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ABSTRACT

Let X1,X2,...,Xn be independent and identically distributed
such that
X
P(Xisz) = APT(p)'1 e M ax ; O0<x< 1
e
and
= -1 -\
P(Xi=1) = Wrp)™" ™M ax
1

where A >0 is unknown and p > 0O is known. Then the statistic
s, = x{(1,X,) : X, <1} is minimal sufficient.

The case p = 1 was treated by the author in a 1973 research
report. Generalizing some of these results K. Unni showed in a
1976 research report that this statistic is complete when p is
irrational while it is not complete when p is an integer.

The purpose of this note is to show that Sn is boundedly
complete if and only if it is complete and that this, in turn,

T

holds if and only if p is irrational or p is rational = 5

where r and s are relatively prime and n > s .



I. INTRODUCTION

Suppose the probability of death within the infinitesimal
interval (x,x+dx) is %%57 "1™ 4x  where A >0 is unknown
while p >0 is a known constant. Inference on A based on the
observed lifespans of n randomly chosen individuals may be based
on the sum of observations which is a complete and sufficient
statistic. If, however, our experiment is obtained by only obser-
ving the times of death Dbefore a fixed time +t , then the total
number of deaths recorded together with the sum of lifelengths
of individuals dying before time +t constitutes a minimal
sufficient statistic. It was shown by the author [ 1] that this
statistic is not complete when p =1 and n > 2 . Generalizing
this result K. Unni [3] proved that this holds for any integer
p>1 . Unni proved furthermore that the statistic is complete
when p is not an integer. His proof, however, is not quite
correct and neither is his result. Having said that much, it must
be stated that Unni's result is nct far from being correct since
his result, and his proof, holds whenever p 1is irrationadl.

The purpose of this note is to show that the model admits a

complete and sufficient statistic if and only if the set :

{ezap i ; a=o,1’2yooc}

contains at least n points. By a simple number theoretical
argument we arrive at the "complete" result on completeness for

these models




Theorem: The model consisting of n independent observations
of the described type admits a complete and sufficient statistic
if and only if ¢ either p is irrational or p is rational = %

where the integers r and s are relatively prime and n< s .

Remark: If a model is not cdmplete, then questions about the
space of unbiased estimators of zero enter. In particular one
might wonder if the model is quadratically complete [2] (this
suffices for large parts of the theory of uniformly minimum
variance unbiased estimators). If it is not quadratically com-
plete, then it might still be boundedly complete (this suffices
for the validity of some important results on testing theory). We
shall, however, see that for the minimal sufficggﬁiggznsidered here,
boundedly completeness is equivalent to completeness.

We shall prove this by considering convolution equations as
those in [1]. A significant simplification is, however, obtained
by adapting Unni's idea of considering the measure on [0,09] with
density ™1 as the sum of its restrictions to [0,1] and
[1,02] .

The problem of finding uniformly minimum variance unbiased
estimators in the incomplete models will not be treated here. This

problem is treated by Unni in his paper and by the author in [1].



II. COMPLETENESS OF THE MINIMAL SUFFICIENT STATISTIC
We may without loss of generality assume that our observations
are cencored at t = 1. (If they are cencored at + = a ,
replace A by aM and apply the results proved for A = 1.)
Thus our basic observations X1,X2,...,Xn are independent and
identically distributed such that :
»X 2P .
- _ A p-1_-A1 .

PA(Xi<:X) = jo 57 t7 'e” M3t if x < 1

while

@ 4D .
= |y P Te My

P)\(Xi=1) 1 )

Ioe)
where A()) = J P Mgy,
1

Proceeding as in [1] we put :

1 if x <1

d(x) = { 0 if x =1

t(x) = xd(x)
n

D, = dn(X1,...,Xn) = % d(Xi)
n

T, = tn(X1,...,Xn) =3 t(Xi)

1

U = uniform distribution on [0,1]
61 = the one point distribution in 1
U, = the distribution on [0,1] whose density

WeTebe U is pxp"1 .



