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1 . Introduction 

One inherent weakness of traditional reliability theory is 

that the system and the components are always described just as 

func:::tioning or failed. Fortunately, by now this theory is being 

replaced by a theory for multistate systems of multistate compo-

nents. This enables one for instance in a power generation system 

to let the system state be the amount of power generated, or in a 

pipeline system the amount of oil running through a crucial point. 

In both cases the system state is possibly measured on a discrete 

scale. Two recent papers in this area are Block and Savits (1982) 

and Natvig (1982). A summary of the present state of the art of 

multistate theory is given in Natvig (1984). 

Let the set of states of the system be S = {0,1, ... ,M}, 

M < co. The M+1 states represent successive levels of performance 

ranging from the perfect functioning level M down to the com­

plete failure level 0. Furthermore, let the set of components be 

C = {1 ,2, ... ,n}, n <co, and the set of states of the i th compo-

nent S. ( i=1 , ... , n) where 
1 

{0,~1} ~ Si ~ S. Hence the states 0 

and M are chosen to represent the endpoints of a performance 

scale which might be used for both the system and its components. 

A slightly more·, general model, suggested by Reinschke and Klingner 

( 1 981 ) , allows S c s .. The results derived in the present paper 
1 

will obviously hold for the latter model. Since in most applica-

tions there is no need for a more refined description of the per-

formance of any component than of the system, and since it is 

practical to have a common state, M, describing perfect functio-

ning both for the system and the components, we will in the fol-

lowing concentrate on the former model. 

the 

If x. (i=1 , ... ,n) denotes the state or performance level of 
1 

i th component and x = (x1 , ... ,x ), it is furthermore as-
- n 

sumed that the state ~ of the system is given by the structure 

function ~ = ~(~). Here x takes values in 8 XS X• • •XS 
1 2 n 

and 
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takes values in s. In this pap~r we will restrict to the follo­

wing systems: 

Definition 1 .1. A system is a multistate monotone system (MMS) 

iff its structure function ~ satisfies: 

(i) ~(!) is non-decreasing in each argument, 

( i i ) ~ ( .Q) = 0 and ~ ( ~) = M ( .Q = ( 0, ••• , 0) , ~ = ( M, •.• , M) ) • 

Now let X. denote the random state of the i th component 
~ 

and let ( i = 1 , ••• , n, j = 1 , ••• , M) 

P [x. >j] = P .. 
~ ~) 

The random system state is then ~(~).Let (j = 1 I ••• ,M) 

P[~(X)>j] =h .. 
- J 

In Theorem 3.1 of Natvig (1982) an exact formula for h. 
J 

is 

arrived at. For the special case where x1 , ••• ,Xn are independent 

hj reduces to a function of merely P = (P 11 , ••• ,,M,P 21 , ••. ,PnM) 

and we write h. = h .(P). 
J J -

In Section 2 we sketch the main ideas relevant for describing 

the behaviour of multistate monotone systems in steady state by 

means of processes with an embedded point process. We then review 

in Section 3 some general results on stationary availability, sta­

tionary intervai availability and on stationary mean interval 

performance probabilities given in Streller (1980). At last in 

Section 4 we consider multistate monotone systems with indepen-

dently working and separately maintained components. For this case 

an explicit formula is given for the mean time which the system in 

steady state sojourns in states not below a fixed critical level 

j E s. This formula is a generalization of a result for binary 

systems obtained in Ross (1975) and discussed in Franken and 

Streller (1980). As an example we develop the formula for the 

special case where the i th component consists of M. 
~ 

branches 

in parallel and its state is an increasing function of the number 
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of branches functioning. We furthermore assume that the branches 

fail and are repaired/replaced indpendently of each other, all 

having the same instan-taneous failure rate a. 
l. 

and repair/ 

replacement rate b .. In Hjort, Natvig and Funnemark (1982) it is 
l. 

shown that the Markov process describing the state of such a com-

ponent is associated in time. 

Finally, it should be made clear that the present paper is 

much based on Streller (1982 a) and can be considered as the 

extension of Franken and Streller (1980) to multistate systems. 

