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Abstract 

Let (X, Y) be a bivariate random variable and let m(x) = E(YIX = x) 

be the regression function of Y on X. Suppose that v1, .•• ,Yn are 

independent observations of Y at X= x1, .•• ,xn. We consider nearest 

neighbor estimates, m(x), and employ well-known inequalities to obtain 

exact and asymptotic uniform confidence bounds for Em(x) and m(x) 

based on m(x). Finally we discuss bias-properties of m(x). 

Key words: Nonparametric regression, confidence bands, nearest neighbor. 

1This work was done while the author was visiting the University of 
California at Berkeley on sabbatical leave from the University of Oslo. 

2ooksum's work was partially supported by National Science Foundation 
Grant MCS-81-02349. 



-1-

1. Introduction. 

Let (X1, Y1), ••. ,(Xn' Yn) be a random sample from a bivariate 

population with distribution function F(x,y). We are interested in 

constructing uniform confidence bounds for the unknown regression function, 

m(x) = E(YjX=x) 

without making parametric assumptions about either m or the distributional 

form of F. We will assume existence of the conditional variance function 

given by 

a2 (x) = v a r ( Y I X = x) 

The construction will be based on the k-nearest neighbor estimator, 

m(x) = ~ y .fk 
1 

where the summation is taken over the indexes of the k X's that lie 

closest to x. 
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2. Prelimiaries. 

Let Xni be the ith order statistic obtained from X1,x2, .•• ,Xn 

and let Yni denote the ith induced order statistic of the Y-observations. 

I.e. if Qi is the anti-rank of x1, x01 = Xni' then Yni = v01 • 

Conditional on Xni = xni' i = 1, ••• ,n, the Yni are independent (see 

e.g. Bhattacharya (1974), Lemma 1) and the distributional assumptions may 

be written as follows: 

where e 1 , ••. ,e n nn are independent, (2.1) 

For convenience we will, until Section 5, write Y1• for Y . and 
nl 

x1 for xni" 

Our estimator for m(x) will be the k-nearest neighbor estimator, 

(2.2) 

where Ink{x) are the indices of the k values of x1, ••• ,xn closest 

to x. We assume that Ink(x) is uniquely determined a.s. 

Let 

Ji = {x: Ink(x) = {i+1, •• qi+k}}, i = O, •••. ,n-k • (2.3) 

Denote 

mi = m{x) for X E Ji' i = O, ••• ,n-k • 

Thus 

{2.4) 
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It is seen that J0 = (-oo, 1 (x1+xk+1)) while 

1 1 
Ji = (2(xi+xi+k),2(xi+1+xi+k+1)), i = 1, ••• ,n-k • 

ri-k 
Here, define xn+1 = oo, so that .U J. = R. 

1=0 1 

Let 

" " i+k S. = m -Em.= 1: .. +1 W., i = O, ••• ,n-k 
1 ; 1 J=1 J 

where 

w. = (Y.-m(x.))/k, 
J J J 

j=1, ••• ,n. 

Define S0 = 0 and 

s. = 1:.; 1 w. 
1 J= J 

i = l, ••• ,n-k 

Then 

- -
S; = Si+k-Si, i=O, .•• ,n-k. 

LEMMA. For each t > 0, 

-2 n-k 2 n 2 
P ( S . ~ - t; a 11 i = 0, • • • , n-k) > 1-4 ( k t) [. ~1 a ( x . ) + . ~ko ( x . ) ]. 

1 - 1- 1 1- 1 

PROOF. Let 

- 1 A = {Sk+i > --t all i = O,•••,n-k} 
- '2 

- < lt 8 = {S. all ; = 1,···,n-k} 
1 - 2 

c = {S. > -t all i = O,···,n-k} 
1 -

Then An 8 c C and by 8onferroni•s inequality, we have 
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P(C) .:_ P(AnB) .:_ 1- P(Ac)- P(Bc) 

Kolmogorov•s inequality (e.g., Lo~ve, 1963, p. 235), yields 

P(A) .:_ 1- 4(ktf 2 i~ki(x;) 
2n-k 2 

P(B) .:_ 1- 4(ktf i~ko (xi) 

and the results follows. 
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3. Exact uniform confidence bounds for Em(x). Consistency. 