Then

N
T(p)?
dP‘;/d(U+61)n . It follows easily that (Dn,Tn) is minimal

(m x.d(xi))p_1 e~Mn A(k)n-Dn ; X € ]O,1]njs a version of

sufficient and that the conditional distribution
of Tn given Dn = d has density :

pd
I'(p)?

Furthermore the variable Dn is binomially distributed with

e tef0,a] weret. W

p~d(1- =5 )~d A

rr> A(0)

b
success parameter 1 - T%ET A(\N). It follows in particular that
a variable B(Dn,Tn) is integrable if and only if &(d,.) is
Ud* integrable for all d .

p
Let 6(Dn,Tn) be integrable. Then its expectation may be

written 3
Eb=F E(E:\Dn)
i 'Z'Sﬁ dz ( I%‘%)n- e (1=M%e%g (a, 1) (2)p~a(1)> % 3% (ax).
1Y

Introduce for any integrable variable 6(Dn,Tn) the sequence

Oy10430ps+++,0, Of measures such that o; is supported by [0,1]

and dﬂd/dUg* = @ a9 e (e, 1) .

Let T be the provability measure on [1,o whose density

w.r.t. Lebesgue measure is

AT P s 50,

Note first that (00,01,...,cn) is, and may be, any sequence of
finite measures such that o, is concentrated in QO while

o; for i>1 is absolutely continuous and concentrated on [0,i].
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Furthermore the correspondence :

b «<=> o0

is linear and clearly 1-1 .

Using the convolution property of Laplace transforms we see that @

22 J o (1- A)t[
) -

Before arguing we need one more simplification ; and this

b3 T(n -a)* *g ](dt)

T(p d=o

simplification is our adapiion of the similar simplification in
Unni's paper.
Let H and K be the probability measures on [0, whose

densities we.r.t. Lebesgue measure are, respectively :

-t

constant P71 e ; t>0

and
-t

P—1 .
constant t e 1[0,1[(t) ; t>0.

The constants are, respectively, I‘(p)"1 and (I‘(p)-A(1))"1 .

Put a =T(p)/A(1) and B = (T(p)/A(1))- 1 .
Then T =qH-BK and o and B are positive constants depending
on p only.
It follows that the convolution sum in the expression for E & may

be written

n
2 (aH-pK) (P8 xg
d=0
- 3 ml-x)* *R,
k=0 <
where @
kK o xon- - - )
Rk=2nk(l’lk)(1)1dl" K(kd) d.
d=

¥

Note that R, 1is supported by [0,k] .
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By the uniqueness theorem for Laplace transforms:

O if and only if :

>

n —a )% n
P2 T(n d) *od = 0 or, equivalently, that ¢ H(n"k)* *R. =0 .
d=o0 k=0 k

Suppose this condition holds.

By the expression for E & on page 4 we see, by dividing by

Knp (A A )n . l ‘ .
;z;)n 3 and letting A | O , that 8(0,0) =0 . Note also,

= 1 - %
since X T(n d) *

d=o0
for U almost all t . [It follows in particular that, except

o, 1is supported by [1,2] that &(n,t) =0

for integrability conditions, there are no restrictions on the restric-

tions of UMVU estimators

to {(0,0)} U {(n,t) : o<i<t} ]

We shall in the following restrict attention to estimators &

such that 6(0,0) = 0 . By the above result ; no unbiased esti-

mator of zero is excluded.

Note next that, by the 1-1 correspondence :

k-1 _ _ - A Tew _
T an k(g—g) (_1)k dBk dK(k d) *Cd
d=1

+ an-kdk H k=1,2,¢oo,n

Rk =

that (R1,R2,;.,,Rn) is and may be any sequence of absolutely
continuous and finite measures such that R; ; 1i>1 is

supported by [O,i]}. Furthermore the correspondences

§ <> 0 <~> R

are all linear 1-1 and onto.




