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ABSTRACT. 

Let iXh}~=o be a Markov chain with finite state space. We 

study the experiment tn of observing xn in order to obtain 

information about the initial state X0 • The sequence 

{ G nl':=1 is proved to have a lim.i t ! co , which is characterized 

in terms of properties of the given chain. A measure for the in

formation contained in ~n is proposed, and an asymptotic expres

sion is derived. If states of the chain are lumped, then some 

information may get lost. ~~o methods of measuring the loss are 

studied, the deficiency and the insufficiency. They are shown to 

have equal asymptotic properties. 

Key words: Markov chain, limit experiment, information, 

lumping, insufficiency. 
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1. Introduction. 

Let 
a:; 

IX l ·be a Markov chain on the finite state space n n=o 
x = {1,2, •• ~,rl , with transition matrix P. We shall consider 

a statistical model where Xn is observed in order to obtain 

information about the initial state X0 • Thus X0 is the un

known parameter, and parameter set = sample space = the state 

space of our chain. 

Such models are frequently appearing in genetics. One observes 

some generation of a population and wants information about 

previous generations. An example is given in section 3. 

The main question is, how can we measure the information ? 

Le Cam has in [7] introduced an information-distance between 

experiments, the deficiency, which generalizes Blackwell's ([1]) 

relation "more informative". The deficiency gives rise to a 

semi-metric in the set of experiments, the 

Let ~ n be the experiment of observing 

contained in f' (on n 

b-distance. 

~· The information 

grows. It is shown 

that the sequence 

of course decreases as 

{ G n l has a limit ~co (in the A-metric). 

Section 4 is devoted to characterizing the limit experiment in 

terms of properties of the given Markov chain. It turns out that 

if the chain is aperiodic, then G a:; is simply the experiment of 

observing the recurrent class into which the chain ends up. We 

note that the limit ~ 00 exists, even though the sequence {pll} 

diverges. 

In section 5 we show how the 6-distance provides us with a 

measure of the information contained in ~ • The quantity studied 

is An = 6 ( c n' e CD). It is shown that An asymptotically 

·behaves like n ,._1 pn , where 
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p= max { I A I : A. eigenvalue of P , I A I < 1! 

and T is an integer, T > 1 • 

The computations needed are based on a formula of pn derived 

from a result on linear operators in finite dimensional spaces 

taken from Dunford-Schwarz [2] . The formula involves the 

spectrum of P and is given in section 2. 

Section 8 treats the subject of lumping states of a Markov 

chain. Kemeny and Snell [6] have defined the concept lumpability 

of a Markov chain. In this paper we study how information gets 

lost by lumping. The efficiency of lumping may be measured both 

by deficiency and insufficiency, a concept introduced by Le Cam 

in [8]. 

Some results on insufficiency are given in section 7 for finite 

experiments. We note that the given results are valid for quite 

more general experiments. The given proofs, however, turn out 

to be very 11 clean" and may illustrate the technique of proving 

the general results. 

It is proved in section 8 that in the present case, the de

ficiency and the insufficiency behave asymptotically in the same 

manner. As is pointed out by Le Cam in (8], this may not always 

be the case .. 

Sections 1-6 corresponds to Lindqvist [10]. The theory is, 

however, rewritten and some proofs are simplified. 
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2. .Preliminaries. 

Lf A = (a .. ) 
J.J 

is a m x n-matrix with complex entries, we 

shall define the norm UAll of A by 

IIAII ==max Ela. ·I • 
i j J.J 

We note that conv~rgence in this norm is equivalent to convergence 

in each entry. 

A m x n-matrix M == (mij) is called a Markov matrix if 

n 
m .. > 0 for all i, j and i: m .. = 1 for all i • 

J.J - j=1 J.J 

The set of Markov-matrices with dimension m X n is denoted 

fif~,n • The set~,n is compact in the metric space of m x n

matrices with metric induced from II o II • 

We shall need a suitable representation of powers of matrices. 

A complex r x r-matrix T may be considered as a linear operator 

in Cr with scalar field C • Let A. 1 , ••• ,A.s be the distinct 

eigenvalues of T • If A. is an eigenvalue, we define the index 

v(A.) of A. to be the smallest non-negative integer v such that 

(A.I-T)vx = 0 for every vector x such that (A.I-T)v+1x = 0 • 

We shall put m. = v(A..) ; 
J. J. i=1 ' • 0 • 's • It is seen that m. > 1 

J. 

for all i • The index of an eigenvalue may alternatively ·be 

defined as follows: Let 1f(t) be the minimal polynomial of T , 

i.e. ~(t) is a complex polynomial with leading coefficient 1 

and of lowest degree such that 1f(T) = 0 • It may be shown 

(see Gantmacher [4]) that we may write 

'¥(A.) 
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Hence the index of A. is the multiplicity of A. as a root of 
J_ J_ 

the minimal polynomial of T • 

Theorem 8 of ch. VII in Dunford-Schwarz [2] now states that 

if f is a polynomial with complex coefficients, then we have 

the expansion 

s mi-1 
f(T) = I: I: 

i=1 j=o 

( T-X . I ) j ( . ) 
_____ l_ f J (X. )Z. 

• ' J_ J_ J. 
(2 .1 ) 

where z1 , ••• ,Zs are complex r x r-matrices which are independent 

of f and satisfy 

(i) z. I= 0 . i=1 ' ••• 's J_ 
, 

z? = z. . i=1, ••• ,s 
J_ J_ 

, (ii) 

zizk = 0 . for i I= k , (iii) 

s 
I: z. = I • 

i=1 
J_ 

(iv) 

If T is given, then the component matrices z1, ••• ,zs may 

easily be determined, by inserting sui ta-ble f(t) in (2.1). In 

fact, for any i=1 ' • 0 • , s there exists a polynomial fi(t) such 

that z. 
J_ = fi(T) • The idea of the construction is to define 

f. ( t) so 
J_ 

that flj) (Ak) = 0 for k I= i ' j=O, ••• ,mi -1 • 

Putting f(t) = tn in (2 .1 ) we obtain an expansion of Tn 

which is the fundamental formula used in this paper 

s m.-1 
Tn 

J_ 

= I: I: 
i=1 j=o 

(T-X.I)j (·) . 
_____ l ___ n J x~-Jz. 

., J_ J_ 
J. 

(2.2) 

where n(r) = n(n-1) ••• (n-r+1) if r> 1 and n(o) = 1 
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A finite experiment will here be defined as an experiment with 

finite parameter set e = {1,2, ••• ,rl and finite sample space 

x = {1,2, ••• ,s} • Such an experiment is completely given by a 

matrix P = (p6 j)E./Yf1"r,s ; the e-th row vector defining the 

proba-bility distribution over X when e is the 11 true 11 parameter. 

We shall use the symbol ~ p for the experiment defined by P • 

In [7] Le Cam introduced an information distance between ex

periments: the deficiency. The deficiency is defined in terms of 

risk-functions. It follows, l1owever, from [7] that for finite 

experiments an equivalent definition may be given as follows: 

Let ~ p and ~ Q be experiments such that P EAtt:r, s 

Q EMt,, t Then the deficiency of ~p relative to ~Q is 

given by 

The quantity o ( Cp, GQ) 
information by observing 

is interpreted as the maximal loss of 

tp instead of ~ Q • 

It follows from the above definition that the deficiency equals 

if and only if ~ p is sufficient for ~ Q according to 

Blackwell's definition (see [1]). if c(tP'~Q) = 0, then we 

say that t p is more informative than t Q .!. We write this 

0 

t p 2: G Q • Accordingly, ~ p 2: ,GQ if and only if there exists 

M Erws, t such that PM ~ Q • This result will be referred to as 

the randomization criterion. 

Le Cam [7] also introduced a distance in the set of experiments 

It is defJ.ned by 
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(v denotes maximum) and is easily seen to have the 

of a semi-metric. If A( t P' ~Q) = 0 , then G, p 

said to be equivalent; in symbols tpt'VtQ. 

properties 

and !, Q are 

Let be a sequence of experiments and let be 

an experiment, all with the same parameter set. 

Then we say that t (n) converges to G, in symbols 

~ (n) ~ 't, as n~oo if A(~(n),G) -? 0 as n-?oo. 

The limit t, is uniquely determined up to A-equivalence. In 

the case of finite parameter set, to each sequence !~(n)} of 

experiments there exists a sub-sequence { ~ (n 1 
)} and an ex

periment ~ such that t (n 1 ) ~ G . 
This follows from a remark on p. 228 in Torgersen [11], which 

states that the set of (standard) experiments is compact in the 

metric A • As a consequence of this we have: 

Lemma 2.1. 

