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A UNIFIED THEORY OF DOMINATION AND SIGNED DOMINATION WITH APPLICA­

TION TO EXACT RELIABILITY COMPUTATIONS. 

Arne Bang Huseby, University of Oslo 

Abstract. 

Dottination theory plays an important part in the study of network 

reliability. In the present report we review the most important 

previous results in this field. However, the theory is presented 

in a more general setting in order to arrive at extensions. Seve­

ral new , simplified proofs of old results as well as new, general 

theory are given. Especially, a generalized domination theorem is 

presented. 

COHERENT STRUCTURES: CLUTTERS: NETWORKS: DOMINATION: MATROIDS: 

INCLUSION-EXCLUSION THEOREM: PIVOTAL DECOMPOSITIONS. 



- 2 -

1. Introduction. 

The concept of domination has played an important part in the 

study of network reliability. Several different methods and algo­

rithms have been developed using this as a basis. There are mainly 

two directions in these works. One is based on the Inclusion­

Exclusion theorem, and is mainly related to directed networks. Key 

references here are: Satyanarayana and Prabhakar (1978), and 

Satyanarayana (1982). The other direction is based on the 

Factoring theorem, and is restricted.to undirected networks. The 

main results on this field are given in Satyanarayana and Chang 

(1983). 

The efficiency of these methods makes it tempting to apply the 

same techniques to more general systems. However, the network 

based algorithms require some sort of graph representation of the 

given system. Hence, in order to use these methods, one has to 

find such a representation. 

In Huseby (1983) it is shown haw to express a given system as a 

2-terroinal undirected network problem. However, it is also shown 

that only a small subclass of systems are representable in such a 

way. Hence, in order to extend the network methods to more general 

classes of systems, one should try to modify the algorithms to be 

less dependent on the specific network representation. 

In order to achieve this goal, it is necessary to establish a more 

general theoretical basis for the methods. In a sense the work of 

Barlow (1982) represents a first step in this direction. 

In the present paper we shall also focus on general domination 

theory. This will be done by reviewing the most important earlier 
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results. However, these will be introduced in a more general sett­

ing in order to obtain new results as well. We also provide new 

simplified proofs for the old results. 

The paper starts out by introducing the basic definitions and 

results needed throughout the text. This is carried out in Section 

2. Instead of focusing on structure functions, as in standard 

reliability textbooks, (such as Barlow and Proschan {1981)) we 

have chosen to work on the family of minimal path sets. This is 

done in order to obtain a more set oriented approach which has 

certain theoretical advantages. We have also used a slightly dif­

ferent way of introducing the concept of domination and signed 

domination compared with earlier work. 

In Section 3 we study coherency properties of minors. The results 

obtained here are of great importance in many later proofs. The 

most interesting result in this section is that every complex 

coherent structure (Definition 3.3.) can be decomposed into two 

coherent structures by using pivotal decomposition with respect to 

a suitable component. This result is a complete generalization of 

a result on K-terminal undirected network systems given in Satyan­

arayana and Chang (1983), and plays an importnat part in the study 

of the factoring algorithm. 

Domination and signed domination were originally defined by intro­

ducing so-called formations of minimal path sets, and all earlier 

results have been developed with this as a basis. However, in 

Section 4 we provide an entirely new way of expressing these con­

cepts. This new expression has great theoretical advantages in 

order to simplify the proofs of old results and obtain new useful 

results. Section 4 includes a new proof of the signed domination 
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theorem (first proved in Barlow (1982)) and two "multiplication" 

rules for signed domination. 

The first results concerning the Inclusion-Exclusion method and 

directed graphs was developed without having the signed domination 

theorem. By application of this result it turns out that the 

proofs can be made considerably simpler. This is carried out in 

Section 5. In this section we also provide a slight generalization 

of a formula given in Satyanarayana (1982). This is proved by 

applying one of the multiplication rules developed in Section 4. 

In Section 6 we turn to another important theorem of network reli­

ability known as the domination theorem. This result is mainly 

used in the study of the factoring algorithm. In Satyanarayana and 

G1ang {1983) this theorem is proved to be true for the case of K­

terminal undirected network systems. It is, however, known to be 

true for the case of k-out-of-n systems as well. (See Barlow 

(1982)). In this section we provide a generalized version of the 

domination theoren covering all previously known cases. This theo­

rem is based on some basic results of the theory of matroids. 

Especially, the work of Lehman (1964) is of great importance. Some 

of these results as well as some more motivation are given in 

Huseby (1983). Section 6 also provides new classes of structures 

where the domination theorem is valid. 

In Section 7 the well-known factoring algorithm is presented and 

its properties are investigated in the light of the new general 

results obtained in Section 3 and Section 6. 
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2. Basic definitions and results. 

In this section we list the basic concepts needed in the theory. 

Definition 2.1. A clutter is an ordered pair (E,P) where E is 

a non-empty finite set and P is a family of incomparable subsets 

of E; i.e. no set in P is a subset of another set in P • 

If P = {¢}, i.e. the only set in P is the empty set, (E,P) is 

called a 1-clutter, while if P = ¢, i.e. P contains no sets, 

(E,P) is called a 0-clutter. We say that (E,P) is trivial if it 

is a 1-clutter or a 0-clutter. 

Defintion 2.2. Let (E,P) be a clutter, and let e E E. We say 

that e is relevant if e E P for at least one PEP. If e is 

not relevant, it is said to be irrelevant. 

A coherent structure is a .clutter (E,P) where all the elements 

of E are relevant, i.e. U P = E. 
PEP 

In reliability theory the elements of a clutter (E,p) are inter-

preted as edges or components being either functioning or failed. 

To indicate the state of a component e E E, we assign a binary 

variable, X e' defined by: 

X = { 1 if component e is functioning 
e 0 if component e is failed. 

Similarly, we assign a binary variable $ indicating the state of 

a system given by: 

if the system is functioning. 

if the system is failed. 

$ is assumed to be a function of the component states, and is 
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called the structure function of the system. 

Now, let A c E be the set of functioning components in the sys­

tem and interpret P as the family of minimal path sets. We then 

get: 

J if P c A for some P E p 
( 2 • 1 ) <!> = <!>(A) = 1 o otherwise 

We observe that if (E,P) is a 1-clutter, we get that <j>{A) = 1 

for all AcE, while if (E,P) is a 0-clutter, <J>(A) = 0 for all 

A c E. 

It is a well-known fact of reliability theory that <!> can be 

expressed as a multilinear function of the component states. (See 

Barlow and Proschan (1981 ).) That is, let E = {1, ... ,n} and 

x = (x1 , ... ,x ), then <!> can be written on the form: - n 

( 2. 2) <!> = <!>(.!) = E o(B) rr x. 
B=E iEB 1 

where 6 is a suitably chosen function denoting the coefficients 

of each term. (o(B)=O if the term corresponding to the set B 

does not occur in the expression.) Thus, if AcE is the set of 

functioning components, then rr x.= 
iEB 1 

otherwise. 

Hence, <!> can be expressed as: 

( 2. 3) <t> = <t>(A) = I o(B). 
B=A 

if B c A and zero 

In this text we shall apply both (2.2) and (2.3) as expressions 

for the structure function. 

The function 6 is called the signed domination function of the 
' 

clutter and will be of great importance in the theory we are about 
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to develop. Especially we define: 

Definition 2.3. Let (E,P) be a clutter, and let & be the 

signed domination function of the clutter. The signed domination 

of the clutter, d(P), is defined by: 

d(P) = &(E). 

The domination of the clutter, D(P), is defined by: 

D(P) = lo(E) I· (=The absolute value of &(E).) 

Another perhaps more commonly used way of defining domination is 

by introducing the concept of formations. To get a better 

understanding of domination we include this aproach as well. 

Definition 2.4. Let (E,P) be a clutter 

A formation is a family of minimal path sets F c p such that: 

u p = E 
PE F 

We say that a formation is odd if IF I is odd and even if IF I 
is even. ( IF I denotes the cardinality of F • ) 

The following proposition provides an alternative expression for 

the signed domination (and the domination): 

Proposition 2.5. Let (E,P) be a clutter. Then we have: 

d(P) =The number of odd formations minus the number of even 
formations. 
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Proof: Apply the principle of Inclusion-Exclusion. o 

Corollary 2.6. Let (E,P) be a clutter. If E contains irrele-

vant components, then d (P) is zero. 

Proof: If E contains irrelevant components, then the clutter 

has no formations. Hence, by Proposition 2.5. d(P) = 0- 0 = 0. o 

We shall later see that the converse statement of Corollary 2.6 is 

false. In fact, there exists an important class of coherent struc-

tures, related to cyclic directed networks, having zero domina-

tion. 

In the next definition we introduce the concept of restriction and 

contraction: 

Definition 2.7. Let (E I p) be a clutter and let e E E. We then 

define 

p +e= The family of minimal sets of the fo:tm P-e where p E p . 

p_e= The family of all sets in p which do not contain e. 

It is easy to see that if P is interpreted as the minimal path 

sets of a system with component set E, then we have: 

p = The family of minimal path sets of the system given that e 
+e 

is functioning. 

p = The family of minimal path sets of the system given that e 
-e 

is failed. 

(Hence, the notations 'P ' and 'P +e -e are motivated.) 
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The clutter (E-e, P+e) is called the contracted clutter of (E,p) 

with respect to the component e, while the clutter (E-e,P ) 
-e is 

called the restricted clutter of (E,P) with respect to the compo-

nent e. 

The operations of contraction and restriction are called minor 

operations, and we.say that a clutter is a minor of (E,P) if it 

can be obtained from (E,P) by performing a (finite) sequence of 

minor operations. Especially, we say that a clutter is a subclut-

ter of (E,P) if it is a minor obtained from (E,P) by performing 

restrictions only. A subclutter obtained from (E,P) by performing 

restrictions with respect to a set C of components will be deno-

ted by ( E-C I p ) • 
-c 

The following example provides a geometric interpretation of the 

minor operations: 

Example 2.8. Let (E,p) be the 2-terminal undirected network 

system G, shown in Figure 2.1, which is functioning if the nodes 

S and T can communicate through the network. 

~ ·. 

5 T 

Figure 2.1. 

Here we have: E = {1,2,3,4,5} and the family of minimal path sets 

is P = {{1,4}, {1,3,5}, {2,3,4}, {2,5}}. 

Now, we select e = 4, and get: 
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p +4 = { { 1 }, { 21 3 }, { 21 5} } and p _4= { { 1 1 31 5} 1 { 21 5} } o 

We observe that (E-4,P+4 ) and (E-4,P_4 ) corresponds to the 

network systems G+4 and G_ 4 shown in Figure 2.2. 

$ 5 

Figure 2. 2. 

As illustrated in Example 2.8 we have the following geometrical 

interpretation of the minor operations, assuming that the clutter 

can be represented as an undirected network system: 

Proposition 2.9. Let (E,P) be a clutter which can be represen-

ted as an undirected network system G, and let e E E. 

