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Summary 

By the so-called delta-method a test statistic is used which is a 

function of statistics with known variance-covariance structure. 

The standard deviation of the statistic is found by linearizing it. 

Significance is declared if the ratio between the test statistic 

and its estimated standard deviation surpasses c , where c is 

the 1-E fractile of the normal distribution, and E is asympto­

tically, the level of significance. Generalizing this method let 

~ = (~ 1 , ... ,~v) be the parameter in the model and H0 a hypo­

thesis that reduces the number of freely varying parameters to t. 

"Effects" are functions f(~) of ~· They are "contrasts" rela­

tively to H0 if f(~) = 0 for ~ ~ H0 . Multiple comparison con­

sists in looking for contrasts which are "present", i.e. for which 

f(~) > 0. According to "The delta multiple comparison method" any 

contrast may be declared present if significance is obtained by 

using the delta method with the critical point c replaced by IZ, 

where z is the (1-E)-fractile of the chi-sguare distribution with 

w = v-t degrees of freedom. It is shown below that then the level 

still holds (asymptotically). It is also shown that this multiple 

comparison method is related to the likelihood ratio test for H0 
in a similar manner that the Scheffe method establishes a connec­

tion between modified Student testing and Fisher's analysis vari­

ance test. However, as discussed in chapter II below, our attitude 

to the null hypothesis is that we are not interested in the truth 

or the falsehood of it. The hypothesis is demoted to a tool which 

on the one hand side is used to impose limitations on the possible 

comparisons to be undertaken in the statistical analysis. On the 

other hand the hypothesis defines the degrees of freedom, i.e. the 

critical point in the comparisons. Thus the hypothesis provides the 

tie between the comparisons which are desired and the actual shape 

of the decision criterions, [see Sverdrup (1975), (1977a) and 

(1977b)]. 

The general result is given in Theorem 4 in chapter II below. 

The general theory is applied to multinomial situations where, of 

course, likelihood ratio testing may be replaced by chi-square 

goodness of fit testing. 
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I. INTRODUCTION. THE BASIC STATISTICAL IDEAS 

1. The gener&l idea of contrasts and multiple comparison 

The purpose of many statistical analyses is to find important 

"effects" or "contrasts" concerning the unknown parameters 

~ = (~ 1 .~ 2 , ... ) in the model. Thus we are interested in effects 

defined as functions f(~) of TJ , and we consider a class 'Jf- of 

such functions f which a priori are assumed to be feasible and 

interesting. An effect f is present if f ( T) ) > 0 for the true 

(If f( ~) < 0 then -f is present.) We specify 'j: by intro~ucing 

a set Ho of ~. Then for any f E j:, f( ~) = 0 for all T) E Ho. 

Hence f is a contrast relatively to Ho. "Multiple comparison 

methods" aim at discovering effects which are present. 

T) • 

As an illustration, suppose that TJ 1 ,TJ 2 , .•. , are population means 

in different classes. We may be interested in comparing the differ­

ent TJ. ; i.e. we are interested in effects f = TJ.-TJ .. This leads 
1 1 J 

to H0 : ~ 1 = TJ 2 = TJ 3 = .... If the subscripts "i" of the TJi repre-

sent different equidistant points of time, then we may be interested 

in the curvature, i.e. the escalating effects TJi+1 - 2TJi + TJi_ 1 , 

which leads to H0 : TJi = a+~i for all i, where a and ~ are 

unspecified. In a two-way lay-out with class means TJ .. , we may 
1] 

for any i ::j: i I be interested in knowing if the effect of j on 

Tl. • is greater than on TJ Hence H · Tl = a +a for all i 
• 11J i 1 j" o· 'lij · i ~j 

and j, because then ~ .. -TJ .. 1 -TJ. 1 .+~. 1 • 1 would be 0 under H0 . 
1] 1J 1 J 1 J 

In general H0 is what is usually called the null-hypothesis. 

However, it will appear from the examples, that we have chosen H0 , 

not because we have any a priori confidence in it or are interested 

in the truth or falsehood of it, but because we are interested in 

certain effects which are contrasts relatively to H0 . We may even 

know in advance that H0 cannot be true. Hence the term null-state 

is more appropriate than null-hypothesis. 
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We shall in this paper give priority to constructing methods for 

which the probability of stating at least one false contrast is at 

most e, paying less attention to the important problem of studying 

the probability of discovering important contrasts. Thus we, 

require asymptotically 

Pr[ U (stating f(TJ)>O)ITJ] ( e (1) 
f:f(T))(Q 

(In the present Chapter I, we do not attempt to make the exposition 

rigorous. This will be done in the subsequent chapters.) Of course, 

many different multiple comparison methods can be constructed which 

fulfill this requirement. He shall confine ourselves to consider 

those methods which are related to the classical tests of H0 , viz. 

the likelihood ratio tests or the chi-square goodness of fit tests, 

in the same manner as the now classical method of Henry Scheffe 

(1953) is related to the Fisher F-test. We do not claim these 

methods to be superior to other methods. 

It is perhaps correct to state that the classical Karl Pearson 

test, as we know it today, which to the old generation of statis­

ticians was the very embodiment of statistical testing, has almost 

never been a two-decision problem. Significance has always meant 

scrutinizing the data. The same has been true of analysis of vari­

ance testing. The progress that was made by Scheffe was to define 

the last part of the procedure in rigorous terms. The mathematical 

statisticians of former generations aimed at shedding some light on 

the randomness involved in handling statistical data, they did not 

aim at constructing statistical decision functions for the complete 

statistical treatment. 

2. Review of Scheffe's method 

To bring out some feature of multiple comparison tests we shall 

review Scheffe's method. It concerns the linear normal model, like 

those used in variance analysis or regression analysis: i.e. the 

observations (x1 , ... ,Xn)' =X have independent and normally dis-

tributed components with unknown variance 

where y is a known (nxs) matrix of rank 

a 2 and 

s (< n). 
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We are interested in linear contrasts for n = (~ 1 , .•• ,~r): r ( s. 

According to Scheffe's multiple comparison rule it is stated that 

f'n = E~fj~j > 0 if f'~ > ire ~f , where c is the (1-e)-frak­

tile of the Fisher distribution with r and n-s degrees of free~ 

dom, and ~~ = f'g- 1 f~2 . ~j and ~2 are the usual unbiased esti­

mates of ~. and a2, and g is such that g-1o2 is the covariance 

matrix of ~ = (~ 1 , ... ,~r)'. It is well known that f'~ >ire ~f 
for some f = (f1 , •.. , fr)' if and only if F = ~ 'g~ /r~ 2 > c. It 

follows immediately from Schwartz inequality in the following form 

max v'w/lv'av = /w•a-1w 
v 

where v and w are vectors and a is a symmetric positive 

(2) 

definite matrix. We recognize this as the usual Fisher's F-test 

for testing the null-hypothesis H0 : ~l = .•• = ~r = 0. Hence the 

probability of making a false statement if ~ 1 = ••• = ~r = 0, is 

precisely e. This result is of little interest in itself, but from 

this result we easily make the deduction that for any arbitrary n 

(and~ and a), the probability of making a false statement is at 

most e, i.e. 

regardless of whether the null-hypothesis is true or not. 

[Proof: We introduce ~. = ~.-~. : i = 1,2, •.. ,s: and may write 
~ ~ ~ 

the probability, 

P =Pr[ U (I 
f:E~.f.(O 1 

~ ~ 

However, by leaving out the term Ef.~., which is 
~ ~ 

an expression which is at least as large 

By letting the union go over all f we have 

P < Pr[~ (J/i~ i>lrc ~ 1J 

( 0, we obtain 
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1\ 6 
However, the y. = ~.-~. are least square estimates of the y. = 

1 1 1 1 
"" r 

~ .-~. = 0 relatively to the "observations" X. =X.- E. 1 y .. ~. ~ 
1 1 1 1 J= 1] J 

i = I, ... ,n; where E(X 1 , ... ,Xn) = y(O, ... ,O,~r+l, ••. ,~ s) •. Hence 

by what we have stated above, the right hand side of the last 

relation is equal to E, and hence P <E.] 

Several important points can now be made concerning multiple 

comparison methods. 

(i) Each comparison in a multiple comparison procedure is a 

modified Student test for the special hypothesis Hf: f•n = 0, 

against f•n > 0, because in that case the rejection takes place if 
1\ 1\ 

f•n > tof, where t is the (1-E)-fractile of the Student 

distribution with n-s degrees of freedom. Thus we just have to 

replace the t-fractile in the Student test by Ire , where c is 

the critical point in testing o~ the nullstate, i.e. the (1-E)­

-fractile of the Fisher distribution with r and n-s degrees of 

freedom. 

(ii) The f•n are the contrasts relatively to n = 0. This null­

state (null-hypothesis) is used to generate possible effects (con­

trasts) which we are interested in. The decision space consists of 

intersections of these effects only, the null-hypothesis or its 

negation is not subject to decision making, and the level E has a 

meaning without refering to the null-hypothesis. It was stated 

above that the fact that the probability of making a false state­

ment under the null-hypothesis is E, is of little interest in 

itself. This is obvious if we are sure in advance that the null­

hypothesis can not be true. However, even if the null-hypothesis 

may be true, it is uninteresting since it is the error of stating 

that f•n > 0 for any ~ for which f•n < 0 we should have safe­

guards against. This we have by what we have just proved. 

(iii) Nothing can, of course, prevent us from performing the test 

in the following manner. Ascertain first if F > c. If it is not, 

then drop the whole statistical analysis, since no interesting 

effects are present. If it is true, then we may look around for 

effects. Numerical convenience may justify such a procedure, which 

amounts to "testing" of the "hypothesis". Thus we test without 

having an hypothesis. Perhaps, therefore, clearance testing would 

be a more appropriate term. We perform the testing because the 
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0 

decision space includes the possibility of not stating anything, 

due to the scarcity of the information given by the data. The 

purpose of the testing is to see if this possibility could be 

excluded. Significance clears the way for finding contrasts. 

(The discussion above also counters the objection sometimes made 

that after the significance testing has been performed the testing 

should be conditional, given that F > c. The point is that testing 

is not needed, but may be numerically convenient. You do not want 

to waste time in looking for effects when no effects are possible.) 

(iv). Somebody may perhaps find it peculiar that the construction 

of the test requires the derivation of the sampling distribution in 

the null-state, that is under an assumption that cannot be true. 

Perhaps that is the psychological reason Why one has felt compelled 

to attach credence to the hypothesis. However, the mathematical 

rational of finding the null-state-distribution should be clear 

from the derivation above. 

On the other hand those who have found it contradictary to test 

hypotheses Which are known to be false and would have been rejected 

anyhow if the material was large enough, should feel comforted in 

their predicament. 

3. Outline of the general delta multiple comparison method 

We shall below develop a method of multiple comparison in the case 

of parametric models with variables that are not necessarily normal 

The observations will be assumed to be independent and groupwise 

identically distributed, i.e. the joint density of the observations 

X . : i = I , 2 , ... , n : a =I , 2, •.. , s : is 
a1 a 

n s a 
L(X:n) = fl n ga (Xarn:TJ) 

a=l m=l 
{ 3) 

where Tl = {n 1 , ..• ,TJv) is an unknown parameter, and ga is a 

probability density with respect to a measure ~· 

We shall be interested in effects f{n) as defined above. We 

define the class ~ of effects by means of a null-state which is 

such that Tl may be written 

{ 4) 

or briefly Tl = ~{9), where 9 varies freely in the t-space. By 

what we have stated above ;t; wi 11 consist of all or some f ( • ) for 

which f(n) = o for all n E H0 , i.e. f(~(e))-=0 for all e. An 

effect fulfilling this condition is said to be present if f(n) > 0 

for the true Tl· A multiple comparison method aims at finding f-s 
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in jt which are present. The f-s are not assumed to be linear, 

but they must be "smooth" in a sense to be defined later. 

Just as Scheffe's method consists in repeated use of modified 

Student testing, our general multiple comparison method will 

consist in repeated use of a modified version of the time-honoured 

delta-method, which in the old days was the handy jackknife to be 

used in almost every possible practical statistical situation where 

judgements of uncertainties were deemed necessary. 

In our present context the method is constructed roughly in the 

following manner. Let * TJ 

TJ• We consider the estimate 

to state that f(TJ} > 0 if 

be the maximum likelihood estimator of 

f(TJ*) of f(TJ) and find it natural 

* f(TJ ) ) cf where cf > 0. To 

determine cf we need the variance of 

linearizing f(TJ* ), 

* f( TJ } • This is obtained by 

v * = f < TJ > + I < TJ . -TJ . > t . < TJ > 
j=l J J J 

( 5} 

* This is justified if all n are large, since TJ is a consistent 
a 

estimate of 

.!.o, (n} <TJ > )-1 

* TJ• Now, the asymptotic covariance matrix of TJ is 

n 
where A(n)(TJ} is the famous information matrix 

A(n)(TJ} =- ( r 
a=l 

n a2 logg(X :TJ} 
aE a am } .. 
n aTJ. aTJ. ~,J=I, ••• ,v 

~ J 
( 6} 

Hence, by (5) and (6}, the asymptotic variance of f(TJ*) is 

v 
I f.(TJ)f.(T)}((A (n}(TJ}}-1 ) .. 

n . . I ~ J ~J 
~, J= 

( 7} 

Thus the delta method for testing Hf: f(TJ) = 0 against f(TJ) > 0 

would consist in rejecting Hf if f(TJ*) ) k crf(TJ* )/In, where k 

is the (1-E)-fractile of the normal distribution. Now, if this 

method is to be used repeatedly for different f E J; , then we 

replace k by r:z where z is the (1-E)-fractile of the chi­

square distribution with v-t degrees of freedom. Thus we state 

that f ( TJ ) ) ·o for any f E :;: for which 
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(8) 

where af(~) is given by (6) and (7). Then we shall prove that 

asymptotically the probability of stating at least one false effect 

·is at most E, hence (I) holds in the limit. (See theorem 4 (iii) 

below} 

4. The relationship to likelihood ratio testing 

Consider now the usual likelihood ratio for the hypothesis H0 
given by (4) 

A 
Q = L(X:~) 

L(X:~* ) 
(9) 

where 
A A 
~ = <1>(9) and are the maximum likelihood estimates if 

H0 is true. If H0 is rejected when 

- 2 log Q ) z ( I 0 ) 

then it is wellknown that the testing has level E, asymptotically. 

