an experiment f;n ought to be measured by & -gn, j-‘:n) . However,

since Yn is a function of Xn s the insufficiency of Yn may
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be considered (more precisely the insufficiency of the partition

A defined by Yn), n(A,gn) . For simplicity, put € = A(gn,ﬁn),

N, = n(A,an) .

To avoid the difficulties occurring if i;n} does not con-
verge, we will in the following assume that ) converges.
Further we shall assume that {.&n} and {;—— n} have a common

limit experiment g « If this assumption is not satisfied, then

lumping seems to have little practical in.terest.

Of course €, 0O as n -» <, since
ey 006,61+ 0 E,€)

Theorem 7.3 implies that € < m . The rest of this section will
be devoted to showing that 12//5;1 and nJ@ have a common limit as
n=-o, i.e. that € “and My behave asymptotically in the same

manner.

In general, however, it may happen that the A4-distance is

small and the mn-insufficiency large. An illustrative example is

C

given in Le Cam [8] p. 46, (where the deficiency behaves like -n—1
c

and the insufficiency behaves like J% )+ We shall need the

succeeding lemma :

Lenma 8'10
Let A1,A2’.'.’AZ 9 B1’BZ’...’BZ E {Mr,r alld assume that
there exists no M €lffl,, .. such that
’
A. M = B, for i=1,ooo,z .

1 1

Then there is a number ¢ > O such that for any M E(W(r T
?
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“Ai M = Bi“ > ¢ for at least one i=1500e32Z @

Proof ¢ The real function f on {w«r,r defined by

z
f(M) =% |A;M-B;|l is a continuous function on a compact space.
i=1
Since f(M) >0 on (ﬂqr o » there exists a > 0 so that
H

f(M) >a for all M. Put o =a/z .

Theorem 8.4.

There exists v >1, 0<86<1, 0<k<K<®
so that

v-jén

cn < V-1

n="n for n=1’2,.00 .

<e€
Proof ¢ We order the eigenvalues of P according to decreasing
modulus. Note that since P° is required to converge, 1 is the
only eigenvalues of P with modulus 1 . Purthermore it has
index 1 &

Let 1 < Py < Py <eeo< Py < O be the different moduli of
eigenvalues of P .

We have €, = inf |1P*VM - PY| , +the infimum taken over (Mk .
M 9
Let 2, = lim P! . Then

m, = J
s i (P-A.I) . .
v - PP = 2,(WM-I) + T % ——— n(J)xl?'Jz.(VM—I) (8.2)

The value of & 1is found by the following procedure :

Since {ﬁn} and itn} are assumed to have the same limit ex-

periment, and since these 1limit experiments must be given by 2
o

and ZOV s respectively, it follows that there exists at least
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one M so that ZOVM =72 +« Let /WQO be the set of such

M's ; W‘Ao c (mr’r .
Define fW11 c /nQo as the set of M E/ﬂ4o so that 2,VM = 2,

for all Zi corresponding to eigenvalues with modulus Py * In

the same manner define {WAZ c /Yﬂ,1 so that Z,VM =z, for all

o

Zi corresponding to eigenvalues with modulus Py

Continuing, one gets a chain

”ﬂlr,r 2 mr/lo 2 fWQ1 2 eee e

If ﬂﬂqt ¥ @, then it is clear that € equals O from some
n on . This is the case if our lumping is sufficient.

If ﬂﬂqt =0 , let j be the smallest number (1 < j < t) so that

M. =g .

J
We claim that & = p:j .
For each M € (Wﬂj_1 s let Vi be the maximum index of eigen=-
values Xi with modulus pj corresponding to Zi's with

Z;VM ¥ Z, . We claim that
v = min {vM t M €(“ﬂj_1} .
By inserting an M!' Gnqu_1 with My =V s We get

¢ = int [|PVM-PY| < ||PPvMr-BY
M

which by (8.2) is seen to be < Cnv_jén for some number C >0 ,
independent of n .