Let { ~ (n)} be a sequence of experiments with common finite 

t ( 1 ) > ~ ( 2 ) 2: • • • • Then there parameter set 9 . Assume that 

t such that is an experiment 

(i) A ( ~ (n) , t ) J 0 as 

(ii) t (n) > ~ for each n • 

Proof: Th { ~ (n' )} ere is a subsequence (? and an t such that 

(2.3) 
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Given n , choose n' > n • Then since t (n) > ~ (n') , 

Letting n' -:) oo it is seen that o ( ~ (n), ~ ) = 0 and hence 

t(n)2:t:· 
It follows that 

A ( t (n+1)' ~) = o ( t, ~ (n+1) 

< o(t, ~(n)) + o(~(n),~(n+1)) 

= o ( ~' ~ (n) ) = A ( E (n) ' t ) • 
Hence. the sequence {Ll(t (n), ee )} is monotonically decreasing 

and thus convergent. 

By (2.3) we must have A( t, (n), t) J 0 • 

If the ~ (n) are finite experLments, then under some conditions, 

the limit experiment will also be a finite experiment. 

Lemma 2.2. 

Let ! ~ (n) J be a sequence of finite experiments which may be 

defined by matrices p(n) E nM . 
I vr~,sn 

Assume that the sequence ! snl is bounded. If { ~ (n)} con

verges, then the limit experiment ~ is a finite experiment 

(i.e. may be given by a finite Markov matrix). 

Proof. Let s = max sn • Extend the matrices p(n) to rxs-

matrices Q(n) by adding colums of zeros. Of course 
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• 

By compactness of {W( r, s there is a subsequence (n') Q which 

that 

toQ(n) 

converges to a matrix Q E~ • It remains to prove r,s 

-) t Q • Clearly A(~ (n)' ~Q) ~ IIQ(n)_Qll • 
Q 

Hence ~ (n,) 
Q 

-) ~ Q • By uniqueness of limits of experiments, 

this implies t ~~Q. 
Some other notations which will be used are: 

If B1 , ••• ,Bn are quadratic matrices, then we denote by diag(B1 , 

• •., Bn) the matrix 

( ;1 0 ... 0 

B2·:· 0 

\ b 
• . 

• • • • • • • Bn 

fWlo is the set of rXr Markov matrices M = (m .. ) 
~J 

with identi-

cal row vectors, i.e. there exists m1 , ••• ,m > 0, Dm. = 1 
r- J 

such that m .. = m. 
~J J 

for all i,j • 

~. 0 is the set of real rXr-matrices N = (nij) with identical 
r 

rows and with row sums equal to 0 , i.e. r. n .. = 0 • 
j=1 ~J 
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3. The model. 

We shall in this paper consider a finite, discrete Markov 

chain 

matrix 

{xnl':=o with state space x = 

P = (p .. ) • The elements of lJ 
so that for i,j = 1,2, ••• ,r 

{1,2, ••• ,r} and transition 
~ (n) 
.t' will be denoted p. . , lJ 

(3.1) • 

We let e = x 
0 

be the parameter and let our experiment consist in 

observing Xn. Thus the parameter set e = X• Since by (3.1) 

the e-th row vector of pll defines the pro·babili ty distribution 

of xn given that xo = e it follows that the experiment of 

observi:gg Xn is given by pn • We shall denote if by ~ n • 

It seems reasonable that the information obtained about X 
0 

by observing Xn decreases as n grows. In fact, if 0 < m < n 

then pn = pmpn-m and the randomization criterion shows that 

t m 2: ~ n • Hence t 1 ;::: ~ 2 > • • • and by lemma 2.1 there exists 

an experiment t 00 such that ll ( t n, ~ 00) J 0 and ~ n 2: ~ 00 • 

We remark that the limit experiment t 00 exists for any P • 

Hence the experiment given by pn will converge even if pn does 

not converge. In section 4 we shall characterize and give an 

interpretation of the experiment ~ 00 in terms of the properties 

of the given Markov chain. 

At first sight one may think that the information about X0 

may be increased by observing the chain on times n1 < n2 < ••• < nk 

instead of merely observing at n1 • However, by the Markov 

property, the conditional distribution of Xn1 , ••• ,Xnk given ~1 
is independent of e ' so is sufficient for the vector 
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(Xn , ••• ,X ) • A question that may arise concerning the given 
1 . nk 

model is : Let 

dimension r . 

p 

Let 

be transition matrices of the same 

and ~~n} be the corresponding se-

quences of experiments according to the model given here. 

Assume that P and Q represent equivalent experiments, i.e. 

t1rv~1 • Will this imply that to "'t for all n ? n n That 

this is not true is seen from the following simple example : 

p =U ~) Q=n u (3.2) 

p2=(i i) Q2= ( ~ ~). 

Clearly t 1 "' t 1 • That t 2 rf } 2 is seen from the *-criterion 

(see Torgersen [11] , for computation see e.g. Lindqvist and 

Torgersen [9]). 
Defining $(x1,x2 ) = lx1 - 2x2 1 yields 

We remark that P and Q , given in (3.2) defining equivalent 

experiments, have quite different properties as transition matrices 

for Markov chains. P defines an aperiodic irreducible chain, 

whence Q defines a chain where state 2 is absorbing. 
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Example 3.1. 

This example is taken from Feller [3] . We consider a parti

cular pair of genes, say a and A • Each individual belongs to 

one of the three genotypes (a,a) , (a,A) or (A,A) • Our popu-

lation consists of N individuals. However, we shall introduce 

the genes themselves as elements of the population, so that we deal 

with a population of 2N elements which are either a or A • 

Here N is a fixed number. 

Under the assumption of random mating we may assume that the 

2N genes of any generation are formed in 2N independent trials 

if the parent population consists of j a-genes and 2N-j A-genes, 

then each trial results in a or A with probabilities 

respectively. 

P = J"/2N j q. = 1-p. 
J J 

Hence we have a Markov chain with state space x = {0,1, ••• ,2N} 

and transition probabilites given by the binomial distribution : 

P .k 2N-k 
J qj 

The states 0 and 2N are absorbing, i.e. {0} and {2N} are 

recurrent classes, whence 1,2, ••• ,2N-1 are transient states. 

In genetics one is often faced with the following problem : 

A process of the above type is observed after n generations 

(we assume that the number of a- and A-genes may be counted by 

some method), and one wants to draw conclusions a·bout the initial 

population. This is a special case of the model treated in this 

paper. By the previous results, the information about the initial 

generation decreases as n grows. 
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4· The limit experiment t co.:.. 

Let the sequence { ~ n} be given as in section 3 • As is 

noted there, for any transition matrix P , the corresponding 

sequence { t n} converges to some experiment ~ co • By lemma 2. 2 , 

~co is a finite experiment. It is the purpose of this section 

to determine the Markov matrix defining ~ 00 • The results might 

have been developed using the expansion (2.2) together with some 

facts on eigenvalues of transition matrices. However, we shall 

make a probabilistic approach, using merely elementary properties 

of J.'tTarkov chains. The following lemma will be useful: 

Lemma 4.1. 

{ ....ll I} Assume that Q is a limit at some subsequence J:' of 

{r} . Then t, co may be represented by Q • In particular, if 

r converges, then ~co may be represented by the limiting matrix. 

Proof: Analogous to the proof of lemma 2.2 

The totality of states of a Markov chain may be partitioned 

into equivalence classes, where the states in an equivalence class 

are those which communicate with each other. A class of states is 

called recurrent if the probability of leaving the class is 0 ; 

it is otherwise called transient. A Markov chain is called 

irreducible if there is only one equivalence class (which is then 

recurrent if the state space is finite). The period of a state 

is a constant in each equivalence class, so it makes sense to deal 

with the concept period of a class. A class is called aperiodic 
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if each state has period 1. 

Given a Markov chain with state space X= { 1,2, ••• ,r} we 

may (eventually by rearranging the states) write P on the 

"canonical" form 

p1 0 • • • • • 0 0 

0 p2 • • • • • 0 0 
p = • • (4 .1 ) .. 

• • • 
0 • • pv 0 ••••••• 

R Q 

where P1 , ••• ,Pv represent irreducible Markov chains, corresponding 

to the v recurrent classes of the chain. 

