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Abstract 
In the talk we will review different notions of positive dependence. We argue that de­
pendence should be modeled in terms of operationally well-defined quantities rather 
than abstract parameters such as covariance or correlation coefficients. In particular 
we suggest an operational alternative to the concept of association. The approach is 
illustrated by considering some specialized examples. 
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1. Introduction 
Multivariate models based on some sort of positive dependence among the variables 
have found extensive application in reliability theory as well as other branches of 
statistics. A classical way of modeling positive dependence, especially in reliability 
theory, is by introducing the concept of association (Esary, Proschan and Walkup 
(1967)). This is defined as follows. 

Definition 1. The random variables X 1, ... , Xn are said to be associated random vari­

abies if: 

for all functions f, g which are non decreasing in each argument and such that the co­
variance exists. 0 

Based on the above notion many useful inequalities can be deduced. For details on 
this we refer to Barlow and Proschan (1981). See also Tong (1980). 

If only the joint distribution of X1, ... , Xn is given, it is often very difficult to check the 

condition (1) directly. The usual approaches are to either use theorems specific to a 
particular family of distributions, (see e.g. Pitt (1982)), or to use sufficient conditions, 
(see Barlow and Proschan (1981)). This problem is even more difficult when the dis­
tribution is described numerically, such as observed contingency tables. For a discus­
sion of this we refer to Sampson and Whitaker (1989). 

From an operational point of view the concept of association is unsatisfactory, since 
the condition (1) is expressed in terms of abstract parameters, i.e., covariances, rather 
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than operationally well-defined quantities. Furthermore association does not utilize 
specific know ledge about the physical nature of the objects we are modeling. Conse­
quently, association is often just assessed without any further justification. 

Most papers based on an operational approach to modeling, has only considered situa­
tions with replications of univariate variables. Although in the finite sample cases this 
approach leads to models with dependencies, this is not the kind of physical depen­
dence on would like to incorporate. Thus, there is a need for some other type of 
methodology addressing this issue directly. The following definition is motivated by 
this: 

Definition 2. The random variables X 1, ... , Xn are said to be increasing (nondecreas­

ing) functions of independent random variables (IFIV) if: 

for some suitable non decreasing functions f1, ... , fn and independent random variables 
U1, .. . , UN. [U = (U1, ... , UN).] 0 

In a given practical situation, (2) may be a strict functional relation derived from 
some sort of physical insight, not just a way of representing the joint distribution. An 
IFIV model is considered operational if all the U/s are physically meaningful quanti­
ties. We do not, however, require the U/s to be observable in a strict sense. 

An IFIV-model can be derived in a natural way from operationally well-defined 
quantities, i.e., U1, ... , UN. The usage of such models encourages use of physical 

knowledge, and can be applied together with indifference to derive multivariate distri­
butions. 

As we shall see in the next section the IFIV -class possesses more or less all the nice 
properties as the corresponding class based on association. Thus, the IFIV -class repre­
sents an attractive alternative to the classical theory. 

Although Definition 2 provides the fundamental basis for our theory, it does not ex­
plain how to use this methodology in practice. As already stated, this methodology is 
based on incorporating physical knowledge. Thus, we will need to consider specific 
examples to illustrate its practical usefulness. Most of this paper will focus on one 
such example: a binary shock model. In particular we will explore how the physical 
knowledge built into this model, imposes restrictions on the model. Although the 
model has got a lot of flexibility, there are certain limitations one needs to take into 
account and understand. We would like to stress that when building a probability 
model in such a fashion, it is extremely important to understand such physical limita­
tions. 

- Positive Dependence from an Operational Point of View -
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2. Some Properties of the IFIV -class 
Although the IFIV -class has not been studied as a "stand-alone" concept, the follow­

ing result is well-known. (Esary, Proschan and Walkup (1967)) 

Theorem 3. If XI, ... , Xn are IFIV, then they are associated as well. 0 

However, it appears to be unknown whether or not this implication is strict. In other 
words, does there exist associated random variables XI, ... , Xn which do not admit an 

!FlY-representation? Do we actually lose anything (important) by considering the 

possibly smaller IFIV-class? 

By Theorem 3, all results valid for associated random variables, will automatically 

hold for the IFIV -class as well. In fact many of these results are much easier to prove 
directly for the IFIV -class. In particular we have: 

Theorem 4. The following statements are true: 

1) Any subset of a set of IFIV-variables are a set of IFIV-variables. 

2) The set consisting of a single random variable is IFIV. 

3) If two sets of IFIV-variables are independent, then their union is a set of IFIV­

variables. 

4) Independent variables are IFIV. 

5) Nondecreasing functions of IFIV-variables are IFIV-variables. 

Proof: The proofs of the different statements in Theorem 6 are completely trivial. 

Some of the corresponding proofs for the class of associated random variables are far 

more complicated. 0 

The following result is only known to hold in the bivariate case for associated random 

variables: [See Barlow and Proschan (1981).] 

TheoremS. Assume that XI, ... , Xn are IFIV, and that Cov(Xi, Xj) exists for all i ::f:. j. 
Then X I, ... , Xn are independent if and only if: 

(3) Cov(Xi, Xj) = 0, for all i ::f:. j. 