Then (E-e, P+e) can be represented as an undirected network 

system G+e obtained from G by deleting 

the endpoints of e. 

e and identifying 

Similarly (E--=,P) -e can be represented as an undirected network 

system G obtained from G -e by deleting e. 0 

The next proposition expresses the minor operations in terms of 

the structure function: 

Proposition 2.10. Let (E,P) be a clutter with structure func-

tion ~, and let e E E and C c E. 
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Denote the structure function of (E-e, P +e) by IP +e' the struc-

ture function of ( E-e, P ) by IP and the structure function 
-e -e 

of (E-B, P -c > by IP -c· Then we have 

( i) IP+e(A) = ~P(AUe) for all Ac E-e. 

(ii) iP (A) = iP (A) for all Ac E-e 
-e 

As a generalization of (ii) we have: 

( i i i ) iP -c ( A ) = iP ( A ) for all A c E-C. o 

Corollary 2.11. Let (E,P) be a clutter with structure function 

~ and signed domination funciton 6, Then we have: 

d ( P ) = 6 ( E-C ) -c for all C c E. 

Proof: Let C ~ E, and let ~P_c and 6_C be the structure func­

tion and the signed domination function of (E-C, P_C) respec­

tively. 

Since by Proposition 2.10. ~P_c(A) = ~P(A) for all A c E-C, by 

(2. 3) we get: 

L 6_c(B) = L 6(B) for all A c E-C 
BcA BcA 

Hence, it is easy to obtain that: 6_c(B) = 6(B) for all B c E-C. 

Especially, d(P_C) = 6_C(E-C) = 6(E-C) as stated. o 

The last concept we shall introduce in this section is the concept 

of minimal cut sets. A cut set of a clutter (E, P) is a set C 

such that C n P * ¢ for all P E P. A cut set is minimal if it 

cannot be reduced and still be a cut set. If the elements of E 

are interpreted as components being either functioning or failed 

and p is interpreted as the family of minimal path sets, then 

obviously a cut set is a set of components whose failure is suffi-

cient to cause system failure. 
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It is a well-known fact of reliability theory that path sets and 

cut sets are in a sense "dual" to each other. (See Barlow and 

Proschan (1981)). Especially, we have the following proposition: 

Proposition 2.12. Let (E,P) be a clutter and let C be the 

frunily of minimal cut sets. Then (E,P) is coherent if and only if 

we have: 

U C =E. o 
CEC 

We close this section by including a result concerning minor ope-

rations and minimal cut sets. (Observe the duality between this 

result and Definition 2.7.) 

Proposition 2.13. Let (E,P) be a clutter and let C be the 

family of minimal cut sets. For an arbitrary component e E E, 

denote by c+e and C the families of minimal cut sets of -e 

( E- e, P ) -e respectively. 

Then we have: 

C = The family of all sets in C which do not contain e. +e 

C =The family of minimal sets of the form C-e where C E C. o -e 

3. Coherency properties of minors. 

In the study of signed domination functions, many results can be 

deduced by investigating the minors of a given structure. Especi-

ally, in light of Corollary 2.6., we shall study the coherency 

properties of minors. In order to do so we shall introduce some 

useful concepts and definitions. 
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Definition 3.1 • Let { E1 P) be a clutter and let C be the family 

of minimal cut sets. Asst.nne that we have: E = {1 I ••• 1n }~ 

p = {P 11 ... 1PP} and C = {c 1 ~···~cc}. 

Now define: 

8.={j: i EP.} and K.={j: i EC . } I i=1 1 ... 1n. 
l J l J 

s={8 1 ~···~8n} is called the family of transposed minimal path sets 

K = { K 1 1 • • • 1 K n } is called the family of transposed minimal cut sets. 

Example 3.2. Let (E~P) be the 2-terminal network system Gl 

shown i Figure 3.1 . 1 which is functioning 

Figure 3.1. 

if the nodes 8 and T can communicate through the network. Thus 

in this case we have: 

P = { P 1 1 P 2 1 P 3 } where P 1 = { 1 1 5 } 1 P 2= { 2 I 5} and P 3= { 3 14} • 

C = {c 1 ~c 2 1c 3 1c4 } where c 1= {1~2 1 3} 1 c 2= {1 12 14} 1 

c 3= {3 15} and c 4= {4 15}. 

Hence we get that S = {8 11 •.. 18 5 } and K= {K 11•••1K5 } is given 

by: 

8 1= {1 }~ 8 2= {2}, 8 3= {3}1 8 4 {3} and 8 5= {1~2} 

K 1 = { 1 1 2 } 1 K 2 = { 1 1 2 } 1 K 3 = { 1 1 3 } 1 K 4 = { 2 1 4 } and K 5 = { 3 1 4 } • 
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It is easy to see that this is due to the fact that the components 

3 and 4 are "series" components and that the components and 

2 are "parallel" components, where the words "series" and "paral-

lel" are interpreted in the usual geometric way. Extending this to 

general clutters we may define as follows: 

Definition 3.3. Let {E,P) be a clutter and let e,f E E, and 

let Se' Sf and Ke' Kf be the corresponding transposed minimal 

path and cut sets, respectively. 

We say that e and f are in series if s = s . e f 

Similarly, we say that e and f are in parallel if Ke= Kf. 

If {E,P) contains no series or parallel components, and {E,P) 

contains more than one relevant component, we say that {E,P) is 

complex. 

The main result of this section is that if {E,P) is a complex 

coherent structure then there exists a component e E E such that 

both {E-e,P+e) and {E-e,P ) are coherent structures. 
-e 

Before we can prove this, we need some preliminary results. We 

start by proving a proposition concerning coherency of minors and 

transposed minimal path and cut sets. 

Proposition 3.4. Let {E,P) be a clutter, and let S={s 1 , ... ,sn} 

and K = {K 1 , ... ,K} be the families of transposed minimal path 
n 

and cut sets respectively. Finally, let i, j E E. 

Then we have: 
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( i) i is irrelevant with respect to (E-j, p . ) 
-J 

if and only if s .c s .. 
].- J 

(ii) i is irrelevant with respect to (E- j, p +j) 

if and only if K.c K .. 
].- J 

Proof: (i) Assume that S.c S .. Then by Definition 2.7., we have 
].- J 

Hence, i * Pk 

c {PkE P : k$ Si} 

= { P k E p : i *P k} 

(since s .c s.) 
].- J 

for all Pk E P ., and thus by Definition 2.2 
-J 

is irrelevant with respect to ( E- j, p . ) 
-J 

as stated. 

Assume conversely that S i$ S j. That is, there exists 

such that k * S .. 
J 

k E S. 
]. 

Hence, j ~ Pk and thus by Definition 2. 7, PkE P . • So, since 
-J 

i 

i E 

Pk, by Definition 2.2, i is relevant with respect to 

as stated. 

(E-j, p .), 
-J 

(ii) is proved similarly by applying Proposition 2.12 and 

Proposition 2.13. instead of Definition 2.2. and Definition 2.7. o 

As a corollary we get the following: 

Corollary 3.5. Let (E,P) be a coherent structure, and let S = 

{s1 , ••• ,sn} and K = {K1 , ••• ,Kn} be the families of transposed 

minimal path and cut sets respectively. Finally, let j E E. 

Then (E-j, P . ) and 
+J 

and only if s i$ sj 

(E-j, p .) 
-J 

and Kif Kj 

are both coherent structures if 

for all i * j. o 
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TI1e next proposition provides another useful result on coherency 

of minors. 

Proposition 3.6. let (E, P) be a coherent structure where P is 

the family of minimal cut sets. Let j E E and let A be a fixed 

non- empty subset of E- j. 

( i) Assume that j E p if and only if p n A * ¢ for all p E p • 

Then (E-j, p +j) is coherent while (E-j, p . ) is non-
-J 

coherent. 

(ii) Assume that j E c if and only if c ,n A * ¢ for all c E .L 

Then (E- j I p . ) is coherent while (E-j, p +j) is non-
-J 

coherent. 

Proof: (i) TI1e situation is illustrated in Figure 3.2. 

J ,... 

Figure 3.2. 

By considering Figure 3.2. we see that if j is failed, then the 

components in A are irrelevant. Hence, we get that ( E- j I p . ) 
-J 

is noncoherent. 

Horeover, by considering all possible cases it is easy to see that 

all sets of the form P- j, where P E P , are incomparable. Hence, 
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P +j= {P-j: P E P}. 

Thus, since (E,P) is coherent we get that: 

U P = U (P-e) = 
PEP+e PEP 

( U P)-e = E-e 
PEP 

So, we conclude that (E-e, P+e) is coherent. (ii) is proved 

similarly. o 

An important special case of Proposition 3.6. arises when A 

contains a single component i. 

If i and j are in series, we observe that (E-j, P+j) is 

obtained from ( E, P ) by replacing i and j by the single 

component i. Similarly, if i and j are in parallel we obtain 

(E-j, p .) 
-J 

from (E,P) by replacing i and j by the single 

component i. The process of replacing series and parallel compo-

nents by single components is called s-p-reduction. If a coherent 

structure can be reduced to a single component by performing s-p-

reductions, we say that the structure is an s-p-structure. 

The following easy corollary provides all necessary results on 

coherency and s-p-reduction. 

Corollary 3.7. Let (E, P) be a clutter, and let i, j E E. Then 

we have: 

(i) If i and j are in series, then i is irrelevant with 

respect to ( E- j, P . ) , i.e. ( E- j, P . ) 
-J -J 

is noncoherent. More-

over, if i and j are relevant with respect to (E, P ) , then i 

is relevant with respect to ( E- j, P +j) . Especially, if ( E, P ) 

is coherent, then (E-j, P+j) is coherent as well. 
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(ii) If i and j are in parallel, then i is irrelevant with 

respect to (E-j, P+j)' i.e. (E-j, P+j) is noncoherent. More-

over, if i and j are relevant with respect to {E,P ), then i 

is relevant with respect to (E-j, P .) • Especially, if (E, P ) 
-J 

coherent, 

(iii) If 

then {E-j, P .) is coherent as well. 
-J 

{E, P) is a nontrivial clutter, i.e. ( E, P ) contains 

at least one relevant component, then every s-p-reduction of 

{ E, P ) is nontrivial. 

is 

Proof: (i) and {ii) follow by application of Proposition 3.4 and 

Proposition 3.6, while {iii) is a consequence of {i) and (ii). o 

We now turn to the proof of the main result of this section. 

Throughout this section, let {E, P ) be a coherent structure, and 

let S = {s 1 , ... ,sn} and K = {K 1 , ... ,Kn} be the families of 

transposed minimal path and cut sets respectively. 

Lemma 3.8. Let i, j E E. Then we have: 

{ i) If 8 ,C 8, 1 then K. and K. are incomparable. 
].- J 1. J 

(ii) If K ,c K ., then s. and s. are incomparable. 
].- J 1. J 

Proof: { i) Assume that S ,C s , 1 i.e. i E p => j E p for all 
J_- J 

p E p {See Figure 3. 3. ) 

• 
J " ~-

.... --- --, 
. 
"' -~-------L_ 

1----(,_ __________ ,..1 ' j 

Figure 3.3. 