We shall prove below that (10) is asymptotically in probability a 

necessary condition for the existence of a significant effect f, 

i.e. (9) holds for at least one f E:? . (Theorem 4, (iv)). Hence 

we may use (10) as a clearance test. If -2log Q < z, then in the 

limit the probability is 0 of discovering significant effects. In 

special cases the significance of the likelihood ratio (10) will be 

proved to be asymptotically necessary and sufficient condition for 

having a significant effect. 

5. A comment on simultaneous confidence intervals 

Closely related to (8) is the construction of simultaneous confi­

dence interval for the different functions f, viz. 

( I I ) 

asymptotically for large n. It appears that simultaneous confi­

dence intervals are seldom used in practical statistical work. 

However, they are often used to describe a test procedure for mul­

tiple comparisons. As such it is a misnomer, compared to the ori-
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gina! meaning of confidence intervals which are meant to be termi­

nal decisions. Thus in the case of a one-way lay-out in analysis of 

variance with 5 classes, 6 observations in each class, E = 0.05, 

observed class means 375, 470, 367, 296, 363 and estimated variance 

~ 2 = 1662.5, we have as a simultaneous confidence interval for all 

Iffi~i, where ~I , ••• ,~ 5 are the population means, and Lfi = 0, 

As a terminal decision (12) would usually say very little. However 

(12) describes a method of testing interesting contrasts. Thus we 

may read out directly from (12) that (e.g.) the second mean is 

significantly greater than the other means, that the fourth mean is 

significantly less than the first and that there are no other sig­

nificant differences between means. Trivially, however, this could 

be seen from (8). (On the other hand, Hotelling-Working's confi­

dence bands for regression lines are cases in point for simultan­

eous confidence intervals (Sverdrup (1976) .) 

6. The multinomial model 

Potentially there are many possible applications of the general 

theory just outlined. We shall apply it to the case of s multi­

nomial trial sequences. In the a-th sequence; a= 1,2, ••• ,s; 

there are n trials, each of which must result in one of r 
a a 

mutually exclusive events 

Aa 1 , ••• , A 
ar a 

( 13) 

with probabilities 

1t 1, ••• ,1t 
a ara 

I 1t • = 
aJ 

( 14) 
j 

All the n = E n 
a 

trials are independent. To see that we have a 

special case of (3) we introduce 

Y . . = I and all other 
alJ y ' 'I I alJ 

X . = (Y . 1 , ••• , Y . ) , where 
a1 a1 a1r a 

j' * j, are 0 if A . occurs in 
aJ 

the i-th trial in a-th multinomial sequence. Then we have for ga 

in ( 3), 
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y . 
( ) amJ 1t . T) 

aJ 

1t · = 1t .(T)); TJ = (TJ1, ... ,TJv) 
aJ aJ 

( 1 5 ) 

( 1 6) 

are specified functions of unspecified parameters TJ . . In general 
J 

(16) may impose a priori restrictions on the multinomial model. How-

ever, the classical case when the 1t . vary in the interval (0,1) 
aJ 

only subject to (14) is included as a special case. It will be re-

fered to as the framework model (also called the "saturated" model). 

Introducing (15) into (3) we get, 

where 
n 

a 
N.= l;Y .. 

aJ i=1 al.J 

s r a =nn 
N . 

aJ 1t . 
aJ 

j = 

a=1 j=1 

1,2, •.• ,r; a= 1,2, ..• ,s; 
a 

is the number of times A . occurs in trial sequence a. 
aJ 

The results concerning the delta multiple comparison method 

( 1 7 ) 

( 1 8) 

'Sketched above can now be applied directly to the multinomial model 

with a priori restrictions defined by (15) and (16). For the pur­

pose of applications, the effects f(TJ) will also be expressed as 

F(1t); i.e. in terms of 1t instead of TJ· The results obtained are 

essentially the same as those obtained by Goldstein (1981) by a 

different approach. 

Of course, in the multinomial situations the likelihood ratios could 

be replaced by the chi-square goodness of fit statistics. In the 

of the framework model these situations have been treated before by 

the present author [ (1975) and (1977b)]. However, the derivation in 

these papers was different from the one we shall now present. It was 

based on the special properties of the multinomial models and the 

chi-square goodness of fit tests. It led to the stronger result of 

a purely algebraic relationship between the appropriate goodness of 

fit statistic and the multiple comparison rule. (Of course, the 

level E still holds asymptotically in probability.) This treatment 

is repeated in Section III, 4 below in a somewhat modified form. 
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7. Restrictive multinomial models 

Traditionally, only framework multinomial models have been used for 

categorical data. The possibility of using restrictive r~dels and 

testing by means of differences between goodness of fit statistics 

was pointed out by Neyman (1949). Of course, restrictive models 

account for much higher efficiency of the tests, and that is true 

also in the case of multiple comparisons. Hence the methods devel­

oped in this paper contribute to more efficient readings of tables 

of categorical data. Anybody who has tried to analyse categorical 

population data by means of classical homogeneity tests, indepen­

dence tests, etc., will sooner or later feel disappointed. The 

tests do not react to effects which seem intuitively obvious. The 

reason for this is that "intuition", subconsiously and correctly, 

operates with smooth functions, i.e. restrictive models. Thus the 

mortality rate is well known to be a smooth function of age, a fact 

that is disregarded e.g. in homogeneity testing. (See e.g. Cramer 

(1945), p.449.) (The use of restrictive models also raises the im­

portant problem of robustness in multinomial trials. This problem 

has been treated by Goldstein (1981 ). It will not be treated here.) 

An aspect of non-restrictive models is to create distrust of mul­

tiple comparison procedures, which are claimed to be overcautious. 

Hence one resorts to ordinary testing of a null hypothesis Hf 

(see discussion after equation {7)), resulting in a significance 

which may appear reasonable, but which is really not justified by 

the overcautious a priori attitude. What seems to happen is that 

two errors, overcautious model and too daring test, roughly cancel 

each other and give a "satisfactory" result. If now one of the 

errors are removed (viz. by using the multiple comparison proce­

dure) then the other error (overcautious model) will stand out in 

its glaring absurdity. Hence the use of adequate restrictive models 

is almost imperative in connection with multiple comparison proce­

dures. 

8. Statistics collected by official Central statistical bureaus 

The analysis of categorical observations discussed in the present 

paper really represents a very basic problem about the kind of 

statistics that are published in large quantities by government 

statistical bureaus. The tables often present data that fall in 

ones lap as a result of government activities, or they present 
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results of observations collected by means of questionaires to 

study industry, trade, social welfare, education etc. The purpose 

of collecting such data may be multifarious or even diffuse, but 

nobody \vould deny that they may contain important and unexpected 

informations which may be revealed by "snooping" around in the 

tables. Of course, the reading of such tables is a challenge to the 

statistical inference theory. The fact that statistical inference 

theory has been succesful mostly in cases of carefully planned 

statistical experiments with a clear purpose, should not induce 

statisticians to believe that inference theory is meant only for 

such situations. That would be to put the cart before the horse. 

Such statistical experiments with a finite, and preferable low, 

number of possible decisions could often more efficiently be handl­

ed by other methods than the multiple comparison methods, e.g. by 

adjqstment of the level of significance by means of Bonferroni's 

inequalities. This is clearly impossible in the case of an infinite 

number of possible decisions. The methological problem faced with 

when reading tables of statistics of the kind just mentioned are 

not easy. We may discover interesting features and want to test if 

they are real. We cannot apply the method Which would be adequate 

if we had suspected the relationship in advance. Hence we have to 

adopt the soul searching attitude of defining the state of our mind 

before we looked at the data. Some may object to such a procedure. 

However, it is good to be reminded that statistical inference con­

cerning (e.g.) official statistics is as subjective as just that. 

On the other hand to discard such data altogether, as being of no 

concern to the mathematical statistician, would be a too easy way 

out of the difficulties. 

It should also be mentioned that the published statistics from 

official statistical bureaus often imply a choice of statistical 

decision functions (methods), viz. crude statistical grouping, in 

order to expose some, but not all, interesting features. Often the 

original observations are unavailable, which precludes the use of 

the methods of the present paper, or any other efficient method to 

expose further interesting features. 
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II. GENERAL THEORY 

I. The likelihood. Assumptions and definitions 

We assume the a priori model and the null-state given by equations 

(3) and (4) in I.3. 

For convenience we shall also assume that we may, after a transfer­

mation in the parameter space, write 

n = ( v 1 , .•• , v w' e 1 , ••• , e t) = ( v , e ) 

(w = v-t), such that the null-state (4) takes the form 

H 0 : v 1 =v 2 = ••• =v w =0 

Hence after the transformation the ~. in (4) have the form 
~ 

•. (e)=O, 
~ 

i = l, ... ,w, ~.(e)= e. 
~ ~-w 

i = w+l 1 • • • 1 V 

( 19) 

(20) 

Such a "reduced" formulation is usually easily constructed from the 

original formulation (4). Consider e.g. the case of a two-way lay-

out in a multinomial situation with cell probabilities 1t .. 
~J 

and 

null-state of independence 

1t+j = !:i1tij : i = I, ... ,r 

use the descriptive form 

1tij = 1ti+•1t+j: where 1ti+ = !:jttij and 

j = 1 , ••• ,s. By reparametrization we 

TJ ij 

= vii = vjl = 0, ~ = 

= log1t .. =~+a.+~.+v .. , where 
~J ~ J ~J 

a.+~ .+v .. 
-log!: .. e ~ J ~J (since !:1t .. =1). 

~.) ~J 

Hence the null-state is v .. = 0, 
~J 

and there is a one-to-one corres-

pondence between TJ = (TJ 11 , •.. ,TJrs) and TJ = (v ,e) = 
(v22'····vrs;a2, •.. ,ar'~2'····~s>· n is a reduced formulation and 

v = rs-1 ,t=r+s-1. In general we may from the general formulation 

(3) and (4) obtain a reduced formulation in the following manner. 
,..., 

We may transform TJ to TJ by a one-to-one transformation TJ = 

T(n), n = T- 1 (n), which is smooth; i.e. both T and T-1 have 

continuous first-order derivatives. 

into g (X;n) = g (X;T(n)), L(X,TJ) a a 
the null-state TJ =~(e) into TJ = 

Then ga(X;n) is transformed 

into L(X,n) =L(X;T(n)) and 

T-1 ~ ( e ) = ~ ( e ) • 
/;_ 

I 
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Among all possible T we choose one which is such that 

T.(o, ... ,o,n +1 , .•• ,n) = (j>.(n +1 , ... ,-:;:j ), where the (j>. are those 
1 w v 1 w v 1 

occurring in the general formulation (4). We now write 

( n 1 I • • • I nW) = V = ( V 1 I • • • 1 V W) and ( nw+ 1 I • • • In V) = e = 

(e 1 , ... ,et)' t = v-w. Then n = (j>(9) is equivalent to 
..... 

v =•••v = 0 and (j> has the special form (20). 1 w 

Convenience may dictate using reduced formulation (v,e) in the 

course of mathematical derivations. 

Sometimes the reduced formulation arises naturally as part of the a 

priori modelling. The purpose of the statistical analysis may make 

it natural to focus attention on some indexparameters v. 
1 

= T.(n)~ 
1 

i = 1,2, .•. w < v. Thus we are interested in contrasts f( v) = 
f(v 1 , ••• ,vw) 

we may add t 

relatively to the null-state v = 0. We assume that 

functions e. = T. (n)~ i = w+l , ... ,v such that 
1-W 1 

n = (v,e) = T(n) = (T1 (n), ... ,Tv(n)) is a one-to-one smooth trans-

formation. Since n = T-1 (n), we may write the null-state n = 

T- 1 (0,9) = (j>(9). Contrasts f(v) which depends on n only through 

v, will be called focalized. Thus in the case of a three-way lay­

-out in analysis of variance of observations Xijk , with EXijk = 

~. 'k, and no three factor interaction, we may take interest in 
1] 

- - - - - -main effects vi++= ~i++-~'v+j+ = ~+j+-~'v++k = ~++k-~ only. 

These are the components of v. We add two-factor interactions 
- - - - -

eij+ = ~ij+-~i++-~+j+-~++k+~ etc. and ~ to obtain a one-to-one 

correspondence between ~. 'k and (v,e), where e has ~ and the 
1] 

two-factor interactions as components. The null-state is ~ijk = 

~+eij++ej+k+e+jki , which corresponds to the null-state vi++= 0, 

v+j+ = 0, v++j = 0 in the reduced formulation. 

Returning to the general theory the maximum likelihood estimate a 

priori is defined to satisfy 

n 
* s a 

0 log L(x~n ) I I = 
0 n. 

J a=1 m=1 
= 0, j=1 I o • • IV ( 21 ) 

(regardless of whether * n maximizes (3) or not). 
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Similarly the maximum likelihood estimate ~ = $(~} is defined to 

satisfy 

~ log L(X;$ (~}} = O 
~ a . j = 1, ••• ,t (2i} 

The estimate * , 
J 

and the likelihood ratio Q given by (9} have 

well-konwn asymptotic properties under general regularity condi­

tions. 

For our practical purpose we shall give these regularity conditions 

a simple and easily checkable form. The simplification consists in 

assuming the consistency of the estimates * , and A 
11 , since this 

assumption is usually easily verified and we do· not want to dwell 

to much on the philosophical problem of why we get consistent esti­

mates. Furthermore if this assumption is made, then the additional 

regularity conditions made below, also have an easily checkable 

form. The regularity conditions usually made in the litterature are 

intended to secure consistency, asymptotic normality, proper maxi­

mization, optimality, etc. It is difficult to sort out the condi­

tion that need checking after consistency has been verified. Theo­

rems 1 and 2 remedy this state of affairs. The conventional assump­

tions are usually disregarded (see Bishop et. al. (1974} p. 69}. 

In our asymptotic consideration we shall let all na + = in such a 

manner that n /n + c > 0. a a 

Regularity conditions about our model and null-state. The mode of 

convergence. 

