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The general theory of comparison (and of approximate comparison) of 

experlllents generalizes (as shown by this author in 1969), without 

too many complications, to a theory of" comparison which is appli

cable to general families of measures. After having introduced a 

suitable notion of differentiability for statistical experiments it 

was then shown·that local comparison of statistical experiments may 

be reduced to comparisons of certain finite and quite natural sets 

of measures. rrhus we have at our hand a possible foundation for a 

nonasymptotic theory for local comparison and in particular for 

local sufficiency. Another natural application of this general 

notion of comparison is to the theory of majorization of vectors in 

Rn (Schur convexity). 
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MAJORIZATION AND APPROXIMATE NAJORIZATION (COMPARISON OF FAHILIES 

OF t-lEASURES) . 

1 • INTRODUCTION 

One of the main contributions of the theory of comparison of 

experiments was to shaw that natural and apparently different 

criteria for comparison actually was equivalent. Thus we have 

equivalent criteria in terms of, over all comparison of risk func

tions, in terms of Bayes. risk for a fixed prior distribution, in 

terms of sub linear functionals, in terms of performance functions 

of decision rules and in terms of randomizations. 

The underlying framework of these results is the decision theory of 

Abraham v~ld.The first results, of Blackwell and otl1ers, was con

cerned with criteria for the ordering "being more informative 

than". Later on LeCam in his 1964 paper on sufficiency and approx

imate sufficiency introduced the concept of a deficiency of one 

experime~t w.r.t. another. As experiments usually are not ordered 

and since these deficiencies always exists this extended consider

ably the applicability of the theory. Combining Blackwell's idea of 

comparison for k-decision problems with LeCam's deficiencies this 

author in 1970 considered deficiencies for k-decision problems. 

The theory has found important applications to asymptotic statisti-

~) cal theory - but also to non asymptotic theory. Besides LeCam's 

works the reader might consult Millar's recent survey on asymptotic 

minimax tl1eory. Expositions of the theory of statistical experi

ments may be found in Heyer 1973, LeCam 1974 and in Torgersen 1976. 

A recent contribution to non as~1ptotic theory is Lehmann 1983. 

The idea that the underlying distributions which constitute a 

statistical experiment should be proper probability distributions 

is of course essential for the interpretations of most results from 

the theory of comparison of experiments. In particular the inter

pretation of risk a·s expected loss depends on this assumption. If 

we however look over the various arguments which are used then we 

see that this assumption is often not needed or may be avoided by a 

suitable reformulation. 
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Even the formal expression of the risk of a decision procedure as 

the value of the corresponding bilinear functional for the under

lying distr.ibution and the loss function remains well defined 

within a much more general set up. 

~ve shall now see that such a generalization, or extension, to "non 

proper" experiments actually yields interesting results on "proper 

experiments". Another benefit is a unified approach to several 

results concerning systems of inequalities which are frequently 

encountered in mathematical statistics. The theory we shall formu

late here may be considered as a generalization of the theory of 

majorization as it is described in the book by Marshall and Olkin 

from 1979, and in later generalizations of Dahl and o£ Karlin from 

1983. 

Let us at this point briefly-indicate by examples some directions 

of applications: 

Example 1 .1. (Comparison of modified risks} 

Assume that all losses are bounded by and let a, b and E be 

given functions of the unknown parameter e. 

When are we entitled to claim for all deci.sion problems (of a cer

tain type) and given experiments E and F that there to each 

risk function s obtainable in ~ corresponds a risk function r 

Q}) obtainable in £ such that a(e)r(9)(b(9}s(e)+E(9) for all e? 

If a(9)ij1 and b(9)ij1 then this is just a description of the 

situation where £ is E-deficient w.r.t F according to LeCam's 

definition of deficiency. • 

Theoretically at· least this problem, for general a, b and E, is 

easily described in terms of general families of measures. He. 

shall in the next section see that one possible answer may be 

obtained by a straightforward generalization of LeCam's randomiza

tion (Markov kernel) criterion. 
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Example 1 . 2. (Local (nonasyrnptotic) comparison of experiments). 

Consider experi~nts having the same sub set e of Rm as their 

parameter set. Let e 0 be an·interior point of e. If 

E = (P 9 :9E9) is an experiment then, assuming differentiability, we 

may consider the measure P 90 along with the partial derivatives 

(oPe/oei]e=eo: i = 1, ... ,m. This family of measures is not an 

experiment since the total masses of the measures (oP 9/oei]e=eo 

are all zero. 

If e is close to Peo then the measure Pe may be approximated 
m 

by: Peo+i!1 (e-e 0)i[oPe/oei]e=eo· Thus it is not surprising that 

if e is close to e 0 and if quantities of smaller order than the 

(.) distance from e to e 0 are considered negligible then the local 

behavior of £ around e 0 may be completely described in terms of 

this family of measures. It is however interesting that, as we 

shall se in section 3 of this paper, the local comparison of exper

iments within small neighbourhoods of e 0 may be expressed quite 

naturally and, in theory at least, simply in terms of such families 

of measures. 

Example 1 .3. (Comparison of measures. Dilations). 

Systems of inequalities of the following type have received atten

tion in various connections. 

Let 1.1. and v be measures on a measurable space ( x,A). Consider 

also a convex set H of integrable functions which contains the 

constants and which is closed under the formation of maxima of 

finite sub sets. wfuat conditions on (H, IJ., v) ensure that the 

inequality fhd1J.)fhdv holds for every function h in H? 

The ordering of experiments is a closely related case with 1.1. and 

v being conical measures of experiments. 
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We may also consider, as we shall, systems of inequalities of the 

fonn fhd!J.) fhdv-~ for some given function h+e:h on H. Thus we 

are led to compare the families (h!J. :h EH) and (h v :h EH) of 

measures. 

We shall in section 4 see how the general theory of comparison of 

families of measures provides a method of attack for such problems. 

Another related and most interesting discussion of such problems 

may be found in Karlin 1983. 

Example 1 .4. (Distributions with given marginals). 

The fundamental papers by LeCam 1964 and by Strassen 1965 both show 

that there is a close relationship between the theory of comparison 

of experiments on the one hand arid various existence problems for 

joint distributions with given rnarginais on the other hand. This 

relationship is also apparent from earlier works of e.g. of Black

well 1953 and Boll 1955. 

Thus the dilation criterion for or:dering of experiments is, as 

shown by Strassen, related to the problem of '~<'lhether or not a 

sequence of distributions might be the sequence of distributions of 

a martingale. Strassen considered in his paper the problem of 

deciding whether one distribution P is the convolution factor of' 

another distribution Q. In his paper Boll had thev already sh~Tn 

that this is tantamount to the problem of deciding whe.ther the 

translation experiment defined by P is at least as inforn1ative as 

the translation experiment defined by Q. The statistical signifi

cance of Strassen's criterion in terms of minimax risk was, using 

the results in LeCam' s pape.r, clarified in a later paper by 

Torgersen 1972c which also generalized these results to the case of 

e:-deficiency. 

Among other results which bring out the connection between these 

fields we shall here only mention the various criteria for stochas-
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tic orderings of distributions on a general partially ordered set. 

The basic criterion in terms of probabilities of "monotone" events 

follows directly from Strassen's paper. It was shown later, 

Torgersen 1982, •that this criterion is also the criterion for 

"being more informative" for experiments associated with sampling 

plans defined by these distributions. More generally it was shown 

that the case of E-deficiency corresponded nicely with one distri

bution being up to an amount of E stochastically larger than the 

other distribution. 

We shall in section 5 show that this and other results may be 

deduced from general principles for comparison of families of 

measures. 

Example 1 . 5. ( Majorization) . 

The theory of comparison of measure families may be considered as a 

natural generalization·of most of the various theories of majoriza

tion. In particular a funtional of experiments which is monotoni

cally increasing (decreasing) for the ordering "being more informa

tive" may be considered as Schur convex (concave) . Thus Fisher 

information and statistical distance may be considered Schur convex 

while the Hellinger transform is Schur concave. 

Let us in order to make this clearer comment on the best known 

particular case which is the case of majorization of vectors in 

Rn. An importan:t source of information for this case is Marshall 

and Olkin 1979. Using the notation of this book we shall write 

(x ((]'x (2 ]' •.. ,x[n 1> for the vector in Rn obtained from the 
vector ( x 1 , ..• , xn 1 by arranging the x' ses in decreasing order 

Let p = (p 1, ... ,pn) and q = (q 1, ... ,qn) be two vectors in Rn 

such that p 1+ ... +pn = q 1+ ... +qn. Consider also p and q as 

1 xn rON matrices. Then the following conditions are known to be 

equivalent: 
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( i ) P L 1 t · · · +pL j] 
) ql1 t···+q[jf j = l, ... ,n. 

(ii) f4>(pj) )I4><q.) when the function 4> is convex on R. 
J 

J 

(iii) L(P .-c)+ ) L(q.-c)\ cER. 
. J . J 
J J 

( iv) pH = q for a doubly stochastic nxn matrix H. 

Assume now that the vectors p and q are probability vectors. 

Define probability distributions P0 , Q0 , P1 and Q1 on 

{1, ... ,n} by putting P 0 {j) = 1 /n, P 1 (j) = pj' o0 (j) = 1 /n and 

0 1 (j) = qj; 1 = 1 , ... ,n. Put e = {0,1} and consider the experi

ments (dichotomies) E = (P0 ,P 1 ) and F = (Q0 ,Q 1 ) · 

Using the Neyman-Pearson lemma on the problem of testing 11 9 = 0 11 

tS:D against 11 9 = 1 11 we see that ( i) tells us that E yields at least 

as large power as F for any level of significance. By Blackwell 

1951 and 1953 this is equivalent to the condition that E is at 

least as informative as F. Conditions (ii), (iii) and (iv) 

express by the same papers of Blackwell the same thing. Hul ti

plying (ii) and (iii) by (-1) we see that condition (ii) is the 

over all r.1inimum Bayes risk criterion for comparability and· that 

(iii) is the minimum Bayes risk criterion for testing problems. 

Finally condition (iv) states that P 9H = Q9 ; 9 = 0,1 for a Harkov 

kernel H from the set {1,2, ... ,n} into itself. Uote in parti

cular that the condition that the Markov matrix M is doubly sto

chastic expresses that the corresponding Markov kernel preserves 

the uniform distribution i.e. that P 0H = o0 . · 

Replacing the distribution P 0 = o0 with more general distribu

tions we arrive at more general notions of majorization as e.g. the 

notion of 1t-majorization considered in Marshall and Olkin '.s book. 

Now majorization is a partial ordering on all of Rn and not just 

on the probability slinplex. 1~e v~lidity of the arguments (e.g. 

the Neyman-Pearson lemma) used above does not, however, depend on 

the condition that the vectors p and q are probability vectors. 

We shall see in section 6 that most of the mathematics remain 

valid, after some straightforward modifications, for general fami

lies of measures. Thus we may, as in Dahl 1983, consider e-defici

ency as well as multivariate majorization. 
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Multivariate majorization was also considered by Karlin 1983. 

As is amply demonstrated by Marshall and Olkin in their book on 

inequalities the concept of majorization in Rn is a very useful 

tool for establishing inequalities in statistics and elsewhere. 

The point we are making is that this concept fits naturally into 

the extension of the framework of comparison of experiments which 

we shall consider here. Majorization in Rn is, however, a dis

tinguished particular case with several features which appear 

difficult to deduce from this general theory of comparison of 

families of measures. 

We shall in the forthcoming sections take a closer look at the 

situations described in the examples of this section. It is, 

however, necessary that we first became aquinted with some basic 

principles for comparison of families of measures. These prin

ciples aretherefor the topic of the next section. 
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2. EQUIVALENT CRITERIA FOR COMPARISON OF FAMILIES OF MEASURES. 

We shall in this section be concerned with general principles for 

comparing families of measures. It will be assumed that all the 

measures belonging to a given family are real valued and that they 

are defined on a common measurable space. 

We have found it convenient to use the term measure family to 

denote a family of measures satisfying these two requirements. 

Thus the 'measures in a measure family are all bounded but we do not 

assume that they are non negative. 

A measure family £ with measurable space (x,A> may be denoted 

as £ = (x,A; ~ 9 :eEe) or just as £ = (~9 :eEe) where (~ 9 :eEe) 
is the family of finite measures which constitutes £: The set e 
is called the parameter set of £. This set may be any set but we 

shall assume, unless otherwise stated, that if two measure families 

£ and F are compared then their parameter sets are the same. 

A measure family of probability measures is called an (statistical) 

experiment and the measurable space of an experiment is usually 

called the sample space of the experiment. 

Consider now in addition to the parameter set A a set T and a 

family L = (L 9 :eEe) of real valued functions on T. If the 

measure families under consideration are experiments then we may 

(I) below think of T as a set of decisions and L as a loss func

tion. 

Let us agree to use the notation llgll 

sup lg(t) I of a real valued function 
t 

for the supremum norm 

g on T. Risking the 

slight possibility of a conflict of interpretations we shall use 

the notation n~n to denote the total variation of a measure ~-

Finally we shall use the term deficiency function for any non nega

tive function on the parameter set. 

Assuming that the parameter set e is finite we shall now list 

four principles for comparing measure families £ = ( x,A, ~e: 9Ee) 
and f = (!j ,5, v 9 : 9E9): The comparison shall be expressed in terms 

of a fixed deficiency function E and a fixed set T. 
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We precede the statement of each of the listed principles by a 

"headline" indicating the interpretations of the principles when 

the measure families are experiments. 