Proof: It is obviously sufficient to prove that if XI,··., Xn are dependent IFIV-vari­

ables, then there exist i and j such that Cov(Xi, Xj) > 0. 

By the IFIV-property, we may write Xi= .fi(U), i = 1, ... , n, where U = (UI, ... , UN), 

andfl, . .. ,Jn are nondecreasing functions. If XI,··., Xn are dependent, then there must 
exist i, j and k such that Xi and Xj depend on Uk. From this it can be shown by condi-
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tioning on Uk and using Kimball's inequality [see Kimball (1951)] that Cov(Xi, Xj) > 

0.0 

3. A binary shock model 
In this section we shall focus on a model for positive dependence introduced by 
Boyles and Samaniego (1984). This model is restricted to binary variables and may 
be viewed as a discrete analog to the well-known model of Marshall and Olkin 
(1967). In Egeland and Huseby (1991) this model was used to study errors in reliabili­
ty computation due to false independence assumptions. More recently, the model is 
used in Gasemyr and Natvig (1994) to obtain improved bounds for system reliability. 

As we shall see, in its most general form, the model contains a large number of para­
meters, and hence provides great modeling flexibility. However, the subtle physical 
knowledge being built into the model, implies that not all multivariate joint distribu­
tions can be represented in such a fashion. In fact the model class is a proper subset of 
the class models derived from association. In order to fully understand the limitations, 
we shall answer the following two questions: 

1. When can a multivariate distribution of binary variables be represented by this 

model? 

2. How should the parameters of this model be chosen in order to obtain such a rep­

resentation? 

Now, we turn to the model itself. Let E = { 1, ... , n} be a set of components in a relia­
bility system. Each component is either functioning or failed, and we let X 1, ... , Xn re­

present the states of these components. That is, we let: 

(4) 
_ { 1 if component i is functioning . _ 

Xi- . ,z-1, ... ,n. 
0 otherwise 

We assume that the failures of the components are caused by different types of 
"shocks" striking single components or groups of components. More precisely, we as­
sume that for each nonempty set AcE, there exists a possible shock which, if it oc­

curs, kills all the components in the set A and these alone. 

In order to describe the "shock status" of a set AcE we introduce: 

(5) {
1 if the shock striking the set A has not yet occured 

y = 
A 0 otherwise 

In terms of the YA's we may now express the Xi's as follows: 

- Positive Dependence from an Operational Point of View -
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(6) Xi= fiYA, i = 1, ... , n. 
A:iEA 

We assume that the YA's are independent and that Pr(YA = 1) = n(A). Furthermore, let 

P(0) = 1 and: 

(7) P(A) = Pr(:n Xi= 1], 0 cA c E. 
lEA 

By Mobius inversion (see e.g., Welsh (1976)) it is easily obtained that: 

(8) Pr(X1 =x1n···nXn =xn)= '.L(-1)/Blp(A(x)uB) 
B~E\A(x) 

where x = (x1, ... , Xn) and A(x) = { i : Xi = 1}. 

Hence, we see that the simultaneous distribution of the Xi's is determined by the 

P(A)'s. Moreover, we have the following relation between the n(A)'s and the P(A)'s: 

(9) P(A) = fl n(B), 0cA~E. 
B: (BnA);t:0 

Using Mobius inversion methods, one can prove the following result: 

Theorem 6. Assume that (9) holds. Then the n(A)'s are given by: 

(10) n(A) = exp{- L(-1)/DIL((E \A) u D)}, 0 cA c E. 
D~A 

where L(A) = In P(A), 0 c A c E. 

Proof: We skip the details here. 0 

Note: To avoid trivial cases we assume that Pr(Xi = 1) > 0, i = 1, ... , n. This implies 

that n(A) > 0, for all A, and hence also P(A) > 0, for all A. Thus, L(A) exists for all A. 

Using Theorem 6 we get the following necessary and sufficient condition for a joint 
distribution to be representable by a shock model: 

Theorem 7. The simultaneous distribution of the binary variables X 1, ... , Xn may be 

represented by a shock model if and only if: 
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(11) L(-1)1°1L((E \ A)u D);::: 0, 0 cA cE. 
D~A 

Proof: The result is a direct consequence of (10). 0 

Example 8. Let X1 and X2 be two binary variables. By Theorem 7 we get the follow­

ing three conditions for when their joint distribution may be represented by a shock 

model: 

(12) 

(13) 

(14) 

L( { 1 } ) - L( { 1 , 2}) ;::: 0 

L( { 2 } ) - L( { 1 , 2}) ;::: 0 
L( { 1 , 2}) - L( { 1 } ) - L( { 2}) ;::: 0 

(trivially true) 

(trivially true) 

The only nontrivial condition is equivalent to: 

Thus, in the bivariate case everything is reduced to a simple condition on the covari­

ance between the two variables. 0 

Example 9. Let Xt. X2 andX3 be three binary variables. The nontrivial conditions for 

the existence of a shock model representation, as derived from Theorem 7 are the fol­

lowing: 