Assumption A. 11 varies a priori in an open subset of the v-space 

The second order derivatives 

~2 log ga (Xam;ll} 

~, . ~, . 
1 J 

(23} 

exist and are continuous functions of ,, uniformly in Xam. First­

and second-order differentiation of fg d~ may be taken under the a 

sign of integration. The matrix A(ll} = E:=1 CaAa(ll} where 
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A. ( rJ} 
a • ( 24) 

0 4> • 
is non-singular. The Jacobian vxt matrix D4> = (09 ~) has maximum 

J 
rank and is a continuous function of e. 

Remark: Concerning the continuity of (23) as a function of n, 

uniformly, it was perhaps restrictive. However in the multinomial 

situation it is trivial because X assumes only a finite number 
am 

of values. It also holds in the multivariable normal case and the 

multiple decrement survival models. The assumption of maximal rank 

of D4> secures the existence of a reduced formulation, see (33) 

below. 

Below we shall partly let n be constant and partly vary 
( n) 

n = n 

as the number of observations n goes to infinity. Hence for each 

n the n observations X= (X ) have density L(x:n(n)) where 
am 

L(x:n) is given by (3). The need for considering changing 

n = n(n) arises from the fact that if the number of observations 

is large it is desirable to consider n close to the null-state. 

The asymptotic properties of a reasonable inference procedure are 

often trivial for n fixed ¢ H0 . 

In the assumptions B1 , B2 , c1 , c2 below it is understood that 

may vary and converges to some n. 

(n) 
n 

Assumption B1 • The sets of X for which the likelihood equations 

(21) have unique solutions have probabilities that go to as 

n + m. (Outside these sets * n may be defined in any manner.) 

Assumption B2 . The same assumption and convention are made about 

equations (22) and ~. 

Assumption c1 • * n is a consistent estimate of n, i.e. 

* plim n = n for all n 

(note that this is equivalent to P[ In* -n I >E )nA ] + o n 

An are the sets in assumption B1 ). 

where the 
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is a consistent estimate of TJ E HQ in the 

1 ' 1\ p J.m T) = T) for all TJ E H0 

(Note that \~e only require that TJ t H0 , not that TJ (n} E H0 .} 

For sundry purposes below we need relationships bet\',reen the blocks 

of 

;. = (All I A12 ) 
0 = ell I r12) 

I 

.A 21 .L\.22 I: 21 I: 22 

(25} 

where A. refers to a reduced formulation, a = A. -1 and .All I Ell 

are of order (wxw}, w = v-t. By block multiplication of A.cr = I, 

we get 

Let us now consider the speed of convergence of TJ ( n} f/ H to 
0 

(26} 

some TJ E H0 • The convergence may be at least as fast as 

goes to 0 when n + ~, i.e. 

1 /lr1 

( 27} 

This property is invariant with respect to a 

TJ = T(~). This is seen by a Taylor expansion 

DTi (~I}(;) ( n} -~)I where n I is between n ( n} 

smooth transformation 

TJ~n}_TJ· = 
l. l. 

and TJ. [As a 

principle of notation we write (~, .•. ,~} = Dg(TJ} 
TJ1 TJv 

for any 

function g( TJ).] In the case of reduced formulation ; = (v ,e } , 
(27} implies that In v(n} + t:,I(say}. 

We shall say that TJ(n} + T]EH0 

some reduced formulation (v,e} 

is such that 

more slowly than 1/ln + 0 if for 

we have that TJ (n} = (v (n},e (n}} 

E v(n} + some t:,I:fO, where E +CD' E /In+ 0 
n n n 

(28} 

Obviously this property is invariant with respect to smooth trans-

formations. 
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(27) and (28) are concerned with the speed of convergence in the 

direction of the v-coordinates (index parameters). In studying the 

asymptotic power of our statistical methods we shall also be con­

cerned with the orthogonal (precipitous} speed of convergence to 

H0 • For this purpose we measure the distance p (n( 1 } ~n> between 

n(l} and n given by 

P 2 ( n ( 1 } 1 n > = ( n ( 1 ) - n ) I A ( n > ( n ( 1 ) -n ) (29) 

where A(n) is the information matrix. In order to find the dis-

tance from an arbitrary 
( 1 } 

n to we minimize (29) when n = 
~(9)EH0 with respect to 9 1 and obtain a minimizing e given by 

o~i(e) (1) _ _ (1 ) _ OAij(~(e}} (1) _ _ 
-2): 09 (n. -~.(e)}A .. (~(e)}+):(n. -~.(e)) 09 <n· ~.(e}}-O 

ilj k J J lJ ilj l l k J J 

for k = 1 1 2 1 •• • 1 t. Then ~=~(e) is the footpoint of n(l) and 

the squared distance from n( 1 ) to H0 is obtained by replacing n 

by n in (29}. We now assume that 

t:. (n) = ln(n (n}_~ (e(n)) + t:. ( 30) 

in such a manner that for each n(n) 1 ~(e(n)} is its footpoint. 

Thus it is the speed in the orthogonal direction that is at least 

as fast as 1 /In+ 0. 

Now we replace 
( 1 ) 

n 1 e by 
( n) 

n 
-(n} e in the above equations for 

e and then multiply the equations by In . Going to the limit we 

then get 

(D~ ) I A 1::. = 0 ( 31 ) 

That this property is invariant with respect to a smooth transfor­

mation n = T(n) is seen in the following manner. 

By (6) and (24} we have 

s 
= A(n) = 2: c E[D log g (X ~n>] [D log g (X ~n>J' 

a=1 a a am a am 
(32) 

and ~(n} is obtained by replacing ga(·~n) byg(•,n) = g(·~T(n)}. 
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By the chain rule for differentiation we have D log g a ( x, ~ ) 1 = 

DT(n) 1 D log g (x:T]) 1 • By substitution in ~(n) a we then get ~ (n ) = 

DT(n) 1 A.(n)DT(n). From Q>(9) = T($(9)) we have DQ>(9) = DT(n)D$(9). 

Furthermore using again the Taylor expansion ln(T. (n (n) )-T. ($ (e (n)) 
1 1 

= In DT. (n I ) <'n ( n) -~ (a ( n) ) ) , we get 8 = DT (~ )f. , where 
1 

~=lim ~(n)and ~(n) is defined by replacing 8(n) ,TJ(n) ,Q> by 

~ ( n) ~ ( n) ~ ~ --
8 ,TJ ,Q> in (30). Combining we then get (DQ>) 1 A.8 = (DQ>) 1 A.8, 

which proves the invariance property of the restriction (31) on 8. 

Let us now consider what (31) looks like in the reduced formula­

tion. By assumption A, DQ> has rank t. Hence we may arrange that 

the submatrix of DQ> consisting of the t last rows is non­

-singular. We now use the following transformation from Tl to the 

reduced form (v,e), 

j=1, ... ,w 

j = w+1 , ... , v 

Then (31) becomes 

h th A d f. d . (25) d A I = (A I I , A II I ) • were e ~~ .. are e 1ne as 1n an u u u 
1] 

Hence ( see ( 26 ) ) 

AII A'-1 A AI= ~21 ~-111 AI 
il = - ~~ 2 2 il 2 1 ~~ Lo Lo il 

(Thus 8II depends on 8I similarly to the regression of ~-e* 

* on v , see equation (53) below.) 

2. Properties of the maximum likelihood estimates and the 

likelihood ratio. 

(33) 

{34) 

Theorem 1 . Under ·the regularity conditions A, B1 and c 1 of II. 1 

the maximum likelihood estimates (21) are asymptotically normal 

with mean Tl and covariance matrix 

s 
I cA. <n> 

a=1 a a 
(35) 
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and A (~) is given by (24) or a 

( 
o2 log g (X,~)) 

A (~) = - E a 
a o~. o~ . . ._ 1 1 J 1,]-, ••• ,v 

(36) 

. . (n) ,-( * (n)) .. More prec1sely 1f ~ ~ n, then vn ~ -~ converges 1n d1s-

tribution to the multivariable normal (0,A (~ )-1 ). Hence if ~ (n) = 
(n) - (n) * 

~+~ /In, where ~ ~ ~, then In(~ -~) converges in distribu-

tion to the normal (~,A(~)-1). 

Theorem 2. Assume the regularity conditions A, B 1, B2 , c 1, c2 and 

let~ = T(n) = T(v,e) be a smooth transformation to a reduced 

formulation (see (19) and (29)). Consider the following statistics 

~ ....., 
where =~II(~) 

II. 
z1 =- 2 log L(X,~) 

L(x,~*J 

is given by (25). 

(37) 

(38) 

( 3 9) 

a Let ~(n) ~ ~ E H0 at least as fast as 1/ln~ 0. Then z1 , 

z0 , z0 are equivalent to each other up to limit in probability 

measure and converge in distribution to the eccentric chi-square 

distribution with w = v-t degrees of freedom and eccentricity 

K = (40) 

where ~I is given by and by ( 27) • 

( n) If ~ ~ H0 with an orthogonal speed at least as fast 

as ~ 0, see ( 30) and ( 31 ) , then K is given by 

This gives us the asymptotic power of the criterion z1 > z. 
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Remark: (41} shows that the "asymptotic" eccentricity is 

n(n-~(e}}'cr(~)- 1 (n-~(e}). The analogy with the normal variance- and 

regression analyses is obvious. 

b (Assumptions B 2 , Care not needed here.} If n(n) + n E H0 

more slowly than 1/ln (see (28}}, then Pr(Z 1(z}, Pr(Z0(z}, 

Pr(Z0(z} + o. Hence z1 , z0 , z0 do not converge in distribution 

and the asymptotic power is I, i.e. the likelihood ratio test is 

what may be called locally consistent. The test of H0 based on 

Z I • 1 . t t . th t ].' f .,.., ( n ) ~ .,.., r/Ho • 0 J.s a so consJ.s en , J..e. e power goes o ., ~ ., ~ 

To prove the theorems we need the following lemmas. 

Lemma I. x 1, ••• ,Xn are independent observations of X 

n = 1,2, ... ;a sequence of random variables such that 

and Z 
n 

plim zn = c 
(non-random}. Furthermore F(X,C} is a continuous function of C, 

uniformly in X and EF(X,C} = ~ exists for all c. Then 

n 
F (Z } = ! I F(X ,Z ) ~ ~ 

n n n m=l m n P 

(It is also true with probability I.) 

Lemma 2. Let X have density g(x:n) with respect to a measure 

~. and let v 1 (X,n), .•. ,Vv(X,n} be v functions such that 

EV . ( x, n } = o , cov ( v . ( x, n } , v . ( x, n ) ) = A. . . ( n ) 
]. ]. J l.J 

where A. ( n } = (A. .. ( n }) 
l.J 

is non-singular. A. .. (TJ}, V.(x,n) 
l.J ]. 

and 

g(x,n) are continuous functions of TJ• For each n let Xmn: m = 

I , ... ,n; be independent with common density g(x;n(n)), where 

n(n) + TJ• Then the vector 

n 
(-1 I V (X • (n))) rn m= I i mn IT] i=l I 2, ... I v 

converges in distribution to the multivariable normal (O,A.(n}}. 

The proofs of the two lemmas are given below in II.3. 
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Proof of Theorem 1 • We assume first that TJ ( n) = TJ. We replace the 

double subscripts (a,m) in (3), (6) etc. by single letters, which 

may be m, going from 1 to n. Thus we write X 
m in place of 

We also write, somewhat inconsistently, gm(X,TJ), Am and em~ 

X 
am 

m = 1 , •.. ,n~ in place of g ( x ~ TJ ) , A , and c a ~ a = 1 , 2 , • • . , s • a a 
Thus the gm , Am , em are independent of m within sections 

s 1 I • • • 1 s S Of ( 1 1 • • • 1 n) of length n1 , ••• ,ns respectively 

(s1 = (1, ••• ,n1 ), etc.) 

We introduce 

a logg (X ,TJ) m m w .. (TJ) = 1Jm 

a 2 log g (X ~ TJ ) m m 
aTJ . a, . 1 '·I J 

and we have by differentiation of I g d~ = 1, m 

= E V. (TJ) V. (TJ) =- E W .. (TJ) 1m Jm 1Jm 

We also introduce, 

V.(TJ) = 1 L v. (TJ), w .. (TJ) 1 n m 1m 1) 

Note that 

v.(TJ) = 
1 

where 

s c (n) 
L a 

a=1 na 
L v. <TJ>, w .. <TJ> = 

mE:S 1m 1) 
a 

(n) 
c + c • Obviously, a a 

=-
n 

s c (n) 
L a 

a=1 na 
L w .. <TJ> 

mE S 1 Jm 
a 

(42) 

(43) 

(44) 

( 45) 

plim V. ( TJ) = 0, plim W .. ( TJ) = - L c A . . = - A . . ( 46) 1 1) m 1Jm 1J 

The likelihood equations (21) may be written 

n * LV. (TJ ) = 0 
m=1 1m 

i=l,•••,v 

from which we get 

where TJ 1 

v 
0 = v . ( TJ * ) = v . ( TJ ) + L ( TJ *. -TJ . ) w . . ( TJ I ) 

1 1 j=1 J J 1) 

is between TJ and * TJ (cornponentwise). 

(47) 

(48) 
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Equations (47) and (48) are true except on a set with the probabi­
-A· 

lity that goes to 0. Since plim ~ = ~. then plim ~ 1 = ~· 
Applying Lemma 1 within each of the 

(45)), we get 

From (48) we get 

plim W .. ( ~ 1 ) = 
1] 

s subsequences of 

A. . . 
1] 

- * -H < ~ -~ ) = -v ( ~ ) 

where W is the matrix (W .. (~ 1 )). Hence 
1] 

except on a set the probability of which goes to 0. 

