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ABSTRACT 

Let X1 ,x2 , ••• ,Xn be independent and identically distributed 

such that 

. 
' 0 < X < 1 

and 

-'x e 1\ dx 

where A > 0 is unlmown and p > 0 is known. Then the statistic 

X. < 1} is minimal sufficient. 
1 

The case p == 1 was treated ·by the author in a 1973 research 

report. Generalizing some of these results K. Unni showed in a 

1976 research report that this statistic is complete when p is 

irrational while it is not complete when p is an integer. 

The purpose of this note is to show that Sn is boundedly 

complete if and only if it is complete and that this, in turn, 

holds if and only if p is irrational or p is rational r =-s 

where r and s are relatively prime and n > s • 
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I. INTRODUCTION 

Suppose the probability of death within the infinitesimal 

t ( ) 11.P p-1 -AX in erval x,x+dx is f\P7 x e dx where A > 0 is unknown 

while p > 0 is a known constant. Inference on A based on the 

observed lifespans of n randomly chosen individuals may be based 

on the sum of observations which is a complete and sufficient 

statistic. If, however, our experiment is obtained by only obser

ving the times of death before a fixed time t , then the total 

number of deaths recorded together with the sum of lifelengths 

of individuals dying -before time t constitutes a minimal 

sufficient statistic. It was shown by the author [ 1 ] that this 

statistic is not complete when p Q 1 and n ~ 2 • Generalizing 

this result K. Unni [3] proved that this holds for any integer 

p > 1 • Unni proved furthermore that the statistic is complete 

when p is not an integer. His proof, however, is not quite 

correct and neither is his result. Having said that much, it must 

be stated that Unni's result is not far from being correct since 

his result, and his proof, holds whenever p is irrational. 

The purpose of this note is to shov1 that the model admits a 

complete and sufficient statistic if and only if the set : 

{ e2ap ni } ; a=0,1,2, ••• 

contains at least n points. By a simple number theoretical 

argument we arrive at the "complete" result on completeness for 

these models : 
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Theorem: The model consisting of n independent observations 

of the described type admits a complete and sufficient statistic 

if and only if : either p is irrational or p is rational r =-s 
where the integers r and s are relatively prime and n < s • 

Remark: If a model is not complete, then q~estions about the 

space of unbiased estimators of zero enter. In particular one 

might wonder if the model is q~adratically complete [2] (this 

suffices for large parts of the theory of uniformly minimum 

variance unbiased estimators). If it.is not quadratically com

plete, then it might still be boundedly complete (this suffices 

for the validity of some important results on testing theory). We 
models 

shall, however, see that for the minimal sufficient~onsidered here, 

boundeclly completeness is equivalent to completeness. 

We ohall prove this by considering convolution equations as 

those in [1]. A significant simplification is, however, obtained 

by adapting Unni's idea of considering the measure on [O,co[ with 

density xP- 1 as the sum of its restrictions to [0,1] and 

[ 1 ,co] • 

The problem of finding uniformly minimum variance un·biased 

estimators in the incomplete models will not be treated here. This 

problem is treated by Unni in his paper and by the author in [1]. 
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II. COMPLETE1TESS OF THE MINIMAL SUFFICIENT STATISTIC 

We may without loss of generality assume that our observations 

are cencored at t = 1. (If they are cencored at t =a , 

replace A by a A and apply the results proved for A = 1.) 

Thus our basic observations x1 ,x2 , ••• ,Xn are independent and 

identically distributed such that : 

while 

Proceeding as in [1] we put 

1 if X < 1 
d (x) == { 

0 if X = 1 

t(x) = xd(x) 

U =uniform distribution on [0,1] 

c1 == the one point distribution in 1 

up =the distribution on [0,1] whose density 

w.r.t. U is pxp-1 • 
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Then 

It follows easily that (Dn~ Tn) is minimal 

sufficient and that the conditional distri.bution 

of Tn given Dn = d has density 

-At e ; t E [0, d J w.r.t. 

Furthermore the variable D is binomially distributed with 
p n 

success parameter 1 - rkPJ A(A). It follows in particular that 

a variable o(Dn,Tn) is integrable if and only if 5(d,o) is 

u~* integrable for all d • 

Let 5(Dn,Tn) be integrable. Then its expectation may be 

written 

Introduce for any integrable variable o(Dn,Tn) the sequence 

of measures such that is supported by [O,i] 

Let 'I" be the probability measure on [ 1 ,ex{ whose density 

w.r.t. Lebesgue measure is 

( ) -1 p-1 -t A 1 t e . 
' t > 0 • 

Note first that (cr 0 , a 1 , ••• ,an) is, and may be, any sequence of 

finite measures such that cr 0 is concentrated in 0 while 

for i > 1 is absolutely continuous and concentrated on [O,i]. 
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Furthermore the correspondence 

5 <-> 0 

is line?r and clearly 1-1 • 

Using the convolution property of Laplace transforms we see that 

Before arguing we need one more simplification ; and this 

simplification is our adaption of the s~~ilar simplification in 

Unni' s paper. 