( 16) L( { 1 } ) - L( { 1, 2}) - L( { 1, 3 } ) + L( { 1, 2, 3}) ;::: 0 

( 17) L( { 2}) - L( { 1, 2}) - L( { 2, 3}) + L( { 1, 2, 3}) ;::: 0 

(18) L( {3})- L( { 1, 3})- L( {2, 3}) + L( { 1, 2, 3});::: 0 

(19) -L({l}) -L({2}) -L({3}) 

+ L( { 1, 2}) + L( { 1, 3}) + L( { 2, 3}) 
- L( { 1, 2, 3 } ) ;::: 0 

We may interpret the first three conditions, (16-18) in terms of conditional probabili­

ties e.g. as follows: 

where { i,j, k} = { 1, 2, 3 }. Similarly, (19) may be interpreted as: 

(21) Pr(Xk = 1 I Xi= 1) · Pr(Xk = 1 I Xj = 1) 
;::: Pr(Xk = 1 I Xi= 1, Xj = 1) · Pr(Xk = 1), 

- Positive Dependence from an Operational Point of View -
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where again {i,j, k} = {1, 2, 3}. 

Note: Letting { i, j, k} run through all permutations of the set { 1, 2, 3}, 12 apparently 

different inequalities can be derived from (20) and (21). However, these relations will 

contain a lot of redundancy. Especially the 6 inequalities derived from (21) will all be 

equivalent. 0 

4. Exchangeable variables. 
Of particular interest is situations where the binary variables, X 1, ... , Xn are exchange­

able, i.e., when the distribution of Xt, ... , Xn is invariant with respect to permutations. 

In this case P(A) depends only on IAI, for each AcE. Thus, we may introduce the fol­

lowing simplified notation: 

(22) Pi=P({1, ... ,i}), Li=ln(Pi), i=1, ... ,n. 

In particular we define Po= P(0) = 1 and thus Lo = 0. Since P(A) depends only on 

lA I, we of course get that: 

(23) P(A) =PIAl and L(A) = LIAI , for all A~. 

It is easily seen that when Xt, ... , Xn are exchangeable, also n(A) depends only on IAI, 

for each AcE. We may thus introduce: 

(24) 1ti = 7t( { 1, ... , i}), i = 1, ... , n. 

and as above we get that: 

(25) n(A) = 1t1A!. for all AcE. 

The next result expresses the ni's as well the condition (11) in terms of the Li's: 

Theorem 10. The joint distribution of the exchangeable binary variables Xt, ... , Xn 

may be represented by a shock model if and only if: 

(26) ±(-1)j(~)4z-k+j 2::0, 0 < k ~ n. 
j=O ] 

Moreover: 
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Proof: The result is a direct consequence of (11). 0 

It is a well-known fact that if XI,··., Xn can be embedded in an infinite sequence of 
exchangeable binary variables, then the distribution of XI,··., Xn admits the following 

representation: 

(28) Pr(nxi =xi]= I eL~=Ixi (1- er-I,~=! xi F(de) 
z=l 0 

for some suitable distribution F on [0, 1]. That is, the Xi's are conditionally indepen­

dent given a "parameter" 8. The parameter 8 can be interpreted as the limiting fre­

quency of 1's in the infinite sequence. 

For general random variables exchangeability does not imply that the variables are 
IFIV or associated. The following example shows this: 

Example 11. Let Yt. . .. , Yn be independent and identically distributed with zero mean 
and positive variance. Let U be independent of the Y;'s and have positive variance, 

and define: 

(29) i = 1, ... , n. 

Then it is easy to see that XI,··., Xn can be embedded into an infinite sequence of ex­
changeable variables (simply by extending the sequence of Yls). Since YI,·· ., Yn and 
U are nondegenerated, it is clear that theX;'s are dependent. However Cov(Xi, Xj) = 0, 

for all i '# j, so by Theorem 5, XI,··., Xn cannot be IFIV. In fact they are not even as­

sociated. 0 

However, in the binary case we get the following nice result: 

Theorem 12. Let Xt. ... , Xn be binary variables which can be embedded in an infinite 
sequence of exchangeable variables. Then XI,···· Xn are IFIV. 

Proof: Assume that X I, ... , Xn are binary variables which can be embedded in an infi­
nite sequence of exchangeable variables. Thus, the joint distribution of the Xis admit 
the representation (28) for some distribution F on [0, 1]. Now let YI,·· ., Yn be inde­

pendent and uniformly distributed on [0, 1], and let U have the distribution F and be 
independent of the Y;'s. Then it is easily seen that XI, ... , Xn satisfy: 
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and hence it is follows that X 1, ... , Xn are IFIV. 0 

Now, if any IFIV-distribution could be represented by a shock model, then clearly 
Theorem 12 would imply that infinite exchangeability was a sufficient condition for 
shock model representability. However, as we shall see, this is not true. Before we 
show this, we shall restate Theorem 10 in terms of the moments of the 8-parameter. 