X m (see 

(49) 

(50) 

By Laplace theorem it follows that In V(~) converges in distribu­

tion to the rnultivariable normal with mean 0 and covariance mat­

rix A.. Hence by (49) and (50), In(~*-~) converges in distribu­

tion to the multivariable normal with mean 0 and covariance 

matrix A.- 1A.A.- 1 = A.- 1 • (The last reasoning is easily expanded upon 

in full details, taking into account that (47} is true and W non­

singular only on a set, the probability of which goes to l .) Hence 

the Theorem 1 is proved if ~(n) = ~· That the same is true if 

~(n) varies with n such that ~(n) + ~ follows immediately from 

Lemma 2. 
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Proof of Theorem 2: By a Taylor expansion using {21 }, we get 

where 

log L{X:~} = * n log L{X,TJ }+ 2" V 1\ "'< 1\ "1<.- I 2 { TJ · -n . } { TJ . -n . }w .. { n } 
i,j=l 1 1 J J 1) 

T)l is between 
1\ 
T) and * TJ . Hence 

z1 = -n{~-n*} ~w{n I} {~-n*} {51 } 

We now prove the results in Theorem 2a. Consider first the case of 

reduced formulation, where 
...... 
T) = {v,e}. From { 3 } 1 { 2 2} 1 {42} 1 {44} 

we have v. {0,~} = 0: i =w+l, ... ,v. Replacing T) by {0 1 ~} in 
1 

{48} we then get that, 

w v 
2 w .. < n II > triv *. + 2 w .. < n II> ln < e *. -~ . > = o <52 > 

j=l 1) J j=w+l 1) J-W J-W 

except on a set the probability of which goes to 0. Here TJ 11 is 

between {v* ,e"") and {0,~). By {52} \le easily express ln{e*-~) 

and In { TJ * -~ ) by means of In v * and W . . { TJ 11 ) • 
1) 

By assumption C plim TJ 11 = TJ• Thus by Theorem 1 and Lermna 1, 
2 

ln(e*-~> and ln{n*-~> converge in distribution. We get from {52) 

and { 43), 

~ b. * - -1 r- * In { (:j -e ) - A 2 2 A 21 t n v {53) 

1\ * 1\ * z 1 = n { TJ -n } I :>-. { TJ } { TJ -n } {54) 

up to equivalence in probability limit. {We leave out the tildas 

here and below.) The asymptotic distribution of fn{e*-~) follows 

from {53) and the second equation {26). 

Replacing A.{n) 
-A 

by 1-.{T)) it is seen that we have proved that 

plim{z 1-z0 ) = o. By block partioning, {54) may be written 

{55) 

Introducing {53) we get 
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Hence from (26) we get 

(56) 

up to equivalence in probability limit. Replacing E11 (n) by 
-A r 11 (n ) we obtain that plim(z1-z0) = o. On the other hand it 

follows immediately from Theorem 1 that the right hand side of (56) 

converge in distribution to the chi-square distribution with w 

degrees of freedom and eccentricity given by (40). To prove (41) in 

the case when n(n) + H0 with an orthogonal speed at least as fast 

as 1/fn + 0, we consider the right hand side of (41) in the case 

of reduced formulation 

8I 
8'A. 8 = (8I',8II')t.. (II) 

8 

Introducing 8II = -A2~ A21 8I (see (34)) and A. given by (25) we 

obtain (40). Hence 8'A. 8 = K in the case of reduced formulation. 

Consider now Theorem 2a in the case of a general formulation. \\le 

then use the special transformation n = T(n) given by (33). z0 
will refer to this transformation. Trivially z 1 given by (37) is 

invariant with respect to any smooth transformation n = T(n). (See 

(21) and (22).) Hence plim(z 1-z0) = 0. 

Consider now z 0 . We have by Taylor * I\ n i-n i (- (i)) <""* ~) = DT. ~ ~ -~ . Let 
1 ( . ) 

("" 1 ). 12 DT. n , 1 = , , •• 
1 

DT denote the matrix consisting of the rows 

.. , v. Then 
I\ 

- -A I\ - ""'"" -I n ( n -n ) = DT n ( n -n ) (57) 

I\ 

However, by the remarks after equation (52) /n(n""-n> = /n(v*,e*-~> 
converges in distribution. Hence the same is true of ln(n"" -~). 
Thus the derivation leading to (54) does not depend upon the 

assumption about reduced formulation, and the expression for z 1 

given by (54) is true in the case of a general formulation. Hence 

plim(z1-z0 ) = o still holds. 

z 0 has the same limit in distribution as z1 and z0. The eccen­

tricity K given by (41) is now easily seen to be invariant with 

respect to a smooth transformation (see the invariance considera­

tions after (31 )). Hence 2a is proved. 
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We shall prove the assertions in 2b, viz. that z0 , z0 , z1 

diverge in probability to infinity when ~(n} + ~~H0 more slowly 

than 1/ln goes to 0 . We then prove first that z0 , z0 , z1 may 

be expressed in a form 

Z = n v-A 1 M /" (58} 

except on a set the probability of which goes to 0, where plim M 

- - 1 = r 11 (rj}- • If Z = z0 , this is obvious with -- - -1 M - r 11 ( ~ } • For 

z = z 1 
or z0 , (58} is meant to be true when z1 and z0 refer 

to a general formulation. To prove (58} when Z = z1 is defined by 

(37}, we observe first that (37} is invariant with respect to 

smooth transformation (see (21 }}. Hence it is enougn to prove (58} 

in the case of reduced formulation. For this purpose we partition 

W( ~} = (W .. ( ~}} in blocks 
l.J 

w = (~ ( 11 } I : ( 1 2 >) 
w(21} , w(22} 

similarly to a and A in (25}. By block multiplication in the 

right hand side of (51) we obtain similarly to (55}, 

On the other hand we get from (52} 

Introducing in (59} we obtain (58}, where M is a function of the 

W(ij)(~ 1 } and W(ij}(~"}. (It is noteworthy that, contrco:ry to (56}, 

(58} is true for z = z1 on a set, the probability of which goes to 

0, and (58} does not require that In v* converges in distribution.) 

Now, since I plim w ( i j} (~ I } = plim w ( i j} (~II} = -A .. ; i,j = 1 1 2 . 
l.J 

I 

then the algebra from (55} to (56} shows that plim M = (- )-1 r 1 1 ~ · 

Hence our assertion about (57} in the case when z = z, is proved. 

To prove (58} in the case of Z = z0 , we start from z0 given by 

(38} in the case of a general formulation. We study the effect on 
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z0 of a smooth transformation TJ = T(T;). By (58) and (32), and the 

equations given after (32) and (27) we get for {38) 

Now plim DT(n* )- 1DT = DT(~) (DT(~) )- 1 = I. Hence 

(60) 

where plim m = ~(~). 

-Taking now TJ to be a reduced formulation parameter, we now treat 

(60) similarly to (51), see (59), and obtain (58) where now M is 

a function of the W i j (~ 11
) and the 4 blocks m( i j) ; i=l , 2; j=l , 2; 

of m. Since pl im m( i j ) = pl im W i j (~ 11
) = -A i j (~ ) then 

- - -1 plim M - I: 1 1 ( TJ) • 

We can now show that plim Z = ~, where Z is given by (58). We 

introduce 

Z(v) = n(v*-v)'M(v*-v) 

which is ) 0 (and converges in distribution if v = v ( n), by 

Theorem 1). We write {58), 

which may also be written, 

Z = Z(v(n))+(A +WE /fn)n/e 2 
n n n n 

where E is given by {28), e v(n) + ~ 1 , 
n n 

A 
n 

W = 2/n ( v * -v ( n) ) • M E v ( n) 
n n 
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Obviously plim A = ~r·E(~)-l ~I= A (say) > 0. 
n 

converges, by 

Theorem 1, to a normal distribution. Hence plim(A +W e: /rii) = A. 
n n n 

Since n/e: 2 +,= it follows from the last expression for z that 
n 

plim z = =. 
Consider now the case when ~(n) + ~ ¢ H0 , i.e. v(n) + v*O. Then 

z I 
0 --n 

and hence plimz0•= =. Theorem 2 is proved. 

3. Proof of the lemmas 

Proof of Lemma To any e: > 0 and C there exists a 6 such 

that 1c•-c1 < 6 implies IF(X;C •)-F(X;C)I < ~ for all X. Now 

IF (Z )-f.LI >e: implies either 1.:!_ E (F(X ;Z )-F(X ;C)) I > e: or n n n m n m 2 
1 n e: 

In Em=1 (F(Xm,C)-f.L) I >2. But the first possibility implies 

IF(Xm,Zn)-F(Xm,C)I > ~ for some m = 1,2, ... ,n, which again 

implies 1zn-c1 > 6. Hence 

But the second term on the right hand side goes to 0 by 

Khintchine•s theorem and the first term on the right hand side goes 

to 0 by the assumption. 

Proof of Lemma 2: It is well known that it is enough to prove that 

v 1 n ( ) 
s = ~ t. ~ V. (X n ) n .f ... 1 ~in L ~ mn'~ 

~= m=1 

converges in distribution to the normal with mean 0 and variance 

t•At, for any t. We introduce 

v ( ) 1 n 
T ( x) = L t.V.(x,~ n ), hence s = rn L T (X ) 

n . 1 ~ ~ n m=1 n nm ~= 

We have, 

T (X ) 0, a2 T (X ) 
( n) 

E = = var s = var = E t. t .A .. (~ ) 
n nm n n n nm ~ J ~] 
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We shall now apply the following general proposition (see Loeve 

1977, p.307). 

Suppose that 

independent, 

every a > 0, 

for each n ; 

E y = 0, var 
run 

the Linde berg 

't = n 

n 
I 

m=1 

y ••• y • 
n 1 ' ' nn' n = 1 1 2 o o o ad. inf. are 

y = 0"2 < a>, En a2 = 1 and for run nm m=1 run 

assumption 

f y2dG (y) + 0 
IYI>a run 

as n + m, where Gnm(y) = Pr(Ynm<:y). Then Sn = E~= 1 Ynm converges 

in distribution to the normal (0,1 ). 

We can apply this proposition to 

y = 
nm 

We only have to check the Lindeberg assumption, the other assump­

tions in the proposition are trivially true. We have 

where we 

and 

where 

= 

't 
n = 

n 

I 
m=1 

J 

J 
IT (x)l>llla a n n 

T (x) 2 ( ) 

( T ( x ) ) 2 > a 2 na 2 
n n 

( na ) g(x;~ n )d~ = 
n 

J f (x)d~ 
M n 

n 

have introduced f and M • It is seen that f f ( x)d~ n n n 

fn(x) + 
(T(x))2 g(x;~) = f(x) 

()" 

T ( x) = It . V . ( x; ~ ) , a 2 = var T ( x) == E t . t ."A. •• ( ~ ) = 1 im a 2 
1 1 1 J 1J n 

and jf(x)d~ = 1. Then by Scheffe 

and 

f (x) + f(x) 
n 

in the mean 

I 't - J f (X) d~ I ( J I f (X)- f (X) I d~ ( J I f (X)- f (X) I d~ + 0 
n M M n n 

n n 

Hence 't has the same limit as 
n 

... = J f(x)~ 
n 

= 1 
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But since T { x) 
n 

has finite limit T{x), and a2 + a2 it follows n , 

that no x is contained in M for sufficiently large n. Hence 
n 

M +empty set and ~· + 0. The Lemma 2 is proved. n n 

4. The case of Darmois Koopman exponential class 

Most application of the general theory which we are about to devel-

op are aimed at situations where for each of the observations 

the class of densities is a Darmois-Koopman exponential class, 

r 
~ o<n)+Ek~1~ k{n)z k{x) 

= e a - a a h {x) 
a 

The class need not be regular, i.e. the set of all 

X 
am 

{ 61 ) 

<~a 1 {n),••·,~ar {n)) under variation of n need not be open in 
a 

the r -space. Thus the situations with life testing, possibly with a 
transfers and several causes of decrements, fall under the theory. 

We shall use the notation 
n 

a 

zak = na m~1zak{Xam) 

He have for the likelihood, 

L{X,n) 

r 
s c{n)(~ o<n)+ Lk:1 

= [IT e a a 
a=1 

The maximum likelihood equations a priori for the estimate 

r 

I c{n)[~ .<n*>+ La~ k.<n*>z ] = o 
a=1 a ao J k=1 a J ak 

j = 1 , 2 , • • • v , where 

a ~ ak 
~ aki = a n. 

1 

I ' 

( 62) 

{63) 

* n are 

(64) 

( 65) 

The maximum likelihood equations in the null-state (n=~(e)) for the 

estimate ~ = ~(~) are 

s ( ) v r a a~ . {~ ) 
L c n L [~ .<~<~>>+ L ~ k.<~<~>>z kJ aJ = o (66) 

a=1 a j=1 aoJ k=1 a J a h 

h=1, ... ,t. 
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We shall also need 

ra 
v. = 

Jain 

o log g a (X am, TJ ) 

OTJ. 
J 

= 't. . ( T] ) + I 't k. ( T] ) z k (X ) 
ao J k=1 a J a am 

Hence from (43) 

where 

'He get 

v. 
Jam 

Furthermore, 

where 

w .. = 
lJain 

0 = 't .+ 
ao J 

o2 log g (X ,TJ) a am 

't akij = 

r a 
= 'taoij+k[1'takij zak(Xam) 

{6 7) 

(68) 

{69) 

(7 0) 

( 71 ) 

The information matrix A. a may be found from (69) or (70) (see 

(24) and (43)). 

In the special case we are now considering, it is possible to 

replace the assumptions A, B1 , B2 , c1 , c2 in II•1 by the 

following simpler assumptions. 

A1 • TJ varies a priori in an open set of the v-space. In the 

null-state TJ = <1> (9), 9 varies in an open set in the t-space and 

<1> has continuous first order derivatives. The second order deriva-

(see (71)) are continuous functions of TJ • The con-tives 't akij 

tinui ty of W .. 
1Jam 

with respect to TJ is uniform with respect to 

z. The matrix A. = 1: c A. 
a a is non-singular. For each a, there is 

an open subset of vectors t = (t1 , •.• ,tr ) in the ra-space; 
a 

a = 1 , ••• , s; for which 

E tk Z (X) 
fe ak h (x)<\L 

a 

exists and which contains the range of ('t 1 (TJ), ••• ,'t (TJ) under a ar a 
variation of TJ· The Jacobian vxt matrix D<l> has rank t ( v. 
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B'. The set S (resp. S ) of X for which the likelihood n no 
equations (64) (resp. (66)) have a unique solution n* (resp. ft) 
has a probability which goes to for any n (resp. e). Outside 

this set n* (resp. ft) will be assumed to be defined such that it 

depends upon z = (z11 , •.• ,zsr) only. 
s 

c•. ~ = $(~) + n in probability if 

where the n(n) need not be in H0 • 

( n) 
n goes to n E H0 , 

Remarks. The assumptions in A' secure that the assumptions in A in 

II•l are fulfilled. The uniformity assumption in A follows from A' 

the expression for W .. lJam 
given by (70). The permissibility of 

integrating under the sign of integration in A follows from the 

assumptions connected with (72) above. B' is a repetition of B of 

II•l. It will follow from Theorem 3 (iii) that except for what is 

said in c• the assumptions c 1 and c2 are not needed. To prove the 

non-singularity of A may sometimes cause some difficulties. 

