An algorithm for computing the cumulative eccentric Fisher distribution

by

Helge-Ivar Magnussen
and
Bjørn Sundt

Abstract

The paper gives an algorithm for computing the cumulative eccentric Fisher distribution. The method is exact for the central Fisher distribution, and when the eccentricity differs from zero, we can get the inaccuracy less than an arbitrarily chosen $\epsilon > 0$. The algorithm is programmed on Hewlett-Packard HP-67 pocket calculator, and as a by-product we have included a routine for the cumulative central Student distribution.
1. Some relations between distribution functions

1A. For \(a, \beta > 0 \) let \(B(x; a, \beta) \) denote the cumulative \(\beta \)-distribution with parameters \((a, \beta) \), that is,

\[
B(x; a, \beta) = \int_{0}^{x} \frac{\Gamma(a+\beta)}{\Gamma(a)\Gamma(\beta)} t^{a-1}(1-t)^{\beta-1} dt \quad 0 \leq t \leq 1
\]

(1)

and let

\[
b(x; a, \beta) = \frac{\Gamma(a+\beta)}{\Gamma(a)\Gamma(\beta)} x^a(1-x)^{\beta} \quad 0 \leq x \leq 1
\]

(2)

It is easily seen that

\[
B(x; a, \beta) = 1 - B(1-x; a, \beta)
\]

(3)

\[
b(x; a, \beta) = b(1-x; a, \beta)
\]

(4)

Furthermore, from (2) we see that

\[
b(x; a+1, \beta) = \frac{\alpha + \beta}{\alpha} x b(x; a, \beta)
\]

(5)

\[
b(x; a, \beta + 1) = \frac{\alpha + \beta}{\beta} (1-x) b(x; a, \beta)
\]

(6)

\[
b(x; a, 1) = a x^a(1-x)
\]

(7)

\[
b(x; 1, \beta) = \beta x(1-x)^{\beta}
\]

(8)

\[
b(x; 1, \beta) = \frac{\sqrt{x(1-x)}}{\pi}
\]

(9)

and these expressions may be used for recursive computation of \(b(x; a, \beta) \).

From (1) we get

\[
B(x; a, \beta) - B(x; a+1, \beta) =
\]

\[
\frac{\Gamma(a+\beta)}{\Gamma(a+1)\Gamma(\beta)} \int_{0}^{x} t^{\alpha-1}(1-t)^{\beta} - \frac{\Gamma(a+\beta)}{\Gamma(a+1)\Gamma(\beta)} \int_{0}^{x} t^{\alpha}(1-t)^{\beta-1} dt =
\]

\[
\frac{\Gamma(a+\beta)}{\Gamma(a+1)\Gamma(\beta)} x^a(1-x)^{\beta} = \frac{b(x; a, \beta)}{\alpha}
\]

that is,

\[
B(x; a+1, \beta) = B(x; a, \beta) - \frac{b(x; a, \beta)}{\alpha}
\]

(10)
By (3), (4), and (10) we obtain

\[B(x;\alpha,\beta+1) = B(x;\alpha,\beta) + \frac{b(x;\alpha,\beta)}{\beta}. \]

(11)

By putting \(\alpha = \beta = \frac{1}{2} \) in (3) we obtain

\[B(x;\frac{1}{2},\frac{1}{2}) = \int_0^X \frac{1}{\pi \sqrt{(1-t)}} \, dt = \frac{1}{\pi} \int_0^X \frac{2}{\sqrt{1-(1-2t)^2}} \, dt = \]

\[\frac{1}{\pi} \int_0^1 \frac{d}{dt} \arcsin(1-2t) \, dt = \frac{1}{\pi} \arcsin(1-2x) \]

that is,

\[B(x;\frac{1}{2},\frac{1}{2}) = \frac{1}{\pi} \arcsin(1-2x). \]

(12)

From (1) we easily find

\[B(x;\alpha,1) = x^\alpha \]