2. Stationary and synchronous processes with an embedded 

point process 

In the sequel we shall assume that the system is in steady 

state, i.e., roughly speaking, that it began to work in -~. Then 

the time-dependent behaviour can be described by a stationary or a 

synchronous process with an embedded point process. We summarize 

some general properties of such processes on R+ = [o,~]. A more 

detailed treatment can be found in e.g. Franken et. al. ( 1981) or 

Streller (1982 b). 

Consider a real-valued stochastic process (X(t), t>O) and a 

sequence ~ = (T ,m >0) ·,m both defined on the same probability 

space. 

Definition 2.1. A couple '¥ = [ (X ( t ) , t >0 ) , ( T , m ~ 0 ) ] 
m 

a process with an embedded point process (PEP) if 

The epochs 

... and T ~ ~ a.s. as 
m 

T , m > 0, are called embedded points of 
m 

The embedded points T split the process 
m 

(X(t)) 

is called 

( 2 • 1 ) 

(X(t)). 

into 

socalled cycles 

the cycle length 

'¥ 
m = (Xm(u), O~u<Dm), where Dm = Tm+1-Tm is 

Xm(u) = X(Tm+u). In view of (2.1) we have and 

that D > 0 
m 

and L D = ~ a.s. 
m 

If the cycles '¥ are inde­
m 

pendent, and for m > 1 identically distributed, then '¥ is 
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a regenerative process with regeneration points T • If 
m 

( '¥ ) 
m 

a Markov chain one can obtain important classes of stochastic 

is 

processes (e.g. semi-Markov. semi-regenerative and piecewise 

Markovian processes) by specifying the transition probabilities. 

Define the shift operator S for u ;;. 0 as follows: 
u 

S '¥ = [(X(t+u) ,t)O), (Tu,m>O)], 
u m 

where T~ = Tm+N(u)-u and N(u) = min(j: Tj)u). (Note that T~ = 

TN(u)-u.) 

Definition 2.2. A PEP '¥ is called synchronous if the sequence 

of its cycles is stationary. A PEP '¥ is called stationary if for 

-every u ) 0 the shifted PEP Su'¥ has the same distribution as 

-
'¥. 

The stationary and synchronous PEP are different but equiva-

lent descriptions of the system behaviour in steady state, i.e. 

there exists a one-to-one correspondence between the distributions 

P of a stationary and P of a synchronous PEP. In most cases the 

distribution P of a synchronous PEP is easier to obtain. Then 

the distribution P of the corresponding stationary PEP is given 

by the inversion formula (2.1) of Franken and Streller (1980). 

Often the .embedded points T are uniquely determined by the 
' m 

system state process (X(t)). For instance, T may be entrance 
m 

epochs of the process into a well-defined subset of the state 

space. 

Remark 2.1. Choosing several sequences of embedded points 

~( 1 ), ~( 2 ), ••• one can describe the steady state behaviour of the 

system by considering the corresponding synchronous PEP's. If the 

mentioned inversion formula is applied to each of them, one derives 

the distributions of different stationary PEP's [<x( 1 )(t)),~( 1 )] , 

[(X( 2 ) ( t)), ~( 2 ) ] , • • • • However, the stationary state processes 

(X(1)(t)),(X( 2 )(t)),••• are all stochastically equivalent. 
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3. Stationary characteristics 

vfe now assume that there exists a state j E {1 , ••. , M} which 

can be interpreted as the minimal level ensuring a sufficiently 

good system performance. Then the results of Section 3 in Franken 

and Streller (1980) can formally be carried over to multistate 

systems by defining G = {_!: 4J(,!) ~ j } as the set of "good" states 

and B = {_!: 4>(,!) <j} as the set of "bad" states. We shall con­

sider the stationary availability to level j and the stationary 

interval availability to level j defined respectively by 

A.= P( 4J(X(O)) ~j) 
J -

and A .(s) = P( 4J(X(u)) )j,O(u(s). 
J -

The embedded points T , m ) 0 
m. are now chosen in such a way that 

and 

"All points T satisfying 4J(~(T-0)) ( j-1 and 

4> (~ ( T+O) ) ) j are embedded points" 

for all m = 0,1 , .•• 

( 3 • 1 ) 