Since inf[m(x)- Em(x)l = min{S.;i=O,···,n-k}, them by the Lemma, 
X 1 

Thus if we set 

then ~(x) + t is a simultaneous upper confidence boundary for Em(x) a 

with confidence coefficient at least 1 - a. 

Similarly, m(x) - t is a simultaneous lower co~fi dence boundary for 
a 

Em(x) with confidence coefficient at least 1 - a. Let 

+ "' "' + + r = supx 2:_[m(x)-Em(x)] and T = max{T,T} then P(T~t) 2_P(T ~t)+P(T-~-t). 

It follows that, for each t > 0, 

"' Thus m(x) is a uniformly consistent estimate of Em(x) provided 
-2 n 2 2 k ;~1 a (x;) tends to zero as n -+ oo. If a (x) is bounded,. this follows 

if {n/k2) -+0 as n -+oo. 

Note that 

~(x) + /2t 
- a (3.1) 

is a level (1- a) simultaneous confidence band for Em(x). If we assume 

that cr2(x) ~· a2 for all x, then 

t = ( 2 12 ( n - k) + 1/ ra k) a 
a 

and the width of the confidence band is (412" /2(n- k) + 1//ak) cr. If we 

k+6 1 . choose k = n 2 , 6 _:: 2 , then the width 1 s ....,.., .... -
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-f., c 
8 n alva 

minus a smaller order term. Thus the width tends to zero (and we have 

consistency) provided t <f.:.< 1. 

To use the band, we need an estimate of 2 a • A natural estimate is 

the residual mean square 

(3. 2) 
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4. Bounds based on asymptotic distribution theory. 

We assume i(xi) = a2 < oo. Since the Si, i = 1,2, ••• are partial 

sums of independent identically distributed random variables, we may apply 

a result for Brownian motion (e.g., Billingsley (1968), p. 72) which yields 

P(A) = P( max (-S.+k) < ~t) ~ 2<I>(~t·k/(li1·o)) -1 
O~i~n-k 1 

Similarly we get P(B) ~ 2<I>(~t·k/(lrl·o)) -1. As in Section 3 we find 

that asymptotically a level (1- a) confidence band for Em(x) is 

( 4.1) 

Choosing k = n~+6 , the width of the band is 

-1 ( 1 ) -6 44> 1- 4 a n a 

The following table compares the widths of the confidence bands 

(3.1) and (4.1). The widths of the bands are of the form 2co n-6 • 

Table 4.1. Values of c for three frequently used confidence coefficients. 

Exact (3.1) 

Asymptotic (4.1) 

Values of c 

.1 

8.94 

3.92 

.05 

12.65 

4.48 

.01 
28.28 

5.63 
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5. Bounds based on nonoverlapping neighborhoods. 

The bands in Sections 3 and 4 will be of use only for large data sets. 

In this section, we develop a band which is much narrower, but it is 

simultaneous only for a sequence tn1,···,tnl of x-values. The model is 

where 

If we choose 

Y. =m(x .)+e., x1 <•••<x 
n1 m n1 n nn 

t • • • t 1 n1' ' n so that 

th f 1 h th · 11 b 1 b t the k -- n~+~ en or n arge enoug , ere w1 e no over ap e ween 

nearest x-neighbors to the points tn 1,···,tnl" Thus if we define 

T. = m(t .) - Em(t .), i = 1,···,1 n1 n1 n1 

then there exists N such that Tn1,···,Tnl are independent for all 

n ~ N. By Chebychev•s inequality and (2.4), for n > N, a> 0, 

P(max.JT .J< a)> .fi[1-(ak)-2 i.~~+ 1 i(xn 1.)] • 
1 nl - - 1=1 J-1 

rF we assume cr2(x) = cr2 then 

1 1 
m(x) .::_ cr/{k [1- (1- a)Tn2-

is a simultaneous confidence band for Em(x) valid for all 

(5.1) 

x e {tn1,···,tn1}. The width of this band is of the order O(n-~-~~). 