To prove the left inequality of the theorem, assume that a is
the largest label for eigenvalues with modulus & = pj . We

a
multiply each side of (8.2) by T Z; to get (for any M)
i=1
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a
Il =z NP -2

i=1

a mi"‘(P-)\.I)j
i
> 12, (W-1) + T 3 ——

(3)\2=3g (yM-1 8.3
I 5 n 073z (1)) (8.3)

Applying to lemma 8.3, there exists a number ¢ > O , independent

of M, so that
HZi(VM-I)H > @ for at least one i=0,1,s0.,k &

Considering the terms occurring on the right hand side of (843)

we thus conclude that
BV - P > en¥ 1o

where ¢ > 0 is independent of M .

This completes the proof.

We are now in position to prove our main result.

Theorem 8.5.

Tet & Dbe as in theorem 8.4.

i

Then I,i/ﬁ;*b as n 2@,

?
Proof ¢ Let Y, = Y(A,%;n) , where Yy is defined in section 7 .
It suffices to prove that there exists K >0 and w >0 such
that y, < Kn"t¢" ,k since by theorem 7.3 and 7.4 we have

€n < My = 2Yn *

Now Y(A'Zn) i{llfoPnVW - PY| (8.4)

where infimum is taken over all A-~-Markov matrices W .
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We return to the proof of theorem 8.4 . Let b be the largest

label of eigenvalues with modules p Then there exists

-1
M E(wﬂr,r such that
(8.5)

ZOVM = ZO,--.,Z VM =2

b b

Z, 1is of the form B given in (4.3), where the matrices

A1""’Av have strictly positive entries.

Hence from some n on (which of course may be n=1)

=1 J
b BT (P-x. 1) : s
i=1 j=0 j-

will have no negative entries and hence define an experiment.

By (8.5) there exists M so that QWM =Q, for n=1,2,... .
Hence A is sufficient for Qn y SO0 by theorem 7.1 M may for each
n be replaced by an A-Markov matrix Wh such that QnVWn = Qn .
But then, by (8.2), (8.4) and (8.6), v, < IP'W, -P"| < ¢ "6" and

the proof is complete.

We end up this section by a couple of examples.

Example 8.6.
/11 )
’/550\'
Let P =( 1 0 0 |
14 3
\7 ° 7

The eigenvalues of P are 1 , % y - % .

Let 4 ={l1,2} , {3}] . The chain is A-lumpable.
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- 2\ - yn
We have P% = Z, + (4) Z1 + ( 2) 22

where

~~

Wiy Wi Wi
W= W=
(@] o (@]
"\.\_—‘_‘__/’/

T T T~

W=

7y

UlWw O O
1

Ui O o
—

\

]
W
@

N
I
—_—
t
uino L=
TN
o

2
K_11O
15 15 7
A simple computation shows that ﬂﬂqo consists of all matrices of

the form

2
% 0

W—-

oy My M3
m1,m2,m3 =0 3 m1 + m2 + m5.= 1 o
with me (W, we get
0 0 0
z, (W-1) = 0 0 0
m

. Y -
17 75 Ot 75 Hzm ]

and no allowable choice of m, 51,y will give Z1(VMAI) =0 .
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Hence, ("11 =@ , and by the preceding theorems,

DR

i.e. we have convergence to the root of P .

That this will not

happen in general, is seen from the next example.

Example 8.7,

*\‘\

N~
=
ENEN
=

Let P = (

—
6$m nj—
A

aiq nf—

The eigenvalues of P are 1, - %, g .

Let 4 ={{1,3} , {2}} .



Now P% = Z, + (- 12'_-)nz1 +-. (%—)nz2

with
/2 1 2 ‘1.2 1
5 5 5 /T61o 10
J
7 = /2 1 2 7 - (-2 4 _2
o 5 5 5| 1 = 5 5 °3F
2 1 2 1__2 1
5 5 § 70°70 70
1 7
7 0-3
ZZ= 0 0 0
1 1
"2 0 3

A computation shows that {M1 #@ , more precisely, M,,

one element

o M-
o N

However, (MZ = @ since Z2,V =0 .

— 1

Hence Ii/en and 372'—111 ? 1§ » Wwhence the root of P equals

has

1
T
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