(3.2) 

This means that we may also choose some epochs of transitions with-

in G as embedded points. The properties (3.1) and (3.2) ensure 

that a generic cycle of the synchronous PEP starts with an "up-time" 

of length U, satisfying P(U>O) = 1, where the system is in G, 

eventually folle>wed by a "down-time" of length D, satisfying 

P(D=O) ) 0, where the system is in B. Thus in view of Theorem 3.1 

in Franken and Streller (1980) we have, as shown in Streller (1980) 

and 

= ~::,- 1 f'P(U)t)dt 
s 

(3.3) 

( 3 .4) 

Consider now the cumulative system performance 

generated by the stationary PEP [(X(t)),(T )] and 4>· If the - m 

system performance over a time interval of length s is 

considered to be sufficiently good if Z(s)/s ) j (eventually 
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"lost" performance is recuperated within the interval), then it is 

natural, instead of A.(s), to consider the characteristic 
J 

P .(s) = P(Z(s)/s;;.j) , 
J 

which we call the stationary mean interval performance probability 

to level j. (Obviously, we are here free to let j take any 

value in (O,M].) 

To date we we are not aware of an explicit formula for 

However, an approximation formula for large s is given in 

Streller (1980). Consider the sequence 

z m 

T 
= f m+ 1 4> (~ ( u) ) du 

T m 

m=0,1, ••• 

P.(s). 
J 

generated by the m th cycle of the synchronous PEP [(X(t)),(T )] 
- m 

and 4>· Then, as a consequence of the Central Limit Theorem for 

generalized cumulative processes, given in the mentioned paper, we 

obtain the following proposition. 

Proposition 3.1. Assume that 

( i ) K = Ep ( z 0 ) < CD , !::, = Ep ( D 0 ) < CD , 

( ii) and that 

(iii) the sum 

CD 

cr2 = cr2+2 I E ( ( z - ~ o0 ) ( zn- K D ) ) 
0 n=1 P 0 u t, n 

converges absolutely. 

If cr 2 > 0, then 

where 

u = /t,s K ( j- -) 
cr b 

A sufficient condition for (iii) to hold is also given in 

Streller (1980). 
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4. The case of independent components 

In this section we shall assume that all the components are 

independently working and separately maintained. In particular, 

this means that the rule for improving the performance of a compo-

nent and the corresponding random time for doing so do not depend 

on the behaviour of the other components. (Obviously, this rule 

must be specified for each concrete model.) 

Consider now the i th component. As embedded points (T . , 
m~ 

m) 0) we choose the epochs where a transition of the state of this 

component occurs; i.e. X. (T .-0) *X. (T .+0). Furthermore, let 
~ m~ ~ m~ 

(~(t),t)O) be the stationary state vector process and 

[!(i)(t),~(i)J, where ~(i)(t) = (x1i(t), ... ,xni(t)), the corres-

pending syncronous PEP with embedded points T .• 
m~ 

Remark 4.1. In view of the independence of the components the 

processes <E(t)) and (~(i)(t)) differ only in their i th 

component where they take the values (X.(t)) and 
~ 

respectively. For k * i the processes (Xk(t)) 

are statistically equivalent. 