- 19 -

Now, let C be a minimal cut set, and assume that j E C. Then by 

the minimality of C, i *c. (See Figure 3.3.) Hence K.n K.= ¢. 
1 J 

Furthermore, since ( E, p ) is coherent, obviously both K. 
1 

and 

K. are nonempty. (See Proposition 2.12.) Hence, since they are 
J 

disjoint, we conclude that K. and K. 
1. J 

are incomparable. 

(ii) is proved similarly. o 

Lemma 3.9. Let i, j I KEE. Then we have: 

( i) If K. c K. and s. c sk, then s. c sk. 1 J J 1 

(ii) If s. c s. and K. c Kk, then K. c Kk. 
1 J J 1-

Proof: ( i) Assume that K. c K. 
1 J 

and SF Sk, and choose some 

index s E S., i.e. i E P where P is a minimal path set. 
1 s s 

We shall prove that s E Sk, i.e. k E P as well. 
s 

It is easy to see that it is possible to find a minimal cut set 

Ctsuch that P n C = i. (See Huseby, (1983)). 
s t 

Since K. c K. (by the assumption), this implies that j E Ct as 
1 J 

well. 

We have assumed S . c Sk, so by the proof of Lemma 3. 8, we know 
J -

that Kjn Kk= ¢. Hence, j E Ct implies k * Ct. Moreover, j E P 

=> k E P for all P E P . Hence, C 1 = (Ct-j) U k = the set obtained 

from Ct by replacing j by k, is also a cut set, and so there 

exists a minimal cut set C c C 1 • 

Since j * C 1 , we knON that j * c. Hence, since 

assumption) this implies that i * c. 

K. c K. (by the 
1- J 
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Furthermore, obviously k E C since we have: C-k c C'-k = 

ct-j c Ct' i.e. C-k cannot be a cut set by the minimality of 

Thus C c (Ct-i) U k 

c n P = k n P c k. 

and since C n P - i t s- this implies that 

s s 

However, since C is a cut set, C n P must be nonempty implying 
s 

that C n P = k, i.e. k E P . Hence s s implying that 

Skas stated. 

(ii) is proved similarly. o 

We now introduce an ordering on the set E as follows. 

Definition 3.10. Let i,j E E. 

s.c 
1-

If s.c s. or K. c K. I then we say that i ( j . (This ordering 
1- J 1- J 

is well-defined since by Lemma 3 o 8 o 1 we cannot have s. c s. and 
1 J 

K. c K. I or s. c s. and K.c K .• ) 
J - 1 J 1 1- J 

Lemma 3. 1 1 . The ordering defined in Definition 3.1 0 is: 

(i) Antisymmetric. ( i<: j implies j >i) 

(ii) Transitive (i(j and j<:k implies i<:k) 

Moreover, if ( E I p ) is complex, then the ordering is 

(iii) Reflexive (i<j and j<:i implies i=j 1 i.e. i and j are 

the same component. ) 

Proof: 

(i) This follows directly from Definition 3.10. 

(ii) Assume that i <: j and j < k. 
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If s. c s. and s. c sk or K. c K. and K. c Kk' then obvi-
l. J J - l. J J 

ously i ( k by Defintion 3. 1 0. 

If K. c K. and s. c sk or s. c s. and K. c ~· then i ( k 
l. J J - l J J 

by Lemma 3.9 and Definition 3. 1 0. 

(iii) Assume that ( E, p ) is complex. 

That is, (E, P ) contains no series or parallel components. 

(Definition 3.3.) 

Hence, by Definition 3.3, S.t S. and K.t K. for all it j. 
l. J l. J 

Thus we cannot have i <; j and j ( i unless i=j as stated. o 

An ordering which is antisymmetric, transitive and reflexive, is 

called a partial ordering. The following proposition states a 

well-known property of partial orderings. (See Graver and Watkins 

(1977)) 

Proposition 3.12. Let E be a finite partially ordered set. Then 

E contains at least one minimal element. That is, there exists j 

E E such that no other element i E E satisfies i <; j. o 

Now, we can prove the main result of this section: 

Theorem 3.13. Let ( E, P ) be a compleK coherent structure. Then 

there exists a component j E E such that both (E-j, P+j) and 

(E-j, P .) are coherent. 
-J 

Proof: Since (E, P) is complex, by Lemma 3.11, the ordering 

defined in Definition 3.10 is a partial ordering. Hence, by Propo-

sition 3.12 there exists at least one minimal component j E E 

with respect to this ordering. 

Since j 

i * j . 

is minimal, s. 1:_ s. 
l. J 

and K. 1:_ K. 
l. J 

for all components 
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Hence, by Corollary 3.5, both (E-j, P+j) and 

coherent. o 

4. Basic properties of signed domination 

(E-j, P .) are 
-J 

The main result of this section is the socalled "signed domination 

theorem " which was proved for all coherent structures in Barlow 

(1982). In this paper we provide a considerably simplified proof 

of this result. In order to do so we need an alternative 

expression for the signed domination function. We start by proving 

the follo.ving simple lemma. 

Lemma 4.1. Let C and A be two (fixed) subsets of a given set 

E. Then we have: 

if C = A 

otherwise. 

Proof: vve consider three possible cases. 

Case 1. C $. A. 

In this case there exists no B satisfying C c B c A. Hence 

the sun consists of zero terms, so obviously the value of the 

sum must he zero. 

Case 2. c = A. 

In this case I (-1) IAI-IBI= (-1) IAI-IAI= 1 
Q:::B= A 

Case 3 . Cc A. 

Since c is a proper subset of A, there exists an element 

E A-C. 

e 
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v'le now split the sum in two parts as follows: 

L (-1)1AI-IBI= 
CCBc:A 

L (-1)1AI-IBI+ L (-1)1AI-IBI 
CCB::A CCB=A 
e$B eEB 

= L ( _ 1 ) I A I -I B I + L ( _1 ) I A I -I BU e I 
CCBc:A CCB=A 
e$s e$s 

= L (-l)IAI-IBI_ L (-1)1AI-IBI= o. 
CCBc:A CCB=A 
e$s e$8 

Hence, we conclude that the lemma is true in all three cases. o 

We can now develop the alternative expression for signed domina-

tion function. The proof is based on a method called Mobius 

inversion. 

Theorem 4.2. Let (E, P) be a clutter with structure function ~ 

and signed domination function o. Then we have: 

o(A) =I <- 1 >1AI-IBI~(B) 
B=A 

for all A c E. 

Proof: By (2.3) we know that ~ can be expressed as ~(B)= Io(C) 
CCB 

Hence we get: 

I <- 1 >1AI-IBI~(B) =I (-l)IAI-IBI I o(c) 
B=A B=A CCB 

=I o(c) I (-1)1AI-IBI= o(A) as stated. 0 

CcE CCB:::A 

(The last equality follows by Lemma 4.1 .) 

From a numerical point of view the formula given in Theorem 4.2. 

is quite useless since the n~1ber of terms in the sum graws 

exponentially with the cardinality of the set A. However, the 

formula appears to be useful in order to develop some general 
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results on signed domination. Especially, the following theorem is 

easy to prove by applying Theorem, 4.2. 

Theorem 4.3. (The signed domination theorem). 

Let (E, P be aclutter with lEI ) 2 and let e E E~ Then we 

have: 

d(P) = d(P+ ) - d(P ) e -e 

Proof: Applying Theorem 4.2. we can write: 

d(p) = o(E) = 2 (-1)1EI-1Bict>(B) 
B=E 

= 2 (-1)1EI-1Bict>(B) + 2 (-1)1EI-1Bict>(B) 
B::E B=E 
eEB e{B 

= 2 (-1) IEI-IBUel cj>(BUe) + 2 (-1) lEI-I Bl cj>(B) 
B::E-e B::E-e 

We now apply Proposition 2.10. and get: 

= 2 (-1)1E-ei-1Bicl> (B)+ 2 (-1)1E-ei+1-IBict>_e(B) 
BcE-e +e BcE-e 

= 2 (- 1 ) I E- e I - I B I cl> ( B ) - 2 (- 1 ) I E- e I -I B I cl>- e ( B ) 
BcE-e +e B::E-e 

= d(P+ ) - d(P ) , as stated, o e -e 

(The last equality follows by Theorem 4.2.) 

We observe that Theorem 4. 3. is true for all clutters, not only 

coherent structures. Our result is thus a slight generalization of 

the signed domination·theorem given in Barlow (1982). 

In the following sections we shall see how this result can be used 

in order to obtain more efficient algoritluns for reliability com-

putations. Another useful theorem obtained by applying Theorem 

4.2, is the following "multiplication rule" for signed domination: 
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Theorem 4.4. Let (E 1 ,P 1 ) and (E 2 ,P 2 ) be two disjoint clut­

ters, i.e. E1 n E 2= ¢. 

(i) Let (E,P) be the series connection of (E1 ,P1 ) and 

(E 2 ,p2 ), i.e. E = E1u E 2 and P E P if and only if 

P = P 1 u P 2 where P 1 EP 1 and P 2EP 2 . 

Then, d(P) = d(P 1 ) • d(P 2 ) 

(ii) Let (E,P) be the parallel connection of (E 1 ,P 1 ) and 

(E 2 ,p 2 ), i.e. E = E1u E2 and P E P if and only if P E P1 

or P E p 2 . Then, d ( P) = - d ( P 1 ) • d ( P 2 ) . 

Proof: Let 4> 1 I 4>2 and 4> be 

( E 1 I p 1 ) I (E2' p2) and (E, p) 

( i) Since (E I p) is the series 

Hence, by Theorem 4.2. we get: 

d(P) = I (-1) IEI-IAicp(A) 
.AI=E 

the structure 

respectively. 

connection of 

as stated. 

functions of 

(E1 ,P1 ) and 
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(ii) Since (E,P) is the parallel connection of (E 1 ,P 1 ) and 

(E 2 ,P 2 ), for all A 1~ E1 and A2 ~ E2 we have: 

Hence, by Theorem 4. 2. we get: 

d(P) = L (-1 )IEI-IAI <j>(A) 
AI=E 

= • 

Thus, the two first terms vanish and by applying Theorem 4.2. to 

the last terms we get: 

as stated. o 

The next theorem provides a formula for computing the signed domi-

nation of dual clutter. 

Theorem 4.5. Let (E,p) be a clutter, and let (E,C) be the 

corresponding daul clutter. 

Then we have: d(C) = (-1) IE I +1 d(P). 

Proof: Let <1> and <I>D be the structure functions of (E,P) and 

(E,C) respectively. 
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By standard results on dual structures we have: 

(See Barlow and Proschan (1981) .) 

D 
$ (A) = 1 - ci>(E-A) for all A c E. 

Hence, by Theorem 4.2. and Lemma 4.1., we get: 

d( c} = L (-1)1EI-IAI$D(A) = 
AcE 

L ( -1 ) IE 1-1 A I ( 1 -$ ( E-A)) 
AcE 

= L (-1)1AI-IAI_ 
AcE 

L (- 1 ) I E 1-1 A I $ ( E-A) 
Ac:E 

=0- L (-1)1EI-IE-BI$(B) 
B::E 

as stated. o 

We close this section by giving some simple applicati.ons of these 

results. 