However Theorem 3 (ii) shows that the non-sin~ularity of A may 

follow in the course of checking a•. 

Note that the null-state has the same mathematical structure as the 

a priori state. It is only in the a priori state to replace n by 

e , • ah ( • ) by • ah ( $ ( • ) ) and C ah ( • ) by C ah ( ct> ( • ) ) • Hence no 

separate treatment of the null-state is needed. Note also that it 

follows from (32) and the chain rule for differentiation applied to 

log g (X ,$(9)), that the information matrix in the mull-state is a am 

(D$) I A (Dct> ) 

which is non-singular if and only if A is non-singular. 

To avoid trivial complications we shall modify (63), (64) and (66) 

by replacing c(n) by c = lim c(n). 
a a a 

Consider now the likelihood equations (64) and replace 

by (Cak'n). We then obtain 
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r 
s a 

G.(n,C) = I c [-. .(n)+ I-. k.(n)C h] = o (73) 
J a=l a ao J h=1 a J a 

It follows from (6 7) that these equations have a solution TJ = A(C ) 

for C in the range a of C ( TJ ) = (C 11 ( TJ ) , . . . ) . Nm'l the Jacobian 

of the system (73) is 

(7 4) 

However, by (70) and (43) this matrix equals -A. 

Hence the solution of (73) is unique if and only if A is non­

-singular. We may now take A(• ) to be the unique solution of (64) 

for Z on the union a U Z(S ) of the ranges of C (n) and Z(X). 
n 

n* = A(Z) will now be consistent by B' and since the var Zak are 

continuous functions of TJ(n). Hence they are bounded on compact 

sets and plim( z ak -C ak (TJ (n))) = 0 by Chebychev' s inequality. 'lhu s 

plim Z = C and plim A(Z) = A(C) = TJ. It is seen from A', B', in 

particular the assumption about ~' that we have an analogous null-

-state estimate ~ = A0 (z) of (66) for z E au Z(S ) . We define 
no 

~ = B(Z) = ~(A0 (Z)). We can now s~u up what we have said in the 

following theorem. 

Theorem 3. Let the classes of g : a= l, ... ,s: be Darmois-
a 

Koopmann (61). Then we have, (i) Under the assumptions A', B', 

there is a unique solution n* = A(Z) of (64) defined for any Z 

on the range of either Z or 1;:, which depends on the observations 

X only through Z, and not on n, and which is Fisher-consistent, 

i.e. A(C) =n. (ii) Under the assumptions in A', but without the 

non-singularity of A, then A is non-singular if and only if the 

solution of the maximum likelihood equations is unique for Z in 

the range of C . (iii) The assumptions A', B', C' secure that the 

assumptions A, B1 , B2 , c 1 , c 2 of II•l are true with consistent 

* - 1\ -estimates in c1 , c2 defined by TJ = A(Z), TJ = B(Z). 
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The crucial assumption B' of Theorem 3 is often easy to verify. 

Thus in the case of a simple survival model, let x1 , ••• ,Xn be 

the independent survival periods for n persons (articles) 

observed for one year. The force of mortality is ~· Hence 

Pr(X.=l) = e-~, Pr(x<X. < x+dx) = ~e-~x if 0 < x < 1. Thus the 
~ 1 

density (with respect to an apropriate measure) may be written 

0 .;; X ( ] 

where D is l or 0 according as x < l or x = l • 

Hence the likelihood equals 

L (X,~ ) = en(Dlog~ -X~) 

(7 5) 

where D = 1: D. /n is the rate of mortality and X is the average 
1 

survival time. The maximum likelihood equation is 

-
D 

'A 
X = 0 

~ 

which has the solution 
'A n/x ~ = if and only if both D and 

X > 0. Thus the probability of no solution is 

.. Pr(X=O)+Pr(D=O) = O+e-nn + o. 

Hence B' is fulfilled. 

In the fundamental Theorem 4 below we have to make an assumption 

about the consistency of the likelihood ratio which differs from 

the result in Theorem 2b. Hence the Lemma 3 is usefull. 

Lemma 3. Let the class of a= l, ••• ,s be Darmois-Koopman 

(61). Make the assumptions of Theorem 3 and assume also that ~ is 

identified in the model (i.e. •(~) * •(~') implies ~*~'),and 
- (n) 

that plim B(Z) * ~ when 11 + ~ ¢ H0 • Then the likelihood 

ratio is consistent, i.e. plim z1 = =. 

Proof: We have for z1 
r 

z, = 2n r c(n)[• o<~* )-• o<~)+ Ia<• k<~"' )-• k(~))Z k] = 
a=l a a a k=l a a a 

2n R 
n 
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where 
r 

s a 
plim R = 

n 
l c [• 0 (Tt)-• 0 (B(I;))+ I~; k(Tt)(• k(Tt)-• k(B(C))] = R 

a=l a a a 1 a a a 

since obviously pl im B (z ) = B ( C ) as 
( n) 

T} + any T}, (see Remark 

before Theorem 3). 

Consider no.v the "true" log-likelihood 

s 
= n l: c(n) (• (T} )+ l: • kC k)+const. 

a=l a ao k a a 

obtained by replacing Z by C in log L(X,T}) (see (63)). By the 

remark after (7 4) this expression is maximized by T}=A(C). Hence 

R :> 0. 

By the assumption about identifiability of T}, the true likelihood 

is not maximized both by A(C) and B(l;). Hence R > 0 and 

z1 = 2n Rn +<»,i.e. L(X;~)/L(X;T}*) + 0, which proves the lemma. 

5. The contrast analysis 

We return to the general situation in I.3 (see equations {3) 

and (4)) and recall that f(T}) is a contrast if f(T}) = 0 for 

Tl (: H0 , i.e. if f($ (9)) = 0 for all 9. We shall also assume a 

smoothness property, and use the following regularity assumption to 

be added to assumptions A, B1 , B2 , c 1 and c2 of II.l. 

Assumption D. The class of contrasts !J: is such that (jJ, for 

any f t ff:, f( 4> (9)) = 0 for all 9; (ii), the first order deriva­

tives f = 2....f._ are equicontinuous for variation of f E Y: . Such j 0 T} . 
J 

a class is called regular. 

We shall in Lemmas 4 and 5 below consider reduced formulation (see 

II.l), where Tl = (v 1 , ... ,vw;9 1 , ... ,9t) = (v,9) and the null-state 

is H0 v=O. Then f(<l> (9)) = 0 _in D becomes f(0,9) = 0. 

We shall operate with three types of regular contrasts. (l) General 

contrast classes, satisfying assumptions D only, (~) Focalized 

("malrettet") contrast classes, where all f depend on the inte­

rest parameter v only, f(T}) = f(v), not on the nuisance parameter 

9 (see II•l ), (i) Linear contrasts where each f is a linear 

function of T} ' hence f( T} ) = f 0 + L f. v .+ L f +. 9 .. But since 
w J J w J J 

f(0,9) = 0, v/e obtain f ( T} ) = E . l f. v .. Thus any linear contrast 
J= J J 

is focalized. 
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Obviously we have for any and , I 

where ,I 

w t 
* ~ * ~ * f ( 11 ) = f ( 11 ) + L ( v . -v . ) f . (, 1 ) + L ( 9 . -9 . ) f + . ( 11 I ) 

is between 

j=l J J J j=l J J w J 

* , and 11 , componentwise. 

(76) 

Now, we have from f(0,9) = 0, that f .(0,9) = 0; j = w+l, ..• ,v. 
J 

Hence if , is close to Ho I then the last sum in (76) is small. 

We have more precisely, 

Lemma 4. Assume A, B1 , c1 , D, let ,<n> ~ nEH0 , and let 

be the maximum likelihood estimate of ll• Then for any general 

contrast, we have in a reduced formulation, with 11 = (v,9), 

w . 
f ( 11 * ) = f ( 11 ( n) ) + I ( v *. -v ~ n) ) f . ( 11 * ) + Af 

j=l J J J 

where plim inAf = 0 uniformly in f. (77) is also true if 
( n) 

~ any and f is focalized. If in addition 
(n) 

= , , v 

v+~ (n) /In, where ~ ( n) converges, then 

* w * * f(n ) = f(n )+ I (v .-v. )f. (n )+Af 
j=l J J J 

where still plim inAf = 0 uniformly in f. 

Proof: Comparing (77) and (76) we have 

* , 

(77) 

(78) 

. ( 79) 

where. 

The sum in (79) converges in distribution by Theorem 1. If 

lim ,<n) = (0,9), then plim 11 1 = (0,9) and we also have 

f. ( 0,.9) = 0; j = w+l, ... I v. It then follows from the equicontin­
J 

uity of f. that to any E > 0 there exists a o such that 
1 

(n) * ln. -n .j < o for all j imply Q <E. Hence 
J J 

v 
Pr(Q>E) < I Pr(in*.-,~n)l>o) 

j=l J J 
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and the first assertion follows. The second assertion follows in a 

similar,but simpler manner. To prove the assertion connected with 

(78), we observe that (79) is true with n(n) replaced by n in 

(79), and make use of the last statement in Theorem 1. 

From Lemma 4 we get, 

Lemma 5. Assume A, B1 , c 1 , D. Under the different limit 

conditions concerning n(n) in Lemma 4, ln(f(n* )-f(n(n)), resp. 

- * ln(f(n )-f(n)) converges in distribution to the normal with mean 

0, resp. E~ ~j fj(n), and variance. 

w 
a~( n) = L f.(n)f.(n)a .. (n) 

. '-1 1 J 1) 1,)-

(80) 

h E H d ( A A ) I -- A -- 11• m A ( n) 0 were n 0 , an u 1 , .•. ,uw u u 

Now, it is natural to state that f(n) > 0 if f(n*) is suffici­

ently large. With a reduced formulation, we decide to state that 

f(n) > 0 whenever 

(81 ) 

where z is the (1-E)-fractile of the chi-square distribution 

with w = v-t degrees of freedom. 

With a general formulation we decide to state that f(n) > 0, when 

where 
v 

p~(n) = L f.(n)f.(n)a .. (n) 
i,j=1 1 J 1) 

(83) 

Alternatively, instead of using a priori estimated standard 

deviations we might use null-state estimated standard deviations 
A A A A 
af = af(n), Pf = pf(n). 

These are our delta-multiple comparison tests. 

We shall now sta.te and prove what we consider the fundamental 

properties of this procedure. 
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It seems as if focalized contrasts will commonly occur in practical 

applications. We shall, however, also consider general contrasts. 

Theorem 4. The vector of observations X has density 
( n) 

L(x:TJ ), 

where L(x:TJ) is given by I.3.(3). We make the assumptions A, B1 , 

B2 , c 1 , c2 of II.l and D of II~S. A, B1 , B2 , c 1 , c2 may be 

replaced by assumptions A', B', C' in the case when the classes of 

g : a = 1, ... ,s: are Darmois-Koopman (see (61) and Theorem 3). See 
a 

also Lemma 3 for the consistency of the likelihood ratio assumed in 

(ii) and (iv) below. 

Let 
( n) 

TJ + TJ . 

Then the delta-multiple comparison tests (81) and (82) with a 

priori estimated variances, have the following properties (i)-(v). 

(i) Let 7 be the linear contrast class for the null-state, 

consisting of all linear f. Assume that the reduced formulation 

test (81) is used. Then we state that f(TJ) > 0 for at least one 

f, if and only if 

(84) 

(see Theorem 2). If TJ is consistent with the null state (TJEH0 ), 

then the probability of stating a significant contrast (falsely) 

converges to £ • 

(ii) Let :f be as in (i). 'Ihen the probability of having a signi­

ficant likelihood ratio cz,>z) without having a significant 

contrast, goes to 0. Vice-versa if the likelihood ratio is 

consistent (see Lemma 3) the probability of having a significant 

contrast without having a significant likelihood ratio (Z1 <z) 

goes to 0. 

(iii) Let 7' be any regular contrast class and assume TJ (n) + 

TJ E H0 : alternatively J: may be focalized and TJ need not be in 

H0 . Then the probability of falsely stating f(TJ) > 0 for some 

f E It: for which f( TJ) <: 0 is asymptotically <: £ , more precisely, 
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lim sup Pr{ u [ f( ,*) >v'z of (n* ) /in]} " e: 

f:f(n(n))"O 

(8 5) 

A simultaneous confidence interval for all contrasts in Y:: follows 

from 

lim inf Pr[ n {ln(f(n* )-f(n(n))<z of(,*>}]:> 1-e: (86) 
fE'? 

In (85) and (86)1 of(n) is given by (80) or may be replaced by 

p f(n) given by (83). 

Assume that :J: is focalized. If , need not be in 

assume also that the likelihood ratio is consistent. Then the 

probability of having a significant contrast without having a sig­

nificant likelihood ratio goes to 0. 

Remark: \ve might say that significant likelihood ratio is "a 

necessary condition in probability limit" for having a significant 

contrast. 

(_~) Assume .7 to be the class of all linear contrasts for null­

state and let 6 (n) = /n(n (n)_$(9)) + 6. Then the probability of 

stating a significant contrast approaches Pr( Z (K ):> z) 1 where 
'lfl 

Zw(K) is chi-square distributed with eccentricity given by (40) in 

Theorem 2. If 6 is defined by the orthogonal speed of descent to 

H0 (see (30) and (31)) then K is also given by (41). 

Remark: It should be noted that this result could be used to study 

the performance of the multiple comparison method with respect to 

certain comparisons in a subset ff'' c Y:: 1 which correspr nds to a 

less restrictive "hypothesis" H0 :::J H0 . 

(vi) The statements in (i)-(v) still hold if null-state estimated 

standard deviations of(~) and pf(~) are used in place of 

of(,*>~ pf(n* )I provided I: (n*) is replaced by I:(~) in (84) and 

it is everywhere assumed that 11 (n) + nE H0 . 