It follows in particular that the model is complete if and only if

2 (n-k)* |

Let us write Hb instead of H « Then Hg* = Hﬁp so that (§)

may be written

n
* = = oo o= =
kE,IHP(n'k) Rk 0 => R1 l{ﬂ 0 .

Consider first the case:

integer

Il

p
ns=2.
Then (§) may be written
Hp * R1 + Ry = 0 = R1 = R2 =0
or equivalently:

HP * R, is supported by 0,21 = R, =0.

The density of Hb * R1 in y > 1 may be written 3

fl Hﬁ(y-X) Rf(x) ax

or

(X3

X; f%§)(y-x)P'1 =) R (ax) .

Hence H? * R, 1is supported by [0,2] if and only if it is supported

1
by [0,1] and this, in turn, is equivalent to

j1(y-x)p_1 e R1(dx) =0 3 y>1
0

or:
O ,y>1

p-1 __ Lo .
s (PN yI [ (cx)P717d ¥ R, (ax)
j=0 J I 5 1




or
31 j < )

J X e R1(dX) =0 ) J=O,1,ooo,p-1 .
0

A non vanishing measure R1 with this property may be obtained

by letting eX R1 be the difference between two different and

absolutely continuous probability measures on [0,1] such that
the Jj-th moments are the same for Jj < p-1 .
It follows that the model is incomplete for p integer and
n=2 . By Torgersen [1] the model is not complete whenever p is
an integer and n > 2 . This was proved by Unni in [3] . Consider
T

next the case of a rational number p = 5 and n = s+1.

(§) may then be written :

Hr*R1 +OOO+RII=O=>R/‘ =...=RII=O.

By the above result, however, we may just let Ri =0, i=2,44.,0-1

and let R, and R be non zero measures on [0,1]

such that
H,*R +R =0,
It follows by this result and the last section in [2] that the

model is incomplete when D = = where (r,s) are relatively

s
prime and n > s+1 .
Consider next conditions assuring completeness.

The equation @
n
z

k=1

Hi)(n—k) * R =0

may be written

| c(1-M)t(sy (at) = o

or

N
\PK R(A) ;1>0
1

M

k
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l‘\ ° - J
where Rk(x) = j e(1 M) Rk(dt) is, for each k , an entire

function. Put ¢ = e2pni . Inserting A = e? we find

n A
X PKZ Rk(e“) =0 .

k=1

Replacing 2z by z+a.2mi where a is an integer, we get :

£ (% (P2 B (07) = 0 .
k=1 -
Now €% = gb if and only if p(a-b) is an integer. Furthermore
Zy ees Zy %
z? cee 22n E = H(zj-zi) where 2z =0

and the product is taken over all pairs (i,j) such that O<i<j<n &
Thus this determinant differs from zero if and only if the

numbers ZyseeesZy are all distinct and different from zero. In
particular

/ a1 na1

7

is non singular whenever

e o e

S

a a a
¢ 1,0 2,...,¢ % are all different.

If p is irrational then we may take ai=i 5 1=0,1,2,00e,n-1 .

If p = % where (r,s) =1 then (2 = gb if and only if
a=b mod (s) and we may take a;=i , 1=0,1,...,n-1 whenever
n<s.

In any case we find that :

n
epkz Rk(ez) =0 ’ k=1’c-o,11
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iee.e 2 Rk =0 ’ k=1,2,oo-,n .

It follows that the model is complete in these cases. Altogether
we have proved :

Theorem. The class of possible distributions for (Dn,Tn) is
not complete if and only if p is rational = g where r and s

are relatively prime and n > s .