Proposition 4.6. Let (E,P) be a coherent structure where C is 

the family of minimal cut sets. Let j E E and let A be a fixed 

non-empty subset of E - j. 

(i) Assume that j E P if and only if P n A * ¢ for all P E p. 

Then we have: d(p) = d(p+j)' and thus 

(ii) Assume that j E C if and only if 

D(P} = D(P+j). 

C n A * ¢ for all C E C . 

Then we have: d(P) = -d(P+j)' and thus D(P) = D(P+j). 

Proof: (i) Assume that e E P if and only if P n A * ¢ for all 

P E p. Then, by Proposition 3.6, (E-j,P+j) is coherent while 

(E-j,p .) is noncoherent. 
-J 
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Hence, by Theorem 4.3. and Corollary 2.6, we get: 

d ( P) = d( P+.) - d( P . ) = d( P+.) - 0 = d( P+ . ) • 
J -J J J 

Moreover: D(P) = id(P) I = id(P+j)l = D(P+j). 

(ii) is proved similarly. o 

Corollary 4.7. Let (E,P) be a coherent structure and let 

i, j E E. 

(i) If i and j are in series, then we have: 

d(P) = d(P+j), and thus D(P) = D(P+j). 

(ii) If i and j are in parallel, then we have: 

d(p) = -d(P .), and thus D(P) = D(P .) . 
-J -J 

Proof: Apply Corollary 3.7., Theorem 4.3. and Corollary 2.6. o 

Corollary 4.8. The domination of a coherent structure remains 

invariant to s-p-reductions. o 

Corollary 4.9. The domination of an s-p-structure is one. 

Proof: Let (E,P) be a coherent structure, and let (Er,Pr} be 

the clutter obtained from (E,P) by performing all possible s-p­

reductions. Then, by Corollary 3.7. (Er,Pr) is a coherent struc-

ture as well. 

Thus, if (E,P) is an s-p-structure, we have: 

(Er,Pr) = ({e}, {P}), where P = {e}, and e E E. 

Hence, obviously D(Pr) = 1 by Proposition 2.5. However, by 

Corollary 4.8., D(P) = D(Pr). So we conclude that D(P} = 1, as 

stated. o 
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5. Signed domination and directed graphs. 

The results given in this section are mainly taken from Satyana­

rayana and Prabhakar (1978}, Willie (1980) and Satyanarayana 

(1982). 

However, we shall obtain these results by applying Theorem 4.3. 

This leads to a new, simple and unified proof, handling the most 

general case directly. 

The class of system we shall consider are so-called source-to-K­

terminal (SKT) systems. The following example describes such a 

system. 

Example 5.1. Consider the directed network illustrated in Figure 

5. 1 • 

5 

Figure 5.1. 

The system is functioning if the source node S can send communi-

cation to the terminals T 1 , T2 and T3 through the network. 

Hence, the minimal path sets are: P 1= {1,2,5,6,7,8}, P 2= 

{1,3,5,6,7,8} and P 3= {2,4,5,6,7,8}. This is a source-to-K-ter­

minal (SKT) system, where K = {T 1 ,T 2 ,T 3 } is the set of termi­

nals. We observe that the network contains a directed cycle, con­

sisting of the components {3,4,5}. In general a directed graph 

containing directed cycles will be called a cyclic graph While 
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directed graphs not containing such cycles will be called acyclic 

graphs. The main results in this section is strongly related to 

these two concepts. 

In order to apply Theorem 4.3. to SKT systems, we shall first 

study the effects of minor operations on such systems. 

Example 5.2. Consider the directed network illustrated in Figure 

5.2. 

s T 

Figure 5.2. 

The system is said to be functioning if S can send communication 

to T. So, this is an SKT system with K = {T}. 

The clutter describing this system is given by (E,P) where E = 

{ 1 1 2 1 • • 1 5 } and p = { { 1 1 4 } 1 { 1 1 3 1 5 } 1 { 2 1 5 } } • 

Let us first perform contraction and restriction with respect to 

the edge 1. We get: 

p + 1 = { { 4 }, { 3 1 5 } 1 { 2 I 5 } } and p _1 = { { 2 I 5 } } o 

It is easy to see that the minor clutters, (E-1,P+1 ) and 

(E-1,P_1 ) can be represented by the networks G+1 and G_ 1 (See 

Figure 5.3.) respectively. 
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,. 

Figure 5.3. 

Thus, we have geometric interpretation of the minor operations 

which is similar to the one for undirected networks. 

However, if we perform contraction and restriction with respect to 

the edge 3, this will not be true. 

In this case we get: 

P+3= {{1,4}, {1,5}, {2,5}} and P_3= {{1,4}, {2,5}}. 

We observe that (E-3,P_3 ) can be represented by a network 

obtained frorn G by deleting the edge 3, while (E-3,P+3 ) is 

nonrepresentable. 

The following obvious proposition, which we state without proof, 

characterize this problem. 

Proposition 5.3. Let (E,P) be an SKT system represented by a 

directed network G, and let e E E. Furthermore, let G+e be the 

directed network obtained from G by deleting e and identifying 

the endpoints of e, and let G 
-e 

be the directed network obtai-

ned from G by deleting e. 

Then (E-e, P ) 
-e can be represented by G -e 

Moreover, (E-e, P +e) can be represented by G 
+e if and only if 
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e can be replaced in G by an undirected component without 

altering (E,P). 

In this case we say that e is one-way relevant. Components which 

are not one-way relevant are said to be two-way releva?t· o 

The results we are about to develop in this section will all rely 

on the following very simple observation: 

Lemma 5.4. Let (E,P) be an SKT system, and let S be the 

source node. Then any component directed into S is irrelevant. o 

Corollary 5 . 5. Let ( E, p) be an SKT system, and let E c E 
s-

be 

the set of components coming out from the source node. Then each 

component in E s is one-way relevant. 0 

Corollary 5.6. Let (E,P) be an SKT system where all the compo-

nents are relevant, (i.e. (E, P) is a coherent structure.), and 

let E c E be the set of components coming out from the source s-

node. Then none of the components in 

in the network. o 

E s 
is included in any cycle 

Having established these basic results, we now turn to the two 

main theorems of this section. 

Theorem 5.7. Let (E,P) be a cyclic SKT system, (i.e. the 

corresponding directed network is cyclic.) Then d(P) = 0. 

Proof: If the system contains irrelevant components, then by 

Corollary 2.6, d(P) = 0. Hence, we may assume that (E,P) is a 

coherent structure. 
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Let n = lEI. The proof is by induction on n. 

Obviously, there exists no cyclic, coherent SKT system having only 

one component. Thus, in order to initiate the induction process, 

we start out by simply assuming that n is as small as possible 

without specifying this number. That is, any SKT system having 

less than n components is either acyclic or noncoherent. 

Let e be a component coming out from the source node. By 

Corollary 5.5 e is one-way relevant. 

Thus, by Proposition 5.4. both (E-e,P+e) and (E-e,P ) are SKT 
-e 

systems (possibly degenerated) having (n-1) components. 

Furthermore, by Corollary 5.6 e is not included in any cycle in 

the network, implying that (E-e,P+e) and (E-e,P ) -e are cyclic. 

Thus, by the assumption that n is as small as possible, we 

conclude that (E-e,P+e) and (E-e,P ) are noncoherent. -e 

However, by Corollary 2.6, this implies that: 

Hence, by Theorem 4.3. we get: 

d(P) = d(P+e) - d(P_e) = 0- 0 = 0. 

Assume now that the theorem is true for every m ( n 0 , and let n 

=no+ 1. 

We then choose e, a component coming out from the source node. 

By the same arguments as above we get that both (E-e,P+e) and 

(E-e,p ) are cyclic SKT systems having n 0 components. -e 

Thus, by the induction hypothesis, we must have: 

d(p+ ) = d(p ) = 0 e -e 
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Hence, applying Theorem 4.3. once again, we get: 

d(P) = d(P ) - d(P ) = 0- 0 = 0, as stated. o 
+e -e 

The next result concerns the case of acyclic SKT systems, (i.e. 

SKT systems where the corresponding directed network is acyc lie. ) 

Before we can prove this result we need the following concepts: 

The indegree of a node is the number of components directed into 

the node. A node with indegree zero is called a root in the net-

work. 

The following lemma is a well-known property of acyclic graphs; so 

we sta·te this result without proof. (It can be proved by introdu-

cing a partial ordering on the nodes and using the existence of 

minimal elements of finite partial ordered sets. For more details, 

see Graver & Watkins (1977) Ch. liB.) 

Lemma 5.8. Any acyclic directed network has at least one root. o 

We can now prove the theorem. 

Theorem 5.9. Let (E,p) be an acyclic SKT system with only rele-

vant components, and no isolated nodes. Let n0 be the number of 

components and v be the number of nodes in the corresponding 

directed network. Then we have: 

d(P) = (-1)n-v+1 

Proof: The proof is by induction on n. It is very easy to see 

that the theorem is true when n = 1. 

Assume now that the theorem is true for every m <: n 0 and let n = 

n0 + 1. So, especially n ~ 2. 
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Let G be the network of the system, and denote by G-S the 

network obtained from G by deleting the source node, S, and all 

the components directed out from s. 

Since G is assumed to be acyclic, obviously G-S must be acyc-

lie as well. 

Hence, by Lemma 5.8. G-S has at least one root, say node N. 

Since the system has only relevant components and no isolated 

nodes, G must contain at least one component directed from S to 

N, say component e. 

By Corollary 5.5. e is one-way relevant, so by Proposition 5.3., 

both (E-e,P+e) and (E-e,P_e) are SKT systems having n-1 

components. We also know that (E-e,P+e) contains v-1 nodes 

while (E-e,P ) contains v nodes. Finally, since (E,P) is -e 

acyclic, obviously (E-e,P+e) 

well. 

and (E-e,P ) must be acyclic as -e 

Let E be the set of s 
components directed from s to N, (so 

e EE ) , let EN be the set of components coming out from N, and s 

let K be the set of terminal nodes. 

If IE I > 2, then e is in parallel with the rest of the compo-
s 

nents in E . Thus, (E-e,P ) cannot contain any isolated nodes. 
s -e 

Moreover, by Corollary 3.7., (E-e,P+e) is noncoherent while (E­

e,P ) is coherent. -e 

Hence, by Theorem 4.3., Corollary 2.6. and the induction hypothe-

sis, we get: 

d(P) = 0 _ d(P ) = -(- 1 ) (n-1 )-v+1 = (- 1 )n-v+1 
-e as stated. 

If IE I = 1, i.e. E = {e}, we consider two possible cases: s s 

Case 1 . N E K 
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Since E = {e} and N is a root in G-S, {e} is the only path s 

from S to N in G. Thus, since N EK, we must have e E P for 

all P E P. Since we have assumed that lEI = n ) 2, this implies 

that for all P E P, we have that e E P if and only if 

P n (E-e) :f ¢. 

Case 2. N $ K. 

In this case obviously EN must be nonempty since otherwise e 

would be irrelevant, contradicting the assumption that (E,P) is 

coherent. Applying this, it is easy to see that for all P E P 

we have that e E P if and only if P n EN:f ¢. 