Proof. We consider first the case of reduced formulation. 
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Proof of (i}. We use Schwartz inequality (2). Then with 

h = (f 1 , ••• ,fw}', 

max h'v*/-1- of(rt) = 
h rn max 

h 

by (84) and (80}. Hence h'v* > .fZ of(rt )/In for some f if and 

only if z 0 > z. 

This proves the first statement in (i). The second statement follow 

from the fact that if TJ E: H0 , then by Theorem 1, z 0 has a dis-

tribution which converges to the central chi-square distribution -

with w degrees of freedom. 

Proof of (ii). We note that from the first part of (i), that the 

probability of having a significant contrast without having a sig­

nificant liklihood ratio and the probability of a significant like­

lihood ratio without having a significan contrast are respectively 

(8 7) 

Consider the second probability. The event (z 0<z)n (Z 1>z) may 

(trivially), occur either when also Y = z 1-z0>E or when also 

Y ( E, E > 0. The second event implies z-E ( z 0 < z. Hence the 

last probability in (87) is 

( P(Y>E) + Pr(z-E(Z0<z) 

where the first term P(Y>E) goes to 0 by Theorem 2a if In v(n) 

+ 0. The second term goes to r(z)-r(z-E), by Theorem 2a, where r 

is a cumulative chi-square distribution. 

tain that the second term in (87) goes to 

Letting E + 0 we ob-

0 • If v ( n) + v:f 0 or 

V (n) + 0 1 1 th more s ow y an 1/ln , then we make use of the trivial 

fact that the second term in (87) ( Pr(z0<z), which goes to 0 by 

Theorem 2b. 

That the first probability in (87) goes to 0 is proved in a 

similar manner, making use of the assumed consistency of z1 . 

Proof of (iii). We denote the union in (85) by S(n (n)) and have 

by (77), writing 
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S(n(n)) = u [ f(n(n))+ J (v*.-v~n))f.(rt )+Ailz cr*f//n] (88) 
f:f(n(n)),.;O J=1 J J J 

Since f(n(n)) ( 0 this union is a subset of 

w 
[ \' * (n) * - * -] U L (v.-v. )f.(n )+Ailz crf/ln 

( ) . -1 J J J 
f:f(n n )(0 J-

If we take the union over all f, we get a set which is at least as 

wide, hence 

S(n(n))c [ ~ * ( n) * - * -] U L ( v . -v . ) f . ( n ) +A i I z cr f /1 n 
fE j=1 J J J 

(89) 

The first term in the bracket in (89) is by Schwartz inequality (2) 

(9 0) 

where Z(v) = n(v*-v)'l:(rt)-l(v*-v). Combining (89) and (90) we get 

( 91 ) 

where 

(9 2) 

in probability, uniformly in f by Lemma 4 and (80). 

Let 0 <a< TZ. Then T(n)-[rz(v)~iZ-aJ = T(n)n(lz(v)<iZ-a) 

implies Bf ~ a for some f. Hence 

s(n (n)) c T(n (n)) c (/z(v (n) )~lz-a)U u (Bla) (93) 
f 

and 

lim sup Pr(S(n (n))) ( 1-r( (/Z-a) 2 )+ lim Pr(U (Bf>a)) (94) 
f 

Where r is a chi-square distribution by Theorem 1 . 

However, by the uniform convergence of Bf to 0, the last term is 

0. Hence by letting a+ 0 we get e on the right side of (94) 

and the first statement in (iii) is proved. 

To prove the second statement in (iii) we consider the compliment 

of the intersection in (86), which by (77) is identical with the 

right hand side of (89). Hence we may proceed from (89) to (94), 

from which (86) follows. 
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Proof of (iv): We shall prove that 

(9 5) 

goes to 0. This probability is< Pr(Z 1 <z) which goes to 0 by 
( n) 

the consistency assumption if v + v*O, or by Theorem 2b if 

V ( n ) ~ 0 1 1 th 1 / ,-n. ( H d t th ~ more s ow y an Y ence we nee no e assump-

tion that jr is focalized in these cases.) Assume now that~ is 

focalized and v (n) = ~b. (n), where b. (n) + b.. Then we make use 

of (78) to obtain that (95) may be written, 
w 

Pr{ [u (In I v*. f. Crt )+In Ailz cr*f)] n (z1 <z)} (96) 
f j=l J J 

Proceeding as in the development from (89) to (92) we obtain as in 

(94), that (95) is 

By (91) and (93) this probability is 

< Pr[ (lz 0 ) /z-a)n (z 1 <z>J + Pr(U (B(' a)) 
f 

where the first term goes to 

and the last term goes to 0 

r (z;~c:} -r ((/Z-a) 2 :K) ('Iheorem2) 
w w 

by (92). Hence (iv) follows. 

Now (v) follows trivially from (i). 

To prove (vi) we note first that all the results in Theorem 2 are 

true if a (rt ) and E (rt) are replaced by a(~) and E (~) and 
(n) 

TJ + TJE H0 . 

Going through the proof above we notice that the derivation follow-

* * ing (87) still holds good with af(TJ ) and E(n ) replaced by 

a f (~) and E (~). Furthermore Bf=rnAf/a f (~) + 0 uniformly in f 

(see (92)) since we have now assumed that TJ (n) + TJE H0 and can 

use the assumption c2 . Also z0 and Z (v ( n)) with E <n* ) re­

placed by E (~) still have the convergence in distribution proper­

ties used in connection with (94) and the derivation after (96). 

This proves (vi). 
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We now t~rn to the proof of the results in Theorem 4 in the case of 

a general formulation. We shall first prove that p~(~) is 

invariant under smooth transformations ~ = T(n). We then write (83) 

p~(~) = Df(~)a(~) Df(~) 1 (97) 

using the same principle of notations as in the proof of Theorem 2. 

From the invariance consideration after eq~ation (32) we obtained 

~(n) = DT(n) 1 A(~)DT(n).Now f(n) = f(T(n)). By the chain rule for 

differentiation we also have Df(n) 1 = DT(n) 1 Df( ~) 1 • Thus we get for 

p~(~) = Df(~) 1 ~(~)-1o'f(~) that 

Df(~) DT(n)DT(n)-1 ;\(~)-1(DT(n) 1 )-1 DT(n) 1 Df(~) 1 = 

= Df(~);\(~)-1 Df(~) 1 = p~(~) 

Hence p~(~) is invariant. 

Let now ~ be the parametre in a reduced formulation. Then (80) 

should be written 

w 
a 2f < n > = I 1 . <n > 1 . <n fa . . <n > . . ~ J l.J 

~,J 

(98) 

On the other hand, if either ~ E a0 or the 1 E J=- are focalized 

(in the reduced formulation), then 

since fi(n) = 0 

it follows that 

..... 
uniformly for f 

and plim * 
~ = ~ 

uniformly in f. 

for i > w. From the equicontinuity of the f. 
~ 

(99) 

- (n) 
E 'j:". Since this is true for any sequence ~ + ~ 

according to assumption c, I we also have 

plim(p 2 <~*)-a* 2) = 0 ( 100) 
f f 
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Now consider (iii) in the theorem. We observe that by the 

invariance of p~(,) and the obvious invariance of f(':fi*), we may 

let the criterion in (85) Iii£(,'*)) IZpf(,'*) refer to the 

reduced formulation. This may now be written, 

* 7<,· 
(iii) just where pf = pf(, ). Hence in the proof of we may re-

place Af by - rz '* * Af= z(a f-p f)/IIi +Af where by (1 00) rn A.f goes to 

0 in probability uniformly for f in ¥. Hence the proof goes 

through as before with Af replaced by Af. The same argument 

applies to the proof of (iv). The other results in the theorem now 

follow from the limit properties of z0 , z0 , z1 , given in 

Theorem 2. 

For some applications of the theory of the present Chapter II the 

following lemma is convenient. 

Lemma 6. We make the assumptions A, s 1 , s2 , c 1 , c2 , of II.l, 

and consider reduced formulation 11 = (v,e). Let F(11) be any 

function of 11 with continuous first order derivatives. 
7<. , and 

~ = (0,~) are maximum likelihood estimates a priori and in the 

null-state respectively. If 11 (n) = (v (n) ,e (n)) + 11 = (v ,e) there 

exist sequences { 01 (,)} , ••• , { Q (11 >} converging in probability, 
n wn 

such that 

w 
In [ F (, '* )-F (~ >] - In L Q • ( Tl ) v ~ n) 

j=l Jn J 

converges in distribution to the normal with mean 0. 

Proof. We have for some ,. between 
7<. , and 

1\ 
Tl , 

v 
ln[F(~)-F(~)J =Iii L F.(,•)(,~~.) = 

i=l l. l. l. 

w 
= rn I 

1 

t 
F.(,·)v~+ln L F +.(,•)(9~-~.) 

l. l. ' 1 'VI l. l. l. l.::; 

where Fi(,) = 0 ~~:) . Introducing (53) from II.2, ano writing 
l. 

v~ = (v~ -v ~ n) )+v ~ n) we obtain the lemma from Theorem 1. 
l. l. l. l. 
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II I. APPLICATION OF THE GENERAL THEORY TO STATISTICAL ANALYSIS 

OF CATEGORICAL OBSERVATIONS 

1 • Assumptions 

The situation is as described in !.6-7. There are s independent 

sequencies of multinomial trials leading to the likelihood (1 7) 

s 
L(X;TJ) = II 

a=1 

r N . 
II a aJ 

'It • 
j=1 aJ 

where the 1t j = 1t . (TJ); j=1, 2, ••• ,r ; are the probabilities of the a aJ a 
r outcomes A .; 

a aJ 
j=1 ,2, ... ,r ; a:o:1 ,2, ••• ,s. The N . are the 

a aJ 
frequencies of the A .; j=1,2, ••• ,r ; a=1,2, ••• ,s. We aim at con-

aJ a 
structing a multiple comparison method relatively to a null-state 

ra 
We still consider asymptotic results under increasing na = ~j= 1 Naj 

such that lim n /n = c >0 where n = ~ na. The likelihood is a a 
L(X,TJ(n)) where TJ(n) converges to some 11 as described in II.1. 

Obviously the present situation falls under the general set-up of 

the Darm~is-Koopman classes of distributions described in II.4. The 

regularity conditions A1 , B 1 , c• now simplify to 

A 11 • 11 varies in an open set of the v-space. In the nu11-

-stat~ TJ = 41 (e), where e varies in an open set in the t-space. 

The second order derivatives of the functions 'It .(TJ) 
aJ 

and 41 ce > 

exist and are continuous. 0<1t . (TJ) < 1 for any 
aJ 

11. 'lbe Jacobian 

D$ has rank t. The matrix 

A a 

is non singular. 

A = ~ c A , where a a 

o2 logn aj) 
OTJ 011 k .t k,.t=1, ••• ,v 

( 1 01 ) 

Remark. By Theorem 3 (ii) of II.4 a necessary and sufficient 

condition for A to be nonsingular is that the equations 

r 
o lo91t aj (TJ) s a 

t c t 'It = 0; k=l , ••• , v (1 0 2) 
a=1 a j=1 aj OTJk 

(compare (103)) have a unique solution in TJ • 
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B" The set of all X for which the maximum likelihood equations a 

priori 

* s r a log 'It .(n ) 
I La N aJ = 0: k=l 1 2 1 o o o 1 V 

a=1 j=1 aj ank 
( 1 03) 

* have a unique solution T1 I has a·· probability that goes to as 

n + m. The same is assumed about the maximum likelihood equations 

in the obtained ( 103) by replacing * I\ 
null-state from T1 by T1 = 

I\ 
~ ( e ) , ank by aek and letting k = 1, ••• ,t. Outside the sets T1 * 
= A( q) I 

I\ = B(q) defined in manner depending upon the T1 are any 

q ; = N ./n alone. 
aJ a) a 

The assumption B11 is obviously the critical one. 

B" is fulfilled for the framework (saturated) model. Because then 

the; maximumlikelihood equations have a unique solution 

* ··'.'It ·<n )· = aJ a=1 1 21 o • • 1 S 

1 ~ I ' !. I: 

provided all N . > 0. But the probability that some 
aJ 

( I 
a,j 

n 
P r ( N . =0 ) = }: (1 -Tt • ) a + 0 

aJ a) 

N . = 0, is 
aJ 

Consider another example, viz. the restrictive loglinear threeway 

classification model 

log 'It. 'k = !J.+y .. +o .k+~ k. . l.J ' l.J J l. 
( 1 04) 

where ·the 
'It ijk 

(i,j,k): 

now denote the probabilities of the factor combi-

nations i=l, ... , I: j=1 , 2, ••• , J: k=1 , 2, ••• , K. For the sake 

of identification we set Y i 1 = o j 1 = ~ k 1 = 0 • From 

get 

1 I I 
i, j 1 k 

The likelihood L(X:n) is given by 

log L = n!J.+Ey .. N .. ++to .kN+ .k+E~k.N'+k. where l.J l.J J J l. l. 

E1t. 'k = 1 l.J 
we 

( 1 OS) 

T1 = <r 12 , ... ,y 1J: o 12 , ... ,oJK: ~ 12 , •.• ,~K1 ), Nijk is the number of 

trials with factor cpmbination ( i 1 j 1 k) 1 and 
J 

= Ej=1 Nijk, etc. 
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In order to verify B" we study maximization in the case when all 

Nij+ , Ni+k , N+jk > 0, the probability of which goes to 1, by the 

same reasoning as above. We shall show that L is maximized for 

precisely one finite ~ = (y 12 , ••• ). Then obviously the likelihood 

equations have just one solution. 