By (2.4) and the Central Limit Theorem, 
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1 i m P ( /k T nj :._ t) = <I> ( t/ a) 
n~ 

.!.:::+6 where k = n 2 , and 1 is finite. Thus if we set 

then 

lim P{/k~11 :_t) 
n~ 

and 

1 

m(x) ~ <t>- 1(t[1 + {1- a)l 1) a/IK 

is asymptotically a level {1- a) simultaneous confidence band for 

Em(x) valid for x e {tn1,···,tn1}. 

(5.2) 

{5.3) 

This band is of order O(n- ~- ~ 6). Note that (5.1) and (5.3) 

are considerably narrower than the bands (3.1) and (4.1) o 

We next derive approximations to (5.2) and (5.3) valid for large 1. 

Let v1 = max. {T . } , w1 = min. {T .} , then M1 = max{v1, - w1} and 
1 n1 1 n1 

Using this and results on the asymptotic distribution of extreme order 

statistics (e.g. Galambos, 

-1(1) a1 = -<I> f or a1 

.!.::: 
= 1/ ( 2 1 og 1 ) 2 , then 

p. 65 and p. 106), we find that if 

1 t(log log 1 +log 4II) 
= ( 2 1 og 1)'2 - · .!.::: 

(2logl) 2 

It follows that for large 1, an approximation to (5.3) is 

(5.4) 
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(5.5) 

1 where za= -log [- 2 1og (1- a)]. 

It would have been more elegant to take the limit in (5.4) as 1 and 

n simultaneously tend to oo, say by setting 1 = n Y, 0 < Y ~ t -6. 

With Y = t- 6, this would lead to a band similar to that of R~vesz {1979). 

His estimator differs slightly from m(x) in that his index sets, say 

I~k(x), are balanced with tk values of xn 1,···,xnn closest to and 

less than x, and tk values closest to and greater than x, k even. 

Nevertheless, Theorem 1 of R~v~rsz (1979) holds for ~(x) based on the 

sets Ink{x), yielding the confidence band 

(5.6) 

with 

when 

~-6 s = n • 

k = n~ + 6• 

The width of this band is of order O(n- ~- ~ 6 (log n)~) 

Note that in (5.1), (5.3) and (5.5) as well as (3.1) and 

(4.1) we have avoided a number of regularity conditions required by 

Revesz. 

The band (5.1) can be made asymptotically valid for all x provided the 

t .•s are chosen dense in the set X of possible x's, that the bias 
nJ 

is of smaller order than the widths of the bands (see Section 6), and 

that m(x) is uniformly continuous on X .• 
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6. Bias. 

The bands of the previous sections are for 

m(x) = Em(x) = 1; m(x. )/k • 
ielnk (x) 1 

In order to make them valid for m(x), we need to show that the bias 

m(x)-m(x) = 1; [m(x.)-m(x)]/k 
idnk(x) 1 

is uniformly of smaller order than the width of the bands. 

Assume now that x is in an interval [a, b] and that the regression 

function satisfies a rth order Lipschitz condition: 

lm(x)-m(y)l ~ clx-ylr, x,y € R • (6.1) 

Then, 

when x € J; = ((x;+xi+k)/2,(xi+t+xi+k+1 )/2], i = 0,1, ••. ,n-k, 

x0 = a, xn+1 = b. 

Thus when ~ + t~ I I _ ( t~-~) 1 k = n and max. x .. k. 1- x J. - 0 n , 0 < il < 7), J n,:J+ -+ n ~ 

where now X; and x . are used interchangeably, then 
nl 

(6.2) 

and the bias is of smaller order than the width of the bands (3.1) and 

(4.1) when n-il> n-r(~-il), i.e. il < r/2{r+1). Thus, if we are only 
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willing to assume a first order Lipschitz condition, we must chose 6 

less than !· Second and third order conditions lead to 6 less than 
1 3 3 and B, respectively. 