(X .. (t)) 
~~ 

and (Xki (t)) 

In addition to (T . ) we consider other embedded points 
m~ 

(T I ) 

m and 

while in 

T' m the system crosses level j downwards 

it crosses level j-1 upwards. More precisely, 

4> (X ( T I -0 ) ) ) j 
- m 

* q,(~(Tm-0)) ~ j-1 

and 4> (X ( T 1 +0 ) ) ~ j - 1 ; 
- m 

and 

Recall that the intensity of a stationary point process is defined 

as the mean number of points within the interval [ 0, 1 ) . In view 

of the intensity conservation law the stationary point processes 

~I (T I ) and -* (T;) have the intensity 'A, = 4> = same say. 
m 

Furthermore, it is obvious that each epoch Tl 
m of ~I is con-

n 
tained in the union u ~ ( . ) of all stationary epochs where a 

i=1 ~ 
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transition of the state of a component occurs. Due to the station-

arity of the independent processes ¢(i) it follows from Theorem 

n 
1.3.10 of Franken et. al. (1981) that all the points of U ~(') 

i=1 ]. 

are a.s. different. Therefore, 

n 
A = I Ao. , 

i=1 ]. 
( 4. 1 ) 

where AOi is the intensity of ~~n ~(i)-the stationary point 

process of the system crossing level j downwards "caused" by the 

i th component. 

Let now Ai denote the intensity of ~(i) , P(i) the dis-

tribution of ~(i) and E 1 the event "system crosses level j 

downwards". Then from the formula of Palm probabilities, confer 

e.g. Franken et.al. (1981 ), we have 

p(i)(EI) = Ao. /A. . (4.2) 
]. ]. 

Now choose k,l E s. with k > 1 and denote 
k,l 

the event "a E. 
]. ]. 

transition k ~ 1 of the state of the i th component occurs" and 

A~,l the intensity of the stationary point process of epochs when 
]. 

this transition occurs. From (4.2) we get 

Ao i = A i P < i) < E I > 

\' ( I I k,l, ( k,l, =A· 'L P(') E E. P(') E. 
]. ( k I 1 ES . : k > 1) ]. ]. ]. ]. 

]. 

= I A~,l p . (E 1 IE~' 1 ) 
( k I 1 ES . : k > 1 ) ]. ( ]. ) ]. 

]. 

= I k,l[ k - 1 - J A· h.((e) .,P)-hJ.((e) .,P) , ]. J l.- l.-
( k I 1 ES . : k > 1 ) 

]. 

( 4. 3) 

where k - - - - - k - -
( ( e ) i ' R ) = ( P 1 1 ' · · · ' P 1 M ' P 21 ' · · · ' P i-1 M ' e ' Pi+ 1 1 ' · · · ' P nM ) 

and P . . = P ( X . ( t ) ;;. j ) i = 1 , . . . , n ~ j = 1 , ... , M 
l.J ]. 

k 
e = (1, ... ,1,0, ... ,0). 

1 k M 

The last equality in (4.3) is valid in view of the properties 

mentioned in Remarks 2.1 and 4.1. 
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Finally, consider the synchronous PEP * * [(X (t)),~ ]. A generic 

cycle starts with a working phase of length U, with P(U>O) = 1, 

where the system state is in {j, .•. ,M}, followed by a failure 

phase of length D, with P(D>O) = 1, where the system state is in 

{0, .•. ,j-1 }. Thus, we have in view of (3.3) 

hj(E) = Aj = Ep(U)/Ep(U+D) 

A.- 1 = Ep(U+D) 

(4.4) 

Consequently, from (4.1 ), (4.3) and (4.4) we prove the following 

theorem 

Theorem 4.1. The mean steady state working phase EP(U) is given 

by 

where 

n 
A = I 

i=1 

= A.- 1 h.(P) 
J -

\ k,l[ k - 1 - J L A.. h.((e ).,P)-h.((e ).,P). 
( k ,~ 1 ES . : k > 1 ) 1. J 1. - J 1. -

1. 

(4.5) 

(4. 6) 

As mentioned in Section 1 an exact formula for h. is given in 
J 

Theorem 3.1 of Natvig (1982). 

Obviously, for each specific model, it remains to arrive at 

expressions for the intensities A.~,l corresponding to the tran-
1. 

sition k ~ 1, ~ > 1. This depends on the performance process 

(X .. (t)) of the i th component. 
1.1. 

As an example we develop the formula (4.6) for the special 

case where the i th component consists of M. branches in paral-
1. 

lell and its state is an increasing function, f. , of the number 
1. 

of branches functioning, satisfying f.(O)=O 
1. 

and f.(M.) = M. 
1. 1. 