If the chain has no transient states, then R and Q may be 

removed from (4.1). Otherwise, R fo 0 and Q is a quadratic 

non-negative matrix (which is not a Markov matrix) • 

It is seen that 

~ 0 ••••• 0 0 

0 ~ ••••• 0 0 

pll • • • 
= • • • • 

• • 
~ 0 • • • • • • • • • • 0 

~ 

(4.2) 

We shall at the outset make the assumption that the v recur-

rent classes are all aperiodic. Then by the usual limit theorems 

of irreducible aperiodic chains, for each k , Pkn converges 

to a Markov matrix ~ such that all rows of ~ are equal. 
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Since there is probability 0 of remaining in some transient state, 

we conclude that Qn ~ 0 • 

It remains to study the properties of ~ as n tends to 

infinity. For simplicity, let the transient states be labled 

1,2, ••• ,~ and let qjk be the probability of being absorbed in 

the k'th recurrent.class, given that one starts in state j • 

v 
For each j , ~ qjk = 1 • 

k=1 

Let the row vector of A.k be -
~· By the limit theorem for 

transition probabilities (see Karlin [5] thm. 3.1) it follows that 

~ converges and that the row vector in lim Rn corresponding to 

transient state j may be written 

where 

We have now shown that under the given conditions .of aperiodi

city, pn converges to a matrix B of the form 

A1 0 • • • 0 0 \ 
0 A2 ••• 0 0 

\ 
• • (4.3) 
• • 
• • 

B = 0 A 0 v 

I 
1;)11 b12··· 131v 0 

J 
• • • • • • • • 

bf31 ·i)~2· •• bf3v 0 
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By lemma 4.1 ~ n ~ ~ B • The limit experiment t B 

reduced to a minimal sufficient form: 

Theorem 4.2. 

may be 

Let P be given as in (4.1) and assume that P1, ••• ,Pv all 

represent aperiodic classes of states. Let qjk be given as be

fore.. Then the limit experiment ~ 00 is given by the rxv-mat-

rix 

I.., 0 ••••• 0 
I 

0 I2••••• 0 . • • • • • • 
.A = 0 • I • • • • • • • • • • v 

q11 q12 •••• q1V 
• • • • 
q~1 q~2 •••• q~v 

where for k=1, ••• ,v, Ik is a column vector of the same dimension 

as Pk , with all entries equal to 1 • 

Proof: We have to prove that t .A "' ~ B • The relation 

t B 2: t .A is established by observing that BA = .A. 

Define now a matrix M E f'W'v ,r by 

( :1 0 • • • 0 

M - 0 = a2··· 

\ • • • 
0 • -

\ ••••••• a v 

A simple computation shows that AM= B, which implies ~.A> ~B. 



- 17 -

Corollary 4.3. 

If the Markov chain is irreduci"ble and aperiodic, then 

converges to the minimal informative experiment. 

Remark: The minimal informative experiment is characterized by 

the fact that the probability distribution does not depend on the 

parameter 6 • Any Markov matrix with equal rows will represent 

the minimal informative experiment. 

~A The experiment \.::lt given in theorem 4.2 may be given a reason-

able interpretation as follows : Let P be given as in the 

theorem. We note that a·bsor'btion into one of the v recurrent 

classes occurs with probability 1 • Thus we may define an ex

periment consisting in o·bserving (the label of) the absorbing 

class. It is not difficult to see that the probability distri·bution 

of this experiment is exactly the one given by the matrix A • 

We shall now discuss periodic chains. At first we assume that 

P is the transition matrix of an irreducible, aperiodic chain with 

period d > 1 • P may then (eventually by permuting .the states) 

be represented on the form 

0 p1 0 • • • 0 

0 0 p2··· 0 
p • = • • 

0 0 0 • • • :d-1/ 
pd 0 0 .... 

where the matrix in ·block no. (i,j) has dimension 
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d 
a.. X a. . 

1 J 
. 
' i,j = 1, ••• ,d ; a.i > 0 for all i and l:a..=r. 

. 1 1 1= 

By induction (or oy a probabilistic line of argument) we show 

that 

pd = diag (Q1, ••• ,Qd) 

where Q. 
1 

has dimension ex.. X a.i 1 

and 
Q1 = p1 p2 ••• pd 

92 = p2 p3 • • • pdp1 
• • 

Qd = pd p1 P2. pd-1 

It is easily verified that Q1 , ••• ,Qd 

aperiodic chains, so (4.4) shows that 

with R=O , Q=O • Hence {plld}~= 1 

(4.4) 

correspond to irreducible, 

Pd is of the form (4.1) 

converges to a matrix of the 

form (4. 3) with no transient states a..."l.d v=d • Furthermore, by 

lemma 4.1 and theorem 4.2 !~nj converges to the experiment 

given by the matrix 

where 

a.. 
1 

. 
' 

I1 0 • • • 0 

0 I2 • • • 0 
• • • • • • • • • • 
0 • Id ........ 

I. is a column vector of all 
1 

i=1, ••• ,d 

1's with dimension 

We remark at once that the limit experiment in the case of an 

irreducible chain with period d has the same form as the limit 
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experiment of a chain with d recurrent classes (the recurrent 

classes correspond to the cyclic classes in the periodic case). 

fhis may be explained as follows: 

In the former case we may by observing Xn , since n is 

known , draw the conclusion as to which cyclic class 

This corresponds to, in the latter case, knowing that 

to the same recurrent class as ~ • 

belongs. 

belongs 

We now return to the general case where P is given as in 

(4.1) and P. 
~ 

represents a periodic chain with period 

d.> 1 ; i=1, ••• ,v. By (4.2) and the remarks about irreducible 
~ -

periodic chains we may v.rri te (possibly by permuting states in 

each recurrent class) 

P' 0 • • • 0 0 
1 . • • • . • 

pd 0 P' 0 • • (4. 5) = • 2 • • • 
0 • • • • • • • • P' y 0 

Rd Qd 

with d equal to the least common multiple (l.c.m.) of d1 , ••• ,dv 

(i.e. d is the least positive integer so that d1 , ••• dv all 

divide d) 

and y = 

Now 

so it is 

B given 

v 
L: d. • . 1 ~ 

~= 

P1, .•. ,P~ 

seen that 

in (4.3) • 

all represent irreducible, aperiodic chains, 

jplld}~= 1 converges to a matrix of the form 



- 20 -

Thus by lemma 4.1 we have (this is the main result of this section): 

Theorem 4.4. 

Consider a Markov chain with state space x = {1,2, ••• ,r} • 

We assume that the transition matrix P is given by (4.1), where 

Pi has period di > 1 and Pi is written on cyclic form 

0 pi1 0 • • • 0 \ 0 0 pi2"" 0 
• 

P. = • 
J. • 

0 0 0 • • • Pi,di-1 

p 
0 0 0 \ i,di ••• 

where the matrix in block no. (k,l) has dimension 

(k,l=1, ••• ,di) (i=1, ••• ,v) • 

We assume that Q has dimension (3X(3 i.e. 

has 13 transient states (~ may be 0). 

Let d be the 1. c .m. of d1 ' • • • 'dv • Then 

is the transition matrix of a l'1ar kov chain with 

v 

a.. kx a.. 1 J., J., 

that the chain 

pd (see (4.5)) 

y = E d. recurrent classes and ~ transient states. 
. 1 J. J.= 

For j=1, ••• ,(3 ; k=1, ••• ,y let qjk be the probability of 

being absorbed in the k-th recurrent class of this chain, given 

that one starts in state j • 

The experiment sequence { ~ n} defined by P now converges 

to the experiment t, A given by the matrix 
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Ct 11 
I 0 

0 
0.12 I . 

Ct1d 
0 . I 1 • 

(4.6) 
• 

• 
A :; 

Icx.v1 • c:x.v2 
I 

• 
\ 0 •••••••••••••••••••••••••••••••••••• 

\ q
q:11 q12""" q1d1 ••••••••••••••••••••• 

tJ ql3 2 • • • q~ d • ' ••••••••••••••••••• 
1 

where Ih denotes a column vector of dimension h with all entries 

equal to 1 • 

Conversely, to each matrix A of the above form (with 

y 
= 1) p q.k > 0 ' :E qjk there is a transtition matrix such that 

J - k=1 

I Gnl corresponding to this p converges to GA . 

Proof: The last assertion is proved by noting that for any .A on 

the form (4.6) t A is equivalent to an experiment t B with 

B on the form given in (4.3). 

Now B is a transition matrix and it is seen that Bn = B 

for n=1, ••• ,. Hence C. 1 r""G 2 rw ••• rw~B so tn~~B" 
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Remark: Since the states of a Markov chain may be permuted, any 

matrix which by a permutation of ~ becomes a matrix of the 

form (4.6) , is a limit experiment of a sequence ltnl • 

The representation of the limit experiment ~ 00 given by (4.6) 

is minimal sufficient since an addition of columns in A and a 

succeeding multiplication with a Markov matrix would not lead us 

back to A • Hence the given representation is minimal in the 

sense that any other minimal sufficient representation is given by 

a permutation of columns in A • 

What can be said about the original Markov chain by examining 

the limit experiment ? 