It should be noted that the only aspect of the set T which 

matters here is its cardinality which we shall denote by k. 

In the statement of the third of the principles below and also at 

several other places we are using the convenient notation 

(h(d!J. 9: 9E9) to denote (h(f 9: 9E9)d!J. whenever the finite measure 

!J. 9 , for each 9, has density f 9 w.r.t. the non negative measure 

1J. and h is a non negative homogenuous measurable function on 

R 9 . It is then easily checked that neither the Eiflxistence nor the 

value of this integral depends on the choice of the majorizing 

measure ll nor on the specificatiorts of the densities. 

If e is finite then the first four principles mentioned in the 

introduction may be formulated as follows: 

(i) (Pointwise comparison of risks.) 

To each family L 9 :9E9 of real valued functions L on T 

and each Markov kernel cr from F to T corresponds a 

Markov kernel p from £ to T so that: 

(ii) (Comparison of Bayes risks.) 

To each family L 9 :9E9 of real valued functions L on T 

and each Markov kernel cr from F to T corresponds a 

Markov kernel p from £ to T so that: 

J. 
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(iii) (Comparison of maximum Bayes utilities. The sub linear 

function criterion). 

A A 
J<V(diJ.9 :eEe) ;> (Qi(dv 9 :9Ee)- },E 9 [<V(-e )vw(e )] for each funo-

9 
tion <V on R9 which is a maximum of k = #T linear func-

tionals. 

Here, as elsewhere, 
0 

unit vector in R . 

9 9 
e = (0, .•. ,1, ... ,0) denotes the 9-th 

t..-) ( i v) (Comparison of performance functions) . 

To each Markov kernel a from F to T corresponds a 

Markov kernel p from £ to T so that: 

Following Blackwell and LeCam and proceeding as in Torgersen 1969 

we may now state and prove the basic: 

Theorem 2.1. (Equivalent rules for comparison). 

Assume that the parameter set 0 is finite. Then the criteria 

(i)-(iv) are all equivalent. 

Proof: Choose non negative measures ll and v so that lle' for 
each 9, has a density fe w.r.t. ll while v9 , for each 9, 

has density ge w.r.t. \1. 

If L = (L 9 :9E0) is a family of real valued functions on e 
then min Y,IJ. 9 pL 9 = J["YLA(t)f 9 ]dll and 

P e te 
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min Iv 9aL 9 = fL" IL 9(t)g 9 ]dv. It follows that (ii) may, 
a e t e 

after having been multiplied with (-1 ), be written: 

f [ v Iu 9 < t ) f 9 ] d 11 > 
t e 

Putting q,(x) 

f[v Iu 9 (t)g 9 ]dv-Ie 9 11U 9 u where u = 
t e 9 e 

-L. 

= v Iu 9 (t)x 9 : xER we see that (iii) 
t e ' 

is just a 

reformulation of (ii) . 

It suffices now, since the implications (iv)=>(i)=>(ii) are 

trivial to show that (ii)=>(iv). Assume then that (ii) is 

satisfied. Let a be a Markov kernel from F to T and 

put II(L,p) = L1J.epL 9-Iv 9 aL 9-Ie 9 uL 9 u when L = (L 9 :eEe) is a 
e e e 

family of real valued functions on T and p is a Markov 

kernel from f to T. Then II is concave-convex in (L,p). 

Furthermore II is continuous in p, for fixed L, if we 

topologize {p} by the notion of convergence which states 

that a net { p (n) } of l,larkov kernels from E to T 

converges to a Markov kernel p from £ to T if and only 

if fop(n)(tl •)d!J.e ~ fop(tl •)d!J.e for each bounded measurable 

function 6 on the sample space of £. The weak compactness 

lemma implies that the set of Markov kernels from E to T 

is compact for this topology. Using minimax theory we see 

that there is a Markov kernel Po from £ to T so that 

supii(L,p 0 ) = inf sup II(L,p) = sup inf II(L,p) and the last 
L p L L p 

quantity here is, by (iv), non positive. Thus II(L,p0 )(0 

for each L. Choosing a particular real valued function g 

on T and a point e 0 Ee and then putting L 9 = g or =0 

as e = eo or e*e 0 we see that O>II(L,p 0 ) = 

( IJ. 9 op 0-v 9 oa) (g)-e 90 llgll. Varying g and e 0 we find that 

li1J. 9p0-v 9 all(e 9:· eEe. 0 

Restricting attention in (iii) to funtions 

are projections on the coordinate spaces of 

equivalent conditions (i)-(iv), implies: 

.. 

q, such that <)I or 

R9 we see that the 

which is conditions (i)-(iv) when T posesses just one element. 
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Assuming that the deficiency function E satisfies (§), which it 

always does when £ and F are experiments, we find that the 
~ - e e ] "deficiency term" LEe L<!J(-e )v<jJ(e ) in (iii) may be replaced by 

the linear (in <jJ) term 
~. e e] ~ u . e e] LEeL<!J(-e )+<!J(e) /2+L(v 9 (.:J}-1J.9 (x))l<!J(e )-<jJ(-e) /2. We may then 
e e 
even assume that <jJ(-e 9 )g<!J(e 9 ) and thus get the simple expression 

LEe<jJ(e 9 ) for the deficiency term. We may also pass from a general 
e 
sub linear function on e R to a sub linear function which is 

monotonically 
e 

<!J(x)- Ix9 <!J(e ) 
e 

decreasing (increasing) by 

(with <!J(x)+ Ix9 <!J(-e 9 )). 
e 

replacing <jJ ( x) with 

A substantial reduction is available when e is a two point set. 

In this case the fact that convex polygons may be decomposed as 

vector sums of triangles and line segments tells us that it 

suffices to consider 3 point sets T and thus functions <jJ which 

are maxima of at most 3. linear functionals. Actually additional 

assumptions will often guarantee that it suffices to consider two 

point sets T and thus functions <jJ which are maxima of at most 2 

linear functionals. This is the case whenever £ and P are 

experiments (i.e. dichotomies) or if IJ.e,v 9)0 and Ee = 0 for one 

of the two points e in e. The latter case covers the usual case 

of majorization as well as the cases of weak majorization in 

Marshall and Olkin 1979. In the case of dichotomies a proof may be 

found in Torgersen 1970 and the other case follows by almost the 

sa~me arguments. It is however not true that we in general may 

() reduce comparison to comparison for two point sets T (testing 

problems) whenever e is a two point set. 

Let us return to a general (i.e. not necessarily finite) parameter 

set e and let E be a deficiency function. Then \ole shall say 

that the measure family £= (1J. 9 :eEe) is E-deficient w.r.t. the 

measure family F = (v 9 :9E0) fork-point sets if the equivalent 

conditions (i)-(iv) are satisfied for the restrictions £je0 , Fje0 
and Eje0 for any non empty finite sub set e 0 of e. If £ and 

F are experiments then the qualification "for k-point sets" may be 

replaced by the qualification "fork-decision problems". 
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If E is e-deficient w.r.t. F for k-point sets for k = 1 1 2 1 • • • 

then we shall say that t is e-deficient w.r.t. F for ca-Eoint 

sets or just say that £ is e-deficient w.r.t. F. Thus the 

notion of e-deficiency for k-point sets is defined for all positive 

integers k and for k = ca. 

It is easily checked that £ is e•-deficient w.r.t. F for 

k • -point sets problems whenever £ is e-deficient w.r .t. F for 

k-point sets for e<e• and k>k•. 

We shall see below, without using any new ideas, that the randomi

zation criterion is also valid for general measure families. The 

framework of measure theory which we are using here does not quite 

permit the full elegance of LeCam•s formulations. Thus we might 

have worked with families in abstract L-spaces rather than with 

families of measures. No generality is however lost since any 

abstract L-space is, by Kakutani 1941, isomorphic to a L-space of 

bounded measures on some measurable space. 

LeCam•s randomization criterion generalized significantly earlier 

results in this direction by e.g. Blackvvell and Bahadur (the theory 

of sufficiency). The formulation in terms of transitions has also 

to a large extent clarified the distinction between the essential 

statistical features behind this result on the one hand and various 
11 technical 11 problems (often quite interesting) which occurs when we 

try to formulate this and related results within the traditional 

framework. 

Let us before we embark on the extension of the randomization 

criterion introduce two concepts \llhich we shall need in this 

connection. Firstly if £ = ( x.A, lle=--9Ee) is a measure family then 

we shall define the L-space of £ as the linear space of finite 

measures on A which are dominated by finite measures of the form 

I{c911lei=9Ee0 } where the c 9•s are non negative and e0 is a 

countable sub set of e. We shall also use the notation r(£) for 

the Banach space of bounded measurable functions on A equipped 

with the supremum norm. It is then known that the adjoint space 

* r (£) of bounded linear functionals on r(£) may be represented 

as the Banach space of bounded additive set functions on A. The 

L-space L(E) of £ is then a closed sub space of r*(e). 
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If E= (x,A,j..L 9:9E0) and F= ('::J,B,v 9:9E0) then any Harkov kernel 

H from ( x ,A) to (~ ,I3) induces a map j..L+j..LM from L (£) into 

r<F>*, in fact into the space of finite measures on 8. This map, 

is linear, non negative (i.e. j..LM is non negative when j..L is non 

negative) and it preserves total mass. He shall, following LeCam, 

call any map from L (£) into r <F> * having these properties ~ 
transition. A very usefull property of the set of all transitions 

is that it, by Tychonoff, is compact for the pointwise topology on 

L(£)xr(t=), 

Assume now that 15 = ( x,.A, j..L 9 : 9E0) is e-deficient w.r.t. 

<Y,/3,v 9 :9E0). Let N denote the set of all triples n = ('!t,T),F) 

where 1t = ( B1 , ••• , Bk) is a measurable partitioning of !:J, 
(_) Tl = (y 1 , ... ,yk) where yiEBi' i = 1, ••• ,k and F is a finite sub 

set of e. Direct the set N by defining that 

n 1 = (11:1 ,T)1 ,F1 )>n2 = (1t2 ,T)2 ,F2 ) \lhenever F 1 ~ F2 and each set in 

11:2 is a union of set.s in 11:1 • Let n = ( 1t, T), F) HI be described as 

above and consider {y1 , ••• ,yk} as a choice for the set T 

appearing in'the statements of conditions (i)-(iv). Let a 
n 

denote the Markov kernel (function) from F· to {y 1 , ••• ,yk} which 

maps y into y. when yEB .. Then, by (iv), there is a Markov 
~ . ~ 

kernel pn from £ to the same space such that llj..L 9pn-vaanll<e 9 
when 9EF. Put M (Bix) = LIB(y.)p (y.lx) when BEl3 ans xEx. n · ~ n ~ 

Then M is a Markov kernel from (x,A> to (~,5) and thus 
n 

defines a transition from L(£) to r(F)*. By compactness there 

is a transition M which is a point of accumulation for the net of 

() transitions defined by the net {Hn} of Markov kernels. It 

follows then that j..L 9Mg-v 9g<e 9 Ugll for all 9E0 and for all 

gEr(F). Hence llj..L 9M-v 9 11<e 9 ; 9Ee. This proves: 

Theorem 2.2. (The randomization criterion for comparison of 

measure families.) 

The measure family F= (j..L 9 :9E0) is e-deficient ~;.r.t. the measure 

family F = (v 9 :9E0) if and only if there is a transition H from 

the L-space of £ to the L-space of bounded additive set functions 

on B such that: 
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Remark 1. We may, using the same arguments as in LeCam 1964 

always modify M such that it maps L(£) into L(~). 

Remark 2. It follows that one possible answer to the problem 

raised· in example '( 1.1) is: 

"If and only if there is a transition M so that lla 9P 9M-b 90 9 11<e 9 
for all 9€9". If ae ~ then this implies that lbe-1 I <ee: 9E9. 

If b = 1-e then the "9-th" inequality states that a a 
'P 9M;.(1-e 9 )a 9 • If, on the other hand, b 9 = 1+e9 then the e-th 

E~ inequality states that P 9M<(1+e 9 )a 9 . 

If we want to ensure that the transition M appearing in the ran

domization criterion is representable as a Markov kernel then 

various regularity conditions may be invoked. Say that a measur

able space (x,A> is Euclidean if it is Borel isomorphic to a 

Borel sUb set of (0,1 ]. Say also that a measure family 

E = (~ 9 :9€9) is coherent if all bounded linear functionals on 

L(£) are representable as bounded measurable functions. If 

E = (~ 9 :9€9) is coherent and if <Y,B> is Euclidean then any 

() transition from L(£) to the L-space of finite measures on (!:LB> 
is representable as a Markov kernel. 

If the families £ and F as well as the deficiency function E 

are invariant under the actions of a group then the kernel M may, 

see e.g. LeCam 1964 and 1974 and Torgersen 1972c, under amenability 

conditions be chosen invariant. 

\re shall not pursue the general theory of comparison of measure 

families further here. Most of the results are more or less 

straight forward generalizations of known results from the theory 

of comparison of experiments. Thus we may define the deficiency 

6k(£,/=) of £ w.r.t. F for k-point sets (k-decisions when £ 
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and F are experiments) as the smallest (it exists) constant c: 

such that £ is c:-deficient \'I. r. t. F for k-point sets. Symme

trizing the deficiency we define the deficiency distance 6k(£,F) 

between the measure families £ = (~..t. 9 :9E0) and ~= (v 9:9E0) for 

k-point sets as the largest of the mrrabers &k (£,F) and &k (F,£). 

