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In traditional reliability theory the system and the compo

nents are described just as functioning or failed. For this case a 

series of bounds for the availability and unavailability in a fixed 

time interval, I, for a system of maintained, interdependent com

ponents are given in Natvig (1980). For the special case of inde

pendent components the only assumption needed is that the marginal 

performance process of each component is associated in I. When 

these processes are Markovian a sufficient condition for this to 

hold is given by Esary and Proschan (1970). 

By now the traditional binary theory is being replaced by a 

theory for multistate systems of multistate components. Here the 

states represent successiye levels of performance ranging from a 

perfect functioning lev.el down to a complete failure level. In 

Funnemark and Natvig (1982) the work of Natvig (1980) is general

ized to the multistate case. In the present paper we generalize the 

sufficient condition given by Esary and Proschan (1970) and give an 

equivalent and much more convenient condition in terms of the tran

sition intensities of the Markov process. 
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1. INTRODUCTION 

In reliability theory a key problem is to find out how the 

performance of a complex system can be determined from knowledge of 

the performance of its components. One inherent weakness of the 

traditional theory in this field is that the system and the compo

nents are always described just as functioning or failed. This 

approach represents an oversimplification in many real-life situ

ations where the systems and their components are capable of 

assuming a whole range of levels of performance, varying from 

perfect functioning to complete failure. 
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Fortunately, by now the traditional binary theory is being 

replaced by a theory for multistate systems of multistate compo

nents. Some recent references are Natvig (1982) and Block and 

Savits (1982). Let the set of states of the system be S = {0,1, .. 

• • , M } • The M+ 1 states represent successive levels of performance 

ranging from .the perfect functioning level M down to the complete 

failure level 0. Furthermore, let the set of components be C = 
{1,2, .. ~,n} and the set of states of the i-th component s. 

~ 

(i=l, ... ,n) where {O,M} c_ S. c S. If x. 
~- ~ 

(i=l, .. ,n) denotes the 

state or performance level of the i-th component and x = 

(x 1 , ... ,xn)' it is assumed that the state ¢ of the system is a 

deterministic function of x; i.e. ¢=¢(~).Here x takes 

values in S xs x•••xS and ¢ takes values in s. The function 
1 2 n 

¢ is called the structure function of the system. 

Definition 1.1 A system is a multistate monotone system (MMS) iff 

i) ¢(~) is non-decreasing in each argument. 

ii) ¢ (Q) = 0 and ¢ (!:!) = M (Q_=(O, ..• , O),!:!=(M, ... ,M)). 

As a simple example of an MMS consider the network of 

Figure A. 

Figure A. Example of an MMS. 

Here component 1 (2) is the parallel module of the branches a 1 
and b 1 (a 2 and b 2 ). 

Let ( i=l , 2) 

x. = 3 if two branches work, 
~ 

= 1 if one branch works, 

= 0 if no branch works. 

The state of the system is given in Table 

Table 1. State of network in Figure A. 

Component 2 
3 0 2 3 
1 0 1 2 
0 0 0 0 

0 3 

Component 1 

1 • 
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Note for instance that the state 1 is a critical one both for each 

component and the system as a whole in.the sense that the failing 

of a branch leads to the 0 state. In binary theory the function

ing state comprises the states {1,2,3} and hence just a rough 

description of the system's performance is possible. 

We now give some basic definitions. 

Definition 1 .2 The performance process of the i-th component is a 

stochastic process {x. (t),tE~} where for each fixed tE~,x. (t)ES. 
1 1 1 

denotes the state of the component at time t. The joint performance 

process of the components is given by 

The time domain ~ is contained in [O,oo). We assume that the 

sample functions X.(t),tE~,i=1, ... ,n .are continuous from the 
1 

right on ~. The performance process of the system is now given by 

{<P(~(t)),tE~}. 

From Barlow and Proschan (1975) we have 

Definition 1 .3 The 

OV [ f ( !) , t, (:!:) ] ;;. 0 

r.v.'s T 1 , ••• ,Tn are associated iff 

for all pairs of non-decreasing binary functions 

r, t.. 

Consider a time interval I = [tA,tB] c [O,oo) and let ~(I) = ~ni. 

Definition 1 .4 The joint performance process {~(t),tE~} of the 

components is associated in the time interval I iff, for any 

integer m and {t 1 , ... ,tm} c ~(I), the r.v.'s in the array 

x (t 1 ), ••• ,x (t) 
n n m. 

are associated. 