By the discussion in this section it follows that the limit 

experiment depends on the recurrent classes, the periods and the 

transient states. Given the limit experiment, however, it turns 

out that to select say the recurrent classes, we need additional 

information about the chain. As an example, suppose r=3 and 

A= (1,1,1)' • 

Then {1,2} is recurrent and {3} transient, or {1} is recurrent 

and {2,3} transient and so on. 

If A = 0 n , then 

{1,2} and {3} may be two recurrent classes, or {1,2,3} may 

be a recurrent class with period 2 etc. 

We close this section by taking up the example given in section 

3 • 
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Example 4.5. 

By Feller [3] , the probability €m of being absor-bed into 

state 0 given that the initial population has m a-genes, is 

given ·by 

€ = 1 - m/2N m 
. 
' m=0,1, ••• ,2N • 

Hence the limit experiment is defined by 

1 0 

1 1 1-- 2N 2N 
2 2 1-- 2N 2N 

A • = • 

I 

I 1- 2N-1 2N-1 

\ 
2N 2iT" 

1 /. 0 
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5. Rate of convergence. 

In this section we set .An= A(in'~co) • 

Assume for a moment that the Markov chain under consideration 

is irreducible and aperiodic. By corollary 4.3 , the limit expe

riment ls 00 is the least informative experiment. Intuitively 

speaking, a decision based on this experiment may be considered 

as the guessing of a parameter without taking observations. Hence 

!::.. measures the maximum loss when "guessing" X0 instead of n 

basing a decision a·oout xo on xn It may thus seem reasonable 

to consider !::.. 
n as a measure of the information contained in X • n--: 

If tlle chain is not necessarily irreducible a'1.d aperiodic, then 

An may be given a similar interpretation. More precisely, !::.. 
n 

measures the additional information of observing Xn instead of 

merely observing the recurrent class into which the chain ends up. 

We shall make use of the expansion of pn given in (2.2) • 

To begin with, we state some results on eigenvalues of non-negative 

matrices and in particular of transition matrices. (See e.g. Karlin 

[5]) • It is tacitly understood that every matrix is of finite 

dimension. 

Theorem 5.1. 

(i) m1y non-negative matrix A F 0 has a real eigenvalue 

~ > 0 such that \A\~~ for any eigenvalue A of A • 

(ii) If P is a transition matrix, then ~ = 1 and the multi

plicity of the eigenvalue 1 is equal to the number of recurrent 

classes associated with P . 

(iii) If P is the transition matrix of an irreducible periodic 

l\larkov chain with _period d , then the d' th roots of unity are 

eigenvalues of P , each with multiplicity one, and there are no 



- 25 -

other eigenvalues of modulus 1 • 

We remark that multiplicity here means multiplicity as a root 

of the characteristic polynomial, whence the formula (2.2) 

involves the multiplicity as a root of the minimal polynomial 

(which may -be smaller) • 

Let P be given as in theorem 4.4. The set of eigenvalues of 

P is equal to the collection of eigenvalues of P1 , .•• ,Pv ,Q. 

Since the chain associated with P nas v recurrent classes, it 

follows from theorem 5. -i that the maximum eigenvalue of Q is 

~ < 1 and that any eigenvalue of P with modulus 1 is a root 

of unity. 

We number the distinct eigenvalues of modulus 1 

cp 1 = 1 ' tfl2 ' • • • ' cpu • 

Let d be given as in theorem 4.4. Then d cp. = 1 
l 

for i=1,2, •• ,u. 

Since r is bounded as n -7 co , (2. 2) shows that the index of 

cp1 , • • • , cpu are each equal to 1 (This may also be concluded 

from theorem 9, ch. VII of [2]). Hence, if A1 , ••• ,As are the 

eigenvalues of P with modulus less than 1 , and with indexes 

m1, ••• ,ms , respectively, then by (2.2) 

pll= 
u 
" fi'ln7. L.. 't'·.:.l· + 

. 1 l l l= 

m.-1 s l 

2: I. 
i=1 j=O 

(5.1). 

As is proved in section 4 by a probabilistic consideration, 

(5.1) shows that pmd converges to 
u 
2: z. 

. 1 l l= 
as m -7 ro • 
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More general, 

pnd+k -+ 
u 
L: qf z. 

. 1 J. J. J.= 

as m -+ oo 

for k=0,1, ••• ,d-1 • 

We are nm,..r in position to derive upper and lower bounds for 

A n • 

Definition 5. 2 ·~ 

If P is a transition matrix, then we define the root of P 

by 

p=max{p.j :A. eigenvalueof P, \A.\<1} '· 

The maximal index ~ of eigenvalues with modulus p is called 

the index of P • 

In the following theorems we shall assume that p > 0 • If 

p = 0 , then by (5.1) from some n on 

i • e • t n "'Goo • 

Theorem 5.3. 

....n u n 

..t' = :E ~. ZJ.. 
. 1 J. J.= 

so 

Let p and ~ be, respectively, the root and index of P • 

Then there are constants 0 < k < K < oo such that for any 

n=1,2, ••• 

kn'l'-1 n <A < y 'T-1 n 
P - n m p • 

Proof: Let n be given. By the Euclidean algorithm there 

exist non-negative integers m,k such that n=md+k and 

0 < k < d • Since ~ 00 by lemma 4.1 may be represented by 
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u . 
r; ~~ zl. ' it follows from (5.1) that 

. 1 l l= 

u k .,..n 
An ·- inf 11 2: ~ . Z . M - J:' U 

M i=1 l l 

Obviously K may be chosen independent of n • 

It remains to prove the left inequality. Let n , m and k 

be given as before. Without loss of generality we may assume that 

\ >.. 1 I = p and that the index of ),1 is 'r • Then, applying to 

the inequality llABII :::_ II All II B!l , for any l\1 J\llA : ~ Htr,r 

u u 
11 2: ep1~ Z. M - YJ.ll > 1l'C:11"1 II o 2: etz . M = o1 pill I 

. 1 l l 1 . 1 l l l= 1 l= 

(5.2) 

for i=1, ••• ,u. 

Since o1 = f 1 (P) for some polynomial f 1 (t) (see section 2), 

we have 

The right hand side of (5.2) is independent of M so 



An > 
'T-1 n -n p 
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-
n 'T-1 

The right hand side of (5.3) converges to 

1 II 

J 

But this assures the existence of k > 0 such that 

A n 
'T-1 n 

n P 

Corollary 5.4. 

>k>O for all n • 

as n -?co • 

The result of theorem 5.3 may be written 

with 

A = k n 'T- 1 pn 
n n 

k < k < K 
- n 

for any n • 

(5.3) 

What can ·be said a·bout the value of kn ? We shall derive an 

asymptotic expression for An in the case of an irreducible, a

periodic chain, and show that in some cases the value of kn is 

independent of n • 
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Theorem 5.5. 
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f1r/ be defined as in section 2. •to 

Let P represent an irreduci"ble, aperiodic chain. Let the 

eigenvalues of P be 1,A1 , ••• ,As • Assume that 

and m1 = m2 =···= mq = T > mq+1 > ···~ mp (~ p) • 

icp. 
A = pe J 

j Let 

Define 

Then 

. 
' 

tp . E [ 0 , 2TT] 
J 

• , j =1, ••• ' q • 

Proof: As is well known from the theory of Markov chains, pll 

converges to a matrix z1 E~~ such that all entries of z1 are 

strictly positive. 

Since z1 E fWlo => Z1N E (Vv\ 0 for any square Markov matrix 

M , it is seen that 



Put 
q 

~ = 2: 
k=1 

and define ~ so that 

Now 
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(5.4) 

(5.5) 

Let (V\ * be the set of matrices M - z1 obtained as J.VI varies 

in Mto . Then 

~n = inf II N - ~ - ~II • 
N Ef{t* 

By (5.1), (5.4) and (5.5), 

and it is thus seen that 

= n ( '1" - 1 ) p n- '1" + 1 inf II 
NEif\* 

(5.6) 
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Since o/l 0 is a closed set in the set of rXr-matrices, 

there exists 

N(n) E /\/1 such that o 'flo 

= liN (n) - T ll • o n 

We shall show that from a certain n on, the infimum in (5.6) 

is attained by 

By definition of 

on, N(n) given 

The matrices 

for any n 

(5. 7) 

N (n) it suffice::· to prove that from some n 
0 

by (5. 7) is a member of fVt * 
N0 (n) are uniformly bounded in n • In fact 

= inf liN - T II + IITnll 
NEl\'lo n 

by putting N=O 

Since all entries of z1 are strictly positive, it is seen that 

there exists 0 < y < 1 such that t\'l * contains any member of 

'Vlo with all entries of absolute value less than y • Hence 

the fact that n ( T- 1 ) pn-T+1 ~ 0 as n ~ oo implies that 
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N(n) E'\ll * from a certain n on. 