If &k<£,F> = 0 then we shall say that ~ majorizes F for k-

point sets and write this £>F. Then ) is an ordering for 
k k 

measure families and this ordering extends the notion of one expe-

riment being at least as informative as another for k-decisiOn 

probler.ts. Similarly we shall say tha1:. £ and F are equivalent 

for k-point sets if £>~ and F>£ i.e. if ~k(£,F> = 0. 
k k 

(;) The qualification "for k-point sets" as well as the subscript k 

may be omitted when k = ~. 

Although most of the known results froin the theory of comparison 

of experiments generalizes easily there are a few surprises. Thus 

equivalence for two point sets (i.e. for testing problems in the 

case of experiments) does no longer imply full equivalence. Equi

valence for 3 point sets does however imply full equivalence and 

this in turn is equivalent to the condition that the vector 

lattices generated by the measure families are isometrically iso

morphic by a (and hence the) correspondence making the 9-th 

measures correspond to each other for each 9E0. We may proceed, 

() as in Torgersen 1972 a and b, and generalize the theory of suffi

ciency to the case of general measure families. 

A useful characteristic of statistical experiments are, as shown 

by LeCam, certain functionals called conical measures. These are 

essentially the functionals which to a sub linear function ~ and 

for a given measure family (~..t. 9 :9E0) associates the number 

f~(d~..t.9 :9E0) according to the recipe given before our statements of 

principles (i)-(iv). Host of the basic properties of this charac

teristic extend without difficulties to measure families. 

Let us now return to examples 1.2-1.5 in the introduction and see 

if this theory can contribute something in each of these situa

tions. 
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3. LOCAL (FIXED SAMPLE SIZE) COMPARISON OF STATISTICAL EXPERIMENTS. 

We shall assume throughout this section that the parameter set e 

is a sub set of Rm for some positive integer m. He shall be 

concerned with local comparison within small neighbourhoods of a 

given point e 0 belonging to the interior of e. 

An experiment f= (x,A,Pe:eEe) will be called differentiable (in 

the first mean) at e 0 if the map e+P from e to the Banach e 
space of finite measures on A is Frechet differentiable. 

. ( i) 
If we let e 1 :(0, ... ,1, ..• ,0) denote the i-th unit vector in Rm 

then £ is differentiable at e 0 if and only if the limits 

(partial derivatives) [oPe/oeiJeo = lim(P .-Pe 0 )/t exists; 
t+O e 0+te 1 

m 
i = l, ... ,m and IIPe-Peo- L (oPe/oe.Jeo(e.-e9)11/lle-e 0 11+0 as e+eo. 

i=l 1 1 1 

The theory for differentiable experiments which will be presented 

below is by and large self contained. He have however described 

some results without giving complete proofs. The missing proofs 

are then, if not otherwise stated, given in Torgersen 1972 a and b. 

The notion of differentiability used here is weaker than the usual 

notion of differentiabilit~ in quadratic mean. The latter notion 

leads, see LeCam 1974 or Millar 1983, to basic results concerning 

the asymptotic behaviour of replicated experiments. If we merely 

assume differentiability in the first mean, then these results need 

not hold. We shall not be concerned with asymptotic theory in this 

sense here and then the chosen notion of differentiability appears 

to be appropriate - although there are many other possibilities 

for weaker as well as for stronger notions. 

Let us return to differentiability (in the first mean) as defined 

above. If £= (Pe:eEe) is differentiable at eO then the family 

consisting of the (m+l) measures (Pea' [oPe/oei]e=eo~ i = 1, ••• ,m) 

will be called the first order characterization of £ at eO. v~e 
might instead have used the measure family 

m 

m 
( !lh :hER ) where 

~ = Peo+iilhi[oPe/oeiJe=eo~ hERm. If we insist that the local 
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approximation should be an experiment then we might replace ~ by 

lllh I I IIIJ.h II here. 

• 
We shall find it convenient to write P 9o . for the partial deri

,~ 

vative of P9 w.r.t. ai at ao i.e. 

first order characterization of £ at 
f> 90 ,i = [aP 91aai] 90 . ~e 

ao will be denoted as £9o· 

Thus l 9 o = (P 9o,P 90 , 1 , ... ,:P 90 ,m) if £= (P 9 :9E0) is differenti

able at a = a 0. 

( i) 
Let e.= (0, ... ,1, ... ,0) denote the i-th unit vector of Rm. 

~ 

If £ = (P 9 :9E0) is differentiable at a 0 then the experiments 

(P . :jtj<e) are all well defined and differentiable in e 0 

9°+te~ 
provided e is sufficiently small. Furthermore P 9 is approxim

m 
able by 1J. = P 0+ I (P . -P 0 ) in the sense that 

9 9 i=1 a 0 +(a.-a~)e~ 9 
~ ~ 

liP -11 11 I 11 a- a 0 11 +0 as a +9 °. e a 

Conversely these two condit~ons guarantee that £ is differenti

able at e = e~. The usual arguments from calculus imply that £ 
is differentiable at e0 provided the partial derivatives exist§. 

and are continuous within some neighbourhood of a 0 . 

What kind of a measure family is the first order approximation of a 

Note first that if 

is the first order approximation of 
• • 1 each measure P 90 .; ~ = , .•. ,m, has 

,~ 

total mass zero. All general properties of first order approxima-

tions may be deduced from these t\VO ·properties. In 'fact any 

£ 

measure family (cr,cr1 , ..• ,crm) such that the measures cr1 , ... ,crm 

all have total mass zero and such that cr is a probability measure 
• 

dominating cr1, .•. ,crm is of the form eeo where 

and Pe = constant•lcr+I(e.-e?)cr.l when eEe. . ~ ~ ~ 
~ 

It is easily checked that if f, is differentiable at 9 = e 0 and 

if £ is at least as informative as F then F is also diffe

rentiable at e = e 0 . In fact if £= (Pe:9E0) is 0-deficient 

w.r.t. F = (Qe:eEe) then Q :p M for a transition H and then e e • • • • 
Oeo,i = Peo,i~1; i = 1, ... ,m. Thus ~='eo is obtained from £eo by 
the transition H. 
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Likewise finite products of experiments which are differentiable at 

a 0 are themselves differentiable at e 0 • More precisely if 

E = (P 9 :eEe) and !== (Q 9:eEe) are differentiable at e 0 and if 

G = £xF · then the first order approximation Gao of q is the 

measure family: 

• • 
( p a 0 XQ a 0 I p a 0 XQ a 0 I i + p a 0 I i X Qe 0 j i = 1 I • • • I m) • 

The local properties of the differentiable experiment 

E = (x,4,P 9 :eEe) at e 0 is, as we shall make clearer later on, 

determined by the distribution F( •je 0 ,EJ of the random vector 
• 

( dP a 0 IiI dP a 0 i i = 1 I ••• I m) under p a 0 • 

Clearly fxF(dxje 0 ,£) = 0 and any probability distribution on Rm 

having expectation zero is of the form F(•je 0 ,£) for some diffe

rentiable experiment £. 

We shall here only point out that if £ and F are both diffe

rentiable at e 0 and if G = £x~ then 

F(•je 0 ,q) = F(•jeO,£)*F(•jeO,p) where * denotes convolution. 

We shall later on see how F ( •I e 0 , E> and F ( •I e 0 ,!=) must be 

related in order to ensure that £ is locally at least as informa

tive as F at e 0 • 

Consider now two experiments £ = (Pe: eEe) and F'= (Qe: eEe) 

which both are differentiable at e = eo. Equip Rm with the L

norm II II: x+ I I x. I . Let for each e>O, the restrictions of £ and 
. 1 
1 

F to the e-ball N(e 0 ,e) = {e: ne-e 0 n<e} be denoted by, respec-

tively £ and F . e e 

The problem of local comparison of £ and F within small neigh

bourhoods of e 0 may now. be discussed in terms of the behaviour of 

the deficiency of o(E_ ,!= ) · for small values of e. If M. 
e e 1 

denotes the totally non informative experiment then continuity 

implies that the deficiencies 

as e+O. Thus ok (~ ,I= ) +0 as 
e e 

o <M. ,p ) and &(}.1. ,£ ) both 
1 e 1 e 

e+O for each k = 1 , 2, ... , (J). 
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Let us next determine the rate of the convergence of &k(£ ,F ) as 
e: e: 

e:+O. If £ = (P e: eEe) is differentiable in e 0 then we may 

expand Pe as Pe = Peo+L(e-e 0 )iPeo,i+~(£,e 0 ,e) where the measure 

~(£,e 0 , e) is ·defined by this expansion. The differentiability 

assumption implies then that ll~(£,e 0 ,e)ll/lle-e 0 11+0 as e+e 0 • 

We shall in the following find it convenient to utilize the symbol 

o in the usual way i.e. o denotes any real valued function on 

]O,col such that o(t)/t+O as t+O. 

If E.= (Pe: eEe} and !== (Qe: eEe) are both differentiable in e 0 

• then the smallest (it exists) constant 11 such that ~eo is 

(0,,, .•. ,,) deficient w.r.t. 

the local deficiency at eO 

for k-point sets will be called 

w.r.t. ~ for k-decision 

problems. The local deficiency at e 0 of £ w.r.t. 

k-decision problems will be denoted as &k,eo(~~
\'lhere, we may omit the qualification "for k-decision 

the subscript k if k = co. 

t= for 

Here, as else

problems" ·and 

The local deficiency determines the rate of convergence of 

&k(£ ,F )/e: as e:+O by: e: e: 

Theorem 3.1. (Asymptotic behaviour of deficiencies within small 

neighbourhoods). 

~~ith the notations introduced above for differentiable exper irnents 

() E= (Pe:eEe) and F= (Qe:eEe) we have 

where o( e:) = sup {II~(£, e 0 I e) II+ II ~(F, e 0 I e) II: II e-e 0 n "e:}. Furthermore 

Remark 1. The local deficiency may by the randomization criterion 

be expressed as: 
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= min{maxiiP 9 o .M-<5 9 o .II:P 9 oM = o9 o} 
. ,1 ,1 
1 

where M varies within the set of transitions (randomizations) 

from L(£) to the L-space r(£)* of bounded additive set func

tions on the sample space of F. 

We may, see remark 1 after theorem 2.2, limit our attention to 

transitions from L1 (P eO) to L1 (0 9o) • 

Remark 2. The proof implies that the statements of the theorem 

remain true, if, for each e>O, fE and 

restrictions of the experiments e and 

P are replaced by the 
€ 

F to the sub set of 

N(9°,E) 
(i) 

consisting of the 2m points (vertices) e 0 ±(0, •.. ,e, ••• ,O)~ 

i = l, ... ,m. 

Proof: Consider first the case k =CD. If P 90H = o90 for a 

transition M and if 11e-e0 11<:e then: 

IIP 9M-Q 9 11 = II(P 9-P 90 )M-(o 9-o 90 )11 

t 0 • • - 0 0 = IIL(e-e ).(P 9 o .M-o 90 .) + -r:(J::,,e ,e)l'I--r:(J=',e ,e)ll 
. 1 ,1 ,1 
1 

< II (e-e 0 ).1maxnP 9 ~ .M-<5 90 .11 + ll-r:(£,e 0 ,e)ll + h(~,e 0 ,e) 11 
. 1 . ,1 ,1 
1 1, 

• • < e maxiiP 90 .M-o 90 .11 + o(e) 
. ,1 ,1 ]_ . 

so that o(£ I~ )<e6eo(£,F)+o(e). It follows that 
€ € 

limsup o(EE,FE)/e<6 90 (£,[:.). as e+O. 

c>lirninf o(£ ,F)/e. 
0 € € E+ 

Consider on the other and any number 

Then 6 (£ ,F ) <ce 
€ € 

for all E belonging to a some sequence 

e1 ,e2 , ... which decreases to zero.- Assume that E belongs 

to this sub sequence. n1e randomization criterion (theorem 
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2.2) yields then a 

that IIPeM -Q ll<cc: 
c: e 

transition H from L(C) to r(F)* so 
E 

when eEN ( e 0 , c:) • He may, by compactness, 

assume that H converges pointwise on 
E 

transition H from L (£) to r (A*. 

Expanding around e 0 we find that 

L (£) xr (F) to a 

\' 0. • £0 FO 11 P eo M -Q eo+ L. < e. - e . ) < P eo . M -Q eo . ) + 1: < , e , e ) M -1: ( , e , e) 11 < c c: 
E . 1. 1. 1 1. E 1 1. E 

1. 
when 11e-e 0 11<c:. In particular 11Pe 0Mc:-Qe 0 11<ce. c:+O yields 

then Pe 0M = Oeo· 

( i) (i) 
Putting e 1 = e 0+(0, ••• , E, ••• , 0) and e" = e0 -(o, .•. ,c:, .•. ,o) 

we find that 

• • t::" 0 I F 0 I lldPeo .M -oeo . )+PeoH -oe 0 +1:(~,e , e )M -1:( ,e , e ) ll<cc: 
1 1. E 1 1. E E 

and 

llc:(Peo .H -0 9 o .)-(PeoM -Qe 0 )-('t'(£,e 0 ,e")H -'t'(F,e 0 ,e"))ll<ce. 
1 1. E 1 1. E E 

Hence 2e11Peo .M -Qeo .ll+o(c:)<2cc:. Dividing through by c: ,1. E ,1. 
I • I • • 

_and lett1.ng c:+O we f1.nd that IIPeo .M-Qeo . ll<c. Thus ,1. ,1. 
c)&e 0 (£,F). It follows that lirninf o(£c:,Fc:)/c:)&eo<£F) as 

c:~O so that o(£c:,Fc:)/c:+&eo<t,F> as c:+O. This completes 

the proof when k = ~. 