Let H and K be the probability measures on [0 ,co[ whose 

densities w.r.t. Lebesgue measure are, respectively 

constant 
and 

-t 
e . , t > 0 

. , t > 0 • 

The consta~ts are, respectively, r(p)- 1 and (r(p)-A(1))-1 

Put n = r(p)/A(1) and ~ = (r(p)/A(1))- 1 • 

• 

Then '1" = a. H - ~ K and a. and f3 are positive constants depending 

on p only. 

It follows that the convolution sum in the expression for E 6 may 

be written 

= ~ H(n-k)* *R 
k=o k 

where 

Note that ~ is supported by [O,k] • 
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By the uniqueness theorem for Laplace transforms: 

E o - 0 
A 

if and only if 

~ .,.(n-d)* * 0 ~ crd = 
d=o 

or, equivalently, that ~ H(n-k)* *~ = 0 • 
k=o 

Suppose this condition holds. 

By the expression for E b on page 4 we see, ·by dividing by 

Anp cAL~-)n and letting 
r(p)n :AITJ A J 0 , that &(0,0) = 0 • Note also, 

since 
11 'j --- (n-d )* 

I: .,. *cr d 
d=o 

is supported by [ 1 ,oo] that f>(n,t) = 0 

for U almost all t • [It follovrs in particular that, except 

for integrability conditioilS, there are no restrictions on the restric-

tions of ~J estimators 

to { (0,0)} u { (n,t) : ~t~1} • J 

We shall in the following restrict attention to estimators o 

such that 6(0,0) = 0 • By the above result ; no unbiased esti-

mator of zero is excluded. 

Note next that, by the 1-1 correspondence 

. 
' k=1, 2, ••• ,n 

*a d 

that (R1 , R2 , ••• , I\) is and may be any seq_uence of absolutely 

continuous and finite measures such that Ri . , i > 1 is 

supported by [O,i]. Furthermore the correspondences 

o <-> a <-> R 

are all linear 1-1 and onto. 
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It follows in particular that the model is complete if and only if 

(§) ~ H(n-k)*R = 
k=1 k 

Then HID* = Hmp so that (§) Let us write Bp instead of H • ·~ 

may be written 

n 
k~1Hp(n-k)*Rk = 0 => R1=···=~ = 0 • 

Consider first the case: 

p = integer 

n == 2 • 

Then ( §) may be written 

Hp * R1 + R2 

or equivalently: 

== 0 ==> R 1 

Hp * R1 is supported by (0,2] => R1 = 0 • 

The density of H * R in p 1 
y > 1 may be written 

J1 H'(y-x) R'(x) d.x 
0 p 1 

or 

Hence Hp * R1 is supported by [0,2] if and only if it is supported 

by [0, 1 J and this, in turn, is eq.uivalent to : 

J1(y-x)P- 1 ex R1(dx) == 0 ; Y > 1 
0 

or: p-1 1 . r 1 1 . y 

1: (P-:) yJ \ (-x)P- -J e"''" R1 (dx) = 0 , y > 1 
j=o J .J o 
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or 
J, 1 . 

J X x e R1 (dx) = 0 j =0 ' 1 ' ••• 'p-1 • 
0 

A non vanishing measure R1 with this property may be obtained 

by letting be the difference between two different and 

absolutely continuous probability measures on [0,1] such that 

the j-th moments are the same for j ~ p-1 • 

It follows that the model is incomplete for p integer and 

n=2. By Torgersen [1] the model is not complete whenever p is 

an integer and n > 2 • This was proved by Unni in (3] • Consider 

next the case of a rational number 

(§) may then be written : 

r 
p = s and 

By the above result, however, we may just let 

n = s+1 .. 

R . = 0 , i =2 , ••• , n -1 
~ 

and let R1 a...'ld Rn be non zero measures on [0, 1] 

such that 

It follows by this result and the last section in [2] that the 

model is incomplete when 

prime and n ;::: s+1 • 

r :p = - where 
8 

(r,s) are relatively 

Consider next conditions assuring completeness. 

The equation : 

* R1.~ = 0 
-I. 

may be 1Hri tten 

J e( 1 -A)t(~) (dt) = 0 

or 
n 1\ 
~ Apk R (A) 

k=1 k 
; A > 0 
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where is, for each k , an entire 

function. Put ' = e2Pni • Inserting A = ez we find 

Now 

Replacing z by z+ao2ni where a is an integer, we get : 

b 

= ' 

n ak pkz ~ ( z) _ 
I: ' e Rk e = 0 • 

k=1 

if and only if p(a-b) is an integer. Furthermore 

= rr(z.-z.) where z = 0 
J 1. 0 

and the product is taken over all pairs (i,j) such that O~i<j~ 
Thus this determinant differs from zero if and only if the 

numbers z1 , ••• ,zn are all distinct and different from zero. In 

particular 
na1\ 

If 

If 

' J I 
• 

na J 
' n ,/ 

is non singular whenever 
• 

• 

are all different. 

p is irrational then we may take a.=i; i=0,1,2, .•• ,n-1 
1. 

r h ( ) 1 then r a r b · f - ~ · f p =- were r,s = b = ~ 1. anu on~y 1.· s 

a = b mod (s) and we may take a.=i , i=O,i, ••• ,n-1 
1. 

whenever 

n < s • 

In any case we find that : 
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i.e. : Rk = 0 , k=1,2, ••• ,n. 