We choose to use the Lagrange device of first maximizing 

o<a) = log L - n I: 1t . 'k 
1) 

under free variation of a=(~,~)= (~,y 12 , ••• ) without the side 

condition I: 1t .. k = 1. It is seen from Q(a 0 +ta1): t(scalar) +±a:>; 
1) 

a 1 (vector) * 0: that Q + -a:> as ~' y ij ' ~ ki go to in all 

directions. Hence Q is maximized locally for at least one a. We 

also have 

which is < 0 unless ~ 1 +y 1 .. +6 1.k+~ 1k. = 0 
1) J. 1 

for all 

this reduces to 

i = j = 1 and to 

~1 = 0 for i = j = k = 1 : to 

.+.1 = 0 
'~'ki for j = 1. Similarly 

i , j , k. However , 

Hence a 1 = 0, which is a contradiction. It follows that there is 

just one local maximum which must be the absolute maximum, and that 

* there are no other stationary points. For this maximum 1tijk = 
* * 1t .. k(~ ,~ ) , we then have for any point (1t .. k) given by (1 04) 

1) 1) 

(1 06) 

On the other hand the must satisfy a Q(a*) = ae:- 0, which lead 

to 

K * 
n I 1t. 'k = 

k=1 1 ) 

J * 
n I 1t "k = N1. +k ' 

j=l 1) 

I 1t*. 'k = 
. . k 1] 
1, J, 

1 

I * ' 
n L 1t "k = N+J'k 

i=1 1 ] 
(1 07) 

Introducing the last equation (107) into (106) we have for any 

point (1t. 'k) 
1] 

for which I: 1t . 'k = 1 , that 
1] 



- 48 -

}: N .. k log 1t .. k.;}: N .. k log 1t~.k 
~J ~J ~J ~J 

Thus (107) gives us the unique maximum likelihood estimates of the 

1tijk if all Nijk > 0. Then everything is proved. It now follows 

that A is nonsingular. [For a convenient iterative procedure for 

the solution of the linear equations (107), see Bishop et.al. 

(1975).] 

2. The likelihood ratio and the chi-square goodness of fit 

statistics 

The following statistics are well known to be useful measures of 

goodness of fit of a nullhypothesis v = 0. 

The likelihood ratio is given by 

Q = L(X:~) = n (~aj)Naj 
( *) . * L X:n a,J 1t • 

aJ 

(1 08) 

where 
A A 
1t • = 1t .(n) 
a] aJ 

and * * 1t • = 1t .(TJ ). 
aJ aJ 

The chi-square goodness of fit difference is 

( 1 09) 

where 

I ( 1 1 0) 
a, j 

In the case of the framework model, we have Za = 0, since then 

* 1taj = qaj = Naj/na. 

We shall study these statistics. 
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For convenience we make the explicite assumption that there exist 

functions 

p. =II .(p 1 ~···~P I v 1 ~···~v 1 e 1 ~···~et> =II .(p,v,e}, aJ aJ r w aJ 
( 1 1 1 } 

with second order continuous derivatives establishing a one-to-one 

correspondence between freely varying multinomial p . > 0, 
aJ 

r 
(E j:1 Paj = 1 } , and ~ = (p 1 v 1 9}, such that II .(O,v,e} = 1t .(v,e}. 

aJ aJ 

Furthermore r+w+t = E r -s = R-s. a 

Theorem 5. We also make the assumptions A", B". z0 and z 0 are 

defined as in Theorem 2 with A.=EcA. a a 
refers to a reduced formulation. 

(see (1 01)} and 

a If n(n} + Ha at least as fast as 1/fn goes to 0, then z 1 = 

-2log 01 z0 I z0 and ZH-za are mutually equivalent in proba­

bility limit, and they converge in distribution to the chi-square 

distribution with w = v-t degrees of freedom and eccentricity 

K = 6 I' (E' (ii )-l }6 I, where 6 I is given by 6' = (6 I' ,6 II'}. 

In particular, if n (n} + H0 with orthogonal speed at least as 

fast as 1/ln goes to 0, i.e. (D~}'A./1 = 0 (see (31}), then the 

eccentricity is also given by K = 6'~(n)-1A (see (41) ) • 

b If n 
( n} 

+ n E Ho more slowly than 1 /{n, then Pr(z 1<z), 

Pr(z 0(z>~ Pr(z 0"z) + 0 and the asyrrptotic power is 1 when using 

the test statistics z1 or Z' 0 . 

Remark. It also follows from the proof that Za and ZH converge 

in distribution to the chi-square distribution with R-s-t and 

R-s-v degrees of freedom respectively. 

the limit. 

Z has eccentricity 0 in 
a 
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Proof. The statements in ~ not involving ZH - Za , and the state­

ment in b are direct consequences of Theorem 2. We prove first 

that -2log Q and ZH - Za are equivalent in probability limit. We 

write 

- 2log Q = - 2log QH + 2log Qa ( 1 1 2) 

where 

( 11 3) 

We see that QH is the likelihood ratio in the case of the frame­

work model, i.e. where the a priori model is (111 ). We have 

- 2'log' QH = - 2 I: N . log(1+R .) 
aJ aJ 

( 114) 

where 

/1. 
1t .-q . 

R . = a) a) 

aJ qaj 
( 1 15) 

We make use of log(1+x) = x-~x2 K(x) where lim K(x) = 1, and get 
x+O 

where 

- 2log Q . 
a) 

in probability. 

/1. 

= - 2 I: N . 1taj-qaj 
aJ qaj 

/1. 
1t .-q . 2 

+ I: N . ( a] aJ) K(R . ) 
aJ qaj aJ 

(n ~ .-n q . ) 2 
a aJ a aJ (K( .)-1 ) 

N . qaJ 
aJ 

K(q .) + 1 
aJ 

( 116) 
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But by Lemma 6, there exist sequences { (Q 1n( ), .•• ,Qnn( >} 
converging in probability such that 

- 1\ ;-in(q .-n .) - vn 
a) a) 

w 

I 
k=l 

Q (rJ)v(n) 
kn k 

converges in distribution. Hence the same is true of 

if 

v ~n) = t. <.n) /In 
J J 

Hence by (116) 

fn(q .-~ . ) 
a) a) 

( 1 1 7) 

On the other hand Q is the likelihood ratio if the framework 
a 

model is con1s:idEd·ed as the a pribri model and the real 'a priori 

model is considered as the hypothesis. Hence by (117), 

plim(-2log Q -z ) = o a a 

Combining ( 1 1 2) , ( 1 1 7) , ( 118) we get 

( 11 8) 

( 119) 

It now follows from Theorem 2 that ZH - za converges in distri­

bution as stated in Theorem 5. 

3. Contrast analysis of categorical observations 

~Je can now apply the results from the general theory of Chapter II 

directly to the present situation defined by (17) and the assump-

tions A", B", C' (see II.4). 
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It sometimes makes the contrasts more meaningful to express the~ in 

terms of the 1t • directly instead of T). Hence we use the form 
aJ 

F(1t(rj)) = F(1t 11 (T)), ••• ,1t8 r (T))) 
s 

(1 2 0) 

and apply the general theory to f(T)) = F(1t(T))). We consider a 

class Ji of functions. In place of assumption D of II. 5. we nCM 

assume that 

II r:r: D . The class of contrasts ~ 
1t 

is such that (~), for all FE '7.' 
"lt' 

F(1t(<j>(9))) = 0 for all 9, (ii) the first order derivatives F . = a1 
oF 

01t . a1 
are equicontinuous for variation of 

q-:- is called regular. "1t 

F E :;:: • Such a class 
1t 

Applying the general theory in II.5 we can now write out the rule 

for multiple comparison. The asymptotic variance of 

/n(F(1t* )-.F(1t (n))), where 1t (n) = 1t {T) (n)), is 
! ( : I I ' I 

v 
cr2F ( T) ) = I F . ( 1t ) F 1 • 1 ( 1t ) I 

I • , I a1 a 1 k k I _ 1 a,a ,1,1 , -
( 1 21 ) 

where A. = L: c A. (see eq. (1 01)). 
a a 

We obtain that the delta multiple comparison rule is now to the 

effect that we decide to state that F(1t(T))) > 0 for any F E $;_ 
1t 

for which 

(1 22) 

where z is the (1-e )-fractile of the chi-square distribution 

with v-t degrees of freedom, 

F = ( F 1 1' ••• 'F sr ) I ' 

s 

= lc 1t • 

olog1t .(T)) 
aJ 

a aJ 

A = (A .k) . k 
aJ aJ, 

(1 2 3) 

is a matrix such that aj enumerates the rows and k the colums: 
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and D is a diagonal matrix with diagonal elements 

(Thus A and D are of order RXR ; R = E r . It is understood 
a 

that the subscripts aj of F aj I A ajk 
and D 

aj 
in F, A and D 

are taken in, say, lexical ordering.} 

In the case of the framework model the test (1 2 2} takes the form 

I 1 
F(q} ) lz I -[EF2 . (q}q .-(EF . (q}q . )2 J 

a na a] a] a] a] 
(1 24} 

where qaJ· = N ./n , and the degrees of freedom for z is R-s-t. 
aJ a 

Making use of 'Iheorem 4 and 'Iheorem 5 we can now state 

TheQt;~ q. ,we have a multinomial situation with likelihood (1 7} 

and make the as~umptions A", B", C' (see II.4} an<l D (see II.5}. 

Then the result~ about the multiple comparison rules (81}, (82} and 

the test statistics z0 , z0, z1 = -2log Q (see (108)} in Theorem 4 

(i}-(vi} still hold. These results also hold under assumptions A", 

B", C', D" if the class of contrasts are defined by (1 20) . It is 

only in 'Iheorem 4 (i}-(vi} to replace (85} and (86} by 

limsup Pr{ n ( F(n"' })/Z aF(n"' }) } .;; E 

F:F(1t (n} }.;;O 

liminf Pr{ n [ln(F(1t"' }-F(1t(n}}<lz aF(n"' )J} ) 1-£ 
FE 1t 

where aF is given by (123}. 

(1 25} 

( 1 26} 

The test statistic z -z (see (1 11}) may replace the statis­H a 
tic z1 under the assumptions above and also assuming that 

(n} 1 
T) -+- H0 at least as fast as In -+- 0. 
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4. Exact relationships in the case of framework models and 

contrasts linear in the multinomial probabilities 

The results in Theorem 4 (i), (ii), and (v) are of little interest 

in the case of multinomial situations with restrictive models and 

contrasts given by (120), since it would assume that F(n(~)) is 

linear in ~· However, in the case of framework model, linearity in 

~ means that F(n) is linear inn, which holds in some interes­

ting situations (e.g. homogeneity testing). In that case some 

rather strong results can be proved. 

(See Sverdrup (1975) and (1977b).) 

Theorem 7. Assume the framework model and that ~consists of all 

linear contrasts 

F(n) = 

1,' ;] \ 

L F.n.+F0 . aJ aJ a,J 

which are contrasts relatively to the null-state 

n aj = 4> aj ( e ) = 4> aj ( e 1 , .•• , e t) 

where t < R-s and the matrix 

( o4> ·) 
o e : J a j= ( 1 1 , .•• , sr s) 

( 1 27) 

( 128) 

is of full rank. (Note that 1 F ( n ) = E . ( F . + - F0 ) n . , hence 
a,J aJ s aJ 

is the class of F(n) = E F .n . 
aJ aJ 

( 1 2 7) . ) Let 

i.e. we may put F0 = 0 in 

.!.cr 2 Cn>=I-1 [IF2 .n .-<IF .n .) 2 ], 
n F a na j aJ aJ j aJ aJ 

( 129) 

z be the (1-£)-fractile of the chi-square distribution with R-s-t 

degrees of freedom, q . = N ./n . 
aJ aJ a 

Two methods of multiple comparisons will be considered. 

Method A. The method with null-state estimated variances. Let 

~ = 4>(~) where @ be the unique solution of the maximum likeli-

hood equations in the null-state, i.e. 
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N aj o4> .(~) 
I aJ = 0 

4> • (~ ) ae . a,j 1 
aJ 

i=1,2, ••. ,t (13 0) 

if all N aj are > o. 

Assume all N . > 0 and that the delta multiple comparison test 
aJ 

with criterion 

(1 31) 

is used. Then some contrast is declared present if and only if the 

ordinary goodness of fit statistic satisfies 

Method B. The --------
that 

1\ 
4> (~ ) , 1t = 

I 
a,j 

z = I 
(N . -n ~ . )2 

_...:a.;.,J'---...:a;:__a;;;;.J..___ :> z 
1\ 

n 1t • 
a a] 

method with (a priori estimated variances. 

where ~I is the unique solution of 

rt. 0 4> • (~ ) 
2.l 4> • {~ ) aJ = 0 i=1,2, .•• ,t 
N ae . a aJ 

1 

(1 3 2) 

Suppose 

(1 3 3) 

for all N . * 0, which are the formal minimizing equations for the 
aJ 

modified chi-square goodness of fit 

I 
a, j 

and that the criterion 

( N . - n 4> ( e ) )2 
aJ a 

N . 
aJ 

(1 34) 

is used. Then some contrast is declared present if and only if the 

modified chi-square goodness of fit statistic satiefies, 

z = I 
a, j 

(N . -n ~ . )2 
_...:a.;.,J"=""...:a;:__a;;;;;;....L.J _ :> z 

N . 
aJ 

(1 3 5) 

Of course the asymptotic properties of the methods A and B follow 

from 'Theorem 4 and Theorem 6. 
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Remark: Note that the relations between the multiple comparison 

rules on the one hand side and the classical goodness of fit tests 

on the other hand side are purely algebraic. They are strictly 

true, there are no approximations involved and they are not proba­

bility statements. (The assumption that all N . > 0 
aJ 

is of course 

probabilistic, but with a probability that goes to 1 as n + .., , 

n /n + c >0.) 
a a 

Proof. \le shall first prove the contention about ( 1 30). He 

introduce 

y . = 
aJ 

" N .-n n . 
aJ a a,J 

In~ . 
a aJ 

For convenience we replace (a,j) by a single letter such that 

1 ,2, ••. ,n represent (a,j) in lexical ordering (say). Hence 

N = N. ' qaj = q. 'It = 'It, 4> .(9) = $.(9), F = F. aj ' aj ' aj l. l. 

i=i(a,j)). We also 

i=i(a, j)). Thus c. 
l. 