The case of a finite k may be reduced to the case k = ~ 
as foll~Ts: Assume that k<~ and let <Y,B> be the s~ple 

space of F. Let 80 be a sub algebra of B containing at 

most 2k_ sets_. The "k = ~" part of the theorem implies 

that o(fc:,Fc:l80 )<e&eo<£,FjB0 )+o(c:) where o(c:) is defined 

as in the theorem and, consequently, does not depend on B0 • 

Taking the supremum for all such algebras 80 we find by 

corollary 6 in Torgersen 1970 that 

ok(£E,Fc:)<c: sup &eo<£,Fj80 )+o(c:). The sumpremum on the right 

hand side is, by the essentially the same argument as was 

used in the proof of this corollary pr.ecisely the "dotted" 

deficiency &k, eO (£,F). Hence ~ (~,FE) (g &k, eO (£,F)+o( E). 

If follows that lirnsup ok(£ ,f!)/c:<6k eo<£.F). 
c:+O E E 1 
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On the other hand liminf ok(£ ,F )/e)liminf o(£€,F€1Bo>le = 
e+O e € e+O 

6eo (c,Fi£30 ) for any sub algebra 80 of 8 containing at 

most 2k sets. 

Taking the sumpremum for all such algebras 80 we see that 

liminf ok(£,e,Fe)/e)6k,eo<£,F). 0 
e+O 

Define the local deficiency distance at A0 between ~ and F 
fork-decision problems as the largest of the numbers 5k Ao(£,~) . ' 
and. 6k, eo(£, F). This number will be denoted ad ~,eo (£,F). Here 

the subscript k and the qualification "for k-decision problems" 
• 

may be omitted when k = ~. It is easily checked that ~,eo is a 

pseudodistance for experiments. The theorem yields readily: 

Corollary 3.2. (Asymptotic behaviour of deficiency distances 

within small neighbourhoods). 

~(£e,Fe)<e~k, 9o(£,F)+o(e) where o(e) is defined as in the 

theorem. Furthermore "=" holds for some function o( E) • 

Related to the local deficiencies are the local orderings and the 

lo~al equivalences of experiments. Thus we shall say that £ is 

locally at least as informative as F for k-decision problems at 

e = e o 1.' f ~ < t::' F> o Th · d f · f k 1 2 uk' e 0 &;Jt = . l. s e l.ne' or = . ' , ... ' ~, a 

partial ordering ) of differentiable experiments. If ) 
k,e 0 • k,e 0 

and F) ~ i.e. if ~,eo(£,~)= 0 then we shall say that ~ 
k, e 0 

and are locally equivalent for k-decision problems at 

This defines for each k = 1 , 2, ••• , ~ a local equivalence for 
k, e0 

differentiable experiments. It turns out, however, that the non 

trivial equiva1lences k = 2, 3, ... , ~ are all the same. More 
k, e0 

• generally it may be shown that the pseudodistances ~k,Ao; 

k = 2,3, ... ,~ all define the same notion of convergence. 
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What is the statistical significance of local deficiencies and 

related notions? Some insight may be gained from the following 

characterization in terms of performance functions: 

Proposition 3.3. (Local comparison of performance functions). 

Let £ = (P 9 :eEe) and F = (Q 9:eEe) both be differentiable at 

e = e0 • 

Let (T,S) be a decision space and consider a decision rule a in 

F. Then there is a dec is ion rule p in £ so that 

Furthermore (T,5) and a may be chosen-so that 

for all decision rules p in £. 

Remark. If (T,5} 

may be sharpened by 

number c5k,eo(£,F). 

then a in F may 

is a k-decision space then the first inequality 
• 

replacing o9o(£,F) by the usually smaller 

Furthermore if (T,5) is a k-decision space 

be chosen so that 

for all decision rules p in £. 

This may be seen by applying the proposition to the restrictions of 

~ to algebras of events containing at most 2k events. 

)· 
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Proof: Note first that for any transition M: 

limsup·IIP 9M-Q 9 11/119-9°1t = maxn:P 90 .M-<5 90 . II or =.., as 
9+9 i ,1 ,1 

0 
P 9 oM = a 9o or P 9 oH=FQ 90 . The first statement of the prop?-

sition follows no.v by putting p = Hcr where P 90M = a 90 and 

maxlt:P 90 .M-<5 90 .II= 6 90 (£5,~). The second statement follows 
• 11 11 
1 

by observing that we may let (T,S) be the sample space of 

F and then choose cr as the identity map. IJ 

If <V is a sub linear function on RxRm and if ~ = (P 9: 9E9) is 

differentiable at e = e 0 then f<V(dP 9o,dPeo, 1 , ••• ,dPeo,m) = 

f<V(l ,x1 , ••• ,xm)F(dxle 0,£). It follows readily that £ = (Pe:eEe) 

is locally at least as informative as F at e = e 0 if and only 

if f~dF(•Ie 0 ,f)>f~dF(•I 9°,F) for all convex functions ~ on Rm. 

This in turn is, as we shall see in the next section, equivalent to 

the condition that F (·I e 0 ,£) = DF (·I e 0 ,F) for a Harkov kernel 

(randomization) D from Rm to Rm such that fyD(dxly) = y for 

all points y in Rm. A Harkov kernel having the latter property 

is called a dilation. 

The Fisher information matrix I(e 0,£) is the covariance matrix of 

F(•leO,£)- provided of course that F(•le 0,£) posesses finite 

second order moments. It follows that if £ is locally at least 

as informative as F at e<l and if the Fisher information matrix 

of £ at e 0 exists ..... then the Fisher information matrix of F at 

e 0 also exists and then the difference matrix I(e 0,£)-I(e 0,F) is 

() non negative definite. This proves the local, and hence the 
11 global 11 , monotonicity of the Fisher information matrix. 

Example 3.4. (Local orderings of linear normal models). 

Let ~ for each nAxp matrix A' denote the linear normal ex

periment (N(A'~,IA):~ERP) where IA denotes the nAxnA unit 

matrix. The Fisher information matrix of £A is the pxp matrix 

AA'. If B is another matrix with p rows and if ~ is locally 

at least as informative as £B then, by the remarks above, 

AA' >BB I. The ordering 11)11 for matrices which is used in this 

example is the ordering which declares that M>N if H-N is non 

negative definite. 
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If AA' >BB' then ~-~x~ where H is the non negative definite 

squareroot of AA'-BB'. It follows that the local orderings as 

well as the global orderings of linear normal models with known 

variances coincides with the usual ordering of Fisher information 

matrices. 

When we turn to the case of unknown variances then the matters are 

a bit more involved. Let FA denote the experiment 

(N(A' ~' a2IA): ~ERP, a>O) where A' and IA are as above. The 

(p+1)x(p+1) Fisher information matrix of FA w.r.t. the unknown 

parameters and 0' is: 

By Hansen and Torgersen. 197 4 the experiment ~A is at least as 

informative as FB if and only if AA'>BB' and nA>nB+rank(AA'-BB'). 

In fact, Torgersen 1984, this is equivalent to the condition that 

FA -FB xfc (i.e. AA' = BB '+CC ' and nA = ~ +nc ) for some nc xp 

matrix C'. 

The above mentioned result of Hansen and Torgersen was extended by 

Lehmann 1983 to the case of multivariate regression. In that case 

~A is, for each nAxp matrix A', realized by observing a random 

nAxq matrix X such that EX= A'~ for a unknown pxq matrix ~ 

() while the rows of X are independent and multinormally distributed 

with the same unknown non singular covariance matrix a 2 • (Actual

ly Lehmann assumes that A is in a "reduced" form where 

rank A= p.) If we compare the distribution of the minimal suffi

cient statistics we see again that FA-FBx~C when AA' = BB'+CC' 

and nA = nB+nc. On the other hand if we consider e.g. the first 

column of ~ and restrict ~ and a2 such that all the other 

entries of· ~ are 0 while a2 is a diagonal matrix such that 

all the diagonal elements are known except the first one then we 

are baCk in the univariate case with q = 1. It follows that the 

above mentioned criteria extends directly to the multivariate 

case. 
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Returning to the univariate case we see that the Fisher information 

matrix of FA majorizes the Fisher information matrix of FB if 

and only if AA 1 )BB 1 and nA)n8 . This amounts to the condition 

that the two restrictions we may obtain from ~A by assuming that 

exactly one of the quantities ~ and cr are known are at least as 

informative as the corresponding restrictions of /=8 . It follows 

that the local orderings, the global ordering as well as the order

ing by the Fisher information matrices are all stronger than the 

ordering of Fisher information matrices for known 

that AA 1 )BB 1 \ve may distinguish the three cases 

cr. Assurning 

and n <n +rank(AA 1 -BB 1 ) 11 

A B and 

lin <n II 

A B ' 
11 nA)n8+rank(AA 1 -BB 1 ) 11 • 

11 n )n 
A B 

In the first case FA and ~B are not comparable for any of the 

·mentioned orderings. In the last case F B is as \ve noted above, a 

factor of FA so that FA majorizes F8 for the global ordering 

and thus also for the weaker orderings. In the second case we know 

that FA does not majorize !=8 globally \vhile it does majorize 

FB for the ordering of Fisher information matrices. 

It remains therefor only to consider the problem of local ordering 

when n 13+rank(.AA 1 -BB 1 ) >nA)nB. 

As a particular case consider univariate normally distributed 

variables X and Y such that X is distributed as N(~,a2 ) 

while Y is distributed as N(~,a2 /2). Assume that ~ and a>O 

are both unknavn. Replacing X with 12x we see that we are in 

(-,\ this situation with n - n' = 1, AA 1 = 2 and BB 1 = 1. We shall 
<J A- B 

see below, in spite of the fact that the experiments defined by X 

and Y are not comparable, that X is locally more informative 

than Y at any point {~,a) .. 

If fact we shall now show that the local ordering of these experi

ments coincides with the usual ordering of the Fisher information 

matrices. Thus let us assume that AA 1 )BB 1 and that nA)nB. 

Using the dilation criterion mentioned above we shall prove our 

claim by showing that &~o,ao<FA'~B) = 0 for all ~OERP and all 
a 0 >0. 
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The consequence that the local orderings do not depend on where 

localization takes place follows, as we shall see, from the argu

ments below. This fact follows however also by general consider

ations on invariance under groups acting transitively and "sr.:~oothe

ly" on the parameter set. 

Differentiating the log likelihoods we find 
nA 

that 

F(•lcr,~,FA) = cL((AX) 1 1cr,(f Xt-nA)Icr) where X is distributed as 

nB 
N(O,IA). Similarly F(•lcr, ~. FB) = ~((BY) 1 I cr, ( f Yf-nB)I cr) where Y 

is distributed as N(O,IB). Thus we must show that 
nA 

E 4>( (AX) 1 I cr, (I x'f-nA)/ cr)) the same expression for FB when 4> is 
l ~ 

convex on Rp+l and, say, a maximum of a finite number of linear 

functions. Replacing 4> with 4>(•1cr) we see that we may without 

loss of generality assume that ~ = 0 (in RP) and cr = l . 

Proceeding as in Hansen and Torgersen 1974 we consider first the 

case where AA 1 is the pxp identity matrix while BB 1 = A is a 

pxp diagonal matrix. Let A· denote the (i,i)th element of A. 
~ 

We shall, for convenience of formulation, assume that the diagonal 

elements of A are ordered in decreasing order. If 

s = rank B = rank A then A· >0 
~ 

or =0 as i<s or 'i>s. 

As the rows of A 

that the extended 

X:=~ we see that 

are orthonormal we may add nA-p 
-nA xnA matrix A is orthonormal. 

AX= (x1 , ••• ,X ) 1 and that }:x? 

rows to 

Putting 
~-2 = LX. • 

~ p ~ 

since X is also distributed as N(O,IA), we find that 

E4>((AX) 1 ,}:Xf-nA) = E4>(X 1, ••• ,Xp,Xf+ .•. +X~A-nA). 

A so 

Thus, 

Likewise the rows of B are orthogonal. The first s rows became 

orthornormal after having been divided by, respectively, 

1~,~, ... ,/A~· The p-s remaining rows are all the lxnB zero 

matrix. Extend the described orthonormal system of row matrices to 

a ~x~ orthornorrnal matrix U and put Y = UY. Then Y is 

distributed as Y and BY = ( ~Y1 , ••• , ~Y5, 0, ... , 0) 1 while 
~ 2 - ~-2 I ~ 2 = 1..Y. - 1..Y .. Hence E4>((BY) , t..Y.-nB) 

~ ~ ~ 

E4>(~Y1 , •• ,~Ys,O, ... ,O,}:Y{-~>· Our task is thtorefor to show 
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nA nB 

that E4>(X1' ... ,X 'I x?-nA))E4>( lr:'1x1, ..• 'If.... X 'I x?-nB) when 
p1 l. pp1 l. 

x 1 ,x2 , . • • are independent N (0, 1 ) variables. Assume first that 

nA 

nB)p. Then, by Jensen's inequality, E4>(X1, ..• ,x ,I x?-n~) = 
p 1 l. 1-.. 

nB 
EE4>( ••. ) 1x 1 , •.• ,X ))E4>(X 1 , ••• ,X , I x?-nB). If, on the other hand, 

~ p 1 l. 

nB<p then, since nB)s, the same argument implies that 
nB . 