From (28) it follows that under the infinite exchangeability assumption, we may 
write: 

(31) Pi=E(8i), i=O, 1, ... ,n, 

where we always define E(80) = Po = 1. Thus, we have arrived at the following result: 

Theorem 13. Let Xt, ... , Xn be binary variables which can be embedded in an infinite 

sequence of exchangeable variables, and let 8 denote the limiting frequency of 1's in 
the sequence. Then the joint distribution of Xt, ... , Xn may be represented by a shock 

model if and only if: 

Moreover, 

Proof: The result follows by the above discussion 0 

Before illustrating this result with some examples, we note that fork= 1 and 2 the in­
equality in (32) can be written respectively as: 

Since 8 E [0, 1], (34) is trivially true. Moreover, by a moment inequality for nonnega­

tive random variables given in Tong (1977) and Proschan and Sethuraman (1974), it 
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follows that (35) is true also. However, as we shall see, for k > 2 the conditions are 
not trivial. 

Example 14. Let Xt, ... , Xn be binary variables which can be embedded in an infinite 

sequence of exchangeable variables, and let 8 denote the limiting frequency of 1 's in 

the sequence. Assume that the uncertainty about 8 can be described by a beta-distri­

bution with parameters a and ~- That is, 8 has the following density: 

where a and~ are some suitable positive numbers. In this case one easily calculates 

that: 

(37) E(ei)= r(a+~)r(a+i) ·=o 1 
r(a+~+i)r(a) 'l ' , ... ,n. 

Hence, the conditions (32) can be written in terms of a and ~ as: 

(38) IC-1)j(kJln[r(a+~)r(a+n-k+ j)] ~0' 0<k'5;.n. 
j=O j r(a)r(a+~+n-k+ j) 

Applying the following identity: 

(39) IC-1)j(~J=o, fork= 1,2, ... 
j=O 1 

it follows that the two constant factors r(a) and rca+~) vanish, and thus (38) can be 

rewritten as: 

(40) t.,(-l)jG)m[r(a +n- k+ j)]-ln[r(a+ ~ +n -k+ j)]j <: o, 0<16n. 

More compactly we can rewrite (40) as: 

where we have introduced: 

(42) 'I\(a)= ±(~J(-1)jln[r(a+ j)], k= 1, 2, ... 
j=O 1 

- Positive Dependence from an Operational Point of View -
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By using the well-known fact that r(s+ 1) = s r(s), it is easily established that 'Pk can 

be simplified to the following function: 

(43) 'Pk(a)= I(k~ 1J(-1)j+1 ln(a+ j), k= 1, 2,000 
j=O 1 

where we defme ( ~ J = 1. 

In particular we get that: 

(44) lim '¥ k (a) = +=, lim '¥ k (a) = 0 , k = 1, 2, 0 0 o , 

a ---7 0 + a ---7 = 

By expanding the expression for 'Pk+l and using the well-known identity: 

(45) for 0 <j < k, 

we get that: 

By substituting (j-1) withj in the last of the two sums in (46), we obtain the following 

nice recursion property: 

(47) '¥ k+l (a)='¥ k(a)- '¥ k(a + 1)0 

The derivative of 'Pk is easily calculated to be: 

(48) k = 1, 2,0 0 0 

Using (47) and induction it is easily established that the expression (48) may be re­

written as: 

[
k-1 1 ] 

(49) la 'Pk(a)=-(k-1)! TI-0 , k= 1,2,000 
j=Oa+ 1 
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Hence, in particular this derivative is negative on (0, oo ), i.e., the function 'P k is de­

creasing for all a> 0. Thus, since ~ > 0, it follows that (41) is in fact always true. 

That is, if 8 is beta-distributed, then the joint distribution of X1, ... , Xn admits a shock 

model representation. D 

Example 15. Let X 1, ... , Xn be binary variables which, as in the previous example, can 

be embedded in an infinite sequence of exchangeable variables with e as the limiting 

frequency of l's in the sequence. Assume that in this case the uncertainty about 8 can 

be described by the following distribution: 

where a and yare positive real numbers. 

This distribution is related to the well-known gamma-distribution such that if 8 has 

the distribution (50), then -ln(8) is gamma-distributed with parameters y and a. Note 

that if in particular y = 1, then e is beta-distributed with parameters a and 1. 

The moments of the distribution (50) is given by: 

(51) p>-a. 

Inserting this into the conditions (32) we get the following set of conditions for shock 
model representability: 

Since y > 0, we may get rid of this constant simply by dividing each side of the in­

equality with y. Moreover, using (39) once again we obtain the following simplified 

set of conditions: 

(53) ±(~J( -l)j+lln( a+ n- k + j):?. 0, 
j=O ] 

0 < k~n. 

By (43) the left-hand side of (53) is equal to 'Pk+l(a+n-k). Thus, by the previous ex­

ample, it follows that (53) is always satisfied. D 
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Two other types of examples where the conditions (32) are always satisfied, can be 
obtained as follows: 

Assume that 8 has one of the following two distributions: 

(54) Pr(S =So)= 1, where So E (0, 1]. 

(55) Pr(S = 1) = 1-Pr(S = 0) =a, where a E (0, 1]. 