This definition obviously applies to a marginal performance process 

too. 

Definition 1 .5 The availability, h;(I), and the unavailability, 

g;(I), to the level j in the time interval I for an MMS with 

structure function ¢ are given by (j=1, ... ,M): 

h ~ ( I ) = Pr [ ¢ ( ~ ( s) ) ;;. j 'If s E ~ (I) ] , 

'(I) g~ = Pr[¢(~(s)) < j 'lfsE~(I)]. 
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j (I) 
In Funnemark and Natvig (1982) a series of bounds fo~ h~ 

g j (I) "' and are given in the case of maintained, interdependent 
cj> 

components, thus generalizing the work of Natvig (1980) treating 

the binary case (M=1). These bounds are of great interest when 

trying to predict the performance process of the system. For the 

special case where the performance processes of the components are 

independent, the only assumption needed is that the marginal 

performance process of each component is associated in I. This 

ensures for instance that the joint performance process of the 

components is associated in I. 

Hhen these marginal performance processes are Markovian, we 

present and prove in the next section a theorem providing a suf

ficient condition for each of them to be associated in I, which is 

what is needed, thus generalizing a result by Esary and Proschan 

(1970). Imbedded in our theorem is an equivalent and much more 

convenient condition in terms of the transition intensities of the 

Markov process. 

Before concentrating on this theorem it should be mentioned 

that concepts of positive dependence of sets of r.v. 's have recent

ly received a lot of attention; see Block and Ting (1981), B¢lviken 

(1982). Note also that the obvious guess that a normal vector i$ 

associated iff all simple correlation: coefficients are nonnegative, 

has just recently been confirmed by Pitt (1982). 

2. THE MAIN THEOREM 

Let X= {X(t),tE~} be a Markov process with state space 

{0,1, ... ,k}. (Note that when considering the i-th component of 

Section 1, we renumber the elements of S.; k+1 is· then the number 
]_ 

of elements of S .. ) ·Denote the corresponding transition probabi-
L . 

lities 

P .. (s,t) = Pr[X(t)=jjX(s)=i], s ~ t, 
L,J 

( 2 • 1 ) 

and let P(s,t) = {P .. (s,t)}._0 1 k. Consider ~(I)= [O,co) 
rv 1, ] 1- 1 I • • • I 

j=O, 1 , ... , k 

and assume the existence of the transition intensities 

fl. . . ( s) = 1 im P . . ( s , s+ h) /h , 
L,J h~O+ L,J 

i * j. ( 2 • 2) 

The following notation is needed: 
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k 
P. .(s,t) = L P. (s,t) 
~' > J v=j ~,v 

= Pr[X(t)~jjX(s)=i], 

k 
!l. > .(s) = 2: jl. ( s) 
~' J , l.,V 

V=J 
i < j' 

j-1 
il. .(s) = L il. (s) 
~,<] 0 ~,v v= 

i ~ j. 

Theorem 2.1 

Let X be a continuous time Markov process with state space 

{0,1, ... ,k} and matrix of transition probabilities P(s,t). Assume 

the transition intensities to be continuous. Consider the following 

statements about X: 

(i) X is associated in time. 

(ii) X is conditionally, stochastically, non-decreasing in 

time; i.e. 

is non-decreasing in i 1 , ... ,in for each j and for each 
choice of s <s < ... <s <t, n~1. 

1 2 n 

(iii) P. .(s,t) is non-decreasing in i for each j and for 
~' ~ J 

each choice of s < t. 

(iv) For each j and s 

iJ.. .(s) is non-decreasing 
~' ~ J 

in i E { 0' 1 ' ... ' j-1 } ' 

il . < . (s) is non-increasing 
l.' J 

in i E {j,j+1, ... ,k}. 

Then (ii), (iii)' (iv) are equivalent and each of them implies 

Proof of Theorem 

( i) • 

The crucial implication (ii) => (i) is an easy consequence of 

Theorem 4.7, p.146 in Barlow and Proschan (1975), a result dating 

back to Esary and Proschan (1968). The equivalence of (ii) and 

(iii) follows directly from the Markov property of X. Choosing 

s < t (iii) is equivalent to 

P. .(s,t) is non-decreasing in i E { 0' 1 ' ... ' j-1 } ' 
~, ~ J 

P. .(s,t) is non-increasing in 
~' < J 

i E {j,j+1, ... ,k}, ( 2. 4) 

1 ~ P .. (s,t) + P. 1 .(s,t). 
J' < J ]- '~ J 

c-
1 

' 
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+ By setting t = s+h, dividing by h and letting h + 0 , (iv) 

follows. We may hence think of (iv) as the local version of (iii). 

vfuat remains to be shown is that (iv) implies (iii); i.e. that a 

process possessing the (iii) property locally, also possesses it 

globally. 