We see that in both cases we may apply Proposition 3.6. (i) and 

get that is coherent while (E-e,P ) -e is noncoherent. 

Horeover, since we have assumed that (E,P) contains no isolated 

nodes, obviously (E-e,P+e) cannot contain any isolated nodes 

either. 

Hence, we may apply Theorem 4.3., Corollary 2.6. and the induction 

hypothesis and get: 

d( p) = d( p+e) - 0 = (-1) (n-1 )-(v-1 )+1 = (-1 )n-v+1 as stated. o 

As an illustration we shall now briefly outline how Theorem 5.7. 

and Theorem 5.9. can be used in order to calculate the 

reliability of SKT systems. 

Let (E,p) be an SKT system with structure function ~ = ~(~) 

where x = (x1 , ... ,xn) is the component state vector. Further­

more, let 6 be the signed domination function of (E,P), and let 

X be the random vector corresponding to x. 

Since, by (2.2) ~ is given by: 
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~ = ~ (~) = I 0 (B) II X. 
B=E iEB ~ 

we get that the reliability of the system can be written as: 

h = E~(~) =II &(B) P( II X.=1) 
~ B=E iEB ~ 

= I d( P -(E-B) )P ( II X. =1), applying Corollary 2.11. 
BeE iEB ~ 

Now, in general we could proceed by applying Proposition 2.5. in 

order to determine h~. This method is equivalent to the well­

known Inclusion-Exclusion method, (See Barlow and Proschan (1981)) 

and we observe that in order to proceed like this, we need to know 

the family P • Determining P is in general an exponential time 

problem. Moreover, when P is found, there are still great compu-

tational tasks left before arriving at h~. Hence, this procedure 

is of limited value when the system under consideration is large. 

However, since (E,P) is an SKT system, obviously (B, P -(E-B)) 

is an SKT system as well, for all Be E. Hence, d(P_(E-B)) maybe 

computed by applying Theorem 5.7. and Theorem 5.9. Thus h~ may 

be rewritten as: 

h = 
~ 

where we define: 

I 
BEB 

( -1) I B 1-v( B)+ 1 P ( II X. =1 ) , 
iEB ~ 

B = {a:.=_E : (B, P -(E-B)) is acyclic} 

v(B) =The number of nodes in (B,P_(E-B)) 

Satyanarayana and Prabhakar (1978) and Satyanarayana (1982) 

provides an algorithm which efficiently generates the family B 

and hence h~ may be computed. 

We close this section by providing an (Msy generalization of 
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Theorem 5.7. and Theorem 5.9. to network communication systems 

with more than one source node. Suchsystems will be called multi-

source-to-K-terminal sytems, (MSKT systems). We still assume that 

the underlying network is directed and we say that an MSKT sys-

tern is functioning if every terminal can get communication from ~ 

least one source node. 

The following theorem generalizes Theorem 5.7. and Theorem 5.9. to 

MSKT systems. 

Theorem 5.10. Let (E,P) be a coherent MSKT system with n 

components and v nodes. Moreover assume that s of the nodes 

are source nodes. 

Then we have: 

--{(-l)n-v+s 
d(P) 

0 

if the network is acyclic 

if the network is cyclic. 

Proof: Let G be the underlying directed network, let s 1 , ••. ,ss 

be the source nodes, and T 1 , ..• ,Tk the terminal nodes. 

We then add a new artificial source node S, and artificial compo-

nents from S respectively. (See 

Figure 5. 4. ) . 

Let G denote the extended network, and A= {a1 , ... ,as} 

Figure 5.4. 
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..... 
He observe that G is acyc lie if and only if G is acyc lie. 

Now, let (A,P*) be the SKT system which is functioning if S 

can send communication to s1 , ..• ,S 8 , and let (AUE,p) denote the 

series connection of (A,P*) and (E,p). 

Thus, (AUE, P) is functioning if and only if S can send commu-

nication to s 1 , ... ,Ss and T 1 , ... ,Tk. 

Hence, (AUE,P) is an SKT system with G as the underlying net-

work. 

So, since G has n + s components and v+1 nodes, by Theorem 

5.7 and Theorem 5.9 we get: 

""' d(P) 
f ( -1 ) ( n + 1 ) - ( v+ 1 ) + 1_ 1. f G = l _ ( _1 ) n-v+ s is acyclic 

0 if G is cyclic. 

Moreover, by Theorem 5.9. d(p*) = (-1)s-(s+1 )+1= 1. Hence, by 

Theorem 4.4. (i) we get: 

d(P) d <'P > = --= 
d( p*) 

{ (- 1 )n-v+s 

0 

if 

if 

G 

G 

acyclic 

is cyclic. 0 

For the time being the algorithm of Satyanarayana, and Prabhakar 

(1978) has not been generalized to MSKT systems. However, by using 

methods similar to those in Satyanarayana (1982), it is probably 

easy to carry out this extension. 
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6. The domination theorem. 

The domination theorem which will be proved in this section, plays 

an important part in the study of the so-called "factoring algo-

r i thm" for reliability computations. 

However, it turns out that this theorem is not true for all cohe-

rent structures, Until now it has only been proved to be true for 

K-terminal undirected network systems and k-out-of-n systems. 

(See Satyanarayana and Chang, (1983) and Barlow (1982).) 

We shall present a generalized version of this result which is 

valid under a certain regularity condition. This is done by esta-

blishing a relation between coherent structures and matroids. 

Especially, we shall prove that the regularity condition is satis-

fied for both K-terminal undirected network systems and k-out-of-n 

systems. Hence, our result is in fact a generalization of the 

previously known results. 

Before we can prove the domination theorem, we shall review some 

basic results from matroid theory. We start by the definition of a 

matroid. 

Definition 6.1. A matroid is a clutter (F,M) satisfying: 

(6.2) if A, B E M , A t B, and j E A n B, then there exist a set 
C E M such that C ~ (AUB)-j. 

Example 6.3. Let G be an undirected graph with edge set F, and 

let M be the collection of minimal circuits in the graph. Then 

it is easy to see that (F,M) is a matroid, (called the circuit 

matroid of the graph G.) 

Especially, let G be the graph shown in Figure 6.1. with edge 

set F = {1,2,3,4,5}. 
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Figure 6.1. 

In this case we get: M = {A,B,C} where A= {1,2,3}, B = {3,4,5} 

and C = { 1 , 2, 4, 5 } . 

We observe that C = {1,2,4,5} c (AUB)- {3}, and so on. 

Example 6.4. Let H be a matrix (of numbers from a given field). 

Furthermore, let F be the set of columns, and let M be the 

family of minimal linearly dependent sUbsets of F. Then (F,M) 

can be shown to be a matroid. 

As illustrated in Example 6.4., the matroid (F,M) just describes 

the "dependency structure" of the matrix H. Thus, the concept of 

matroids can be understood as an abstraction of the dependency 

concept described by a set of axioms. It turns out that a lot of 

the well-known concepts of linear algebra, such as rank, bases, 

hy.perplanes and others, can be generalized to matroids. In this 

paper, we shall especially need the concept of rank which is 

defined as follows: 

Definition 6.5. Let (F,M) be a matroid. Then we define: 

p (M) = The rank of M = max {I A I M $ A for all M E M } 

Example 6.6. Let (F,M) be a matroid corresponding to a matrix 

H. Then p(M) is just the rank of the matrix H. 
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Example 6.7. Let (F,M) be the circuit matroid of a connected 

graph with v nodes. 

Then a maximal set of edges not containing a circuit is a spanning 

tree. (See Graver and Watkins (1977)). 

Hence, since all spanning trees of the graph contains v-1 edges, 

we conclude that p(M) = v-1. 

We shall now introduce the matroid concept corresponding to cohe-

rency. 

Definition 6.8. Let (F,M) be a matroid. He say that (F,M) is 

connected if for every pair of distinct elements i and j of 

F, there is a set M EM containing i and j. 

Now, just by considering this definition, it is not obvious how 

connectedness is related to coherency. The next proposition, how-

ever, provides an explanation for this. 

Let us first introduce some more notation. 

Assume that M is a family of subsets of a given set F, and let 

e E F. 

Then we denote by Me the subfamily of M given by: 

M = {M E M e 
e E M}. 

Proposition 6.9. Let (F, M) be a matroid, and let e be a 

fixed element of F. Then (F, M ) is connected if and only if: 

Proof: See Welsh (1976). o 

U M = F 
M E Me 

We now easily get the following corollary describing the relation 

between coherency and connectedness. 



- 43 -

Corollary 6.10. Let (F,M) be a matroid, and let e be a fixed 

element of F. Then the following are equivalent: 

( i ) 

(ii) 

(F,M) is connected. 

(F, M ) is a coherent structure. 
e 

(iii) (F-e, (Me)+e) is a coherent structure. 

Proof: (i) <=> (ii) follows directly from Proposition 6.9. and 

Definition 2.2. 

( i) <= > (iii) follows since (M )+ = {M-e: MEM } . e e e 

(This is true since eEM for all MEM , and hence all sets of e 

form M-e (MEMe) will be incomparable). 

Hence, U M = 
ME(M )+ e e 

U (M-e) 
MEM e 

and only if U M = F. o 
ME M e 

= [ U M] 
MEM e 

- e, so = F-e if 

The last two result we need from the theory of matroids is the 

following: 

Proposition 6.11. Let (F,M) be a matroid. Then every minor of 

(F,M) is a matroid as well. That is, the class of matroids is 

closed under minor operations. 

Proof: See Welsh (1976). o 

Proposition 6.12. Let (F,M) be a matroid, and let e E F. Then 

we have: 

(i) p(M+e) = p(M) -1 

(ii) p(M_e) = p(M) if (F,M) is connected. 
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Proof: See Welsh (1976) o 

Now, in order to apply matroid theory to clutters and coherent 

structures, we must establish some "natural" relationship between 

these concepts. This problem was studied in Lehman, A. (1964), and 

in the spirit of Lehman's approach, we now introduce the following 

definition, which appears to solve our problems. 

Definition 6.13. We say that a matroid (F,M) corresponds to the 

clutter (E,P) if: 

( E, P ) = ( F- x, ( M ) + ) 
X X 

where x is some fixed artifical component. Furthermore, we say 

that a clutter is regular if it has a corresponding matroid. 

We observe that if (F,M) corresponds to the clutter (E,P) 

where E = F-x, then P is obtained from M by selecting the 

sets in M containing x, (i.e. the subcollection Mx), and then 

deleting x from each set in M . 
X 

Similarly we see that if (E,P) is a clutter and P = { PU x : P E P} , 

then (E,P) is regular if P can be extended to a family M 

such that ( EU x, M ) is a matroid and p = M . 
X 

Finally, we get by Corollary 6.10., that a regular clutter is a 

coherent structure if and only if the corresponding matroid is 

connected. 

As indicated in Definition 6.13. it is not true in general that a 

clutter has a corresponding matroid. That is, there exists 

irregular clutters as well as regular ones. Especially, it is 

possible to show that every MSKT system not being an s-p-structure 

is irregular (Corollary 6.20). 
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The following example indicates that at least 2-terminal 

undirected network systems are regular. 