In the case of (54) there is no uncertainty about 8, so X1, ... , Xn are independent. In 

this case it is obvious that the joint distribution admits a shock model representation. 
In particular (32) can be written in the following form: 

(56) ln(eor±(-1)j(~J(n-k+ j)~o, O<k~n. 
j=O 1 

Using (39) and the following related identity: 

(57) ~ . (kJ {-1 k = 1 ~(-1)1 . j = 
j=O 1 0 k=2,3, ... 

we see that the left-hand side of (56) is -ln(So) fork= 1, and zero otherwise. Thus, 

since So E (0, 1], it follows that (56) is always true. 

To see that (32) holds for the distribution (55), we note that since in this case 8 is ei­

ther 0 or 1, it follows that E(SX) =a, for all x > 0, while of course E(SO) = 1 by defini­

tion. In particular ln[E(Sn-k+j)] = ln(a) ~ 0, for O~j~k<n, and zero ifj = 0 and k = n. 

Thus, (32) can be written as: 

and by (39) this is again always true. 

Extensions of the above examples can be obtained using the following two result: 

Theorem 16. Assume that 8 = rr:1 Si, where 81, ... , Sm are independent and each Si 

has a distribution satisfying the conditions (32). Then the distribution of 8 satisfies 

(32) as well. In particular if 8 = 81 82, where 81 E (0, 1] is a constant, then the distri­

bution of 8 satisfies (32) if and only if the distribution of 82 satisfies (32). 
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Proof: The result follows directly by observing the following: 

m 

(59) ln[E(en-k+j)] = Iln[E(erk+j)] 
i=l 

and inserting this into (32). In the special case where 8 = 81 82, where 81 is a con­

stant, the equivalence follows since by (57) the moments of the constant 81 does not 

contribute to the sum in (59) except in the trivial case where k = 1 (see (34)). 0 

Thus, e.g., products of independent beta-distributed limiting frequencies will satisfy 

(32). Similarly, if 8 = 81 · 82 where 81 is a known constant between 0 and 1 and 82 is 

beta-distributed, then e will satisfy (32). 

Theorem 17. Let {Si} be a sequence of variables such that each ei has a distribution 
D 

satisfying the conditions (32). Assume that ei ---78, where Pr(S > 0) > 0. Then the dis-

tribution of e satisfies (32) as well. 

Proof: Since e, el, 82, ... E [0,1] with probability one andfi:x) = xa is continuous and 
D 

bounded on [0,1] for all a~ 0, it follows by standard theory that ei ---78 implies that: 

Moreover, since Pr(S > 0) > 0, E(Sa) > 0 for all a, so ln[E(Sa)] is always well-defined. 

By inserting this into (32) the result follows. 0 

Note that if the limiting 8 is concentrated in 0, then all the X/s will be concentrated in 
0 as well. In this case of course the joint distribution of XI, ... , Xn trivially admits a 

shock model representation. However, the conditions (32) do not apply since in this 
situation ln[E(Sa)] is not well-defined. In fact the conditions (32) are valid only under 

the assumption that Pr(Xi = 1) > 0, i = 1, ... , n. 

So far we have not seen any example where the conditions (32) do not hold. Thus, 
one may think that (32) is true for any distribution on the limiting frequency e. The 

next example, however, shows that this is not so. 

Example 18. Let XI, X2, X3 be binary variables which can be embedded in an infinite 

sequence of exchangeable variables, and let 8 denote the limiting frequency of 1 's in 

the sequence. Assume that 8 has the following distribution: 

(61) Pr(S = 1) = 1 - Pr(S =So)= a 
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where a, So E [0, 1], and max(a, So) > 0 (avoiding distributions concentrated at 

zero). Note that if So> 0 and a= 0, we get the model (54). Similarly if So= 0 and a> 

0, we get the model (55). 

To study the conditions (32) for this model, we introduce the following functions cor­
responding to the left-hand sides of (32): 

(62) <h(a,e0 )= I/-1)1 (~Jln[(l-a)e~-k+J +a], k= 1, 2, 3. 
)=0 1 

By the remark to Theorem 13 (see (34) and (35)) the only nontrivial condition can be 
written as: 

It is easy to verify that: 

(64) <j>3(a, 0) = -ln(a), <j>3(a, 1) = 0, for all a E (0, 1]. 

Thus, if we could show that for a given a> 0, <j>3(a, So) is decreasing in So, then it 

would follow that <j>3(a, So)~ 0 for all So E [0, 1]. We will show that this is true only 

for large values of a. To see this, we calculate the partial derivative of <j>3(a, So) with 

respect to So: 

(65) _Q_ (a 8 ) = _ 3(1- a) + 6(1- a)e0 _ 3(1- a)e5 
aeo <1>3 ' 0 (1-a)80 +a (1-a)S5+a (1-a)S6+a· 

To study the sign of this we introduce: 

(66) 

By (65) it follows that the partial derivative of <j>3(a, So) with respect to So is nonposi­

tive if and only if: 

(67) 8(1) ~ t8(0) + t8(2) 

By Jensen's inequality we get that a sufficient condition for (67) to hold, is that 8 is a 

convex function. By elementary calculus, this can be shown to hold if a~ t. How-
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ever, when a is small but positive, <j>3(a, So) will not be monotone, and one can find 

So-values where the condition (63) does not hold. E.g., <!>3(0.05, 0.25) = -0.16 < 0. 