Let M denote the class of all transition probability 

matrices P = { P .. } . 0 1 k where P. . is non-decreasing in 
~J ~=I I 000 1 ~,)] 

j=O I 1 I ••• I k 

i for each j. Saying that X has property (iii) amounts to 

saying that E(s,t) E M for each choice of s < t. Let now 

Q(u) = {q (u)} be the intensity matrix for the 
i,j i=0,1, ... ,k 

j=O I 1 I ••• I k 
process X; i.e. 

q, . ( u) = l-J. •• (u) 
~,] ~,] 

q. . ( u) = - L l-J. •• (u) 
~~~ ':f' ~,] J ~ 

We then have 

i 

P(s,t) = exp( J Q(u)du) 
<s,t] 

:f j I 

( 2 . 5) 

(2.6) 

(This formula is perhaps best known in the time-homogeneous case, 

where Q becomes a constant matrix. However, the more general case 

we treat here, with continuous g(u), can be worked out using the 

same methods; see e.g. Karlin and Taylor (1975, p.152). It is in 

fact possible to prove an even more general version, avoiding con

tinuity of the l-1 •. 's, using the product integral, see Johansen 
~,] 

(1977).) From (2.6) we get the following representation 

n-1 
P(s,t) = lim rr [I+Q(s+(j/n)(t-s))(t-s)/n)] I ( 2. 7 ) 

n+co j=O ~ 

where I is the identity matrix. 

If now (iv) is true, it readily follows from (2.4) and (2.5) 

that for all small enough h, say for h E [ 0, h 0 ], 

I +g ( u ) h E f~ · 

Since the intensities are bounded on [s,t] we may choose h 0 
independent of u in [s,t]. If we can show that M is closed 

under multiplication, it follows from {2,7) that 

~(s,t) = lim M 
·- "'n 

where M E t~ 
"'n 

can conclude, 

n+co 

for all large enough n, say for n > n 0 , and we 

since M is also closed under pointwise limits, that 

P(s,t) E M ; i.e. (iii) is true. 
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To show that M is closed under multiplication let ~ E r1 
have elements H .. , i, j = 0,1, ... ,k. We start by giving the 

~,J 

M .. 's 
~.] 

a special representation. Consider first the k-th column. 

Since is non-decreasing in i, there exist nonnegative M. k 
~. 

numbers 
( k) 

E • ' i 
~ 

= o, ... ,k with corresponding sums 

6 ~k) = 
~ 

(setting 
( k) 

Eo = 

i (k) LE·' i=O, ... ,k 
j=O J 

6(k) = 0), such that 
0 

i = 0,1, ... ,k. 

Next look at the (k-1 )-th column. Since M. 1 ~, ;;ok-
is non-decreas-

ing in i, we have 

for suitable nonnegative (k-1) 1 
E. s 
~ 

with corresponding sums 6 ~k-1 ) 
~ 

( (k-1 ) = >: (k-1 ) ) Eo u 0 = o . 

We continue this process and end up with 

all being nonnegative such that 

where 

by also 

(') (') (') 
Mi,;;.j = mj+•••+mk+EoJ +E1J +•••+EiJ 

( . ) 6 ( j) E J = = 0, 
0 0 

setting 

M .. 
~,J 

(k+1) 
E. 
~ 

(0) 6~0) E. = = 0 and 
~· ~ 

6~k+1) 0, = = 
~ 

i,j = 0' ... 'k 

( j ) = m . + • • • +mk+O . , 
J ~ 

k 
L m. = 1. This gives 

j=O J 

i,j = 0,1, ... ,k. 

Now let M = {M .. } 
~J 

and M = {M .. } be matrices in M repre
~J 

-(j) -(j) 
sented as above, where m. E. , 6. i = 0, ... ,k~ j = 0, ... ,k+1 

J ~ ~ 

have the obvious interpretation. He study ~ = !j!j, with elements 

k 
I -

N. = M. M 
~.j v=O ~,v v,j 

Obviously 
k 
I -

N. . = M. M v,;;.j ~') J v=O ~,v 

This gives for i = O, ... ,k-1~ j = O, ... ,k by using the represen-
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tations introduced above: 
k 

N1.+1,']'- N1.,'J' = I (M. 1 -M. )M . 
p p v=O 1+ ,v 1,v v,>J 

k k 
= I ( o ~ v)-o ~ v+ 1 ) - o ~ v) + o ~ v+1 ) ) ' \ m +6 ( j ) ) 

v=O 1 + 1 1 + 1 1 1 r~ j r v 

k k 
= I ' 'v)- 'v+ 1 ) ) ' I m +6' j ) ) 

v=O Ei+1 Ei+1 r=j r v 

= 
k (v) -(j) 
I Ei+1 0 

v=O v 

k (v) -(j) 
I Ei+1 °v-1 = 

v=1 