The proof is now complete. 

Corollary 5.6. 

Assume that A1 is real (i.e. A1= ~ p) and that q=1 • Then 

there is a constant c > 0 such that 

An 
'T-1 n n P 

c as 

Proof: By theorem 5.5 

with k = 
(P-A 1).,._1 

inf II N - ---,-r 1.:-, _....,1~) ..... '-
NEfn ' 

0 

n.., oo. 

• 

That k > 0 is a consequence of theorem 5.3. 

The corollary follows. 

If the ~ defined in the proof of theorem 5.5 _equals exactly 

0 from a certain n on (this happens if ~=1 and P has no 

non-zero eigenvalues with modulus less than p) , then theorem 

5.5 gives rise to exact expressions for A 
n from a certain n 

The proof of theorem 5.5 also shows that if ~ = 0 and 

N (n) EM.* for n=1 ~ 2,.. • then we obtain exact expressions 
0 

for t. for n=1,2, •••• To give an example, we shall derive n 

An for a general P of dimension 2X2 

on. 
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Example 5.7. 

Let (
1-a. 

p = 
F3 

where 0 < a. , ~ < 1 • 

To avoid trivial chains, we shall assume that a+~~ 0,1,2 • 

The eigenvalues of P are 1 and 1~-~ and 

a. ) + ( 1-a.-@ )n ( a. 
a.+~ Q a. -..., ~) 

i.e. by the terminology of theorem 5. 5, p = 11-g.-~ \ , T=1 , 

- 1 ( 0. 

c1 - a.+~ \ -~ 

and ~ 1 = 0 or n according to whether 1-a-~ is > 0 or < 0 • 

We shall let U0 be the N E Nlo minimizing liN - c111 • 

Putting N --(c -c) yields 
c -c 

• 

A geometrical consideration shows that infimum taken over c of 

this expression is obtained with 

~ 
c=~ 
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which yields 

Furthermore N0 Eo/l * so "by theorem 5 ~ 5 and the remarks preceding 

this example we have 

for n=1, 2,... . 

Example 5.8. (EXample 3.1 continued). 

Feller has computed the eigenvalues of the transition matrix of 

the chain. In our notations we have 

1 
p = 1 - 2N and 'T' = 1 • 

Furthermore, the requirements of corollary 5.6 are satisfied, 

so that 

~n ~ c(1 - ~) n 

for some constant c > 0 • 

To end this section, let 

determined by the matrix P , and let 

{~nl and Assume further that 

experiment ~ • 

It is obvious that A(~n'~ n) ~ 
~ (~n't"n) ~ A( ton'~) + A(_tn~j) • 

be a sequence of experiments 

{~ n} be determined -by Q • 

have a common limit 

0 ' since 

We shall prove a result on the rate of convergence of 

Let p , 'T' be the root and index of P ; cr ,v be the root 

and index of Q • 



- 35 -

Then we have 

Theorem 5.9. 

If (i) p > CJ 

or ( ii) p = (J and '!" > v 

then 

is bounded away from 0 and co as 

In particular, ~ A ( ~ n',} J ~ P 

If p = cr and '!" = v , then the above results may not hold. 

In fact we may have 

with 0 < 6 < p • 

Remark: If P = Q , then of course ac c , r ) ::1 o n n 

Proof: Assume that (i) or (ii) holds. 

Then 

'T"-1 n 
n P 

for all n • 

The first part of the theorem now follows from theorem 5.3, since 

~ 0 as n ~ co • 

To prove the last part, we shall apply to an example. 
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0 1 1 
2 2 

Let p = 1 1 1 
4 4 2 

1 3 1 
2 8 8-

P represents an irreduci.ble, aperiodic chain and { ~ 1 GnJ converges 

to the minimal informative experiment. The eigenvalues of P are 

1 , 3 1 
- 8 - 4 

with 

3 

zo = 1 3 TI 
3 

0 

z2 = -1 

1 

Define Q = zo 

0 

i.e. Q = 0 

l 
4 

. and 

4 4 

4 4 

4 4 

-4 -4 

-4 -4 

7 7 

0 0 

1 0 

-1 0 

- 3 z 
8 1 

1 1 
2 2 
1 1 
2 2 

1 1 
8 8 
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(n=1 , 2, ••• ) 

p = cr = § T = V = 1 • 

Since z2z0 = z2z1 = 0 , Z~ = z2 we get for any 3X3 Markov matrix 

M 

so that 

Hence 

so 
1 3 . 
- < - = p • 4 8 

In [12], Torgersen investigates the situation where ~ is a 

dichotomy (i.e. the parameter set contains two points) and where 

{,n is the experiment of taking n independent observations 

of b . It is shown that if (V¥\, is the maximal informative ex

periment, then there exists a number c(&) such that 

as n -? co. 

is a pair of non-equivalent Further it is shown that if G , t 
dichotomies, then ~A(~ 11,}11 );-? c ( ~) v c (!=) as n -?co • The 

result given in theorem 5.9 is quite analogous, apart from the fact 

that we may have 

if p = a • 
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6. The minimizing Markov matrix. 

We shall in this section assume that pll converges to a matrix 

Z0 Then Z0 is the form (4.3). 

Since the set of Markov-matrices is closed in the topology 

induced by the matrix norm, we may for each n pick out a Markov-

matrix Mh such that 

Since pll converges to Z0 , it may seem reasonable that 

Mn == I and thus An = L1 Z0 - pllll • 

That this is not true in general, is easily seen in the case 

r = 2 • Consider example 5.7. For each n 

so that 

=~ 

From the expression A 
n 

involved only through Z0 M 

matrix M' such that z :t-'1 n o n 

r~ =A + I~ if Z A = 0 • 0 

be chosen as the difference 

A 
n • 

we observe that M is 

. Hence !VI may be replaced by any n 
= Z M' o n • Such M' n may ·be defined by 

Since z2 = ZOP = Z I = Z ' A may 
0 0 0 

between two of the matrices zo ' 
p 

or I • (In each case one has to check that M' is non-negative). n 
In example 7.11 of [9] it is shown that with 
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( 1-an a ) 1\ = 
1:bn b n 

(in the case r = 2 from example 5.7) 

arbitrary numbers in [o, 1] satisfying 

p-a. n 
= 2 p 

M = I + i pn n ( -11 -11 ) 

~a ~that M ~ I 
n 

If a. < ~ we may put 

so that I-1 ..,.. I .. 
n 

to get 

we may choose an,bn 

However, Mh converges to a matrix A satisfying Z0 A = Z0 

We have the following general results: 

Theorem 6.1. 

as 

Let {Mh} be a sequence of minimizing Markov matrices. Then 

(i) Z M ~ Z o-'"11. o as n ~CD 

with exponential speed. 

( ii) There is a subsequence {r1~} which converges to a 

matxix A satisfying Z0 A = Z0 • 
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Proof : Define ~ so that F1 ~ Z0 + Rn • 

Then liZ H -z -R II+ ll R II = A + ll R II • o 11. o n -·n n n (i) follows. 

To prove (ii), note that by compactness there is a subsequence 

{M'} which converges to a Markov matrix A • n 

Now Z0 A ~ Z0 , since 

and the right hand side tends to 0 • 

The result (ii) may easily be improved in a particular case 

Theor3ru b.~. 

If the Markov chain has no ~L~lsient states, then we may pick 

out a minimizing sequence {Mnl so that Mn ~ Z0 

Proof: In this case, 

row vectors. 

A1, ••• ,Av are quadratic Markov matrices each with identical 

Let f!, be the set of all such matrices. 

where 

Furthermore, ¥1 = diag (~, ••• ,~) • 

For any M E~r,r , Z0 M is a matrix of the form 

where B1, ••• ,Bv each has identical rows. Since ~ minimizes 
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II Z0~ -ru , a glance at pn will make it clear that ~ ought 

to be chosen so that Z0Mn E ~ • In other words, we have 

A 
n = inf liN-rU 

MEf; 

Let ~ be so that An = 11~ -r11 • 

Since Z0 M = M whenever Iv1 E ~ , theorem 6.1 (i) implies that 

~ -+ zo • 
That {~} is a sequence of minimizing matrices, follows from the 

fact that li Z0~ -r]l = II~ _pnll • 
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7. Sufficiency and insufficiency in finite experiments. 