In Figure 1 we have plotted <j>3(a, So). 

1 .5 
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0 

Figure 1. 

In this plot one clearly sees that there is a region where the condition (63) does not 
hold. 0 

Although the last example is rather specialized, it is possible to use this to derive 
other related examples as well. First we observe that if S has the distribution (61) with 

a and So in the region where (32) does not hold, then the same will also be true for 

aS, for any a E (0, 1]. This follows by applying the same argument as in the proof of 

Theorem 16, and using that by the identity (57) we have that: 

The variable aS will have a distribution concentrated on the set {a So, a}. 

As a more advanced example, we can show that the class of distributions satisfying 
(32) is not closed under mixtures. In particular we can show that mixtures of beta-dis­
tributed limiting frequencies may not satisfy (32). To see this we let Si,n be beta-dis­

tributed with parameters ai,n and ~i,n• n = 1, 2, ... and i = 1, 2. Assume that: 

(69) 
al n a2,n lim a. = lim A. = oo, lim ' = 1 and lim = S0 z,n 1-'z,n A +A 

n~= n~= n~= al,n + 1-'l,n n~= a2,n 1-'2,n 
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We then assume that Sn has a distribution that is a mixture of the distributions of 81,n 

and 82 n· That is, we assume that: 
' 

(70) Pr(Sn = 81,n) = 1 - Pr(Sn = 82,n) = a. 

If e has the distribution (61), then it is easily seen that: 

D 
(71) en ---78. 

If the distribution of Sn satisfies (32) for all n, then by Theorem 17, so would the dis­

tribution of 8. However, as we have seen above, we may choose a and So such that 

this is not true, implying that for sufficiently large n, Sn will have a distribution not 

satisfying (32). 

We close this section by presenting yet another interesting consequence of Example 
18. This is related to a situation with non-fatal shocks, and is described as follows: 

Example 19. Let X 1, ... , Xn be exchangeable binary variables representing the states 

of n components living in a common environment. The components are exposed to 
certain non-fatal shocks which affect the reliabilities of the components. For simpli­
city we only consider shocks striking all components here. Given the number of 
shocks that have occurred, the Xi's are assumed to be independent. Specifically we as­

sume that: 

(72) Pr(Xi = 1 I k shocks have occurred) = ek. i = 1, ... , n, k = 1, 2, ... 

where So~ 81 ~···.That is, the component reliability is decreasing as the number of 

shocks grows. We denote the number of shocks by K. In the case where Pr(K = 0) = a 
= 1 - Pr(K = 1), and n = 3, we essentially have the same model as in Example 18. As 
we already know, this type of model may not have a shock model representation. 
Clearly the same thing may happen for other distributions of K. 

By extending the concept of non-fatal shocks to more general situations with shock 
striking different subsets of the component set in the same fashion as above we get a 
new class of probability models containing the class of fatal shock models as limiting 
cases. It follows from the above discussion that this extended class is larger than the 
class where only fatal shocks can occur. It is interesting to compare this with the con­
tinuous time shock model of Marshall and Olkin (1967). In their case it turns out that 
the two corresponding classes are equivalent, in the sense that they both lead to the 
same kind of multivariate distribution. 0 
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4. A dual shock model. 
In the previous section we investigated a situation where component failures could 
occur as a consequence of an "external" shock. Thus, the external environment where 
the components operated, could never have a positive effect on the components. In 
many practical situations, however, one would like to include positive environmental 
effects as well. If e.g. the components are inspected and maintained according to a 
certain strategy, the performance of the components may be improved. If the same 
strategy is applied to groups of components, weakness in this strategy could affect all 
components in such a group. As a result, the component states would be dependent. 
Assuming that the maintenance strategy never causes component failures by itself, it 
does not seem appropriate to use a shock model to represent this kind of dependence. 
Instead one may do as follows: 

As usual we let E = { 1, ... n} be the component set of a reliability system, and let the 
component states be represented by the binary variables X1, ... ,Xn. For each non-emp­

ty subset A of E there exists a maintenance strategy. If the strategy "works", all com­
ponents in the set survive. To describe the "maintenance status" of a particular set, we 
introduce: 

(73) 
_ { 1 if maintenance of A has worked 

YA- ,0cAcE. 
0 otherwise -

In the same way as we did with the shock model, we may now express the X/s in 

terms of the YA's: 

(74) Xi= IlYA, i = 1, ... , n. 
A:iEA 

As for the shock model, we assume that the YA's are independent. 

We observe that the model (74) is dual to the shock model (6). Thus, we may refer to 
(74) as a dual shock model. This model was suggested and analyzed by Egeland and 
Huseby (1991). 

Because of the duality between the two models, almost all results we present in this 
section, are derived as simple consequences of the corresponding shock model results. 
To show this, we shall find it convenient to introduce the following dual variables: 

(7 5) xf = 1 - xi' i = 1' ... ' n. 