k (v) -(j) 
I E i+1 E 

v=1 v 
) 0 1 

and we have proved that M is closed under multiplication. This 

ends the proof of our theorem. 

3. SOME CONCLUDING REMARKS 

For the binary case (k=1) it is easily seen that statement 

(iii) of our theorem is equivalent to 

Pl, 1 (s,t) + P0 , 0 (s,t) ;;. 1 for each s < t, 

which is just the sufficient condition given by Esary and Prosch an 

(1970). It should, however, be noted that their proof is cumbersome 

compared to the one given here. (Originally, for the case k=2, the 

second present author suggested a proof along the same lines, 

however employing Theorem 4.7, p.146 in Barlow and Proschan (1975) 

indirectly. This did not lead to nice sufficient conditions at all. 

The direct use of this theorem along with the Markov property in 

our proof was suggested by the first present author who is also 

mainly responsible for the rest of the material in Section 2.) 

Furthermore, for the binary case, note that when !J. 1 , 0 (s) and 

!J- 0 , 1 (s) are continuous, statement (iv) of our theorem is always 

satisfied and hence the corresponding Markov process is always 

associated in time. This was just noted for constant intensities in 

Esary and Proschan (1970). 

Now let us turn to the case k=2 covering our example from 

Section 1. Then it is easily seen that (iii) is equivalent to 

(for each s<t), and (iv) is equivalent to 
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(for all s). We emphasize that the latter condition is usually 

very simple to check. If in our example the two branches of each 

component can never be repaired/replaced simultaneously and can 

furthermore never fail simultaneously, i.e. we have ~0 , 2 (s) = 

~ (s) = 0 for all s, (iv) is always satisfied. 
2,0 

Let more generally a component consist of k branches in 

parallel and let its state be the number of functioning branches. 

Assume that the branches fail and are repaired/replaced independ

ently of each other, all having the same instantaneous failure rate 

~(s) and repair/replacement rate ~(s). Then 

and 

~ . . ( s ) = ( k- j+ 1 ) ~ ( s ) 
J.. I ;;. J 

= 0 

for i = j-1, 

for i = 0,1 , ... ,j-2, 

~. . = j~(s) 
J.. I ( J 

for i = j, 

= 0 for i j+1 1 • • • 1 k 

Hence (iv) is satisfied~ 

L•~t in this general case the state of the component have no 

specific interpretation and let for all s ~· k(s) = 0, j = 1, ... 
], 

.. ,k-1 whereas ~ (s) > 0. This means that the component can be 
O,k 

repaired/replaced to perfect functioning only when it has failed 

completely. Now (iv) does not hold. It should, however, be 

mentioned that this repair/replacement strategy does not seem very 

sensible. 

Let us end up by trying to answer the question of how much 

stronger the statements (ii), (iii), (iv) of our theorem are than 

statement (i). From (i) and Definitions 1~3, 1.4 we have 

A . . = Cov [ I { X ( s ) ;;. i } , I { X ( t ) ;;. j } ] ;;. 0 , 
.l.,J 

where 
I{X(s)>i} = 1 for X ( s) ;;. i, 

= 0 for X(s) < i. 

Introduce 11 (s) = Pr[X(s)=u]. We now have 
u 

A .. = E[I{X(s)>i}•I{X(t)>j} ]-EI{X(s)>i}EI{X(t)>j} 
l, J 

k 
= L 11 (s)P .(s,t)- L 11 (s) L 11 (s)P .(s,t) = 

u>i u u,>J u>i u v=O v v,>J 
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k 
= I In (s)n (s)[P .(s,t)-P .(s,t)] 

u>i v=O u v u,~J v,~J 

= I In (s)n (s)[P .(s,t)-P .(s,t)] 
u>i v<i u v u,~J v,>J 

If we claim A. . ;;. 0 
~J 

for all entrance distributions 

for X(s), then (iii) follows. This shows that we cannot obtain any 