Let us finally consider the problem of extremality of these
models. According to [2] a model is extremal if and only if it admits

a sufficient and boundedly complete statistic. Thus the following

.

is a strengthening of the theorem above :

Theorem., Let X1,X2,...,Xn be independent and identically

distributed such that :

X
P(xex) = | Wre) TxMax ; ogx<
o}

and
(os]

r - - -
j P T(p) T xP=1 =A% 45,

P(Xi=1) J

Suppose A > 0 is unknown and that p > O is known. Then the

&7

experiuent % defined by X,I,...,)g1 admits a complete and suf-

D
ficient statistic if and only if it is extremal and this is the case
if and only if either

i) p is irrational
or

ii) p is rational = where the integers r and s are

ulk

relatively prime and n < s .

The proof is based on the following proposition 3

Proposition: TLet & be any everywhere integrable function of

(D,»T, ). Then the following conditions are all equivalent :
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(1) ©& 1is essentially bounded.
k¥

(ii) For some constant M <co i || M U, 5 E=O,1,e005n .
(iii) For some constant M < : R:\ <M U%* 3 k=0,71,00s,00 ,

Proof: (i) and (ii) are equivalent by the definition of o .

Suppose (ii) holds. Then, by the definition of R :

k L
IR, | € = constant- K(L a)x *|o |
Kl = 2 a
k
< constant * % K(k_d)* xy 9%
d=0 p

< constant '(K+Up)k* .

t

Now [dK/dUP]t = constant-e =~ < constant.

¥
Hence |R | < constant 'Ué so that (iii) holds. Suppose finally

that (iii) is satisfied. A4s

*
dco/dllg = A(1)* 8(0,0) and 18(0,0)| <
we have always |o | < constante Ug*. By
n-1 £ s
R, =a [(-n) BK*oO+01] we get
oy = constant -R1 + constant * K so that 3

lo, | < constant - U, + constant *U, constant e U, .

We proceed by induction. Suppose

]
o | < M U% * when k' <k . By the definition of Ry 3

~(k=-a)¥
K *od

= % constant -

+ (constant)-Rk
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k-1 a
lop.| £ £ constants gll=a)* yy a*
~ d=o p p

+ constant - Ug* < constant -Ug* .

J

Proof of the theorem: We must show that whenever the model is

not complete it is actually boundedly incomplete. Consider then
the proof above for the case p = integer and n > 2 . The problem
was reduced to find an absolutely continuous and non-vanishing

measure R, on [0,1] such that:

1.
J xd 5 R,(ax) =0 5 3=0,1,.¢4,0-1 .
6]

Let g >0 « We shall now argue that R1 may be chosen so

that R, < constant Uq + Assume namely that this is not the case

1
and let O<a<b< 1. Let Fj be the probability distribution

on [a,b] with density=constant xJ . Then, by the boundedness
of e* on [0,1], the experiment (FO,F1,...,F _1) is boundedly
complete. This, in turn,implies by an argument of Le Cam [see 2]
that the class of polynomials on [a,b] of degree < p-1 is
fundamental in L1(a,b). We have thus, as this is not the case,
arrived at a contradiction.

It follows that we mey choose R, so that \R1l < constant Up

and then, since R, = - H* R, : IR, | < constant - H ¥ Up so that
on [0,2] ¢

= coi 2
IR ] < constent-Uy * U, = constanteU, " .

This imply, by the proposition above, that the model is not

boundedly complete when p 1is an integer and n > 2 . Consider

H

finally the case where p 1s rational , = = where r and s

0]
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are integers such that (r,s) =1 and n = s+1 . By the result
described above we may choose non vanishing, absolutely continuous
and finite measures R1 and R2 such that both are supported

by [a,1] and such that

H, * R, + R, =0 and [|R,| £ constant Uy -

It remains, by the proof of the first theorem, to show that
]Rzl < constant Ug* on [a,1). This, however, follows since
the density of R2 =H, * (—R1) may be chosen continuous on
[a,1] while the density of U** pay, since n >2 , be chosen

b
positive and continuous on [a,1].
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