Turning to the bands (5.1) and (5.3), we need n-~-~ 6 > n-r(~- 6 l, 
1 1 1 -1 i.e. 6<(2 r- 4)(2+r). For r=1,2and3,wefind 6 lessthan 

t' 130 and 154 , respectively. Since the bands (5.5) and (5.6) are at 

least as wide as (5.1) and (5.3), the same restriction is sufficient to 

make the bias of uniformly smaller order than the widths. 

R~v~sz (1979) considers a different restriction of the regressor to 

the interval [0, 1]: Let X have a density f such that f(x) ~A., 

x E [ 0, 1], for some A. > 0. Let k be such that 

(6.3) 

Then (Revesz (1979), Lemma 1) 

limsupr ~up 1Xi-Xi+ki~2/A. a.s. 
n-+oo 1~ 1 ~n-k 

From this and the rth order Lipschitz condition (6.1), it follows that 

if k = n~ + 6, 

sup X I m (X ) - m ( X ) I = 0 ( n- r ( ~-6 ) ) a • s • 

This result is valid for X E [a, b), not just [0, 1], thus we have 

shown (6.2) again under a different set of conditions. Note that (6.3) 

implies that if k = n~+ 6 , then 6 < t· 
Under the conditions of the above paragraph, and assuming that m(x) 

has a uniformly bounded derivative, Revesz has shown (Lemma 2) that 

supx lm(x)- m(x) 1 = o( (k log nr~) a.s. 
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which again implies that the bias is of smaller order than the width of 

the band. 

Rosenblatt (1969) gives asymptotic results for kernel estimators of 

the regression function. He gets pointwise confidence-intervals of width 

n-215 using a bandwidth of order n- 1/ 5 which corresponds to k = n4/ 5 

or 1::. = • 3 • 

Spiegelman and Sacks (1980) obtain window estimators with mean 

squared error of the order O(n-213) by imposing a first order Lipschitz 

condition on m. Thus their bias is of order less than n -113 • Their 

bandwidth is of order bn = n- 113 , corresponding to k = n213 • 
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7. An illustration. 

To get an idea of the accuracy of the bands, we computed the band 

(5.6) for data (x 1, v1 )· •• (x100 , v100 ) generated from the model 

B1 B2xi B3 
Y.=e e x. +e. 1 1 1 (7.1) 

where s1 = 5, 1 B2 =- 2' B3 = 1, e1,···,en are i.i.d. N(O, 100), 

Xi = i/25, "' . i = 1, • • • ,100, the significance coefficient is .90, a 1s 

computed from (3.2), and 6 = .15. 

This model has been suggested for agricultural experiments where an 

amount x of fertilizer increases yield Y for low and moderate doses 

while it decreases yield at high doses. 

The result is shown in Figure 1 where the middle curve is the estimate 

~(x) and the upper and lower curves define the band. The band is fairly 

accurate with the width being 11.5. Since the band is simultaneous, 

we can test model assumptions. For instance, since no line fits in the 

confidence band, regression linear in x is rejected. Similarly, a 

parabola does not fit in the band and a quadratic (in x) regression model 

is also rejected. 

We also computed the widths of the other bands (using a = 10 rather 

than 8). The results are given in the table below using k = 20 and 

1 = s = 5. Note that the widths of (5.5) and. (5.6) are the same. 

Table 7.1. Widths of the confidence bands for model (7.1). 

Band (3 .1) (4.1) ( 5.1) (5.3) {5.6) 

Width 89.6 39.3 31.0 10.3 11.6 

Note that since e. is normal, (5.3) is exactly a level .90 
1 

simultaneous confidence procedure for 1 = 5. 
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Figure 1. The estimate m(x) and 90% simultaneous confidence 

band for the model (7 .1). 
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