better criterion than (iii) formulated in terms of the transition 

probabilities only, to ensure X to be associated in time. 

In the binary case we have 

A1 1 = It 1 ( s )n 0 ( s ) [ p 1 I 1 ( s I t ) - p 0 I 1 ( s I t ) ] ;;. 0 . 

Hence (i) implies (iii) unless X(s) = 0 a.s. or X(s) = a.s. 

Finally, it should be mentioned that a discrete time version 

of our theorem is proved along the same lines. In particular, if 

{X(t), t=0,1,2, ... is a Markov chain with state space {0,1, .. 

.. ,k} and matrix of transition probabilities P(s,t), then X is 

associated in time if only P(s,s+1) E M for all s;;. 0. 

Acknowledgement 

The authors would like to thank Arne Bang Huseby for assis

tance on the linear programming problems that turned up when trying 

to generalize the proof of Esary and Proschan (1970). 

REFERENCES 

BARLOW, R.E., and PROSCHAN, F. (1975), Statistical Theory of 
Reliability and Life Testing. Probability Models, New York: Holt, 
Rinehart and Winston. 

BLOCK, H.W., and SAVITS, T.S. (1982), "A Decomposition for 
Multistate Monotone Systems", Journal of Applied Probability, 19, 
391-402. 

I 

Dependence", 
and TING, M.-L. (1981), "Some Concepts of Multivariate 
Communications in Statistics, A 10, 749-762. 

B¢LVIKEN, E. (1982), "Probability Inequalities for the Multivariate 
Normal with Non-negative Partial Correlations", Scandinavian 
Journal of Statistics, 9, 49-58. 

ESARY, J.D., and PROSCHAN, F. (1968), "Generating Associated Random 
Variables", Boeing Scientific Research Laboratories Document D1-82-
0696. Seattle, Washington. 



- 11 -

------, and PROSCHAN, F. ( 1 970), "A Reliability Bound for 
Systems of Maintained, Interdependent.Components", Journal of the 
American Statistical Association, 65, 329-338. 

FUNNEMARK, E. and NATVIG, B. (1982), "Bounds for the Availability 
and Unavailability in a Fixed Time Interval for a Multistate System 
of Multistate, Maintained, Interdependent Components", to appear 
as a Research Report, University of Oslo, Dept. of Statistics. 

JOHANSEN, s. (1977), "Product Integrals and Markov Processes", 
Preprint No.3, University of Copenhagen, Institute of Mathematical 
Statistics. 

KARLIN, S., and TAYLOR, H.M. (1975), A First Course in Stochastic 
Processes, New York: Academic Press. 

NATVIG, B. ( 1980), "Improved Bounds for the Availability and 
Unavailability in a Fixed Time Interval for Systems of Maintained, 
Interdependent Components", Advances in Applied Probability, 12, 
200-221. 

(1982), "Two Suggestions of How to Define a Multistate 
Coherent System", Advances in Applied Probability, 14, 434-455. 

PITT, L.D. (1982), "Positively Correlated Normal Variables are 
Associated", The Annals of Probability, 10, 496-499. 



CORRECTION NOTE: 

qdd Aalen has kindly pointed out that formula (2.6) is not generally 

true in its stated form. However, (2.7) remains true, so that our 

proof is not affected. 

Replace lines 14-22 on page 6 by: 

We then have 

P(s,t) = 
"' 

n 
[s,t] 

(I + Q(u)du). 

The expression on the right hand side is a product integral. A 

(2.6) 

general discussion of product integrals, containing the proof of 

(2.6), can be found in Johansen (1977). In the time-homogeneous case, 

where Q becomes a constant matrix, (2.6) reduces to the better known 

formula P(s,t) = exp((t-s)Q), see e.g. Karlin and Taylor (1975, p. 
"' "' 

152). The following representation follows from Johansen•s Theorem 2.5, 

utilizing that all the intensities are uniformly continuous on [s,t] 