The model (74) can then be stated in terms of the dual variables as: 
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(77) xl = IJYi, i = 1, ... , n. 
A:iEA 

We also introduce: 

(77) pd (A)= Pr(fl xl = 1] = Pr(p xi = oJ, 0 c A c E. 
lEA lEA 

As usual we also define pd(0) = 1 and £d(0) = 0. To avoid trivial cases we assume 
that Pr(Xi = 0) > 0. [Compare the assumptions underlying Theorem 6.] This implies 

that all pd•s and rr,d•s are positive, and thus their logarithms are well-defined. 

The fundamental relation between the shock model and its dual can now be stated as 
follows: 

Theorem 20. Let X 1, ... , Xn be binary variables, and let Xf, ... , x: denote the corres­

ponding duals. Then the joint distribution of X1, ... , Xn can be represented by a dual 

shock model if and only if the joint distribution of Xf, ... , x: can be represented by a 

shock model . 

Proof: The result follows immediately from (77). 0 

Theorem 20 allows us to simply transform the results from the previous section to ob­
tain corresponding results for the dual shock model. No new proofs are needed. In 
particular we have: 

Theorem 21. The joint distribution of the binary variables X 1, ... , Xn may be repre­

sented by a dual shock model if and only if: 

(80) L(-1)1DILd((E\ A)uD) ;;;::o, 0 cA cE. 
Dk:A 

Proof: The result is a direct consequence of Theorem 20 and Theorem 7. 0 

By translating Example 8 we get that the joint distribution of two binary variables X1 

and X2 can be represented by a dual shock model if and only if Cov(Xf,Xf) ;;;:: 0. 

However, by elementary properties of the covariance, this condition is equivalent to 
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Cov( X1, X2 ) ~ 0. Hence, we observe that in the bivariate case the two model classes 

are in fact equal. 

Similarly, by using Example 9 we get that the joint distribution of three binary vari­
ables X1. X2 and X3 can be represented by a dual shock model if and only if the follo­
wing two sets of conditions hold: 

(82) Pr(Xk =OjXi =O)·Pr(xk =OjXj =0) 

where {i,j, k} = { 1, 2, 3 }. 

Note that in the trivariate case we cannot obtain equivalent conditions for the two mo­
dels. Although (81) and (82) look similar to (20) and (21), the conditions are not equi­
valent, as we shall see later on. 

We now tum to the case where XI, ... , Xn are exchangeable. Analogous to what we 

did in the shock model case, we introduce the simplified notation: 

(83) Pid = Pd({1, ... ,i}), .cf = ln(PJ , i = 1, ... , n, 

and let P8 = Pd(0) = 1, and~= 0. 

Using this notation, we get the following result corresponding to Theorem 10: 

Theorem 22. The joint distribution of the exchangeable binary variables X 1, ... , Xn 

may be represented by a dual shock model if and only if: 

(84) ±(-1)j(~JL~-k+j ~o. O<k'.5.n. 
j=O ] 

Moreover: 

Proof: The result is a direct consequence of Theorem 20 and Theorem 10. 0 
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Assume then that x~. ... , Xn can be embedded in an infinite sequence of exchangeable 
variables, i.e., the joint distribution of x~. ... , Xn admits the representation (28). In this 

case it follows that: 

(86) Pl =E[(l-8)i], i=O, 1, ... ,n, 

where we always define E[(1-8)0] = P8 = 1. By inserting this into (84), we obtain: 

Theorem 23. Let X I, ... , Xn be binary variables which can be embedded in an infinite 

sequence of exchangeable variables, and let 8 denote the limiting frequency of 1 's in 
the sequence. Then the joint distribution of XI, ... , Xn may be represented by a dual 

shock model if and only if: 

Moreover, 

Proof: The result is a direct consequence of Theorem 20, Theorem 13 and the above 
discussion. 0 

Corollary 24. Let 8 denote the limiting frequency of 1 's in an infinite sequence of bi­

nary variables. Then 8 satisfies (87) if and only if (1-8) satisfies (32).0 

We now consider some examples: 

Example 25. Let X I, ... , Xn be binary variables which can be embedded in an infinite 

sequence of exchangeable variables, let 8 denote the limiting frequency of 1 's in the 

sequence, and assume that 8 is beta-distributed with parameters a and ~. defined in 

(36). Then (1-8) is beta-distributed with parameters ~and a. Hence by Example 14, 

(1-8) satisfies (32). By Corollary 24 this implies that 8 satisfies the condition (87), so 
the joint distribution of XI, ... , Xn admits a dual shock model representation (as well 

as a regular shock model representation). 0 

Example 26. Let XI,··., Xn and 8 be defined as in the previous example, and assume 

that 8 is distributed according to the following density: 
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where a and yare positive real numbers. 

