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ABSTRACT 

The present report represents an entry MULTISTATE 

COHERENT SYSTEMS which is to appear in the Encyclopedia 

of Statistical Sciences, Vol. 5 published by Wiley in 

1984. It gives a summary of the present state of the art 

of multistate theory also aiming to standardize the ter

minology. 



t1ULTlSTATE: COHERE:NT SYSTEMS 

one inherent wea~nes~ of traditional re~iability 

theory, see COHERENT STRUCTURE THEORY~ is that the 

syc;tem and the components are always described juet a!!!J 

:functioning or !Q.iled. Fortunately, 'Qy nov.r this theory 

is being replaced by a theory for multist~te systems of 

multistate components.· This enables one for instance in 

a power generation system to let i:;.he sy!Stem ~tate be the 

amount of power generated, or in a pipeline system the 

amount of oil running through a crucial point. In both 

cases the sy$tem sta,te is possibly measured on a 

discrete scale. The paper~;~ [1 J, [4 ], [8] initiating the 

~esearch in this area came in the lat~ seventies. Here 

we summa.rize the theory starting out from two recent 

papers [2 ), [7]. 

Let the set of states of the system be 

S:;: {o, 1 , ••• ,M}. The M+1 states reptEUiient;. successive 

levels of performance ranging from the perfect functio

ning level M down to the complete failure level o. 

Furthermore, let the set of components Qe c~{1,2, ... ,nl 

and the set of states of the i th component 

Si(i=1 I ••• ,n) where {O,M} s si ~ s. Henqe tne etates 

0 and H are chosen to represent the endpq;int;.~ of a 

pertormanc:e scale which might be used fot" both the sys

tem and its components. 



If x. (i=l~····,n) 
~ 

denotes the ~t~te or perfor-

mane~ level of the i th component and x= ( x 1 1 ••• I x ) , it. - n 

is assl)medl see com~R'f'~NT STRUCTURE THEORY I that the 

state ¢ of the system is given by the structure 

function ~=~(~). A series of results in multistate 

reliability theory cun he derived for the following 

systems: 

Definition A systen is a multistate monotone system 

(NHS) iff its structut"e function ¢ satisfies: 

(i) ?(~) is non-(1ecreasing in each argument 

( i i) b ( 0) =0 
. - and ( Q. = ( 0 I ••• I () ) I !:!= ( l\l I ••• , M ) ) • 

Figure 1. Example of an MMti 

As a simple example of an HMS consider the netVIor'k. 

of Figure 1. Here component (2) ts the parallel module 

of the branches a 1 (a2 and 1::>2 ). Let (i=1 ,2) 

x.=3 if two branches work and 1 (0) if one (no) branch 
l 

works. 7he state of the system is given in Table 1. 

3 n ") 3 

Com·ponent 2 0 ") .. 
0 0 0 0 

0 3 

Component 

Tahle 1 .. State of system in Figure 1 • 
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Note for instance that the state 1 is a critica~ one 

both for each component and the system as a whole in the 

sense that the failing of a branch leads to the 0 sta.te. 

In binary theory the functioning state comprises the 

states {1 1213} and hence just a rough description of 

the system's performance is possible. 

DETERMINISTIC PROPERTIES OF HfJT4TISTATE SYSTE~1S 

vle start by generalizing each of the concepts 

''minimal path set" and "minimal cut set" in coherent 

* structure theory. In the following Y~! means 

for i=l I ••• , n and y. <x. 
,]. 1 

for some 

Y· ;;;x. 
,]. 1 

Definition 2 Let ll> be the struct\Jre function of an 

MMS and let jef1 , ..• ~M}. A vector x is said to be a 

minimal path (cut) vector to level j iff ~{!)>j and 

~(y)<j for all y<~ (~(~)<j and ~(y)>j tor all y>e). 

The corresponding minimal I?ath {cut), ,sets to level j 

are given by cj(_!)={ilxi>l} (Dj(2£):z:;{ilxi<M}) · 

For the structure fqnction tabulated in Table 1 the 

minimal path (cut) vectors for instance to level 2 (1) 

are ( 3 , 1 ) and ( l I 3) { ( 3 I 0) a nO. { 0 , 3 ) ) • 

We now impose some further restrictions on the 

structure function ~- The following notation is 

needed: ( • . , x) = ( x 1 , ••• I x. 1 , • 1 x. 1 1 ••• , x ) , 
1 - 1- 1+ n 

s 9 . = s . n f o I ... I j -1 } and s ! . = s . n { j 1 ••• 1M } • 
l.,] 1 < l,] l. 



- j -

- 5 -

Definition 3 Consicler an 1'-mS with structure function ¢ 

satisfying 

(i) min X.(~(x)<max x .. 
l <i(n 1 - l(i(n 1 

If in addition Vi e:{ 1 , ... I n }, \fj e:{ l 1 ••• 1 n } I 3 ( • . 1 x) 
1 ....,. 

such that 

(ii) tj>(k.lx);;,jl rj>(l.lx)<j \fke:S~ ., Vle:s9 ., we have a 
1- 1- 11) 11) 

multistate strongiy coherent system {MSCS)~ 

( i i i ) ¢ ( k . 1 x ) > 4> ( 1 . , x ) \fk e: S ~ . 1 \fl e: S 9 . 1 we have a 
1- 1- ll] 1,] 

multistate coherent system (MCS) 1 

(iv) 4>(M.Ix)>q,(O.,x)l we have a multistate weakly 
l. - 1 -

coherent system (MWCS). 