(13)

\[B(x;1,\beta) = 1-(1-x)^\beta. \]

(14)

1B. For \(\theta > 0 \) let \(p(\cdot;\theta) \) denote the Poisson density with parameter \(\theta \), that is,

\[p(x;\theta) = \frac{\theta^x}{x!} e^{-\theta} \quad x = 0,1,2,\ldots. \]

It is easily seen that \(p(x;\theta) \) may be computed recursively by

\[p(x+1;\theta) = \frac{\theta}{x+1} p(x;\theta) \]

(15)

\[p(0;\theta) = e^{-\theta}. \]

(16)

1C. For \(\lambda \geq 0 \) and \(\mu, \nu = 1,2,3,\ldots \) let \(G_{\mu,\nu}(\cdot;\lambda) \) denote the cumulative eccentric Fisher distribution with \(\mu \) and \(\nu \) degrees of freedom and eccentricity \(\lambda \). From formula (2.41) on page 29 in Sverdrup (1967) we easily obtain

\[G_{\mu,\nu}(f;\lambda) = \sum_{j=0}^{\infty} a_j \]

with

\[a_j = B\left(\frac{f\mu}{\mu+j\nu}; \frac{\mu+j}{2}, \frac{\nu}{2}\right)p(j;\frac{\lambda}{2}). \]

(18)
The following theorem (Sverdrup (1976)) gives an upper bound on the inaccuracy we get by adding only a finite number of a_j's in (17).

Theorem 1. Let $m > \frac{\lambda}{2} - 1$. Then

$$\sum_{j=m+1}^{\infty} a_j < a_m \frac{\lambda}{m+1-\frac{\lambda}{2}}$$

Proof. By (10) we see that $B(x;\alpha+1,\beta) < B(x;\alpha,\beta)$.

Hence

$$\sum_{j=m+1}^{\infty} a_j = \sum_{j=m+1}^{\infty} B\left(\frac{f_u}{\nu}, \frac{j}{j+\frac{\nu}{2}}\right) p\left(\frac{j}{2}\right) < B\left(\frac{f_u}{\nu}, \frac{j+m}{2+\nu}\right) \sum_{j=m+1}^{\infty} p\left(\frac{j}{2}\right) = (\frac{1}{2})^{j-m} \sum_{j=m+1}^{\infty} \left(\frac{\lambda}{2}\right)^{j-m}$$

$$a_m \sum_{j=m+1}^{\infty} \frac{1}{j^{(j-m)}} < a_m \sum_{j=m+1}^{\infty} \left(\frac{\lambda}{2(j+1)}\right)^{j-m} = a_m \frac{\lambda}{m+1-\frac{\lambda}{2}}.$$ Q.E.D.

The following corollary follows trivially from the theorem.

Corollary 1. Let $\epsilon > 0$, and let m be the smallest integer such that

$$a_m < \frac{(m+1)}{\lambda} - 1 \epsilon.$$ (19)

Then

$$G_{\mu,\nu}(f;\lambda) - \epsilon < \sum_{j=0}^{m} a_j < G_{\mu,\nu}(f;\lambda).$$

1D. Let T be a random variable, centrally Student distributed with ν degrees of freedom, and let T_{ν} denote the cumulative distribution of T. As T is symmetrically distributed about zero and T^2 is centrally Fisher distributed with 1 and ν degrees of freedom, we have

$$T_{\nu}(t) = \begin{cases} \frac{1}{2}[1-G_{1,\nu}(t^2;0)] & t \leq 0 \\ 1-\frac{1}{2}[1-G_{1,\nu}(t^2;0)] & t \geq 0. \end{cases}$$ (20)
2. Algorithms for computing $1-G_{\mu,\nu}(f;\lambda)$ and $T_{\nu}(t)$

2A. The program in subsection 3 computes $1-G_{\mu,\nu}(f;\lambda)$ by the procedure shown in Flowcharts 1 and 2. Flowchart 1 shows how to compute $B(fu_u, v) = G_{\mu,\nu}(f;0)$. If $\lambda > 0$, we proceed to Flowchart 2 showing how to compute $1-\sum_{j=0}^{m} a_j$, where m is the smallest integer satisfying (19). Then according to Corollary 1 the approximation $1-G_{\mu,\nu}(f;\lambda) = 1-\sum_{j=0}^{m} a_j$ gives an inaccuracy of less than ϵ.