Notations: 

Let A= tA1 , ••• ,~l be a partition of the space 

X= {1,2, •.• ,s} (k ~ s) 

By an A-Markov matrix W = (w .. ) 
~J 

we shall mean a matrix 

W E f\H} such that for i"''k:,s j =1 ' ••• 's ; i=1 ' ••• 'k 

= 0 if j ~ A. • 
~ 

As an example, let s=3 and A= {t1,2} ,!31} • 

ftn...en W = ( 01 0~ 01 ) ~u is an A-Markov matrix. 

By VA we shall denote the element (y .. ) 
J~ of /YVl s ,k defined 

by 
( 1 if j E A. 

~ 

vji =-t 
t 0 if j ~ A. 
..... ~ 

=( 
1 ~ \. In the above example, VA 1 

0 1 J 
By UA we shall denote ·the A-Markov matrix where each non-

zero entry of the i 1 th row equals (#A. )-1 • 
~ 

In our example 

When no confusion can arise, we may write V and U instead of 

VA and U A • 
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Let l: be a finite experiment as defined in section 2, and 

let P E {YV( r, s be the matrix defining ~ 
We start this section by giving a criterion of sufficiency in 

terms of matrices. 

A statistic defined on the sample space 

~ 
X= {1,2, ••• ,s} of 

may be identified with a partition of X • 

(A consists of the subsets of X to which the statistic assigns 

the same value). Hence we shall deal with the concept sufficient 

partition instead of sufficient statistic. 

The experiment of observing Ai is a reduction of the experi

ment t, . It will be denoted by G A and is defined by PV A • 

Theorem 7.1. 

Let ~ be given as above. A partition A is sufficient 

for P if and only if there is a A-Markov matrix W such that 

(7 .1 ) 

Remark: 

The criterion (7.1) may be reformulated as follows : Take out 

the columns corresponding to a certain partition. The resulting 

matrix has the property that the elements of each row are equally 

proportioned. As an example, let 

P =(2231 4~1 01). Then A= {11,2},{3}} is sufficient, 
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(0~ 0; 01) with W = ~ 

Proof: PVA 

defining the 

is an element of rm r,k 

probability distribution 

the e-th row vector 

over A1 , ••• ,~ when e is 

the 11 true 11 parameter. By the definition of a-sufficiency (see 

e.g. Lindqvist and Torgersen (9] ch. 8), A is sufficient if and 

only if ~A~~ • If the condition (7.1) holds, then this is 

o-bviously true. 

Conversely, assume that A is sufficient. By definition, the 

conditional distribution over x given A may be specified inde-

pendent of e • Let W be the matrix defining this conditional 

distribution. Then W is an A-Markov matrix and we have 

Le Cam has in [8] introduced a concept called insufficiency, 

in order to measure the loss of information incurred by restricting 

ourselves to a function of the observations (statistic). This 

measure is so defined that a statistic is sufficient if and only 

if the insufficiency equals 0 • As will be seen, the insufficiency 

happens to be generally larger than the deficiency. We state and 

prove some results on insufficiency for finite experiments. 

Definition 7.2. 

Let t: be given by the matrix P • Let A be a partition 

of x . By the insufficiency of A , denoted ~(A, t ) we shall 

mean the quantity 
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1l (A, t: ) = 2 inf 11 Q-PI! 
Q 

where infimum is taken over all matrices Q E ntdl such that IYfls,r 

A is sufficient for Q • The set of such matrices is non-void, 

since it contains any Q with identical rows. 

Theorem 7.3. 

A ( ~A' G ) < T) (A, t; ) . 

Proof: Assume that A is sufficient for Q • By theorem 7.1 

there exists an A-Markov matrix W such that 

Q = QVW. Furthermore, 

A (~A, t ) = infl!PVM - PI! 
M 

< inf!IPVT1 - QJI + !IQ - PI! 
M 

< UPVW - QVWll + l!Q ... P!l 

~ lJP- Qll • !lVII • IIWII +/JQ- PI! 

= 2IIQ - Pll • 

Hence A ( f. A, ~ ) :;: T) (A, G ) . 

Theorem 7. 3 gives a lower bound for T) (A, ~ ) • We shall, 

however, also need an upper bound. 

Define y (A, b ) = inf II PV A W - Pll 
w 

where infimum is taken over all A-Markov matrices W. Then we have: 
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Theorem 7.4. 

y (A, ~· ) :::; T1 (A, ~ ) < 2Y (A, ~ ) • 

Proof: Let W be an A-Markov matrix and define Q = PVVI • Then 

A is sufficient for Q by theorem 7.1, since 

QVW = PVWVW = PVW = Q (we have WV = I) • 

Hence 
T1 (A, ~ ) < 2IIPVW-Pil so TJ (A, ~ ) :S y (A, ~ ) • 

Conversely, let Q be such that A is sufficient for Q Let 

W b.e given according to theorem 7.1, so that Q = QV\v • 

Now PVW = Q + (:PV-QV)W • Subtracting :P on either side yields 

y (A, ~ ) :S IIPVW-Pl! < 2llQ-PII • 

Hence y (A, ~ ) :S 11 (A, i, ) and the proof is complete. 

Example 7.5. 

Assume that A = !x} . This is an extreme case. The experiment 
r!A L is now the minimal informative experiment. Thus we have 

A ( ~ A, 'f, ) = inf II l-1-:PI! • 
MEfrrl0 

On the other hand, VA= (1,1, ••• ,1)' , so that any Q such that 

A is sufficient, has identical rows. 

Hence 11 (A , l:, ) = 2 inf !I M - Pll = 2A ( t A, ~ ) • 
NE fYY\ 0 ° 
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Similarly it is seen that y(A, G) · ~(~A, t) . 

The above ideas may be applied to our Markov chain experiments. 

We have: 

Theorem 7.6. 

Consider a Markov chain with v rectrrrent, aperiodic classes. 

In other words, we may assume that P is given by 

Let the partition A of x. · be the collection of recurrent classes. 

Then 

(where An = A ( t n, ~ o:::) as defined in section 5). 

Proof: By the proof of theorem 6.2, 

fj = inf II Jvi-pnJI n 
MEt, 

(~ is defined in the proof). 

Now 

f](A, ~ n) = 2 inf JIQ-pnU (7.2) 
Q 

Ubviously (see remark of theorem 7.1), 

Q E t:. On the other hand, let Q be an arbitrary matrix so that 

A is sufficient for any 

A is s~fficient for Q • We contend that there is a Q' E t 
such that 11 Q ·-rll < IIQ-rJI • The method of constructing such a 

Q' is illustrated by defining the first row of Q'. 

Assume that P1 has dimension axa 
be the first row of Q • We define the first row 
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(q1 ,q2,. •. ,~,0, ••• ,0) of Q' ·by sharing the amount 

<1a.+1+ ••• +qr between and adding in such a way that the 

proportions are not altered, i.e. 

q • q • • a - q' • q' 1" 2·····--a.- 1' 2 • • a-~ • . . . . . ~ 
This is obtained by defining 

. , j=1, ••• ,a.. • 

We remark that q1 +, •• +<1a, may always be assume:l to be > 0 , .since 

q1 + ••• +% = 0 would imply llQ-rl! = 2 and we have (see Torgersen 

[ 10 ]) 

in_t: 11 Q-ru < 2 - ~ 
QE !/ 

• 

The remaining rows of Q' are defined in a similar way, so that 

we end up with 

Since A is sufficient for Q , it follows from the remark of 

theorem 7.1 that A is sufficient for Q' • Furthermore, since 

for any j the elements of the rows of Q. are equally propor
J 

has identical rows. Hence Q' E ~ • tioned and have sum 1 , Q~ 
J 

That u Q' -r11 < 11 Q-F1ll follows from the fact that is of 

the same diagonal form as Q' and has zero's outside the diagonal, 

The theorem follo-vvs from (7. 2). 
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8. Lumping of states. 

Kemeny and Snell have in § 6.3 of [6] introduced the concept 

of lumping states of a Markov chain. 

There is given a Markov chain {Xn} on the state space 

X= {1,2, ••• ,r} with transition matrix P. Let A= !A1 , ••• ,~} 

be a partition of the state space. 