E4>(n21x 1 , ••. ,Rx ,I x?-nB)'E4>(h::'1x 1 , ••. ,fi:'x ,Ix?-p) and that 
pp1 l. pp11.. 

nA 
E4>(X 1 , ••• ,x ,1x?-p)(E4>(X 1 , .•. ,x ,I x?-nA). Putting t = max(p,nB) 

.p11. p1 l. 

we see that we in both cases wilL be through if we can sh<Jf.fl that 
t t 

E4>(X 1 , •.• ,X , Ix?-t))E4>( ~x 1 , ••. , .fi:lx , Ix?-t). Let the variables 
p 1 l. p p 1 l. 

~ 1 = ±1,~2 = ±1, ••• ,~p = ±1 be independent and independent of 

(X 1 , •.• ,Xt). Assume that Pr(~i = 1) = <h:l+1 )/2. (This is 

feasible since 'A.EL0,1 ].) Then E~. =II:. By symmetry and 
l. l. l. 

Jensen's inequality we obtain: 

t t t 
E 4> (X 1 , ••• , x , Ix? > = 

p 1 l. 
E 4> ( ~ 1 x 1 , ••. , ~ x , Ix ? ) ) 4> ( R.1 x 1 , • . • , Rx , Ix ? ) • 

pp11. pp11. 

This establishes the desired inequality when AA' is the pxp 

unit matrix and BB' is a diagonal matrix. If, more generally, 

rank A= p then there is a pxp matrix F so that FAA'F' is 

the pxp unit matrix \V'hile FBB 'F' is a diagonal matrix (with the 

( .. · diagonal elements being in decreasing order). Then AX = F-l FAX 

and BY = F- 1 ~'BY and we are back to the previous case with 4> 

replaced by ~ where ~(x 1 , ••• ,x , z) :4>( (~.,- 1 x) ', z). 
P· 

Finally if rank A = r<p then we may choose a basis v 1 ,v 2 , ••• ,v • • •r 
for the column space of A.. 

belongs to this space since 

Any vector in the column space- of 

AA')BB'. If a . is the j-th 
•J 

column in A and b . 
•] 

is the j-th column in B then we may 

= Is .. v . and 
i 1.] •1. 

b . = ~t .. v . • Putting 
•J L. l.J •1. 

s = {s .. } 
l.J 

write 

B 

and 

T = {tij} we obtain A = VS and B = VT where v is the pxr 

matrix (v 1 , •.. ,v ) • • •r Then s and 'l' have, respectively, 

dimensions rxnA and rx~. Furthermore rank S = r and 
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SS 1 >TT 1 • If <Pv(y 1 , •. ,yr,z):$(Vy,z) then $((&'<) 1 ,IXf-nA) = 

<Pv( (SX) 1 , Ixf-nA.) and $((BY) 1 , LYf-nB) = <Pv( (TY) 1 , IYf-nB). Thus we 

may apply the previous arguments to ~s and FT. 

It would be interesting to know if there are general and manageable 

expressions for the local deficiencies between linear normal 

models. The reader is referred to LeCam 1975 and Swensen 1980 for 

information on the "global" deficiencies in this case. 

The statistical significance of local deficiencies is particularily 

transparent in the one dimensional (i.e. m = 1) case. In this 

case, as explained in section 2, the deficiencies 6k,e 0 (£,F): 
k = 2,3, .•. are all the same. They may then be expressed in terms 

of powers of most powerful tests or in terms of slopes of power

functions of locally most powerful tests. 

These results may be expressed as follows: 

Let for each (ordered) pair (P 1 ,P 2 ) of probability measures on 

the same measurable space the power of the most powerful level 

a-test.for testing "P1 " against "P2 " be denoted by ~(a!P 1 ,P 2 ). 

Then.: 

In terms of locally most powerful tests - or rather slope maxi

mizing tests - we have: 

69 o(£,/=) = sup(-c<a!l=>-·da!f;) ]+ 
a 

where the quantity -c(aj£) 

£= (P 9 :eEe) and a number 

for a differentiable experiment 

aEL0,1] is the maximal slope at 

for powerfunctions of level a tests for testing "9 = eO" 

against "9>9°". The function -c(•l£) is, and may be any, contin

uous concave function on (0,1] vanishing at a= 0 and a= 1. 



- 3.15 -

Actually tao"" (A, -t) where A is the uniform distribution on 

LO, 1 ] and -t is the measure on (o, 1 ] poses sing -t ( •I £) as 

distribution function. 

In particular £ is locally at least as informative as F at 

e = .e 0 if and only if -t( aiF) <:-t( a~ for all numbers aE [o, 1]. 

Thus the function -t(•IS> characterizes £up to local equivalence 

at e0 • The local deficiency distance ! 9o becomes then just the 

sup norm distance for such functions. 

If G is a probability distribution on the real line then the corre

sponding translation family is differentiable at e0 , and hence for 

all e, if and only if G has an absolutely continuous density g 
CD 

such that Jl g' (x) jdx<ca. Any experiment £ = (P 9: 9E9) which is 

differentiable at e = e0 and which is not locally equivalent to a 

totally non informative experiment (i.e. :P 9 o:J:0). is locally equiva

lent to a differentiable translation experiment G(•,-9):9E9). In 

fact we may require that G is strongly unimodal and then G is 

determined up to a translatio~. 

It follows that from the point of view of local comparison which we 

have described here that all differentiable exeriments which are 

not locally non informative are equivalent to an essentially unique 

strongly unimodal translation experiment. This construction is as 

follows: Let E.= (P 9 : 9E9) be differentiable at e0 and assume 
• that P 9 o:J:O. · Then the set of solutions of the differential 

equation G' = -t ( 1 -G 1£> i.s the set of translates of a strongly 

unimodal distribution function G. If q = (G(•-9):9E9) is the 

translation experlinent determined by G then it follows that 

- -t( ·It::> = -t( ·IG> so that t.90 <E,(?> = o. 

If two strongly unimodal translation experiments are locally equiv

alent then they are "globally" equivalent as well. In general, 

however, .translation experiments may be locally equivalent without 
• 

being "globally" equivalent. On the other hand, whatever the 

dimension m, · £ is locally 

whenever E. is "gl!Jbally" at 

any transition which carries 

at least 

least as 

£. onto 

as informative as 

informative as 

F also carries 

f. at eo 
F. In fact 

• 
~eo onto 



- 3.16 -

It should be kept in mind that the theory for local comparison 

which have been outlined here is only conserned with first order 

approximations. There are certainly cases of interest where the 

first order approximations are quite inadequate. Thus any experi

ment £ = (Pe: eEe) such that LoPe/oeiJeo = O; i = 1, ... ,m is 

locally equivalent (for first order approximations) to a totally 

non informative experiment. If, however, 'v.re want to test "e = e 0 " 

against close alternatives 

behave quit.e differently. 

then proceed and consider 

"e = e'" then such experiments may 

Using the theory in section 2 we may 

higher order approximations. 

Along with the notion of local information considered here goes a 

notion of local sufficiency. Thus if E = ( x ,A, P e: eE e) is diffe

rentiable at e = e 0 and if F is the restriction £18 to some 

sub a-algebra 6 of A then ~eo(£,Ej8) = 0 if and only if 

dP eo, i I dP eo may be specified l3 measurable for all i = 1 ; ... , m. 

Thus these Radon-Nikodym derivatives describe the minimal locally 

sufficient. sub a-algebra of A. 
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4. COMPARISON OF HEASURES. DILATIONS. 

Orderings of experiments and of measures are often expressed in 

ter.ms of dilations. The usual notion of a dilation as a kernel 

which dilates is, however, too narrow and should for our purposes 

be replaced by some notion of (almost) density preserving kernels. 

The typical situation is as follows: 

Assume that we are given two measure families E = (x,A,~ 9 :9E0) 
and F = (y,e,v 9 :eee) such that the measurable spaces (x,A> and 

<H,8> are both Euclidean. 

Assume also that we are given a point e 0 ee such that the measures 

~eo and 

and F. 
v9o are non negative and dominates, respectively, £ 

Deficiency for deficiency functions vanishing at eO may 

then be characterized by: 

Theorem 4. 1 . (Almost density preserving kernels). 

Assume that the requirements described above are satisfied and that 

e 9 o = O. Let, for each eee, f 9 and g 9 be densities of, respec

tively, ~a and v9 w.r.t., respectively ~eo and v9 o. 

Then E is e-deficient w.r.t. ~ if and only if ~eo = Dv 9o for a 

Markov kernel D from <.Y ,6) to ( x ,A> such that: 

Proof: It follows from theor'em 2.2 that £ is e-deficient w.r.t. 

F if and only if there is a Markov kernel. M from (x,A> 

to ({j,B) so that 11~ 9H-v 9 U<e 9 ; 9E0. If M has this pro

perty then, since e 9 o = 0, ~9 oM = v9o. It follows that there 

is a joint distribution on ( xx,Y, A xB) with marginals ~eo 

and v 9o so that the conditional distribution of the second 

coordinate given xEx is M(•jx). Let D be a regular dis

tribution of the first coordinate (in x) given the second 

coordinate (in .Y>· Then lleoxM = Dxveo· It is easily checked 
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that y+ff 9 (x)D(dxly) is a density of 1-LeH w.r.t. v 9o so 

that E9 )u!-L 9M-v 9 u = fl ff 9 (x)D(dxly)-g~y) lv 9o(dy). 

Assume conversely that a randomization D mapping v 9 o onto 

1-Leo and having this property-exists. Let H be a regular 

conditional distribution of the second coordinate (in ~) 

given the first coordinate (in x) for the distribution 

Dxv 9 on AxB. Thus Dxv 9 o = 1-LeoxM. We find again that 
0 

y+ff 9 (x)D(dxly) is a density of 1-1 9M w.r.t. v9o and thus 

111-1 9M-v 9 u = fl ff 9 (x)D(dxly)-g9 (y) lv 90 (dy)<E 9 ; eEe. 0 

The assunption that the kernels should map v 90 into 1-Leo (or 

~-Leo into v9 o) is a generalized form of the condition that a 

Markov matrix should be doubly Harkov (stochastic) . \ve obtain the 

latter condition if we impose the condition that x and Y are 

the same finite sets and the measures 1-Leo and v9 o both are the 

uniform distribution on this set. 

Let us express these facts in terms of matrices in the slightly 

more general situation where 1-Leo is a non negative distribu_tion 

1-1 ort {1, ..• ,m} and v9 o is a non negative distribution v on 

{1, •.. ,n}. 

Let us also, for simplicity, assume that the measure families are 

finite. Thus we assume that we are given a finite family 

£ = (!-L,I-11 , .•. ,1-L) of measures on {1, .. ~,m} and a finite family . r 
(i~f I='= ( v, v 1 , ... , vr) of measures on {1, •.. ,n}. 

Identify £ with ( 1-L,A) where 1-1 is the row matrix 

(!-1(1 ), ... ,1-L(m)) and A is the rxm matrix whose (k,i)th 

element is the number 1-Lk(i); k = 1, ••. ,r, i = 1, ... ,m. 

Identify ~ with (v,B) where v is the row matrix 

(v(1), ..• ,v(n)) and B is the rxn matrix whose (k,j)th 

element is vk(j); k = 1, ..• ,r, j = 1, .•• ,n. 

Thus the entries of the row matrices 1-1 and v are non negative 

and we shall assume that they are positive. Otherwise there is no 

rest~ictions on the (real valued) entries of the matrices 1-1, A, v 

and B. 
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The theorem yields the following comparison rules for matrices. 

Corollary 4.2. (Informational inequalities for matrices). 

Let E1, ••• ,Er be non negative numbers and let A and B be 

matrices with real valued entries and with, respectively, dimen

sions rxm and rxn. 

Let also ~ and v 

dimensions m and 

be reM matrices with positive entries and of 

n respectively. Put A_ = A. ~ and -l<,i -l<,i i 
~,j = ~,jvj; k = l, ... ,r; i = l, ... ,m; j = l, ... ,n. 

Then the following conditions are equivalent: 

(i) 

(ii) 

(iii) 

1JM = v for a mxn Harkov matrix M such that 

I!(fu1)k .-Bk .j<Ek; k = 1, ••• ,r. 
j I] I] 

~ = vD for a nxm Markov matrix D such that 

II (AD ) k · - Bk . I v . < Ek. ; k = 1 , • • • , r . . ,] ,] J 

!q,(~.,A 1 .,A2 ., ••• ,A .))I<J!(v.,B 1 .,B2 ., ••• ,B .) ' 1. I 1. I 1. r I 1. ' ·] I ] I ] r I ] 

1 r (1) (k) (t) (1) (k) (r) 
I EkL<J!(0,0, ... ,-1, ... ,0 )vq,(0,0, .•. ,1, ... ,0) for each 

k=1 
r sub linear function q, on RxR . 