If we are going to compute $1-G_{\mu,\nu}(f;\lambda)$ with a new value of λ, but the same μ, ν, and f, we after having stored λ go directly to Flowchart 2 using the $B(fu_u, v)$ found in the previous computation.

2B. The program computes $T_{\nu}(t)$ by computing $1-G_{1,\nu}(t^2;0)$ by the procedure given in Flowchart 1 and using (20).
Update $B(v; a, \beta)$ by (10) and (5) and $b(v; a, \beta)$ by (8).

Update $B(x; a, \beta)$ and $b(x; a, \beta)$ by (11) and (6).

Display $1 - B(v; a, \beta)$.

Flowchart 1.
Compute $p(m; \lambda)$ by (16)

Compute a_m by (18)

Subtract a_m from $1 - \sum_{j=0}^{m-1} a_j$

Update $B(v_f; \frac{v}{2} + m, \frac{v}{2})$ and $b(v_f; \frac{v}{2} + m, \frac{v}{2})$ by (10) and (5)

Update $p(m; \lambda)$ by (15)

Flowchart 2.
3. Program for $1 - G_{\mu,\nu}(f;\lambda)$ and $T_{\nu}(t;\lambda)$ on HP-67 calculator

3A. The program:

```
1 f LBL A 28 RCL B 55 RCL 6 82 STO+1
2 enter 29 STO 7 56 RCL A 83 ×
3 2 30 + 57 STO 9 84 -
4 × 31 STO×6 58 STO 1 85 STO 0
5 STO B 32 STO×7 59 h y^x 86 f LBL 6
6 h ×₂y 33 RCL A 60 STO 0 87 RCL A
7 2 34 g FRAC 61 RCL 7 88 RCL 9
8 × 35 f x>0 62 × 89 -
9 STO A 36 GTO 0 63 STO×1 90 f x=0
10 0 37 1 64 1 91 GTO 4
11 STO C 38 STO 9 65 STO 8 92 h ST 1
12 h RTN 39 STO 0 66 GTO 6 93 f LBL 2
13 f LBL B 40 RCL 7 67 f LBL 1 94 RCL 9
14 enter 41 RCL B 68 RCL 6 95 STO×1
15 2 42 STO 8 69 RCL 7 96 RCL 1
16 × 43 STO 1 70 × 97 STO-0
17 STO C 44 h y^x 71 f √ 98 RCL 6
18 h CF 3 45 STO-0 72 STO 1 99 RCL 8
19 h RTN 46 RCL 6 73 × 100 RCL 9
20 f LBL C 47 × 74 5 101 +
21 h F? 3 48 STO×1 75 STO 8 102 ×
22 GTO 9 49 GTO 6 76 STO 9 103 STO×1
23 GTO 5 50 f LBL 0 77 RCL 7 104 1
24 f LBL 9 51 RCL B 78 RCL 6 105 STO+9
25 RCL A 52 g FRAC 79 - 106 f DSZ
26 × 53 f x>0 80 g sin⁻¹ 107 GTO 2
27 STO 6 54 GTO 1 81 h π 108 f LBL 4
```
Because of the use of formula (12) the calculator has to be in RAD mode.
3B. Computing $1 - G_{\mu, \nu}(f; \lambda)$

1. (Storing μ and ν.) Set: $\mu, \text{enter,} \nu, A$. In this operation
 $\lambda = 0$ is stored. Hence, if we are working with a central
distribution, we may skip instruction 2 and proceed to in-
struction 3.