Example 6.14. Consider the 2-terminal undirected network system, 

G, shown in Figure 6.2., which functions if node S and node T 

can communicate through the network. 

s T 

Figure 6.2. 

Let E = {1,2, .. ,7} be the set of components, and 

p = The family of minimal paths from S to T. 

In order to find the corresponding matroid of (E,P), we introduce 

p = {Pux : P E p} where x * E is an artificial component. Now, 

our problem is to extend P to a new family M such that 

(EUx, M) is a matroid. This is done as follows: 

Assume that the artificial component x is added to the graph 

between S and T. (See Figure 6.3.) 

~I 

Figure 6.3. 
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We now define: 

M = The family of minimal circuits in the graph G'. 

As in Example 6.3. it is easy to see that (EUx,M) is a matroid. 
~ 

Moreover, since obviously P is the family of minimal circuits 
~ 

in G' containing x, we get that P = Mx· 

Thus, we conclude that (E,P) is regular. o 

An important question to answer before we can prove the domination 

theorem is the following: Is a corresponding matroid to a regular 

clutter unique, or is it possible that a clutter may have several 

corresponding matroids. The following proposition provides an 

answer to this question. 

Proposition 6.15. Let (E,P) be a regular clutter, and let x be 

an artificial component (x*E). Then a corresponding matroid is 

uniquely determined by (E,P) and x if and only if (E,P) is 

coherent. 

Proof: See Lehman, A. (1964). o 

One should notice that the uniqueness of the corresponding matroid 

depends on the coherency property. That is, a noncoherent 

structure may in general have more than one corresponding matroid. 

It is, however, possible to prove the following result: 

Proposition 6.16. Let (E,p) be a regular clutter, and let (F,M) 

be a corresponding matroid. 

Then for all e E E we have 

(i) (F-e,M+e) is a corresponding matroid of (E-e,p+e). 



(ii) (F-e,M ) 
-e 
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is a corresponding matroid of ( E-e, M ) • -e 

Proof: (i) Assume that F = E U x Where x ~ E, and let e E E. 

Since (F,M) corresponds to (E,P ), by Definition 6.13, we must 

have: 

M = { PUx : PEp} 
X 

Furthermore, by Definition 2.7., we have: 

p =The family of minimal sets of the form P- e, where P E p. +e 

Applying this, we get: 

{PUx : P EP }= The family of minimal sets of the form (P-e) U x, +e 

where P E P. 

= The family of minimal sets of the form (PUx) - e, 

Where P E P. 

= The family of minimal sets of 

where M E M 
X 

= The family of minimal sets of 

where M E M and such that 

= (M ) (By Definition 2.7.) +e x 

the form M - e 

the form M - e 

X E (H-e) . 

Hence, by Definition 6.13., (F-e,M+e) corresponds to (E-e,P+e). 

(ii) Is proved similarly. o 

Now, we turn to the domination theorem, and start by proving the 

follOINing Lemma: 

Lemma 6.17. Let (E,p) be a regular clutter, and let (F,M) be 

a corresponding matroid. Then we have: 

d(P) = (-1)1EI-p(M)D(P) 
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Proof: We observe that if (E,P) is noncoherent, then, by Corol-

lary 2.6., d(P) = D(P) = 0. Hence, the Lemma is trivially true in 

this case. 

Assume then that (E,P) is coherent. In this case (F,M) is 

uniquely determined by (E,P) (by Proposition 6.15.) so p(M) is 

a unique number. 

The proof is now by induction on lEI. 

It is easy to verify that the lemma is true when lEI = 1. 

Assume then that the lemma is true when lEI ( n and assume that 

IE I = n. 

We now choose e E E. 

By Proposition 6.16. (E-e, P+e) and (E-e, P ) are both regular, -e 

with corresponding matroids: (F-e, M+e) and (F-e, M ) -e respec-

tively. 

Furthermore, by Corollary 6.10. (F,M) is connected since (E,P) 

is coherent. 

Hence, by Proposition 6.12., p(M+e) = p(M) -1 and p(M ) = p(M). -e 

We now apply Theorem 4.3. and the induction hypothesis and get: 

d(p) = d(p+) - d(p ) e -e 

I E-e 1- p ( M + ) 
= ( -1 ) e D ( p +e) 

IE-el-p(M_ ) 
(-1) e D(P ) 

-e 

= (- 1 )<1EI-1)-(p(M)-1)D(P ) _ (- 1 )<1EI-1)-p(M)D(P ) 
+e -e 

= (-l)IEI-p(M)(D(P )+D(P )). 
+e -e 

Hence, by taking the absolute value on both sides we get: 
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Thus, by substituting (D(P+e) + D(P_e)) by D(P) in the expres-

sion above, we get: 

d(P) = (-1) IEI-p(M)D(P) as stated. o 

As a direct consequence we now get the main result of this sec-

tion: 

Theorem 6. 1 8. (The domination theorem) 

Let (E,P) be a regular clutter where lEI ) 2 and let e E E 

bea relevant component. Then we have: 

D ( P) = D ( P +e) + D ( P _e) . 

Proof: If (E,P) is noncoherent, it is easy to see that 

(E-e,P+e) and (E-e,P ) are noncoherent as well since e is -e 

relevant. 

Hence, by Corollary 2.6., D(P) = D(P+e) = D( p ) = 
-e 0, so the 

theorem is trivially true in this case. 

If (E,P) is coherent, the theorem follows by the proof of Lemma 

6.17. 0 

Corollary 6.19. Let (E,P) be a regular coherent structure. Then 

D(p) > 0. Moreover, D(P) = 1 if and only if (E,P) is an s-p-

structure. 

Proof: The proof is by induction on lEI. 

If lEI = 1, then obviously (E,P) is an s-p-structure, and 

D(P) = 1, so the result is trivially true. 

Assume now that the result is true if lEI < n, and let lEI = n. 

If (E,P) is an s-p-structure, then by Corollary 4.9. D(P) = 1. 
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Assume conversely that (E,P) is not an s-p-structure, and let 

(Er, Pr) be the clutter obtained from (E,P) by performing all 

possible s-p-reductions. 

Thus, (Er, Pr) is obviously a minor of (E,P) and hence, by 

Proposition 6.16., (Er, Pr) is regular as well. 

Moreover, by Corollary 3.7., (Er, Pr) is coherent. 

Finally, since we have assumed that (E,P) is not an s-p­

structure, then obviously (Er, Pr) cannot be an s-p-structure. 

If Er~ E, i.e. jEri < n, we may apply the induction hypothesis 

and Corollary 4.8. and get: 

D(P) = D(Pr) > 0. 

'"'oreover, s1'nce (Er, Pr) · t t t r b th ~l 1s no an s-p-s rue u e, y e 

induction hypothesis we get: 

D(P) = D(Pr) :f 1, i.e. D(P) > 1, as stated. 

If Er = E, then (E,P) must be complex. 

Hence, by Theorem 3.13. there exists a component j E E such that 

both (E-j, P+j) and (E-j,P_j) are coherent. 

Moreover, (E-j,P+j) and (E-j,p_j) are regular by Proposition 

6.16., and jE-jj = n-1 < n. 

Thus, by the induction hypothesis we get: 

Hence, by Theorem 6.18. we get: 

D(P) = D ( P+ . ) + D ( P . ) ) 
J -J 

and D ( p . ) > 0 • 
-J 

1 + 1 = 2 > 1, as stated. 0 
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Corollary 6.20. Let (E,P) be an MSKT system. Then (E,P) is 

regular if and only if (E,P) is an s-p-structure. 

Proof: It is not difficult to prove that every s-p-structure is 

regular. 

Assume conversely that (E,P) is regular. 

Hence, by Corollary 6.19., D(P) > l. Moreover, since (E,P) is an 

MSKT system, by Theorem 5.10., we get that D(P) ~ 1. 

Thus, we must have D(P) = 1, which by Corollary 6.19. implies 

that (E,P) is an s-p-structure, as stated. o 

In the next section we shall see haw the domination theorem can be 

used to deduce properties of the factoring algorithm. Since the 

domination theorem is restricted to regular clutters, it is impor­

tant to study this class further. 

Lehman, A. (1964) provides an algorithm for checking whether a 

clutter is regular or not. However, this algorithm assumes that the 

family of minimal path sets are given. In order to find simpler 

conditions, we shall present some general results on regularity. 

Theorem 6.21. The dual of a regular clutter is regular. That is, 

the class of regular clutters is closed under duality. 

Proof: This result is a direct consequence of Lemma 18 and 19 in 

Lehman, A. (1964), so we omit the proof. o 

Theorem 6. 22. If a clutter can be decomposed into modules, the 

clutter is regular if and only if each module is regular and the 

organizing structure is regular. 
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Proof: The proof is straightforward but rather technical and thus 

omitted here. o 

Theorem 6.23. Any k-out-of-n system is regular. 

Proof: Let (E,P) be a k-out-of-n system. That is, IEI=n and 

P = {P~E : I PI = k}. We then introduce: 

P = {PUx : PEP} where x ~ E is an artificial component. 

We shall extend P to a family M such that (EUx,M) is a 

matroid and p = M • 
X 

This is done by defining M as follows: 

M = { M::E Ux : I M I = k + 1 } . 

Since, all sets in M have the same cardinality, they are 

obviously incomparable. 

Furthermore, if M E M and X E M, then (M-x) c E and 

IM-xl = k, i.e. (M-x) E p • So Mx c r. 

since 
..... 

fi = M Hence, obviously p c Mx' we conclude that . 
X 

It remains to prove that if A,B E M I A =I= B and j E A n B, then 

there exists C EM such that C ~ (AUB)-j. 

Thus, we choose A,B EM , A =1= B such that j E A n B. 

Since A =I= B, obviously A and B are incomparable. Hence, 

there exists e E E U x such that e E A and e ~ B. Thus, since 

IAI = IBI = k +1, we must have: 

IAUBI ) k + 2, i.e. I (AUB)-jl ) k + 1. 
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Hence, there exists C ~ (AUB) - j such that jcj = k+1, i.e. C 

E p, so we conclude that (EUx,P) is a matroid. Thus, we have 

proved that (E,P) is regular as stated. o 

The next result we shall present, provides another large class of 

regular clutters. In Huseby (1983) it is shown that this class and 

the class of k-out-of-n systems only have series and parallel 

systems in common. 

Theorem 6.24. Let (E,P) 

of minimal cut sets. If 

then (E,P) is regular. 

be a clutter and let 

is odd for all 

Proof: See Theorem 47 in Lehman, A. (1964). o 

C be the family 

P E P and CE C, 

In Huseby (1983) a clutter satisfying the condition given in 

Theor~n 6.24, is called a linear clutter. It can be shown that if 

(E,p) is a linear clutter, then the corresponding matroid can be 

represented by a matrix over the field of order 2, GF(2). (See 

Lehman, A. (1964).) In Huseby (1983) it is shown that every 2-

terminal undirected network system is linear. Hence, we obtain 

especially that every 2-terminal undirected network system is 

regular, (as indicated in Example 6.14). However, the class of 

linear clutters is in fact much larger. Thus, for a general line­

ar clutter it is suggested to use the matrix over GF(2) as a 

representation of the system. The following example provides a 

linear system not being a 2-terminal undirected network system. 