Remark. We leave it to the reader to simplify these statements 

when ~ and v are uniform. If E1 = E2 = ... = Ek = 0 then (iii) 

may be phrased: 

(iii') I<~><A 1 ./~., ••• ,A ./~.)~.)I4><B 1 ./v., ... ,B ./v.)v. for each 
i 1. 1. r1. 1. 1. ~ J J rJ J J 

convex function 4> on R . 

Consider so a non negative measure T on and a Markov kerne 1 

D from Rm to Rm. If E1, ••• ,Em are non negative numbers and 

then we shall say that D is a (T,E) dilation if E = 
I·. 
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if· fl<fx.D(dx!y)-y.!T(dy)(e.; i = 1~···1m. A Markov kernel D 
l. l. l. . 

from Rrn to Rm such that fx.D(dx!y):y.; i = 11 ... lm is called a 
l. y l. 

dilation. Clearly a dilation is a (0 1T) dilation and conversely 

any (0 1T) dilation is T equivalent to a dilation. 

Here is a more general corollary of the theorem which includes some 

of the standard results on dilations in Rm as special cases. 

Corollary 4.3. (e-dilations in Rm). 

Let s and T be non negative measures on Rm such that the 

projections are integrable. Let the measure s. (the measure T. ) 
l. l. 

for each i = 1 I • • • I m, be the measure having the projection on the 

i-th coordinate space as a density w.r.t. the measure S (the 

measure T). Then the following conditions are equivalent for non 

negative numbers e 1 ~···~ek. 

(i) SH = T for a Harkov kernel M from Rm to Rm such that 

( ii) 

(iii) 

II s . H -T . II ( e . ; i = 1 1 • • • 1 m • 
l. l. l. 

S = DT for a (T1 e) dilation D from 

f<!J(1~x)S(dx))f<jJ(11x)T(dx)-
m (0) (1) (i) (m) (0) (1) (i) (m) 
l: e.(<!J( 0 1 0 1 ••• 1 -1 1 ••• 1 0)v<jJ( 0 1 0 1 ••• 1 1 1 ••• 1 0)] 

. 1 l. 1.= 
each sub linear function <jJ on m 

RxR • 

Remark: If e 1 = ... = ek = 0 then (ii) may be written: 

(ii •) S = DT for a dilation D. 

In this case (iii) may be written: 
, 

(iii•) f~(x)S(dx))f~(x)T(dx) for all convex functions 

for 

on 

Proof: Apply the theorem and the sub linear function criterion 

( (iii) in section 2) to the measure families ( S 1 s 1 1 • •• 1 Sm) 

and (T,T 11 ... 1T ). m 0 
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Let us phrase this corollary in terms of standard measures of 

measure families. 

If 

e 
E= <x,A.~ 9 :eEe) is a measure family with finite parameter set 

then its standard measure is the measure induced from ~ = I llle I 
e 

by the map from X to e R . Thus the corollary 

may be phrased: 

Corollary 4.4. (Ordering in terms of standard measures). 

Let S and T denote, respectively, the standard measures of the 

measure families £ = ( ~l , ••• , ~m) and F = ( v1 , ... , vm) . 

l, ... ,m, the measure s. 
~ 

(the measure T.) be 
~ 

Let, for each i = 
the measure on Rm having the projection on the i-th coordinate 

space as a density w.r.t. the measure S (the measure T). 

Then the I:neasure family <?l~il' ~J. 1 , ... ,1J.rn) is (0,~:: 1 , ... ,E:m) 
~ 

deficient w.r.t. <IIv.j, v1 , ... ,v) if and only if the 
. ~ rn 
~ 

(equivalent) conditions (i), (ii) and (iii) of the previous 

corollary is satisfied. 

In particular if the measures ~ 1 , ... ,~m and 

non negative then £ is 0-deficient w.r.t. F 
for a dilation D. 

vl, ••• ,vm 

and only if 

are all 

S = DT 

Another application is to differentiable experiments. The result 

below provides in particular the criterion for "being locally at 

least as informative as" which we commented on and utilized in the 

previous section: 
... 
Corollary 4.5. (Local deficiencies). 

Assume that the parameter set e is a sub set of Rm and that the 

point 9° is an interior point of e. 
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Let the experiments £ = (P 9 : 9Ee) and ~ = (Q 9: 9Ee) both be 

differentiable in e 0 and let e1 , ... ,em be non negative numbers. 

Put, using the notations of section 3, S = F(•le 0 ,£) and 

T = F < • I , e 0 , F> • 

Then each of (the equivalent) conditions (i}-(iii) of corollary 4.3 

are equivalent to the condition that 

.is (O,e 1 , ••• ,em) deficient w.r.t. 

In particular 

if and only if 

on 

£ is locally at least as informative as F at 

J~(x)S(dx})j~(x)T(dx) for each convex function 

The dilation results for standard measures may be viewed as a 

particular case,of dilation criterions for comparison of measures. 

A fairly general situation is described in: 

Theorem 4. 6. (Orderings of measures ). 

Let 1.1. and v be non negative finite measures on a measurable 

space ( x ,J\ ) • 

Consider also a convex set H of 1.1.+v integrable functions 

containing 0 and having the property that h 1 vh2 EH when 

h 1 ,h2 EH. 

Then fhd!J.)fhdv for all hEH if and only if there is a transition 

M from L1 (IJ.) to L1 (v) so that: 

(h!J.)M ) hv; hEH. 

If, in addition H contains the constants and if (x,A> is Eucli

dean then this condition is also equivalent to the condition that 

1.1. = Dv for a Markov kernel D such that jh(x)D(dxly))h(y) for v 

almost all y for all hEH. 
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Remark 1 • If 1J. is a measure and if fhdtJ. exists then htJ. 

denotes the measure which to each measurable set A assigns the 

mass J AhdtJ.. 

Remark 2. If H is countable or if H is "sufficiently 

separable" then the exceptional sets in the last statement may be 

chosen as the empty set. 

Proof: Consider the measure families £ = (htJ.:hEH} and 

F = (hv:hEH}. Let h 1 , ••• ,hrEH and let ~ be a sub linear 

function on Rr which is both monotonically increasing and a 

maximum of a finite set of linear functionals on Rr. Thus 
n r 

~(x.}: v L at.x. for non negative constants at1.. If 
xt=l i=l 1 1 

a 1 , ••• ,ar are non negative constants then, since OEH and 
. 1 r r 

H 1s convex, ~~ L a.h.EH when N> L a.. It follows that 
L~, 1 1 1 , 1 1 1= 1= 

~~(h 1 , ••• ,hr}EH when N is sufficiently large. Thus 

f <j>(h1 , ••• ,hr}dtJ.> J ~(h 1 , ••• ,hr}dv. Consider so the maximum ~ 

of a arbitrary finite family of linear functionals on Rr. 
r ( i} 

The map x+~(x}+ L x.~(O, ... ,-1, ... ,0} is then monotonically 
. -1 1 

increasing on Rr~ Thus J~(h 1 , ••• ,h }dtJ.)J~(h 1 , ••• ,h }dv-r . r 
r (i} 
I e(h.)~(o, .•• ,-1, ... ,0) where e(h} = fhdtJ.-fhdv; hEH. It 

i=l 1 . 
folloWs that £ is e-deficient w.r.t. F. Hence, by the 

randomization criterion, there is a transition M from L 1 ( tJ.} 

to L 1 (v} so that ll(htJ.}H-(hv}ll<e(h}; hEH. Now 

ll(htJ.}H-(hv}ll = [(htJ.}M-hv](l }+211[(h1J.}M-(hv}]-11 = 

e(h}+211[(htJ.}M-(hv}]-11. Thus ll[(htJ.}H-(hv}]-11 = 0 when hEH 

so that (htJ.}M)hv;hEH. Conversely these inequalities imply 

that: fhdtJ. = (htJ.) (1) = ( (htJ.)M} (1} ) (hv} (1} = fhdv when 

hEH. 
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Assume so that this condition is satisfied, that H contains 

the constants and that the measurable space (x,A) is 

Euclidean. Then (±~)M)±v so that ~ = v. Let D be a 

regular conditional distribution of the first coordinate 

given the second for the distribution ~xM. Thus ~xM = vxD. 

If AEA and hEH then' fA(fh(x)D{dxly) ]v(dy) = 

fh(x)IA (y) (Dxv) (d(x,y)) = fh(x)IA(y) ( ~xM) (d(x,y)) = 
f~1(Aix)h(x)~(dx) = ((h~)M)(A))(hv)(A) = fAhdv. Hence ~ = Dv 

and fh(x)D(dxl•))h a.e. v. This in turn implies, by 

essentially the same computations, that (h~)f.1)hv t..vhere the 

Markov kernel M satisfies ~xM = Dxv. 

Consider the particular case Where H consists of all functions on 
m 

R which are maxima of a finite set of (monotonically increasing) 

linear functionals. If fhd~)fhdv for all hEH then, by the 

theorem and remark 2, ~ = Dv for a Harkov kernel D such that 

fxD(dxly))y for all yERrn. Conversely the excistence of such a D 

implies, by Jensens•s inequality that fhd~)fhdv, hEH. If,· more 

generally, s 1 ,s 2 , •.. is a sequence of probability distributions on 

Rm such that the sequence fhdS 1 ,fhds2 , ... is monotonically 

increasing for each hEH then Sn+1 = Dnsn where fxnn+ 1 (dxly))y: 
m yER. Let the joint distribution of (~ 1 ,x2 , ... ) be determined by 

the requirements that J,(x 1) = s 1 and that Dn( •IXn), for each n, 

is a conditional distribution of Xn+ 1 given Xn. Then the Markov 

process x 1,x 2 , ... is a (sub) martingale such that Xn, for each 

n, has distribution S . This and Jensen•s inequality prove the n 
() following result of Strassen 196 5: 

Corollary 4.7. ((Sub) Martingales with prescribed marginal distri

butions). 

m 
Assume that the probability distributions s 1,s 2 , ... on R all 

possess finite expectations. Then there is a (sub) martingale. 

x 1,x2 , ••. with, respectively, marginal distributions s 1,s 2 , •.. 

if and only if fhdS 1(fhdS 2 ( ... whenever the function h is convex 

(and monotonically increasing) on Rm. 

0 
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Another interesting situation occurs when we assume that the func

tions in H are monotonically increasing w.r.t. some partial 

ordering. In the latter case we obtain, see e.g. Karlin 1983, the 

joint distribution characterization of stochastic orderings of 

distributions on sets with prescribed partial orderings. As more 

general situations \vill be treated in the next section we shall not 

write this out here. 

If we in theorem 4.6 just require that fhd!J.> fhdv for the func

tions h in H which are non negative i.e. for the functions in 

H+ = {h :h EH, h>O} then the first part of the theorem applies with 

H replaced by H+. The argument used in the proof of the last 

part of the theorem is, h~1ever, no longer valid since it required 

that f ( -1 ) d !J.:> f ( -1 ) d v. 

There is fer this situation a usefull result of Fischer and 

Holbrook 1980. As the general underlying idea is quite simple we 

shall here expose it as: 

Proposition 4.8. (Existence of minorizing functionals). 

Let y be a real valued convex functional on a convex sub set H 

of a linear space. 

Let 9 be a sub convex class of real valued concave functionals on 

H. 

Assume that Y is compact for the weakest topology which makes 

P(h) lower semicontinuous in PE~ for each hEH. 

Then there is a P in ~ so that y>P on H if and only if 

y(h)>inf{P(h):PE~} for all hEH. 

Reraarks. We may, for intuition, think about H as a convex set of 

real valued functions and of each PEP as an expectation. 
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~ is called sub convex if there to each pair (P 0 ,P 1 )E~~ and to 

each tE]0,1 ( corresponds a PtE~ so that Pt<(1-t)P 0+tP 1 . The 

compactness condition amounts to require that there to each net 

{P } · in 
a: 

corresponds a PEP so that limsup P (h))P(h)~ hEH. 
a: 

a: 

Proof: The 11 only if11 is trivial and the .. if11 follows by applying 

minimax theory to the concave-convex payoff function 

(pI h) +y (h) -P (h) . 

Applying this proposition to the situation of corollary 4.3 with 

0 

( . E - - E = 0 we obtain: 1 - • • .- m 

c··· .,:.·~} 
...._,_~-""' 

Corollary 4.9. (Sub Markov kernels and non negative convex 

functions). 

Let ~ and T be non negative measures on Rrn such that the 

projections are integrable. Let the measure S. (the measure' T.) 
]. ]. 

for each i = 1, ... ,m be the measure having the projection on the 

i-th coordinate space as a density w.r.t. the measure S (the 

measure T). Then the following conditions are equivalent: 

( i) SM = T for a sub Markov kernel M from Rm to Rm so that 

S.M = T. ~ i = l, ... ,m. 
]. ]. 

( ii) S)DT for a dilation D from Rm to Rm. 
m 

(iii) f ~dS) f ~dT for each· non negative convex function ~ on R • 

( iv) There is a non negative measure u on Rm such that 

f ~dS) f ~d(T+U) for all convex functions ~ on 
m 

R • If SO• 

then the measure U rnay always be chosen as a one point 

mass distribut~on. 