Define a stochastic process {Yn} on A by taking Yn as the 

set Aj containing Xn • In general, !Yn} is no Markov chain ; 

in a number of situations, however, it will in fact be. For examples, 

we refer to [6] • 

According to Kemeny and Snell, a Markov chain is said to be 

lumpable w.r.t. a partition A (in short: A-lumpable) if for 

each initial probability vector lT , !Yn} constitutes a Markov 

chain with transition probabilities independent of TT • 

If the chain given by P is A-lumpable, then the transition 

matrix of the lumped chain is given by 1> = U APV A (for notations, 

see section 6) • 

Theorem 6.3.5 of [6] states that a chain is A-lumpable if 

and only if 

• (8.1) 

In this case we have 

~ = upllv • 

As is seen from section 4, the information contained in a Markov 

chain depends on the eigenvalues of the transition matrix. 

We shall state and prove a result on the eigenvalues of lumped 

chains: 
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Theorem 8.1. 

Let P represent a chain which is lumpable w.r.t. a partition 
1\ 

A • Then any eigenvalue of P = UAPVA is an eigenvalue of P • 

In other words, 1> 11 inherits 11 eigenvalues from P • 

1\ 
Proof : If A is an eigenvalue of P , then there exists a 

vector x such that 1x = Ax This is equivalent to UPVx = AX , 

which implies VUPVx = AVx. By (8.1) this is equivalent to 

PVx = AVx so that A is an eigenvalue of P with corresponding 

eigenvector Vx 'I 

Lumping of the states leads us to a reduction of the experiment 

~ n • We shall now consider the experiment S" n with sa'nple 

space A= {A1 , ••• ,Akl and consisting in observing Yn. ~n 
is defined by the r x k Markov matrix. ~ n, the e-th row vector 

of which is the row vector of corresponding to 

An easy verification shows that 

has the same parameter set as 

the A. to 
A J 

Vffl = plly • 

~n , so that 

which 9 belongs. 

The experiment !' n 

~ n and r n are comparable as regards information. 

In some practical situations one may find it convenient o·b-

serving Yn instead of Xn • This may happen if r is large 

and it is difficult (or expensive) to get an accurate value for 

Xn • As seems reasonable, ~ n =:: Y n • This is seen from the 

~An = ...nv • randomization criterion , since v~ Y 

Next, it will ·be . of interest to estimate ~ much information 

will get lost by observing Yn instead of ~ • This may be 

measured by A ( ~n ,,S:' n) , which will ·be discussed later. We 

describe now an alternative approach : 
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For simplicity, assume that Itnl converges to the least in

formative experiment C), and let ~~n} be defined as before. 
~!'-

Then {Jrn} converges to the least informative experiment, since 

Gn2:f n2: (} . 
.As is noted in section 5, An = A ( Gn., {)) measures the in

formation contained in ~ • 

Define yn = £\(t'n,Cf) • Examining fJ? we will see that 
"' ,...., 

Yn = A(~n,C7) , where jfn is the experiment with parameter set 

{ 1, ••• ,kl defined by ~ and (5 is the least informative ex-

periment over the same parameter set. 

/\ 
Hence, p being the root of P and ~ being the root of P , 

as n -? w 

The quantity IJ.IP measures the "goodness" of our lumping as 

regards the information we obtain about e • 

By theorem 8.1, I-LIP :S 1 and I-Ll p = 1 if and only if 1> 

inherits an eigenvalue with modulus p • Hence, we should always 
/\ 

lump in such a way that J? inherits the root of p • 

Example 8.2. 

We shall consider the chain studied in [6] p.29, ex. 8 • 

Xh represents the weather in the Land of Oz on the n'th d~ ; 

the possible values being 

1 = rain , 2 = sunshine 3 = snow • 
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The transition matrix is assumed to be 

I 

r: 
1 
4 

p 0 = 

\~ 1 
4 

The eigenvalues of 

1 \ 
4 \ 
1 
2 

I 

1 I 

1 P are 1, 4 , 

Lindqvist (10], p.59) shows that 

- f . A computation (see 

~n =% <J>n • 
This chain is lumpable w.r.t. A= {!1,3} , {2}J , the lumped 

chain being given by the transition matrix 

(2 1\ 
~ = UPV = 4 4 I . 

\1 0/ 

The root of ~ equals t , so by example 5.7 , 

Considering An and Yn as measures of information, this shows 

that very little information is lost by lumping the states. 

Of course states may be lumped regardless of the resulting 

chain being a Markov chain or not. 

Let {Xn} , A and jYnl 

beginning of this section. 

have the same meaning as in the 

The Markov-matrix defining the probability distribution of 

Yn is obtained from the one defining ~ by adding the columns 

corresponding to each element of our partition. Hence ~n (the 

experiment of observing Yn) is given by pllyA • As is seen in 

the case of lumpabili ty, ~n ~ ~ n • 
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To ask if 'fo n "' 5=' n is the same as asking if Yn is sufficient 

for Xn • Applying to theorem 7.1 we may prove by induction that 

if Y1 is sufficient for x1 , then Yn is sufficient for ~ 

for each n • Hence, if Y1 is sufficient for x1 , then it makes 

sense to say that A is sufficient for !~I • 

It is noted that sufficiency of a partition A and lump

ability of A are quite different concepts. Lumpability will in 

general not imply sufficiency and conversely. 

We recall that in the case of lumpability we had 

,.... ~ 2 )- 1 > Jr > ••• (this follows from the randomization criterion 

since n 
.. .An) • is given by V..l:' 

so 

If A is sufficient, then 

}: 1 2: $= 2 2: • • • since G1 

1 , , . . . 
. . . .. . 

If A is neither sufficient nor the chain is lumpab~e, then, 

however, this may not be true. For example,def.ine 

r: 
1 1 \ 
4 4 \ 

p 1 1 ) and let A={{1,2} {3}J = 2 2 ' • 
I 

' 1 I \ 1 0 \2 2 I 

12_ 1 /5 2.\ ! 4 4 /8 ; \ ( 
I 

Then PV 1 1 p2v { ~ = 2 2 = 

\ I 
I 

1 1 ~ / \ 2 2 i \t 
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By the '¥-criterion (see Torgersen [11]) 

if 'f(t1 ) 2: 'f(f2 ) for all 

ation of '¥( 

If the relation does not hold, then we 

such that J:n -+ j: co 

If pn converges, then of course J:" 00 exists 

lim Pn VA • Thus a sequence 1Fn1 having 

[9]) • 

1=1:::t22:··· 

shall see that a limit experiment s::- co 

may not exist. 

and is given by 

no limit necessarily springs from a periodic chain. A very simple 

example is given on X = {1,2,3} by 

f: 
1 !l ~ 

p = 0 

\ 1 
i 

0 o_/ 

Here { 1} and {2,3} are cyclic classes. 

11 0 O\ 
I 

We have P 
{ 1 ! ) =I o ~ 

\, 0 
1 
2 

and it is 

seen that 

p = p3 = p5 = • • • ' 
p2 = p4 = p6 = •••• 

Renee the 1 imi t experiment }:' 00 , if it exists, may be given by 

either P V or p2 V • These experiments are, however, not 

equivalent. Consequently, the sequence {~nl has no limit. 

As is noted earlier, the effectiveness of a restriction to 

an experiment ~ n ought to be measured by ~(en' _}:-n) • However 1 

since is a function of X 
n ' 

the insufficiency of 
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be considered (more precisely the insufficiency of the partition 

A defined ·by Yn)' TJ(A, ~n) • For simplicity, put e: :;: A(~ ,f ), n n n 

'lln = T)(A, ~n) • 

To avoid the difficulties occurring if {j:nl does not con

verge, we will in the following assume that pn converges. 

Further we shall assume that { ~nl and It' n j have a common 

limit experiment g . ,. If this assumption is not satisfied, then 

lumping seems to have little practical interest. 

Of course e: ~ 0 as n ~ Cl:) , since 
n 

Theorem 7.3 implies that e < '11 • n- n The rest of this section will 

be devoted to showing that ~€~ 

n ~ co , i. e • that e: and '1'1 n ''n 

manner. 

and n ffj' have a common 1 imi t as 
'V n 

be~ve asymptotically in the same 

In general, however, it may happen that the ~-distance is 

small and the T)-insufficiency large. An illustrative example is 

given in Le Cam [8] p. 46,(where the deficiency behaves like 
c 

and the insufficiency behaves like fo ) . We shall need the 

succeeding lemma : 

Lemma 8.3. 