All these systems are generalizations of a system 

introduced in [4]. The first one is presented in [7]~ 

whereas the two latter for the case s.=S(i=l 1 ••• ,n) 
1 

are presented in r 6 l• When ~1=1 I all reduce tO the 

established binary coherent system (BCS). The structure 

function min x. (max x.) is often denoted the multi
l<i<n 1 l<i<n 1 

state series (parallel) structure. 

Now choose j e: {1 1 ••• I f\1} and let the states 

S ~ . ( S ~ . ) correspond to the failure (functioning) 
l.l) ll) 

state for the i th component if a binary approach had 

been applied. Condition (ii) above means that for all 

components i and any level jl there shall exist a 

combination of the states of the other components, 
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( •.,x}, such that if the i th component is in the 
~-

binary failure (functioning} state, the system itself is 

in the corresponding binary failure (functioning} state. 

Loosely speaking, modifying [2], condition (ii} says 

that every level of each component is relevant to the 

same level of the system, condition (iii) says that 

every level of each component is relevant to the system, 

whereas conoition (iv} simply says that every component 

is relevant to the system. 

For a BCS one can prove the following practically 

very useful principle: Redundancy at the component le-

vel is superior to redundancy at the system level except 

for a parallel system where it makes no difference. 

Assuming S.:;::S(i=], ... ,n} 
~ 

this is also true for an MCS, 

but not for an MWCS . 

We now mention a special type of an MSCS •· Introduce 

the indicators ( j;::J , ... , H} 

I.(x.}=l (0} if x.:>j(x.<j}, and the indicator 
J ~ ~ ~ 

vector I . ( x ) = ( I . ( x 1 ) , ... , I . ( x } } . 
-J - J J n 

Definition 4 An MSCS is said to be a binary type 

multistate stron<;aly coherent system (BTMSCS} iff there 

exist binary coherent structures 4> ., j=l, ... ,M such 
J 

that its structure function 4> satisfies 

4> ( x) :> j < = > 4> • ( I . ( x) ) = 1 for all j e: { 1 , ... , M } and aLL ;K. 
- J -] -

Choose again je:{l, .•. ,H} and let the states 



s9 .(sJ .) correspond to the failure (functioning) state 
l.,J l.,J 

for the i th component if a binary approach is applied. 

By the definition above ~j will from the binary states 

of the components uniquely determine the corresponding 

binary state of the system. It is easily checked that 

the HMS of Figure 1 is an ~1SCS but not a BTHSCS. In [7) 

it is shown that if all ¢1. are identical, the structure 
J 

function <P reduces to the one suggested in [l ]. 

Furthermore, it is indicated that most of the theory for 

a BCS can be extended to a BTMSCS. 

PROBABILISTIC PROPERTIES OF HULTISTATE SYSTEMS 

We now concentrate on the relationship between the 

stochastic performance of the system and the stochastic 

performance of the components. Let X. denote the random 
l. 

state of the i th component and let ( i=l , ... , n; 

j =0 I o • • 1 )\1) 

Pr(X. < j) = P.(j) 
l. l. 

P.(j) = 1- P.(j). 
l. l. 

P. represents the performance distribution of the i th 
l. 

component. Now if <P is a structure function, <P (~) is 

the corresponding random system state. Let (j=O, ... ,M) 

Pr(q,(~) < j) = P(j) P(j) = 1- P(j). 

P represents the performance distribution of the 

system. He also introduce the performance function of 

the system, h, defined by 
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We obviously have the relation 

M 
h=L: i?(j-1). 

j=l 

Hence, for instance bounds on the performance distribu-

tion of the system automatically give bounds on h. 

We now briefly illustrate how coherent structure 

* theory bounds are generalized to bounds on the perfor-

mance distribution of an MMS of associated components. 

First we give the following crude bounds 

n n 
rr 

i=1 
P.(j-1) ~P(j-l) <l- rr 

]. 
P.(j-l) 

]. 
i=l 

Next we give bounds based on the minimal path and cut 

vectors. For j£{1, ... ,M} let y~=(y1 ~, ... ,yn;) 

r= 1 , ... , n . ( z j = ( z 1 j , ... , z j ) r= 1 , ... , m . ) be the 
J -r r nr J 

system's minimal path (cut) vectors to level j and 

j( j - j( j) ) C Yr) r-l, ... ,nj (D ~r r-:=l, ... ,mj the corresponding 

minimal path (cut) sets to level j. Then 

m. 
J . 

rr [1-Pr( .n . (X.<z~ )) ]<Pr[q,(X)>j] 
J J l. l.r -r=l i£D (z ) 
-r 

n. 
J . 

..:1-Il [1-Pr( .n. (X.>y~ )), j=l, ... ,M. 
r=l i£CJ(y:) 1 l.r 

These bounds are obviously simplified in the case of 

independent components. 
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As a simple application of the crude bounds consid-

er the system of Figure l. Let the probability of a 

branch working be p, and assume that branches within a 

component work independently \'lhereas the two components 

are associated. Then we easily get 

For p=O and p=1, we get the obvious results whereas 

for p=l/2 we have 11/16 .;; h .;; 29/16. 

As a conclusion it should be admitted that almost 

all efforts on multistate systems theory have been 

concentrated on mathematical generalizations of the 

traditional binary theory. This research has, however, 

been quite successful. One key area where much research 

remains is the development of appropriate measures of 

component importance. Finally, it is a need for several 

convincing case studies demonstrating the practicability 

of the generalizations introduced. ~ve know that some are 

under way. 
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