Thus we may write 

We have from (129) 

l. a) l. 

replace n by n. and a l. 

and n. are 
l. 

y . = Y. = 
aJ l. 

constants 

" N.-n.n. 
l. l. l. 

ln.~. 
l. l. 

c by c. a l. 

on sections 

= '\ 1 '\ ( ) t., t., F . F . 1 o .. 1 1t • -n .n . 1 

na j, j 1 aJ aJ J J aJ a) aJ 

( Q ' ' I is 
JJ 

the Kronecker 0 ) . This may nCM be written 

1 1 s 
cr~(n) l: I n F. F. 1 (o .. 1 -n . 1 )'It . - = -n n n. l. l. l.l. l. l. a=1 i,i 1 ES l. 

a 

l. 
(where 

(if 

( 1 36) 
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- (J 
n F 

= l 0 2 (~) = 
n F 

- 57 -

h. = F./~. /n. 
1 1 1 1 

s 
I 

n a=1 
L (6 . .• -h~ /C)h.h., 

. . 'E S 11 1 1 1 1 
1,1 a 

(1 3 7) 

(1 38) 

Now let b denote a matrix of order Rxs, the a-th column of 

which is 

(O, ••• ,o,/~R +l, , ..• ,,/~R ,0, ••• ,0) 
a a+1 

(1 39) 

and starts with R a 
a-1 

= I: 1 r. 
1 

zeros, R1 = 0. Then obviously, 

b' b = I 

and (138) may now be written, 

I (1, 

1 "2 
- (J = hI ( I-bb' )h 
n F n 

Wehave from (127) and F($ 1(9)) =O,'that 

Hence 

F 0 + r F.$ .. <e ) = o 
1 1 

1\ 
F(q) = I: F. (q. -1t.) 

1 1 1 

which by (136) and (137) may be written 

1 
F(q) =rnh' Y 

We also have from (1 42) 

R o$ . (e > 
1 . I 

i=1 
F. 

1 

for any 9. We introduce 

B .. 
1] 

It is seen that B = (B .. ) 
1] 

oe . 
J 

= 0 j=1,2, ••• ,t 

1\ 0$ . (~ ) 
= /n. /1t. n ~e 

1 1 . 
J 

is the matrix 

(140) 

I,, 

(1 41 ) 

(1 4 2) 

(1 43) 

(144) 

(1 45) 

multiplied by 
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a diagonal non-singular matrix. Hence by the assumption about 

("~~~:))• B has rank t. 

We have from (144) 

From L: 
iES a 

<!> • ( 9) = 
1 

I 
iE S a 

we get 

0 <!> • ( 9 ) 
--=-1-=---- = 0 o9 . 

J 

h' B = 0 

a=l, ... ,s; 

Replacing 9 by ~ we obtain 

b' B = 0 

j=l I o o o It 

( 146) 

( 14 7) 

( 148) 

Since B has full rank, the space Vt spanned by the columns of 

B is a t-dimensional subspace of the R-dimensional space VR. Let 

H be a Rxt matrix such that its columns constitute an orthogonal 

basis for Vt . Then of course H' H = I and by (146) and (148) h 

and all columns of b are perpendicular to Vt. He have 

h' H = 0 ( 149) 

b' H = 0 ( 150) 

From (150) it is seen that the matrix Rx(t+s)-matrix (H,b) has 

orthonormal columns. We complete it and obtain an orthogonal matrix 

K = (G,H,b) ( 1 51 ) 

of order RxR. G is of order Rx (R-t-s). 

Let us now introduce 

d = K' h ( 1 52) 

v = K' y ( 1 53) 

If we let F run through ~then (F 1 , ... ,FR) varies only sub­

ject to (144). Thus F 1 , ••• ,FR varies freely in the (R-t)-dimen-
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sional subspace. By {144), {146), and {152) the same is true of h 

and d. We now have from {143), {152), and {153) 

.fn F{q) = d 1 V 

{ 149) reduces to 

0 = h 1 H = d 1 K 1 H = {dR t+1 , ••• ,d ) -s- r-s 
Hence 

d =···= d = 0 R-s-t+1 R-s 

From {153) 

But by {136) and {139) the a-th component of b 1 Y is 

I 
iE S a 

{N.-n.~.)/ln. = 0 
1 1 1 1 

since n. is constant if i E s . Hence 
1 a 

v = ... = v = 0 R-s+1 R 

{ 1 54) 

{ 1 55) 

{ 1 56) 

\ve now express our multiple test { 1 31 ) in terms of our new varia­

bles. From {141) we get 

~f2 = h 1 h-h 1 bb 1 h = d 1 d-d 1 K 1 bb 1 Kd 

But 

K' b = 0) 
which combined with {155) gives 

~2 = 
F 

R-s-t 
I 
1 

d~ 
1 

{ 1 57) 

Combining this with {155) and {156) we get for the multiple test 

criterion {131) 
R-s-t 

I 
1 

I . R-s-t 2 
d i Vi :> z I: i=1 d i { 158) 

Consider now the goodness of fit test {132), . Z = 't" R y2 .., z 
1. e. Lo i=1 i , • 

At this point for the first time we make use of the fact that ~ 

is a maximum likelihood estimate of e in the null-state, i.e. 

satisfies {130) which may be written 
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N. 6 4> • (~ ) l: 1 1 

" 6 a . = 0 j=1 1 2 1 • • • I t 
1t . J 

1 

or, since ~ iE S 4> . (a > = 0, 
1 a 

R 
1\ 

0 4> • (~ ) N.-n.1t. 
l: 1 1 1 1 0 n. = 

1\ 1 oa . i=1 n .1t . J 1 1 

(1 59) 

By (136) and (145) we obtain 

B' Y = 0 (1 60) 

Hence we also have. H'Y = 0 and H'KV = 0, i.e. 

VR-s-t+1 =. • .= VR-s = 0 ( 1 61 ) 

which combined with (157) and (152) gives for the chi-square test 

( 1 3 2) 
R-s-t 

z = l: (1 6 2) 
i=1 

Now, significance according to the multiple comparison criterion is 

obtained if and only if there exists a d such that (158) is true; 

i.e. 

max 
d 

R-s-t l: d. v .;/~ R-s-t d2. :> /z 
1 1 1 1 1 

(1 6 3) 

It follows from the remark after (153) that the (R-t)-dimensional 

vector (d1 , ... ,dR-s-t ,dR-s+1 , ... ,dR) varies freely in the (R-t} 

-dimensional space. Hence there are now restrictions on the 

components and d 1 , ... ,dR-s-t varies freely. It follows then from 

Schwartz inequality (2} that the left hand side of (163} is equal 

to ~~~-s-tvi = lz and (163} is identical with (162}. We have 

proved the contention about (130} and (131} in the theorem. 

As to the proof o~ conte~tion about the method B, i.e. about the 
I 

multiple comparison criterion (134} and the chi-square goodness of 

fit test (1 35}, we first note that the equations (1 33) for ~ may 

also be written 

l: 
a,j 

N . -n 4> · • (~) 
a] a aJ 

N . 
aJ 

n a 

04> .(~) 
a] 

0~. 
= 0 i=1 1 1 1 • • • 1 t 1 (16 4} 

1 
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since SiES ~i(e) = 1. In the proof 
a 

Y. 
~ 

defined by (136) should be 

replaced by 
1\ 

N. -n.1t. 
Y. ~ ~ ~ 

= 
~ IN. 

( 165) 

~ 

and h. should be defined by 
~ 

h. = F ./q .n/n. 
~ ~ ~ ~ 

( 166) 

instead of by (137). In the definition of 
1\ 

b by (139), 1t. should 
~ 

be replaced by 

replaced by 

q. , and the definition of 
~ 

B .. by (145) should be 
~J 

B .. 
~J 

0~ ( ~) = ln. /nq. oe 
~ ~ . 

~ 
( 1 6 7) 

With these changes the proof of the contention about method B in 

Theorem 2 follows closely the proof we have already gone through. 

:5. Homogeneity testing 

We use the results in III.4 to consider the special case of homo-

g eneity testing (treated by Goodman (1964)). Then r - - r = r 1 - ••• - s 

and we choose as a null--state that 1t 1 , ••• ,1t are independent of 
a ar " 

a. This can be written 

e • 
r 

Hence r . F . 1t . is a contrast if and only if 
a, J aJ aJ 

o = I 
a,j 

F . e . = 
aJ J 

r-1 s s s 
~ 9 . ( ~ F .- ~ F )+ ~ F 

j;,1 J a~1 aJ a;,1 ar a;,1 ar 

is true for all (e 1 , ... ,er_1 ). It follows that a contrast is 

characterized by 

s 
I F . = 0 

a=1 aJ 

( 168) 

( 169) 

for all j. Thus comparisons may consist in comparing the proba-

bilities 

the dependence of 

1t . of 
SJ 
Pr(A.) 

J 

A. 
J 

for any fixed j, i.e. in studying 

on a. 
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It may also consist in studying the relative degree of dependence 

of Pr ( Aj ..._} _..;;.o_n __ a_...;;f:....:o-'r'--d.;..;:i:..:f:..:f::..e::..r;_e:..:n..;;.t~--=-j • Is 1t 6 j -1t 5 j > or < 

Is or < 

The method A with null-state estimated variances would now consist 

in finding maximum likelihood estimates in the null-state 

A A A 
<l>aJ· = 9 · =I N ./n = NJ./n = 1tJ. (say} J a aJ 

A contrast E F .1t . is declared > 0 if 
aJ a) 

L q · F · > /z HIF 2. ~.-(IF .~.} 2 ]/n aJ aJ a) J a) J a a 

(1 70} 

(1 71 } 

where z is the 1-E fractile of the chi-square distribution with 

(r-1}(s-1} degrees of freedom. (1 71} is true for some F = 
(F 11 , ••• ,Fsr} if 

N 2. 
Z = n{L ~ -1} > z n N. 

a J 
(1 7 2} 

The method B with a priori estimated variances would be to the 

effect of declaring r F .1t . > o 
a) aJ 

if 

I q F.> /z HIF 2. q .-(IF .q .} 2 ]/n 
aj a) a a) aJ a] aJ a 

The minimum modified chi-square estimates are 

where the 1t. 
J 

r 
~ aJ· = ~ . = i'. I I i. 

J J i=1 ~ 

are harmonic means of the 

n 
1t · = n/I ~ = n/I 

J a qaj 

qaj , 

n 2 
a 

N . 
aJ 

The modified chi-square statistic is 

Z = n ( -1 + 1 /E i' . } 
J 

i.e. 

(1 7 3} 

(1 74} 

(1 7 5} 

(1 7 6) 

and this Z is > z if and only if (173} holds for some F. This 



- 63 -

clearing test z > z may be written 

I ~ . < c 1 + ~) -1 
J n 

( 1 77) 

(Note that since an harmonic mean is always < an aritmetic mean, we 

- 1\ 
with equality if if all strictly have 1t. < 1t. and only qaj are 

J J 
independent of We get E ( E 

1\ 1. Hence the heterogeneity a. 1t. 1t. = 
J J 

of is measured by the degree to which the harmonic means fall 

short of the arithmetic means.) 



- 64 -

REFERENCES 

Bishop, Yonne M.M., Fiendberg, Stephen E., and Holland, Paul w. 
[1974]. Q!§2E~1~-~~1~!Y~!~~~~-~~1Y§~§· Cambridge Mass. 
The MIT Press. 

Cramer, H. [1945]. ~~~~~~~!~~~-~~~~~~~-~~-~~~~!~~!~~· Uppsala. 
Almquist og Wiksell. 

Goldstein, Harald [ 1 981] . ~9!?~~~-!.!!!~E~!!S~_!!L~2!!~!!!<J~!!SY_!~!?!~~ • 
Oslo, University of Oslo, Institute of Mathematics. 

Goodman, L.A. [1964]. Multinomial Confidence Interval for Contrasts 
among Multinomial Populations. ~!!.:.....;~~!-'h.:._§!-~~!..!.-Y2.!.:._~5. 

Loeve, M., ~E2!?~!?!!!!-Y-~~2EY_!., [1977]. Berlin Springer Verlag 
4th edition. 

Neyman J. [1949]. Contribution to the Theory of x2 Tests. 

E!9£.:._Qf_1h~_!!!2~-~~f~~1~Y-§YillE.:._Qf_~~h.:._§~g1.:._~gg 
Prob. Berkeley, Univ. of California Press. 

Reiers¢1, 0. [1961]. Linear and non-linear Multiple Comparison in 

Logit Analysis, ~!2~~~!~~~-Y2.!.:._~~· 

Scheffe, H. [1953]. A Method of judging all Contrasts in the 

Analysis of Variance. ~!9~~~!!S~.!.-Y2!.:._~Q· 

Sverdrup, E. [1975]. Multiple Comparisons by Binary and Multiary 

Observations. ~~~~!~E-iE~-§~~!-!~~~~~-§~!!~E~!~E~.!.-~E-12• 
Oslo. 

Sverdrup, E. [1976]. Significance Testing in Multiple Statistical 
Inference. Scand. J. Stat. 3. 

Sverdrup, E. [1977a]. The Statistical Analysis of Categorical 
Observations in the Case of "Large" Homogeneous Subgroups 

!~!~~~~~-~~~-~~~-~-!~~~-~~~~!~~!~~-~~~~~~~~¥~~· Oslo. 

Sverdrup, E. [1977b]. The Logic of Statistical Inference: Signifi­
cance Testing and Decision Theory. ~!:!!!.:._.!!!!-.:._§:!;;~~.:.-.!!!~:!::· 
XLVII ( 1 ) • ---------



"THE METHOD OF MULTIPLE COMPARISON BY A DELTA.;METHOD 

AND ITS RELATIONSHIP TO THE LIKELIHOOD RATIONTEST. 

GENERAL THEORY AND APPLICATION TO MULTINORMAL MODELS" 

by Erling Sverdr~p 

Statistical Research Report, University of Oslo, No.1 1984 

LIST OF CORRECTIONS 

p. 31, 1.11t, 1.10t, p.45, 1.11t, 1.10t; "open set+ "open 

convex set" 

p. 31, 1.3t; add eq. number "(72)" 

p. 32, 1.9-10-1-; The sentence "The uniformity assumption 

given by (70)" to be deleted. 

p. 33, 1.7-1-; ~and only if" to be deleted. 

p. 34, 

1.3-6t; The statement in (ii) to be replaced by· 

line 

"(ii). Make the assumption as in A',. _:QJlt without 

the non-singularity assumption for A. Then A 
is non-singular if the log-likelihood surface 

Q(n) = log L(X,n) has strictly negative curvature 

in all directions for all ·n and every Z(X) 

in the joint range 

Q (n*) > Q(n) for 

joint range" 

10-1-;replace D by D 

of l;; 

n* * n 

and 

and 

z. Furthermore then 

.z (X)in the same 

line 6t;replace "3" by "3. (ii)" 

p. 38, 1.13t, replace "If n" by "If·t,(n)=n" 

p. 45, 1.4t; delete "and sufficient". 