Let A1 ,A2 , ••• ,Az , B1 ,B2 , ••• ,Bz E ~r,r and assume that 

there exists ll£ M E rwlr,r such that 

A. M =B. 
l l. 

for i=1, ••• ,z • 

Then there is a number r.p > 0 such that for any M E (W{r, r 

s_ 
n 
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B.ll > cp 
~ - for at least one i=1 ' ••• 'z • 

Proof : The real function f on fYV{ r, r defined by 

z 
f(M) = :L: IIA.M-B.II is a continuous function on a compact space • 

. 1 ~ ~ 
~= 

Since f(M) > 0 on avlr,r , there exists a > 0 so that 

f(M) ~ a for all M • Put cp = a/z • 

Theorem 8.4. 

There exists v > 1 , 0 < o < 1 , 0 < k < K <co 

so that 

for n=1, 2,... • 

Proof : We order the eigenvalues of P according to decreasing 

modulus. Note that since pn is required to converge, 1 is the 

only eigenvalues of P with modulus 1 • Furthermore it has 

index 1 • 

Let 1 < p1 < p2 < ••• < Pt < 0 be the different moduli of 

eigenvalues of P • 

We have t: = inf II pnVM - :pill I 
n M 

the infimum taken over (rY/ k, r • 

Let Z0 = lim pn • Then 

(8.2) 

The value of 6 is found by the following procedure : 

Since {Gnl and {~nl are assumed to have the same limit ex

periment, and since these limit experiments must be given by Z 
0 

and Z0 V, respectively, it follows that there exists at least 
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one M so that Z0 VM = Z0 • Let f'Wt 0 be the set of such 

M I s ; n'V\ 0 ~ fYYl r ' r • 

Define fYVl 1 ~ rm. 0 as the set of M E rM.o so that Zi VM = Zi 

for all zi corresponding to eigenvalues with modulus p1 • In 

the same ma.'Ylller define fYVl 2 ~ fYYl 1 so that Zi VM = Zi for all 

Zi corresponding to eigenvalues with modulus p2 • 

Continuing, one gets a chain 

rm ~ fYYl ~ rm1 ~ . . . . r,r- o _ -

If (YY1t 1 0 , then it is clear that e: 
n eguals 0 from some 

n on • This is the case if our lumping is sufficient. 

If rmt = 0 

fYY1.=¢. 
J 

let j be the·smallest number 

We claim that 6 = p. • 
J 

(1 < j < t) - - so that 

For each ME ~j- 1 , let ~M be the maximum index of eigen-

values Ai with modulus pj corresponding to Z. 's with 
~ 

z. • 
~ 

We claim that 

~ = min { ~M : M E ffi'1 j _1 } • 

By inserting an M' E~1j_ 1 with 

which by (8.2) is seen to be 

independent of n • 

\J 1\tr = ~ , we get 
l'l 

for some number c > 0 ' 

To prove the left inequality of the theorem, assume that a is 

the largest label for eigenvalues with modulus 0 = p .• 
J a 

multiply each side of (8.2) by ~ Z. 
. 1 ~ 
~= 

to get (for any M) 

\Ve 
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(8.3) 

Applying to lemma 8.3, there exists a number ~ > 0 , independent 

of M , so that 

II z; ( VN- I ) II 2: cp 
..... 

for at least one i=0,1, ••• ,k • 

Considering the terms occurring on the right hand side of (8.3) 

we thus conclude that 

II YvM - Yll 

where c > 0 is independent of M • 

This completes the proof. 

We are now in position to prove our main result. 

Theorem 8.5. 

Let b be as in theorem 8.4. 

as n --+ C'CI • 

Proof : Let y n = y (A, G n) , where y is defined in section 7 • 

It suffices to prove that there exists K > 0 and w 2: 0 such 

that Yn ~ Knwcn ,k since by theorem 7.3 and 7.4 we have 

en ~ T]n :S 2Yn • 

Now y (A, t n) = infiiYVW - fflll 
w 

where infimum is taken over all A-Markov matrices W • 

(8.4) 
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We return to the proof of theorem 8.4 • Let b ·be the largest 

label of eigenvalues with modules 

M E fV\'l.r,r such that 

p . 1 • J-
Then there exists 

Z0 is of the form B given in (4.3), where the matrices 

A1, ••• ,Av have strictly positive entries. 

Hence from some n on (which of course may be n=1) 

will have no negative entries and hence define an experiment. 

(8.5) 

(8.6) 

By (8.5) there exists M so that ~VM = ~ for n=1,2, •••• 

Hence A is sufficient for Qn , so ·by theorem 7.1 M may for each 

n be replaced by an A-Markov matrix Wn such that ~VWn = ~ • 
But then, by (8.2), (8.4) and (8.6), Yn :S 11rVWn-r11 < Cnwbn and 

the proof is complete. 

We end up this section by a couple of examples. 

ExamEle 8.6. 

/1 1 
0 '\ ;- 2 I 2 

I I 
Let p 

=i 1 
0 0 } 

lj \ t 0 
4. 

.2 1 The eigenvalues of P are 1 , 4 , - 2 • 

Let A= {l1,2} , {3lJ • The chain is A-lumpable. 
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We have pll = Z0 + <i)nz1 + (- ~)nz2 
where 

l 2 1 0 \ 

(! ~ 
l\:33 ~ 0 

3 0/ 

/ 0 0 

I o o 

I 3 2 \ -; -, 
It-;· o 

( _2 2 0 

\~~0 

- ·- - __ 

A simple computation shows that nn10 consists of all matrices of 

the form 

m1 ,m2 ,m3 >- 0 ; m1 + m2 + m3 _= 1 • 

With ME ~0 we get 

z1 (VM-I) = 

0 

0 

0 

0 

and no allowable choice of 

0 

0 

will give z1 (VM-I) = 0 • 
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Hence, fn1 1 = 0 , and by the preceding theorems, 

i.e. we have convergence to the root of P • That this will not 

happen in general, is seen from the next example. 

Example 8.7. 

I? 1 5 \ (Tb 4 Tb 

Let p { 
1 0 1 = 2 2 

\~ 1 7 
4 Tb 

The eigenvalues of P are 1 1 1 
' - 4' 8 • 

Let A = { t 1 , 3! , { 2} J . 
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Now pll, z + (- i>nz1 + (~)nz2 0 ..... 
with 

12 1 2 I 
1 2 1 1- I I : 5 5" m-ro 10 

J 
1 2 ' 2 4 2 zo = \; ; ' z1 = \-' ~ - ; 

1 2 
\ 1 2 1 

5" 5 m-m m 

1 0 -~I 2 

z2 = 0 0 

d 1 0 -2 

A computation shows that fW11 1: ¢ , more precisely, ~1 
one element 

(~ 0 !) 11 = 
1 I 

However, fYv'l 2 = ¢ since z 2v = 0 • 

Hence nJ;;: and zy~ whence the' root of P equals 

has 

1 4 . 



- 63 -

Acknowledgement. 

The author is grateful to Erik N. Torgersen for proposing 

the subject and for many helpful discussions. Many thanks also 

to Gerd Salter who typed these notes. 



-----------·-·-·-~····· 

- 64 -

References. 

[1] Blackwell~ D. (1951). Comparison of experiments. Proc.Sec. 
Berkeley Symp. Math.statist.Probab. 93-102. 

[2] Dunford and Schwarz. (1958). Linear operators• Part ~ 
Interscience Publishers, New York. 

[3] Feller, W. (1951). Diffusion Processes in Genetics. Proc. 
Second Berkeley Symp. Ivlath. statist. Probab. 227-246. 

[4] Gantmacher, F.R. (1959). Theory of matrices. Vol. 1-2. 
Chelsea, New York. 

[5] Karlin, s. (1966). A first course in stochastic processes. 
Academic Press. 

[6} Kemeny and Snell. (1960). Finite Markov chains. Van Nostrand. 

[7] Le Cam, L. (1964). Sufficiency and approximate sufficiency. 
Ann.Math.Statist. 22L 1419-1455. 

[8] Le Cam, L. (1974). Notes on asymptotic methods in statistical 
decision theory. Centre de Recherches Mathematiques, 
Universite de Montreal. 

[9] Lindqvist and Torgersen (1975). Notes on comparison of 
statistical experiments. Statist.Memoirs no.1. 
1975, Inst. of Math., University of Oslo. 

[10] Lindqvist, B. (1975) Anvendelse av teorien for sammenlikning 
av eksperimenter pa Markov-kjeder med ukjent 
initialtilstand. Graduate thesis. Inst. of Math., 
University of Oslo. 

(11] Torgersen, E.N. (1970). Comparison of experiments when the 
parameter space is finite z. Wahrsch.theorie. 

Verw. Geb. 1£L 219-249. 

[12] Tore:ersen, E.N. (1974). Asymptotic behaviour of powers of 
dichotomies. Statist. Research Rep. no. 6, 1974, 
Inst.of Math., University of Oslo. 