• 

Remark. If S and T are required to :possess compact supports 

then the equivalence of (iii) and (iv) follows fron Fischer and 

Holbrook 1980. 
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Proof: Suppose (i) is satisfied. Then IISII>IISMII = IITII. If 

II S II = liT II then M may be chosen as a proper Markov kernel 

and then we know from the remark after corollary 4.3 that 

f4>dS>f4>dT for all convex functions 4> on Rm. If liS II> IITII 

then we may put l;i = [IISiii-IITiii]/[IISII-IITII]; i = 1, •.. ,m. -Put I;= (1; 1 , ... ,~) and define a lvlarkov kernel M by 

putting M(Bix> = M(Bix>+[1-M(Rmlx> ]I:e(l;). Then SM = T+U 

where U is the one point distribution which assigns mass 

IISII-IITII to 1;. It is then a matter of checking that 

S. M = (T+U) . = r.r. +U. where, for each measure K, K 1• denotes 
1. 1. 1. 1. 

the measure having x+xi as density w.r.t. K· Thus the 

remark after corolla~J 4.3 applies again and we get 

f4>dS>f4>d(T+U) = f4>dT+f4>dU>f4>dT when 4> is non negative and 

convex on Rm. Hence (i)=>(iv) and clearly (iv)=>(iii). 

Assume so that (ii) is satisfied. If 4> is non negative and 

convex then f4>dS>f4>d(DT)>f4>dT where the last ">" follows 

from the remark after corollary 4.3. Th~ (ii)=>(iii). 

Assume next that (iii) is 
m 

when x = ( x 1 , ... , x ) ER . m . 

satisfied. Put p(x) = vilxil 

Then nsn = f1dS>fldT = nTn. If 

liS II = liT II and if 4> is convex and bounded from below by the 

constant b then f4>dS = f(ij>-b)dS+bRSII>f(ij>-b)dT+bOTR = f4>dT. 

Put This implies readily (iv) with U = 0. 

r = [nsn-nTn ]-1 (S-T) when nsii>RTR. Then f(4>)>0 for all 

non negative convex Functions 4> on Rm and r(l) = 1. Let 

~~· N = 1,2, .•• , denote the set of convex functions h such 

that h<p \o'lhile h(x) >0 when p(x) >N. Take j)N as the set 

of probability distributions on {x:p(x)<N}. If hEHN then 

f(h) >i)!f h(x) = inf{P(h) :PE~N}. It follows, since j)N is 

tight, that there is a PNEPN so that r(h)>PN(h); hEHN. In 

particular r( p) >P N( p) • It follows that (P 1 ,P 2 I ••• I) is 

tight. Let the probability distribution P be a weak limit 

point for this sequence. 

then hE~ when N>N0 . 

If h is convex and if hEHN 
0 

Hence r(h)>limsup PN(h)>P(h). In 
N 

particular r(hv(p-N 0 ))>P(hv(p-N0 )) when h is convex and 

h<p. N0 +~ yields r(h)>P(h). , It follows that r(ij>)>P(ij>) 

when 4> is convex and 4><kp for some positive constant k. 

Jensen's inequality tells us that P(4>)>4>(fxP(dx)) \"lhen 4> 

is convex. It follows that we may assume that P is a one 
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point distribution. Alltogether this show that (iv) holds 

with U being,the one point distribution which assigns mass 

IISII-IITII to the point fxP(dx). Thus (iii)=>(iv). If (iv) 

holds then, by the remark after Corollary 4.3, there is a 

Markov kernel M so that SM = T+U and S.M = T.+U.; 
~ ~ ~ 

i = 1, ... ,m. Furthermore T = (T+U)A where A is the sub 

Markov kernel (x,B)+IB(x)g(x) where g is a version of 

dT/d( T+U) such that 0< g<1. Then SMA = T and S. MA = T. 
~ ~ 

for the sub-Markov kernel r-tA. Hence (iv)=>(i). Still 

assuming (iv) and applying the same remark we find that 

S = D(T+U) for a dilation D. Thus S)DT so that 

(iv)=>(ii). The proof is now completed by combining the 

established implications. 

Returning to matrices again we obtain: 

Corollary 4.10. (The matrix case). 

Let 1.1. and v be row matrices of, respectively, dimensions 1 xn 

and l xn. He shall assume that the entries of and 

of v are all positive. 

Let A and B be matrices with real entries and with dimensions 

rxm and rxn respectively. Then the following statements are 

equivalent. 

(i) !.1M = v for a mxn sub Markov matrix M such that 

L~ . 1.1.. M . . = ~ . v . ; k = 1 , • . . , r , j = 1 , • • • , n • 
i ~ ~ ~,] ,] J 

i.J.)vD for a nxm Ivlarkov matrix D such that AD = B. 

0 

(ii) 

(iii) L4>(A1 ./i.J.., ... ,A ./i.J..)~.)L4>(B 1 ./v., ... ,B ./v.)v. for each . ,~ ~ r,~ ~ ~ . ,J J r,J J J 
~ J 

t . f . r non nega ~ve convex unct~on 4> on R . 

Proof: Apply the previous corollary to s and T where s 
assigns mass 1.1.· to each point ( Al . I ••• I A . ) while T 

~ ,~ r,~ 

assigns mass v. to each point (Bl ., •• ,B .). 0 J I] r 1 ] 
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Consider again the situation treated in theorem 4.6 under the 

additional assumptions that the functions in H are bounded and 

that the constant functions are in H. 

If we weaken the requirement that ~(h))v(h) for all hEH to the 

requirement that ~(h))v(h) for all non negative functions hEH 

then there is a non negative and additive set function K on A so 

that ~(h) )v(h)+K(h) for all hEH. This may be seen as follows: 

The asSUII!>tion that 1 EH implies that II~ II) II vII. If II~ II = II vII and 

c is a lower bound for h then ~(h-e) EH+ so that ~~(h-e) )~v(h-c) · 

yielding ~(h) )v (h). Thus we may put K = 0 in this case. If 

II ~II> II vII then we may apply proposition 4. 7 to the functional 

r = Lll~ll-llvll ]-1 (~-v) yielding a finitely additive probability set 

function P so that r(h) )P (h) for all hEH. He may then put 

K = (11~11-llvii]P. 

If \'le nov1 were able to shOW' that K might be chosen countably 

additive then proposition 4.6 would become applicable with v 

being replaced by v+K. A particular c.ase ~vhere this works is, by 

the Riesz representation theorem, when A is the class of Borel 

sUb sets of a compact Hausdorff space x and the functions in H 

are continuous. This yield finally: 

Corollary 4.11. (Comparison for integrals of non negative 

functions) . 

Let ~ and v be non negative finite measures on the Borel class 

A of a compact metric space X· 

Let H be a convex set of continuous functions on x such that 

h 1 vh2 EH when h 1 EH and ~ EH. He shall also assume that H contains 

the constant functions. Then the folloviing conditions are equivalent 

(i) fhd~)fhdv when Q(hEH. 

(ii) There i~ a non negative measure K on A so that 

fhd~)fhdv+fhdK for all hEH. 

(iii) There is a sub Markov kernel 

( i v) ~)Dv for a Harkov kernel D 

M so that (h~)H)hv; hEH. 

so that fh(x)D(dxly))h(y) 

v almost all y and for all hEH. 

for 
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Remark. If additional assumptions on linear and topological 

structures are satisfied then the equivalence of (i) and (ii) 

follows from Fischer and Holbrook 1980. 

I· 
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5. APPLICATION TO A PROBLEM ON PROBABILITY DISTRIBUTIONS WITH 

GIVEN HARGHJALS, 

\ie shall here apply the theory in section 2 to derive a result in 

Strassen•s 1965 paper on probability distribution with given 

marginals. 

The result is related to the problem of determining the set of 
,i 

possible probabilities Pr(X,Y)ES) for a specified set S and for 

prescribed marginal distributions P and Q for X and Y. By 

convexity this set is clearly an interval and it is also fairly 

clear that it is closed when we permit joint distributions which 

are not necessarily countably additive. Thus it suffices, at least 

under this permission, to find the end points of this interval. As 

the problem of minimizing Pr( (X, Y) ES) is equivalent to the 

problem of maximizing Pr(X,Y)~S) it should then also suffice to 

determine the right end point of this interval. 

He shall here, as is actually done in Strassen•s paper, consider 

the problem of maximizing Pr((X,Y)ES) when S is closed and the 

sample spaces of X and Y are both complete separable metric 

spaces. The right end point of the above mentioned interval may 

then be described as follows: 

Let B be any event in the sample space of Y. Then Pr((X,Y)ES) 

may be decomposed as: 

Pr( (X,Y) ES&YfB)+Pr( (X,Y) ES&YEB). 

Hence: 

Pr((X, Y) ES) <Pr(Y~B..)+Pr((X, y) ES for some yEB)) 

where the number on the right hand side is determined by P and 

Q. 

Let us for each sub se·t B of the sample space 

use the notation B(S) for the set of points 

space x of X such that (x,y)ES for some 

X 

y 

~ of Y agree to 

in the sample 

in B. The upper 
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bound derived above may then be written: 

inf(Q(Bc) + P(B(S))] 
B 

and it follows from Strassen's paper (under the above mentioned 

regularity conditions) that this upper bound is achieved. 

Usually it is not required to consider all sets B. If e.g. 

and Y take their values in the same partially ordered set 

and if S = {(x,y):x>y} then it suffices to consider monotonically 

increasing sets B (B is called monotonically increasing (de

creasing) if its indicator function is monotonically increasing 

(decreasing)). Thus if x is a sub set of the real line with the 

usual ordering then we obtain the greatest lower bound of all num

bers 1-G(x)+F(x): xEx where F and G are, respectively, the 

distribution functions of X and Y. 

In general there is a joint distribution such that Pr((X,Y)ES)>1-e 

if and only if Q(B)<P(B(S))+e for each (measurable) sub set B 

of .':;1. 

If p is a real valued function on xx~ and if 

S = f<?C,y):p.(x,y)<e} then this amounts to·the requirement that 

Q(B)<P( {x:p(x,y)<e for some yEB})+e when B is a (measurable) 

sub set of ~· This yield in particular, as was shown in Strassen 

1965, the joint distribution characterization of the Prohorov, 

(_ .... distance for a given distance p on X· 

There is a rephrasing of this result which is obtained by relaxing 

the condition that the distribution of Y should be exactly Q 

while at the same time strengthening the requirement on 

Pr((X,Y)ES) by requiring that Pr((X,Y)ES) = 1. Using this re

phrasing we shall now see how this type of results may be deduced 

from the basic principles for comparing measure families. 
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The essential idea used in the proof may be grasped by restricting 

the attention to finite sets x and ~- The reader might then see 

that the arguments using measure families may be replaced by simple 

arguments using well knCMn results on support functions. The point 

here however is to provide another example on the relationship 

between the principles for comparison of measure families on the 

one hand and excistence problems for probability distributions with 

given marginals on the other hand. 

Except for the rephrasing, condition (iii) below, the following 

result is a particular case of a theorem in Strassen•s paper: 

Proposition 5.1. (Probabilities for a specified set assigned by 

()) joint distributions possessing prescribed marginals) . 
-.,,:_-_,1 

Let (x,A,P) and <H,B,a> be probability spaces and let S be a 

sub set of xx~. Assume that x and ~ are compact metric spaces 

with, respectively, Borel classes A and a. Assume also that s 

is a closed sub set of xx~. Then the following two conditions are 

equivalent for a number eEL0,1] 

(i) Q(B)(P(B(S))+e for all Borel sets B. 

(ii) There is a joint distribution R on A~ with rnarginals P 

and Q such that R(S) >1-e. 

If, furthermore, the projection of s into X is onto then these 

conditions are equivalent with: . 
(iii) There is a joint distribution R on AxB with marginals 

and IJ. such that R{S) = 1 and II1J.-QII(2e. 

Remark 1. The set B(S) is the projection on x of the measur

able set (xxB)ns and is consequently analytic and therefor com

pletion measurable. 

p 
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Remark 2. It is apparent from this proof that several of the 

assumptions may be weakened. Thus vve shall only make use of (i) 

for ~losed sets B. 

If S is defined by a partial ordering then it suffices.to con

sider monotonically increasing sets B in (i) and then B(S) =B. 

In this case these conditions are equivalent to the condition that 

Q(h) <P(h)+e:llhll when the function h is bounded, monotonically 

increasing and measurable. 

Proof: We kn~1 allready that (ii)=>(i). Assume now that (iii) 

holds. Then there is, by the joint distribution characteri

zation of the statistical distance (see e.g. Torgersen 1970), 

a joint distribution U on BxB with marginals v and Q 

such that U( {(y,y) :yE,!J})>l-e;. Define a joint distribution 

V for variables X, Z and Y such that (X,Z) has distri-

bution R while the conditional distribution of Y given 

(X,Z) is ~iven by a regular conditional distribution of Y 

given Z in the situation where U is the joint distribu

tion of. Y and z~ Then (ii) holds if R is- replaced by the 

joint distribution of (X,Y). Thus in any case (and we did 

not use compactness) (iii)=>(ii)=>(i). Assume now that (i) 

holds and that the projection of S into x is onto. Put 

for any bounded measurable function h on H and xEx 

h(x) = sup{h(y):yES }. If t is a real number then clearly 

[h>t](S) = [~>t]. ~us, by (i): 
llhll llhll 

Q(h) = f Q(h>t)dt< f [P(tl>t)+e:]dt = P(tl)+EIIhll when h is 
0 0 

non negative. It follows from the expression for (il> t J 
above and remark 1 that ~ is completion measurable. Using 

that ~(x):c for a constant function c we find, since 

" Q = ~-c, that Q(h)<P(tl)+2e:llhll for any bounded measurable 

function h. Here we used the assumption that the projection 

of S into x was onto. Let h vary through the set C(~) 

of continuous functions on ~- Then the linear functional Q 
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is majorized by the sum of the two sUb linear functionals 

h+P(~} and h+2c:llhll. It follows that Q may be decomposed 

as Q = ~+v where ~ and v are linear functionals 

(measures) such that ~(h)<P(~): hEC(.Y) while v(h)<2c:llhll. 