However, we have an arbitrary multistate monotone structure func-

tion ¢ organizing the states of the components. This system is 

just a multistate version of the one arrived at when introducing 

redundancy at the component level in a traditional binary system. 

Remember according to Theorem l .3 of Barlow and Proschan ((1975), 

p.23) this is really worthwhile. 
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Furthermore, we assume that the branches fail and are re-

paired/replaced independently of each other, all having the same 

instantaneous failure rate a. 
~ 

and repair/replacement rate b .• 
~ 

Hence we have a birth and death process on { 0, 1 , .•. , M. } , regi­
~ 

stering the number of working branches, with birth and death rates 

given respectively by 

= (M.-k)b. 
~ ~ 

= k a. 
~ 

k = o, ... ,M. 
~ 

k = o, ... ,M. 
~ 

From Karlin and Taylor ((1975), p.137), we then get 

M k -M. i 
pifi(k) = P(Xi(t)=fi(k)) = lkil(bi/ai) (1+bi/ai) ~ k=O, •• ,M 

Hence P is established. 

Now let P(i)fi(k) = P(i)(Xii(t) = fi(k)). By an heuristic 

argument using Bayes• formula we get 

M. -
P(i)f.(k) = 

~ 

(b.k+a.k)p.f (k)/ I~[(b .. +a .. )p.f ( ') J 
~ ~ ~ i j=O ~J ~J ~ i J 

M. k Mi-1 
= [(M.-k)b.+a.k]l ~l(b./a.) /[2M.b.(1+b./a.) ] 

~ ~ ~ k ~ ~ ~ ~ ~ ~ 

That this is in fact the correct distribution can easily be 

verified by checking that it satisfies the equations 

M. 

p(i)fi(k) = jl~P(i)fi(j)Tijk 

(4. 7) 

where the transition probabilities of the embedded Markov chain 

are given by 

ja./(ja.+(M.-j)b.) k = j-1 1 j = 1, ..• ,M.-1 
~ ~ ~ ~ ~ 

(M.-j)b./(ja.+(M.-j)b.) k = j+1 1 j = 1, ..• ,M.-1 
~ ~ ~ ~ ~ ~ 

Tijk = 
1 j = 0, k = 1 and j = M. I k = M.-1 

~ ~ 

0 otherwise. 

Since now A. is the inverse of the mean time between two succes­
~ 

sive transitions in the embedded Markov chain, we have from (4.7) 

A-;1 = 
~ 

M. 
L~P(')f (k)/[(M.-k)b.+a.k] = (a.+b.)/[2a.b.M.] 

k=O ~ i ~ ~ ~ ~ ~ ~ ~ ~ 
(4.8) 
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Hence we finally get from (4.6), the deduction leading to (4.3), 

(4.7) and (4.8) that 

A = 
n M. 
I L1 

i=1 k=1 

f . ( k) , f . ( k-1 ) f . ( k) f . ( k-1 ) 
A. 1 1 [h . ( ( e 1 ) . , P) -h. ( ( e 1 ) . , P) ] 

1 J 1- J 1-

f.(k),f.(k-1) f.(k) f.(k-1) J 
A.P(")(E. 1 1 )[h.((e 1 ).,P)-h.((e 1 ).,P) 

1 1 1 J 1- J 1-
= 

n M. 
I L1 

i=1 k=1 

n M. k a. f. ( k) f. ( k-1 ) 
= L L1 A.p(")f (k)( k)~ k [h.((e 1 ).,P)-h.((e 1 ).,P) 

i=1 k=1 1 1 i Mi- i+ai J 1 - J 1 -

n M. -M 
= L L 1 k a . ( Mi) ( b . I a . ) k ( 1 + b . I a . ) i 

i=1 k=1 1 k 1 1 1 1 

f . ( k) f . ( k-1 ) 
x [h.((e 1 ).,P)-h.((e 1 ).,P)]. 

J 1- J 1-
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