2. (Storing λ.) Set: λ, B.

3. (Computing $1 - G_{\mu, \nu}(f; \lambda)$.) Set: f, C. $1 - G_{\mu, \nu}(f; \lambda)$ is
displayed.

New f, same μ, ν, and λ: Perform instruction 3.

New λ and f, same μ and ν: Perform instrutions 2 and 3.

If we after having performed instruction 2 press B without
entering f, the program leaves f unchanged from the previous
computation.

Example 1. Set:
4, enter, 5, A;
3, B;
1.8927, C.

The program finds
$1 - G_{4, 5}(1.8927; 3) = 0.46653$.

Set:
4, B;
C.

The program finds
$1 - G_{4, 5}(1.8927; 4) = 0.52812$.

Set:
0, B;
C.
The program finds

$$1-G_{4,5}(1.8927;0)=0.25000.$$

Example 2. Set:
5, enter, 4, A;
4.0506, C.

The program finds

$$1-G_{5,4}(4.0506;0)=0.10000.$$

Set:
3, B;
6.2560, C.

The program finds

$$1-G_{5,4}(6.2560;3)=0.10442.$$

Example 3. Set:
5, enter, 3, A;
9.0135, C.

The program finds

$$1-G_{5,3}(9.0135;0)=0.05000.$$

Set:
2.4095, C.

The program finds

$$1-G_{5,3}(2.4095;0)=0.25000.$$

Set:
3, B;
C.

The program finds

$$1-G_{5,3}(2.4095;3)=0.39541.$$
The program uses $\epsilon = 10^{-6}$; this can be altered to $\epsilon = 10^{-n}$ by replacing 6 in program line 166 by n.

3C. Computing $T_v(t)$.

1. (Storing v.) Set: v, D.

2. (Computing $T_v(t)$.) Set: t, E. $T_v(t)$ is displayed.

New t, same v. Perform instruction 2.

Example 1. Set:

4, D;

0.7407, E.

The program finds

$T_4(0.7407) = 0.75000$.

Set:

-0.7407, E.

The program finds

$T_4(-0.7407) = 0.25000$.

Example 2. Set:

3, D;

1.6377, E.

The program finds

$T_3(1.6377) = 0.90000$.

Set:

3.1824, E.

The program finds

$T_3(3.1824) = 0.97500$.
3D. The registers have been used in the following way:

A \(\nu/2 \)
B \(\nu/2 \)
C \(\lambda/2 \)
I DSZ

0 \[B(j, \nu; m) \]
1 \[b(j, \nu; m, \nu) \]
2 \[b(\nu, \nu; m, \nu) \]
3 \[p(m, \lambda) \]
4 \[1 - \sum_{j=0}^{m} a_j \]
5 \[m \]
6 \[\frac{f_u}{\nu + f_u} \]
7 \[\frac{\nu}{\nu + f_u} \]
8 \[\delta \nu, B(j, \nu; m, \nu) \]
9 \[\alpha_j \]+m

Flags 2 and 3 and the labels A,B,C,D,E,a,0,1,2,3,4,5,6,7,8, and 9 have been used.

4. Related work

4A. An earlier version of the present paper appeared as Magnussen & Sundt (1977). That version also contained programs for \(G_{\mu, \nu}(f; \lambda) \) on Hewlett-Packard HP-25 pocket calculator. Those programs are also applicable on Hewlett-Packard HP-33 E pocket calculator.

Sverdrup (1976) describes how a program for the cumulative
eccentric Fisher distribution can also be used for calculations on the eccentric chi-square and Student distribution. He also gives programs on HP-25.

Guenther (1975) gives a computational routine for the cumulative eccentric Fisher distribution when the cumulative central Fisher distribution is pre-programmed.

Acknowledgements

We are grateful to Grete Fenstad and Steinar Bjerve for having suggested improvements to the paper.

References