Example 6.25. Consider the undirected network system (E,P) 

shown in Figure 6.4. 



- 54 -

b 

T'l. 
Figur 6.4. 

The system is said to be functioning if s 1 and T 1 can communi­

cate with each other or s 2 and T2 can communiate with each 

other. 

In this case we get that E = {1,2, ..• ,6} and P = {P1 , •.. ,P7 } 

where: 

P 1 = {1,4}, P 2 = {2,5}, P3 ={1,3,5}, P4 ={2,3,4}, 

P 5 = { 1 , 2, 6 } , P 6 = { 3, 6 } and P 7 = { 4, 5, 6 } . 

The family of minimal cut sets of (E,P), C is given by: 

c = {c 1 , ... ,c4 } where: 

C 1 = { 1 , 2 , 6 } , c 2 = { 1 , 3 , 5 } , C 3 = { 2 , 3 , 4 } and C 4 = { 4, 5 , 6 } . 

Hence, it is easy to check that IPncl is odd for all PEP and 

CEC, and thus (E,P) is linear and hence regular by Theorem 

6. 24. D 

We close this section by proving that every K-terminal undirected 

network system is regular. However, it turns out that this result 

is a special case of a much more general result, so we start by 

presenting the general case. We shall need the following lemma: 
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Lemma 6.26. Let (F,M) be a matroid, and assume that A and B 

are two distinct sets in M such that jEAnB. Then for any 

kEA-B there exists a set CEM such that kEC and C c (AUB)-j. 

Proof: See Theorem 2., p. 24 in Welsh (1976). o 

We also need the following notation: 

Let (E, P1 ), ... , (E, Pm) be clutters. Then P = P1 • P2 • • • Pm = The 

family of minimal sets P of the form P = s 1u•••USm where 

S E p, r = 1, ... ,m. We observe that (E,P) is the series connec-
r r 

tion of (E,p1 ), ... ,(E,Pm). That is, (E,P) is functioning if and 

only if (E,p1 ), ... ,(E,pm) are functioning. Moreover, as 

usually, if P is a family of sets, then P denotes the family 

defined by P = {PUx:PEP}, where x is some fixed artificial 

component. 

Theorem 6.27. Let (E, P1), ... ,(E,Pm) be regular clutters and let 

(EUx,N 1), ... ,(EUx,Nm) be the corresponding matroids respectively. 

Assume that N. = P.UM, where 
J J 

M is the family of sets MEN. such 
J 

that x$M, j = 1, .•. ,m (i.e. M is independent of j). Then 

(E, p) = (E, p1 • • ·Pm) is regular, and (EUx, PU M) is the corre­

sponding matroid. (P = {PUx:PE P} = {PUx:PE P1 • • • Pm}.) 

Proof: It is sufficient to prove that (EUx, PUM) is a matroid 

since this implies that (E,p) is regular. Hence, we must prove: 

( i) 
~ 

pU M is a family of incomparable subsets of EUx. 

(ii) If A,BE(PUM), A*B and jEAnB, then there exists a set 

CE ( PU M) such that C c (AUB )- j. 

We start by proving (i). 

Obviously, P and M are both families of incomparable subsets of 

EUx. 
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~ 

Moreover, if PEP and MEM, then we cannot have P c M since 

(P1 UM), ... , (PmUM) are families of incomparable subsets of EUx, 
~ ~ ~ 

and PEP implies P being a union of sets in P1 , ... ,pm. 
~ 

So, it remains only to prove that if PEP and MEM, then M t P. 

Assume conversely that PEP, MEM and M c P, and let 

S EP , r = 1, ... ,m. 
r r 

Now, we choose an arbitrary element jEM, and let J = {r:jES , 
r 

1 "r"m}. 

Since M c P = S U•••US J 
1 m' 

must be nonempty, and we have jEMnS 
r 

for all rEJ. Furthermore, since SrEPr' r = 1, ... ,m and MEM, we 

especially have that 

true for all r. ) 

xES -M 
r 

for all rEJ. (In fact, this is 

Hence, since (EUx, PrUM) is a matroid for all rEJ, by Lemma 

6.26 there exists a set S'EP UM such that xES', i.e. S' EP, r r r r r 

and S' c (S UM)-j for all rEJ. 
r- r 

However, this implies that: 

P' = [US'] U [US] 
rEJ r r*J r 

c ( U ( S UM ) - j ] U ( U S ] 
rEJ r r*J r 

m m 
= ( u s ]-j 

r=1 r 
c(us]=P 

r=1 r 

We have assumed that PEP. That is, P is a minimal union of sets 
~ 

S EP . Thus, we have arrived at a contradiction. r r 

Hence, we conclude that (i) is true. 

We now turn to the proof of (ii). Assume first that A,BEM, and 

j EAnB. 

6 o 1 1 1 

Since (EUx, P UM) 
r 

((EUx)-x, (p UM) )= r -x 

(1(r(m} is a matroid, by Proposition 

(E,M} is a matroid. Hence, there 

exists a set CEM such that C c (AUB}-j, so we conclude that 

(ii} is true. 
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Next, assume that AEP, BE M and j EAnB, and let A = S U • • •US 1 m 

where S EP , r = 
r r 

1, •.. ,m. Furthermore, let J = { r : j E S , 1 .,; r <;m } . 
r 

We observe that we have xES -B r 
for all rEJ. 

Hence, since (EU x, P UM) 
r 

is a matroid for all rEJ, by Lemma 

6.26, there exists a set s I EP UM such that xES', i.e. 
r 

S' EP r r' r r 

and S' c (S UB)-j for all rEJ. 
r- r 

Now, let D = L uS' J u L us ]. 
rEJ r r~J r 

~ 

Thus, since P is the family of 

minimal such unions, there must exist a set CEP such that 

C c D. Moreover, we get that: D ~ l U ( S UB ) - j ] U [ U S ] = 
rEJ r r~J r 

m 
L( US )UB]-j = (AUB)-j. So, we conclude that (ii) is true. 

r=1 r 

Finally, assume that A, BEp, and j EAnB, and let 

and B = T U•••UT where 1 m' 
~ 

S , T EP , r = 1 , ••• , m. r r r 

A = S U • • •US 
1 m 

Since we assume A*B, there must exist at least one s, 1.,;s.,;m, 

such that S *T . Let J = {r:jET, 1<;r<;m}. We now consider 
s s r 

three possible cases: 

Case 1: 

Since S ,T2 EP , we knew that xES nT . Thus, since (EUx, P UM) s s s s s 

is a matroid, and S *T , there exists s s such that 

C c (S UT )-x. So we have that CEM. Hence, especially. CE (PUM). - s s 

Moreover, since j~(S UT ), we get: s s 
m 

C c (S UT )-x c (S UT ) = (S UT )-j c U L-(S UT )-jJ = (AUB)-j. 
s s - s s s s - r r r=1 

Hence, we conclude that (ii) is true in this case. 

Case 2: j ES -T 
s s 

(or jET -S ) . 
s s 

Since s ,T EP I we knew that xES nT . Thus, since (EUx, p uM) s s s s s s 

is a matroid, and 

ME(P UM) s such that 

S *T , by Lemma 6.26 there exists a set 
s s 

jEM and M c (S UT )-x, i.e. MEM. s s 
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Furthermore, since (EUx, P UM) 
r 

is a matroid and since xET -M 
r 

for all rEJ, by Lemma 6.26 there exists a set T' E(P UM) 
r r 

that xET', i.e. 
r T' EP r r 

and T' c 
r -

(T UM)-. r J, for all rEJ. 

such 

Now, 

let D = L U T' ]uL U T ]. Since p is the family of minimal such 
rEJ r r~J r 

unions, there must exist a set CE'P such that C c D. Moreover, 

m 
we get that: D ~ l U ( T UM ) - j ) U l U T ) 

rEJ r r~J r 
= ( ( U T r) UM ) - j = 

r=l 

(BUM)-j c (AUB)-j. So, we conclude that (ii) is true in this case. 

Case 3: j ES s rfi' s. 

Since (EUx, P UM) 
s is a matroid, and S *T , there exists a set s s 

ME(PsUM) such that x~M, then MEM. Hence, 

m 
by taking C = M we get: C ~ (SsUTs)-j ~ U ((SrUTr)-j) = 

r=l 

(AUB)-j, and thus (ii) is true. Assume, conversely that xEM, 
~ 

i.e. MEP . 
s 

Hence, since 

j ES -M. 
s So, obviously 

~ 

S EP , we know that 
s s 

xES nM 
s 

and 

Thus, since (EUx, P UM) is a s 

matroid, by Lemma 6.26 there exists a set lv1' E (p UM) such that 
s 

jEM' and M' c (S UM)-x, i.e. M I EM. Furthermore, since s 

( EUx, P rUM) is a matroid and since xET -M' r 

Lemma 6.26 there exists a set T'E(P UM) such r r 

T' Ep and T' c ( T UM I ) - j I for all rEJ. r r r r 

No.v let D = ( u T' ]u ( u T ] . 
rEJ r r~J r 

~ 

for all rEJ, by 

that xET' r' i.e. 

Since p is the family of minimal such unions, there must exist a 
~ 

set CEP such that C c D. Moreover, we get that: D c 

l u ( T UM I ) - j J u l u T ] 
rEJ r r~J r 

(BUS UT )-j c (AUB)-j. s s 

case. 

m 
= l ( u T ) UM I ] - j = (BUM I ) - j c 

r=l r 
(BUS UM)-j c s -

So, we conclude that (ii) is true in this 

Thus (ii) is proved to be true in all possible cases, and hence 

the theorem is true. o 
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Now, it is easy to prove the following result: 

Theorem 6.28. Let G be an undirected graph with edge set E 

and let {s1 ,T1 }, ... , {sm,Tm} be m pairs of nodes (not neces-

sarily disjoint) in G. Furthermore, let (E,P ) be the system 
r 

which is functioning if S and 
r 

T 
r 

can communicate through 

r = 1, ... ,m. Then (E,P) = (E,P 1 ···Pn) is regular. 

G, 

Proof: Since (E,P 1), ... ,(E,Pm) are 2-terminal undirected net-

work systems, by Example 6.14, we kno.v that < E, r 1 > , ••• , < E, P > m 

are regular clutters and that the corresponding matroids can be 

written (EUx, P1UM), ... ,(EUx, PmUM) respectively, where M is 

the family of minimal circuits in G, (i.e. M is independent of 

the choice of termininals) and x is some fixed artificial compo-

nent. (Since we consider several pairs of terminals, we cannot 

interpret x as a component between the terminals in this case.) 

Hence, by Theorem 6.27, (E,P) is regular. o 

Corollary 6.29. Every K-terminal undirected network system is 

regular. 

Proof. Let T 1 , ... ,Tk be k terminals in an undirected network 

G, and let (E,P) be the system which is functioning if T1 , ... ,Tk 

can communicate through G. Moreover, let (E, P ) be the system 
r 

which is functioning if T and 
r 

can communicate through 

G, r = 1, ... ,k-1. Then obviously (E,P) = (E,P1 ···Pk_1 ). Hence 

(E,P) is regular by Theorem 6.28. o 
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7. The factoring algorithm. 