It follows that the model is complete in these cases. Altogether 

we have proved : 

Theorem. The class of possible distributions for (Dn,Tn) is 

not complete if and only if is rational r where r and s p =-s 
are relatively prime and n > s • 

Let us finally consider the problem of extremality of these 

models. According to [2] a model is extremal if and only if it admits 

a sufficient and boundedly complete statistic. Thus the following 

is a strengthening of the theorem above : 

Theorem. Let x1 ,x2 , ••• ,Xn be independent and identically 

distributed such that : 

and 

P(Xi~) = sx Ap r(p)- 1 X-AX dx ; 0 < x < 1 
0 

00 

P(Xi=1) = J. Ap r(p)- 1 xP- 1 e-Ax dx • 
-, 

Suppose A > 0 is unknovvn and that p > 0 is known. Then the 
,.rJ n 

experiment 6P defined by x1 , ••• ,X11 admits a complete and suf-

ficient statistic if and only if it is extremal and this is the case 
if and only if either 

i) p is irrational 

ii) p is rational = ~ where the integers r and s are 
or 

relatively prime and n < s • 

The proof is based on the following proposition : 

Proposition: Let 6 ·be any everywhere integrable function of 

(Dn,T11). Then the following conditions are all equivalent : 
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(i) b is essentially bounded. 

(ii) For some constant M<CO \ak I < M uk* . k=O, 1, ••• ,n - p ~ 

(iii) For some constant M<OO \Fi.k \ < M uk* . k=O, 1, ••• , n - p ' 

Proof: (i) and (ii) are equivalent by the definition of a • 

Suppose (ii) holds. Then, ·by the definition of R : 

(1c-d )* constant • K - *\ad\ 

< constant .. ~ K(k-d)* *U d* 
d=o p 

< constant • (K+Up)k* • -

Now [dK/dUp]t = constant·e-t < constant. 

• 

• 

Hence \~1 ~constant •u;* so that (iii) holds. Suppose finally 

that (iii) is satisfied. As 

A(1 )n o(O,O) and \6(o,o) 1 <CO 

o* we have always jcr \ < constant• U • By 
0 - p 

R1 = a. n- 1 [ ( -n) ~K*a 0 +a _1 J we get 

cr 1 = constant • R1 + constant • K so that : · 

Ia 1 \ ~ constant • UP + constant • UP < constant • UP 

We proceed by induction. Suppose 
k'* \crk 1 \ ~ M Up when k' < k • By the definition of Rk 

so that 

k-1 
I: 

d=o 

( 1 -- )* constant • K .K d *cr 
d 

+ (constant )• R1_ 
-'-
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constant • U(lc-d)* *U d* 
p p 

__ k* < k* + constant • u-- constant • U • 
p - p 

0 
Proof of the theorem: We must show that whenever the model is 

not complete it is actually boundedly incomplete. Considel' then 

the proof above for the case p = integer and n > 2 • The problem 

was reduced to find an absolutely continuous and non-vanishing 

measure R1 on [0' 1 J such that: 

J1 xj X R1(dx) = 0 . j =0 ' 1 ' ••• 'p-1 e ' • 
0 

Let q > 0 • We shall now argue that R1 may be chosen so 

that R1 < constant U • q Assume namely that this is not the case 

and let 0 < a < b < 1 • Let F j 'be the probability distribution 

on [a, ·o J with densi ty=constant xj • Then, by the boundedness 

of ex on [0,1], the experiment (F0 ,F1, ••• ,Fp_1) is boundedly 

complete. This, in turn,implies byan argument of Le Cam (see 2] 

that the class of polynomials on [a,b] of degree ::::; p-1 is 

fundamental in L1 (a,b). We have thus, as this is not the case, 

arrived at a contradiction. 

It follows that we may choose 

and then, since 

on [0, 2 J : 
R2 = - Ti * R1 : -_p 

R1 so that \R1 I :=: constant UP 

\R2 \ ~ constant· ~ * UP so that 

This imply, 'by the proposition above, that the model is not 

boundeclly complete when p is an integer and n > 2 Consider 

finally the case where p is rational , r p = - where r and s s 
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are integers such that (r,s) = 1 and n = s+1 . By the result 

descri-bed above we may choose non vanishing, absolutely continuous 

and finite measures R1 and R2 such that both are supported 

·by [a, 1 J and such that 

It remains, by the proof of the first theorem, to show that 

JR2 1 ~ constant on [a, 1 ]. This, however, follows since 

the density of R2 = Hr * (-R1 ) may be chosen continuous on 
n* [a,1] while the density of Up may, since n > 2 , be chosen 

positive and continuous on [a,1]. 
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