It is easy to see that this implies that (1-8) has the distribution (50). By Example 15 

and Corollary 24 this implies that 8 satisfies the condition (87), so the joint distribu­
tion of XI, ... , Xn admits a dual shock model representation. We observe however, that 

in this case, (1-8) does not have a distribution in the same class as e. As a conse­

quence, we cannot immediately apply Corollary 24 to establish that the joint distribu­
tion of X I, ... , Xn admits a regular shock model representation as well. Alternatively 

we cannot conclude so far that the distribution (50) satisfies (87). In order to investi­
gate this issue further, we compute the moments of the distribution (89). Applying 
(51) and induction, we get: 

(90) E(eP) = f(~J(-li(~)y, p = 1, 2, ... 
i=O z a+ z 

Inserting this into (32), we get the following condition for shock representability: 

If y = 1, it is easy to see that (89) is reduced to a beta-distribution with parameters 1 

and a. Thus, by the previous examples, we now that (91) holds for this particular y­

value (for all a> 0). Furthermore, it is easy to see that the left-hand side of (91) goes 

to zero as y goes to infinity. Thus, if we could establish that the left-hand side of (91) 

is non-increasing in y, it would follow that (91) is true for all y > 0. Due to the com­

plexity of the expression (91) we have not been able to establish this analytically. 
However, numerical calculations indicates that this in fact is true. Thus, we conjecture 
that the joint distribution of XI, ... , Xn admits a regular shock model representation. 0 

By Corollary 24 and (54-55) it also follows that the following two distributions satis­
fy the condition (87): 

(92) Pr(S =So)= 1, where So E [0, 1). 

(93) Pr(S = 1) = 1-Pr(S = 0) =a, where a E [0, 1). 

We also state the results analogous to Theorem 16 and Theorem 17: 
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Theorem 27. Assume that S = II:1si, where S1, ... , Sm are independent and each ei 
has a distribution satisfying the condition (87). Then the distribution of S satisfies 

(87) as well. In particular if S = S1 II S2 , where S1 E [0, 1) is a constant, then the dis­

tribution of S satisfies (87) if and only if the distribution of S2 satisfies (87). 

Proof: The result follows directly by Corollary 24. 0 

Theorem 28. Let {Si} be a sequence of variables such that each Si has a distribution 
D 

satisfying the condition (87). Assume that Si~S, where Pr(S < 1) > 0. Then the dis-

tribution of S satisfies (87) as well. 

Proof: The result follows by the same type of argument as we used to prove Theorem 
17 sincej(x) = (1-x)a is continuous and bounded on [0,1] for all a~ 0. 0 

In the same way as we did in the previous section, we can of course use the last two 
theorems to extend the results in the above examples. 

We close this section by considering a situation similar to the one treated in Example 
18. In this case, however, we allowS to have a general two-point distribution. 

Example 29. Let X1, X2, X3 be binary variables which can be embedded in an infinite 
sequence of exchangeable variables, and let S denote the limiting frequency of 1's in 

the sequence. Assume that S has the following distribution: 

(94) Pr(S = S1) = 1 - Pr(S =So)= a 

where a, So, S1 E (0, 1) and So< S1 (avoiding distributions concentrated at zero or 

one). 

We also introduce the two random variables, S' and S", with distributions: 

(95) 

(96) 

Note that: 

Pr(s" = 1 - 1 - S1 J = 1 - Pr( S" = 0) = a 
1-S0 

D D 
(97) S = S1S' = S0 II S" 
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Hence, by Theorem 16, S satisfies (32) if and only if S' does. Similarly, by Theorem 

27' s satisfies (87) if and only if S" does. 

We now consider two cases: 

Case 1. a;:::: !·In this case we know from Example 18 that S' always satisfies (32). 

Hence it follows that the joint distribution of XI, X2, X3 admits a shock model repre­
sentation. 

By Corollary 24 S" satisfies (87) if and only if (1-S") satisfies (32). However, since 
a ;:::: !, clearly (1-a) ~ l Using Example 18 again, it is easy to see that we can 

choose So, SI and a such that this is not true. Hence it follows that the joint distribu­

tion of X 1. X2, X3 does not necessarily admit a dual shock model representation. 

Case 2. a~ lIn this case we know from Example 18 that we can choose So, SI and 

a such that S' does not satisfy (32). Hence it follows that the joint distribution of XI, 

X2, X3 does not necessarily admit a shock model representation. 

Since we now have that (1-a);:::: !, by Example 18 we get that (1-S") always satisfies 

(32), and hence by Corollary 24, S" satisfies (87). Hence it follows that the joint 
distribution of XI. X2, X3 admits a dual shock model representation. 

We can summarize this example by saying that if S has the distribution (94), then the 

joint distribution of XI, X2, X3 admits either a shock model representation or a dual 
shock model representation or both. D 

In general we conclude that the shock models and dual shock models are two different 
classes based on quite different physical assumptions. While some distributions be­
long to both classes, we have shown that there exists distributions belonging to only 
one of the classes. Thus, the two classes supplement each other nicely. Still we expect 
to find examples of distributions of exchangeable Xi's belonging to none of the 

classes. 

5. Conclusions 
The IFIV class provides a rich class of probability models, all of which can be inter­
preted in a natural way in terms of operationally well-defined quantities. Thus, from 
an operational point of view, the IFIV class is more appealing than the class of associ­
ated random variables. 
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In the binary case the IFIV class is contains all PDM models. Generally there is a 
strong relation between PDM models and IFIV models. 

Conditions are given for when a joint distribution of binary variables can be interpre­
ted as a shock model. In particular we have derived conditions for when a binary 
PDM model admits such an interpretation. 
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