If h<O then ~<0 and thus ~(h)<O. If h = c is a 
1\ 

constant then ~(c) <:P(c) = P(c) = c. It follows that ~ is 

a probability distribution and that v is a measure whose 

total variation is at most 2c:. 

Consider the measure families £ = (~P:hEC(~)) and 

F = (h~:hEC(!::J)). Put ~ = P(~)-~(h) when hEC(.Y). 

Let h 1, •.. ,hrEC(.!:f) and let h = <Ji(h 1, ... ,hr) where <11 is 

a sUb linear monotonically increasing function on Rr. Put 

h = <II (h1 , .. ,hr). Then f <Ji(h1 , •.. ,hr )d ~ = fhd~< J-AdP< f <!1(~ 1 , .. 

.• ,~ )dP. If <11 is any sub linear function on Rr then 
r (i) 

x+<Ji(x)+I x.<Ji(0, ..• ,-1, ... ,0) is monotonically increasing. . ~ 
~ 

It follows then from the sub linear function criterion (iii) 

of section 2 that € is ~ deficient w.r.t. F. Thus there 

is a Harkov kernel M from (x,A> to (~,8) so that 

II (~P) H-h~ II<~: hEC (1;/) • Thus P ( ~) - ~ (h)+ 2 II [ ( ~p ) M-h ~ r II < ~ · 
h = 1 yields then PM>~ so that PH = ~· Let D be a 

regular conditional distribution of "x" given "y", for 

PxM. Then Px~1 = Dx!J.. If hEC(~) and BEB then 

f(f~(x)D(dxjy) ]~(dy) = f~(x)IB (y) (DxM) (d(x,y)) = 
B 
fll(x)IB(y)(PxM)(d(x,y)) = fM(Bjx)~(x)(dx) = 

( (~P)H) (B) >(h~) (B) = fh(y) ~(dy). Thus f~(x)D(dxjy) >h(y) 
B 

for ~ almost all y when h EC (!/) • vve may now, since C (~) 

is separable, modify D so that f~(x)D(dxjy)>h(y) for all 

yEY and all hEC(~). This inequality extends, since lln t~ 
when h th, to all lower semicontinuous functions h on ~. 

n 
Let y0 E~ and let, for n = 1,2, •.. , the 

y0 with radius 1/n be denoted as Bn. 

inequality to the indicator function h 

that D(B(s) jy0 ) = f~ (x)D(dxjy)>h (y0 )n= 

·open ball around 

Applying the 

of B we find 
n 

1 • Furthermore, 
1(-s) ~s) n n 

since B1 nB 2 n •.. = {x:(x,y0 )Es}, we find that 

D({x:(x,y0 )ES}jy0 ) = 1 for all points y 0 E!:). Thus 

= (Dx~)(s) = fn<{x:(x,y)ES}jy)~(dy) = 1. 

(P xH) ( S) 

I· 
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It follows that condition (iii) is satisfied with R = PxN. 

Altogether this show that conditions (i), (ii) and (iii) are 

equivalent when the projection of S into x is onto. 

It remains to show that (i)=>(ii) in the general case. 

Assume then that {i) holds. Let the metric d which metri

sizes ,Y be bounded by 1 • Add a point § to JJ and 

extend d by putting d(§,§) = 0 while d(§,y) = d(y,§) = 1 

for all points .yey. Put Y1 = Yu{§} and s 1 = su{(x,§):xEx}. 

Then (i) holds if ~ and S are replaced by, respectively, -Y1 and s1 and if Q is replaced by its extension Q to 

y1 . Thus, by what we have proved, there is a joint distribu

tion R on xx31 with marginals P and Q such that 

R(s1 )>1-e. Then, since a<Y> = 1, R is supported by xx9 and 

thus (ii) holds with R being the restriction of R to xx9. C 

Using the fact that a complete separable metric space is homeomor

phic to a G0 sub set of compact metric space we obtain the 

theorem of Strassen mentioned above. This theorem states that (i) 

and (ii) are equivalent for probability spaces (x,A,P) and 

(H,8,a) and sub sets S of xxJ such that x and B are com

plete separable metric spaces and S is closed. 
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6. HAJORIZATION. 

The concepts of majorization defined in Marshall and Olkin 1979 

generalizes as follows: 

Let £= <x~A~~e:eEe) and F= <Y~B~ve:eEe) be two measure fami

lies. Say that £ \'leakly supermajorizes F if £ is v. (.!})-~. ( x) 

w. r. t. F. Say that £ weakly sub majorizes F if £ is 

~- ( x>- v. <!:I> deficient w .r .t. F. Say finally that £ majorizes F 
is £ is 0-deficient w.r.t. ~-

It is then easily checked that the t\~ kind of weak majorization as 

well as majorization are partial orderings for measure families. 

The basic properties of weak supermajorization are collected in: 

Proposition 6. 1. {Weak supermajorization) . 

The following properties are equivalent for measure families 

£= <x~A~~e:eEe) and F= <Y~B~ve:eEe): 

(i) £ weakly supermajorizes F. 
(ii) ~eM<ve for all e for some transition M from L(£) to 

L (F). 

(iii) If e 11 ••• 1 erE0 and ~ is a sub linear and monotonically 

decreasing function on Rr then 

r.~::i f ~ < d ~ e 1 ••• 1 d ~ e > ) f ~ < d v e 1 ••• 1 d v e ) . 
'<j 1 r 1 r 

Remark 1. If ~eM<ve for a transition M and if ~e(x) = ve<H> 

then actually ~eM = ve. It follows that these conditions imply 

that the inequality in (iii) holds for a sub linear function ~ 

provided ~ is monotonically decreasing in 

~e. ( x> *ve. \Y). 
l. 1. 

x. when 
1. 
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Remark 2. If e 0 Ee is such that 1-Le ,ve :>0, II!J.e n =live 11, 
0 0 0 0 

IJ.e >>£, ve >>F and the sample spaces are Euclidean then we may, as 

we 0saw in ~ection 4, express weak super majorization in terms of 

dilations. In that case (iii) may be replaced by 

(iii') f<P(d!J.e /d!J.e , ••• ,d!J.e /d!J.e )d!J.e 
1 0 r 0 0 

:> f<P(dve /dve , ••. ,dve /dve )dve when <P is monotonically 
1 0 r 0 0 

decreasing and convex on Rr. 

Remark 3. If e = {e 0 ,e 1 }, IJ.e :>0, ve :>0 and IIIJ.e II= live II 
. ff. 1 ' d ' 0 . D · d 0 Q 1t su 1ces, as exp a1ne 1n sect1on 2, to cons1 er compar1son 

2-points sets (testing problems) and we find that (iii) is 

equivalent to: 

Considering tne support function: 

when 

when 

we see that (iii) now says: 

then 

for 

(iii'") <11-e (x)<ve (~) and rnin{IJ.e (6):1J.e (6) = 

a}<miA{v (<P~:ve (<P) = a}; a>d, wher~ 6 ($) runs through e 1 o _ 
the set of testfunctions in C (~). 

The minima in (iif") may be obtained in the same was as we obtain 

maximum power by the Neyrnan-Pearson lemma. 

Putting a= IJ.e (x) we see that the condition which appears first 
0 

in (iii"~) and in (iii") is superfluous \vhen IJ.e > > !J.e • 
0 1 
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Proof: Assume that f is v.(H)-~(x) deficient w.r.t. F. Then 

there is a transition M so that ll~er-·1-vell(ve<.Y>-~e(x) for 

all eEe. This may, by the identity llid = f1dA.+211A.-II, be 

written ve)~eM:eEe. This in turn implies for any monotoni-

cally decreasing sub linear function ~ on Rr that 

f~(d~e , ••. ,d~e ))f~(d(~e M), .•. ,d(~e M}))f~(dve , ••• ,dve ). 
1 r 1 r 1 r 

Altogether we have shown that (i)=>(ii)=>(iii). If (iii) 

holds and 

put-t:,ing 

is any sub 1 inear function on 
(i) i" e = (0, ••• ,1, ••• ,0), we see that 

is monotonically decreasing so that 
r . 

Rr then, 

X +~ ( X ) - f X • ~ ( e i ) 
~ 

f ~ ( d ~ e , • • • , d ~ e ) ) J ~ ( d v e , • . • , d v e ) - . l: ~ ( e ~ ) ( v e . (!:j ) - ~ e . ( x ) ) • 
1 r 1 2 ~=1 ~ ~ 

•Hence (i) holds. 0 

We omit the proof of the quite similar case of weak sub majoriza

tion: 

Proposition 6.2. (\veak sub majorization). 

The following conditions are equivalent for measure families 

E.= (x,A,~e:eEe) and F= UJ,B,ve:eEe): 

(i) E weakly sub majorizes F. 
(.ii) ~eM)ve for all e for some transition H from L ( ) to 

L <F>. 
(iii) f~(d~e , .•• ,d~e ))J~(dve , •.• ,dve) when e 1 , ... ,erEE> and 

1 r 1 r 
~ a is sub linear and monotonically increasing function on 

Rr. 

Remarks. We may here make similar remarks as those we made after 

the previous proposition. Thus remarks 1 and 2 applies provided 'IJ/e 

substitute "increasing" for "decreasing". If e = { e0 , e1 }, 

~e , ve :>0, ll~e II = live II then (iii) may be replaced by: 
0 0 0 0 

or by 
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"lle ( x> > v e (!::/) and 
1 1 

max{lle (6):1J.e (6)=a}>max{v 9 (~):v 9 (~)=a}; a>O" 
1 0 1 0 

where 6(~) runs through the set of testfunctions in £ (P). 

The condition lle (x)>v 9 (~) is superfluous when lle >>11 9 . 
1 1 0 1 

Combining the two kinds of weak majorization we obtain: 

Theorem 6. 3. ( Majorization criteria for measure families) . 

The following properties are equivalent for measure families 

E.= (!J. 9 :eEe) and F= (v 9 :eEe) 

( i} 

( ii)l 

(iii) 

( iv) 

£ majorizes 1=. 
E weakly supermajorizes 

lleMeve for some transition 

and weakly submajorizes 

M from L(£) to L(F). 

If e 1 , •.• , erEe and <jl is sublinear c:m then 

F. 

Remark 1. If e 0 Ee is such that lle >0, v 9 >0, II!J.e II = live II, 
0 0 0 0 

lle >>E and v 9 >>F then we may, provided the sample spaces are 

Euglidean, expr~ss majorization in terms of dilations. In that 

case (iv) may be expressed as: 

(iv') f~(d 119 /d!J.e , ••• ,d!J.e /d!J.e )/d!J.e 
1 0 . r o 0 

>f<t>(dv 9 /dv 9 , ••• ,dv 9 /dv 9 )dv 9 when ~ is convex on Rr. 
1 0 r 0 0 

If in addition lle and v 9 are probability measures then this 

is a particular cage of coro~lary 4.6. 

I· 
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Remark 2 • .If 0 = {e 0 ,e 1 }, lle 0 ;;.0, v 9 >0, IIlla II= 

is a fixed number, then (iv) is equivglent to 0 

and 

(iv") lle (x):v 9 (~) and J[c 0 d11 9 +c 1d11 9 t;;.J[c 0 dv 9 +d 1dv 9. ]+ when 
1 1 0 1' 0 1 

c 0 ER. 

The function (c0 ,c 1 )+f(c 0 d!J.e +c 1d!J. 9 ]+ is the support function of 

the closed convex range of (~ 9 ,IJ. 9 L Thus conditions (i)-(iv) 
. . . 0 1 . . 

are 1n th1s case also equ1valent to the cond1t1on that 

!J.e ( x) = v 9 (,Y) and that the convex hull of the range of 

(!J.~, !J.e ) bontains the range of (v 9 ,v 9 ). Furthermore the 

1 ° 1 d · · · 1 · h f · h 0 1 atter con 1t1on Lmp 1es t e 1rst w en !J.e >>!J.e • 
0 1 

If 11 9 < x> = v 9 <~) 
only i! ( IJ. 9 , IJ.! ) 

0 1 

then (!J.e ,!J. 9 ) majorizes, (v 9 ,v 9 ) 
. 0 . l 0 1 

super (sub) maJorizes (v 9 ,v 9 ). 
0 1 

if and 

If e = { e 0 , e 1 } , x = !J = { 1 , ••• , n } and IJ.. 9 ( i) = v 9 ( i) = 1 ; 

i = 1, •.• ,n then we obtain the equivalence 0of condi~ions (i)-(iv) 

in example 1 .5. 
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differentiable in e 0 differentiable in t = 0 
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k, e0 
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as £ at eo 
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1 2 
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If £) F 
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as F at e 0 
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1 r 
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