In Section 5 we saw how the domination concept was used in order 

to improve the Inclusion-Exclusion method in reliability computa-
I 

tions. Now, we shall see how domination can be used in order to 

improve another method, namely the factoring algorithm. This was 

first done in Satyanarayana and Chang (1983) in the case of K-

terminal undirected network systems. However, having established 

the generalized domination theorem, it is easy to extend the ear-

lier results to the case of regular clutters. However, before we 

do so, let us review the method. 

In this section we only consider systems with statistically inde-

pendent components. (The method may be extended to the case of 

dependent components as well. However, this require information 

concerning the conditional reliabilities of the components.) 

Definition 7.1. Let (E,P) be a clutter where, E = {1, •.• ,n} 

and let ~ be the structure function of the system. Then intro-

duce X., the random variable denoting the state of the i-th 
1 

component at a fixed point of time, i = l, ••• ,n, ~ = (x1 , ••• ,Xn), 

and define: 

_T_h_e __ r __ e_l_i_a_b_1~·~l~i~t.y __ o~f--~t~h~e~ __ i_-~t_h __ c_o_mp~_o_n_e_n~t--= P(Xi = 1) = 

i = l, ... ,n, and: 

The reliability of the system= P(~(~) = l) = h~. 

p' I 1 

Under the assumption of independent components, we have: 

h~ = h~ (,e) where E. = (p 1 , • • • ,pn) • 

Now, the factoring algorithm is based on the following two 

results: 
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Proposition 7.2. Let (E,P) be a clutter with structure function 

~' and let eEE. Then we have (assuming independence): 

where ~ and ~ are the structure functions of 
'~'+e '~'-e (E-e, P+e) 

and (E-e, P ) respectively. This reduction method is called -e 

pivotal decompositions. 

Proof: Obvious, see Barlow and Proschan (1981). o 

Proposition 7.3. Let (E,P) be a clutter with structure function 

~' and let i,jEE. 

( i) If i 

and p. 
J 

the single 

reliability 

and j are 

only through 

component i 

p'.=p.•p. 
1 1 J 

in series, then h~ will depend on P· 1 

p. •p .. Hence, replacing i and j 
1 J 

(i.e. a series reduction) with updated 

does not alter h~. 

( i i) If i and j are in parallel, then h~ will depend on 

by 

p. 
1 

and p. only through (p.+p.-p.p.). Hence, replacing i and j 
J 1 J 1 J 

by the single component i (i.e. a parallel reduction) with 

updated reliability p = p +p -p p i j i j does not alter h~. 

Proof: The proof is straightforward and thus omitted. o 

Now, the algorithm can be formulated as follows: 

Algorithm 7.4. Let (E,P) be a clutter with structure function $· 

If (E,P) contains irrelevant components only, then ~ is simply 

a constant not depending on the component states. Hence, in this 

case we have: 

h~ = ~-
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Assume now that (E,P) has at least one relevant component. We 

now proceed as follows: 

Step 1 • Perform all possible s-p-reductions and update the 

reliability of the components as indicated in Proposition 7.3. 

Step 2. Let (Er,Pr) be the resulting clutter after Step 1, and 

~r the corresponding structure function. since (E,P) contains 

at least one relevant component, by Corollary 3.7, (Er,Pr) must 

contain at least one as well. 

Case 1 • (Er,Pr) · tl 1 t t conta1ns exac y one re evan componen , say 

component 

Then h 
~r 

e with updated reliability 

= P (X =1) = p 
e e 

p . 
e 

Case 2. (Er,pr) contains more than one relevant component; i.e. 

(Er,Pr) . 1 1s comp ex. 

Then choose one e E Er and compute h~ by applying Proposition 

7.2. That is, we get: 

= pe h + ( 1 -p ) h 
,~,r e ,~,r 

"'+e "'e 

where ~+e and ~-e are the structure functions of (E-e, p+e) 

and (E-e, p ) respectivelv, and where -e .... h and 
r 

~+e 
h are compu-
~r 
-e 

ted by applying Algorithm 7.4. once more. 

The recursion process defined in Algorithm 7.4. can be illustra-

ted by a tree. (See Figure 7.1.) 

In this tree the nodes represent the minors obtained during the 

process, while the edges denote s-p-reductions and pivotal decom-

positions. The leaves (the nodes at the bottom of the tree) will 

be minors having at most one relevant component. 



I 

I 

((4>r }r.}r 
+e -1 

I '\ 
, \ 

' 
' 

r 
<l>+e 

I 

, 
I 

- 63 -

<l>r 

---------

' ' ' ' ' , ' 

Figure 7.1. 

<l>r 
-e 

I 

I 

' 
\ 

\ 
\ 

In order to reduce the running time of the algorithm, it is 

obviously important that the number of leaves in the tree is as 

small as possible. However, it is easy to see that this number in 

general depends on the choice of the component e in Step 2. in 

the algorithm. We shall now see how the problem of choosing the 

right e can be solved using the domination concept. 

First, we introduce the following notation: 

Let (E,P} be a clutter. Then we define: 

t(P} = The minimal number of leaves in a tree 

obtained by applying Algorithm 7.4 to (E,P}. 

The following proposition is a direct consequence of this defini-

tion: 

Proposition 7.5. Let (E,P} be a clutter, and let (Er,Pr} be 

the structure obtained from (E,P'} by performing all possible 

s-p-reductions. 

Then we have: t(Pr} = t(P}. 



- 64 -

Moreover if (E,P) is complex, (i.e. (Er,Pr)=(E,P)), then t(P) = 

min ( t ( P + ) + t ( P ) ) • 
eEE e -e 

Hence, e is an optimal choice if and only if t( P) = t(P+ )+t(P ). e -e 

Proof: t(Pr) = t(P) follows by concidering Figure 7.1. Now, 

assume that (E, P) is complex. That is, we have arrived at Step 2. 

Case 2 in Algorithm 7.4. Hence, we must choose a component eEE, 

and then apply Proposition 7.2. When e is chosen, the smallest 

possible tree will have t(P )+t(P) 
+e -e 

leaves. Hence, in order to 

minimize the number of leaves, we must find e such that t(P+e) 

+t(P ) is as small as possible. -e 
Since t(P) is the minimal number of leaves, we must have: t(P) 

= min(t(P )+t(P )). Hence, e is an optimal choice if and only 
eEE +e -e 

if t( P) = t( P+ )+t( P ) • o e -e 

Now, we can prove the main result of this section: 

Theorem 7.6. Let (E,P) be a regular clutter. Then we have: 

D ( P) < t ( P) • 

Especially, D(P) = t(P) if (E, P) is coherent. 

Furthermore, if (E,P) is a complex coherent structure, then e 

is an optimal choice for the pivotal decomposition if (E-e,P+e) 

and (E-e,P ) both are coherent. -e 

Proof: We start by proving that D(P) < t(P) and that D(P) = 

t(P) if (E,P) is coherent. Since, by Corollary 2.6., D(P) = 0 

if (E,P) is noncoherent, we may assume that (E,P) is coherent. 

The proof then is by induction on n = lEI. 

It is easily seen that the theorem is true if n = 1. 

Assume now that the theorem is true for all m ~n0 and assume 

that n = n 0 + 1 ( n > 2 ) . 

Let (Er,Pr) be the structure obtained from (E,P) by performing 

all possible s-p-reductions. 
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If ( E, p) is not complex, then 
r E c E, and hence 

Furthermore, by Corollary 3. 7. (E r,Pr) · 1 H b 1s regu ar. ence, y 

Corollary 4.8., the induction hypothesis and Proposition 7.5, we 

get: 

as stated. 

Assume on the other hand that (E,P) is complex. 

By Proposition 6.16. (E-e,P+e) and (E-e,P ) are both regular 
, -e 

for all e E E. 

Hence, by Theorem 6.18. and the induction hypothesis we get: 

D(P) = D(P+ )+D(P ) ( t(P+ )+t(P ) for all e E E. e -e e -e 

Thus especially by Proposition 7.5. we get: 

D(P) ( min(t(P + )+t(P )) = t(P). 
eEE e -e 

However, since (E,P) is a complex coherent structure, by 

Theorem 3.13. there exists a component e0 E E such that 

and (E-e0 , P ) both are coherent. Hence, by the 
-eo 

induction hypothesis we have 

t(P ), and thus we get: 
-eo 

and D ( P ) = 
-eo 

t(P+ )+t(P ) = D(P) ( t(P) ( t(P+ )+t(P ). 
eo -eo eo -eo 

Hence, we conclude that: 

D(P) = t( P) as stated. 

Moreover, t ( p) = t ( p+ ) + t ( p ) • 
eo -eo 

That is, is an optimal 

choice by Proposition 7.5. and hence the theorem is proved. 'o 
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8. Final remarks. 

In the present report we have tried to develop a theoretical 

basis for efficient reliability calculations. This has been done 

by studying the concepts of domination and signed domination, and 

it has led to several new results generalizing earlier works. 

However, there are still lots of ends to tie up and unanswered 

questions left. In these final remarks we shall list some of the 

most interesting problems: 

1) Theorem 5.10. provides a formula for computing the signed 

domination of an MSKT system. As we mentioned in Section 5, for 

the time being the algorithm of Satyanarayana and Prabhakar 

(1978) has not been generalized to MSKT systems. Hence, an 

interesting, and probably easy, problem would be to carry out 

this generalization. 

2) In Theorem 7.6. we characterized an optimal factoring stra­

tegy valid for all regular clutters. However, we still need an 

efficient algorithm selecting the right edges in the pivoting 

process. In Section 3 we characterized such edges by a certain 

partial ordering, but in order to apply this condition we need 

to know the minimal path and cut sets of the system. Hence, 

the problem of designing an optimal factoring algorithm, valid 

for all regular clutters, is still unsolved. 

3) Instead of considering the case of general regular clutters, 

it is perhaps possible to obtain some new results by studying 

special structures. Especially, it would be interesting to 

generalize the work of Satyanarayana and Chang (1983) to the 

class of systems described in Theorem 6.28. 

4) We have proved that regularity is a sufficient condition for 

the domination theorem to be true. However, it is easy to see 
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that this is not a necessary condition. There exist nonregular 

clutters for which the domination theorem holds. As an example, 

consider the 2-terminal directed bridge structure shown in 

Figure 5.2. Since this structure is an SKT-system which is not 

an s-p-structure, by Corollary 6.20 the structure is nonregu­

lar. It is easy, however, to verify that the domination theorem 

is valid for this structure. We still believe that regularity 

is a key concept in the study of the factoring algorithm. 

Especially, we conjecture that regularity is necessary for 

Theorem 7.6 to be true. In relation to this we recall that 

Theorem 7.6 is proved by induction on the number of components 

in the structure. Hence, it is not sufficient that the domina­

tion theorem is valid for the structure itself. In the proof it 

is implicitly ass.1-med that the domination theorem is valid for 

all minors of the structure as well. We hope to return to this 

probl~1 in a forthcoming paper. 
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