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In this paper combining the opinions of k experts about the lifetimes of n components of 
a binary system is considered. This problem has been treated in the single component 
case by Huseby (1986, 1988). Since the experts often share data, he argues that their 
assessments will typically be dependent and that this difficulty cannot be handled without 
making judgements concerning the underlying sources of information and to what extent 
these are available to each of the experts. In the former paper the information available 
to the experts is modeled as a set of observations Yi, · · · , Y m. These observations are then 
reconstructed as far as possible from the information provided by the experts and used 
as a basis for the combined judgement. This is called the retrospective approach. In the 
latter paper, the uncertain quantity is modeled as a future observation, Y, from the same 
distribution as the Yi's. This is called the predictive approach. For the case, n > 1, where 
each expert is giving opinions about more than one component, additional dependencies 
between the reliabilities of the components come into play. This is for instance true if 
two or more components are of similar type, are sharing a common environment or are 
exposed to common cause failures. For the case n = 2 both the retrospective and predictive 
approach are treated in N atvig (1990). In the present paper the predictive approach is 
considered for an arbitrary n and for an arbitrary overlapping of the observation sets 
from the different experts. The component lifetimes are assumed to have a multivariate 
exponential distribution of the Marshall-Olkin type. At the end of the paper it is shown 
how the joint distribution of the lifetimes of the n components can easily be updated in 
the case of getting real data. 

1. Introduction 

Consider, for a fixed point of time, t, a binary system like a nuclear power plant of n binary 
components. Let (i = 1, · · ·, n): 

xi= { 01 if the ith component functions 
otherwise, 

X=(Xt, .. ·,Xn), 
,P(X) _ { 

0
1 if the system functions 

otherwise. 
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Let furthermore: 

E(XiiPi) =Pi = the reliability of the ith component, 

E(</>(X)Ih) = h = the reliability of the system. 

If we assume that X 1 , • • • , X n are independent given !!. = (p17 • • • , Pn), we write: 

h = E( </>(X) IE)= h(E)· 

Natvig and Eide (1987) assumed that the joint prior distribution of the reliabilities, before 
running any experiments on the component level, 7r(J!.), can be written as: 

n 

7r(E.) =II 7ri(Pi), (1.1) 
i=l 

where 7ri(Pi) is the prior marginal distribution of Pi, i.e. we assumed that the compo­
nents have independent prior reliabilities. 7ri(Pi) describes our initial uncertainty in Pi, by 
for instance allocating most of the probability mass close to 1 indicating a very reliable 
component. 

In this paper we assume that k experts will provide the information about the reliabilities 
of the components. Our work in this area generalizes papers by Huseby (1986, 1988) 
on the single component case. Since the experts often share data, he argues that their 
assessments will typically be dependent and that this difficulty cannot be handled without . 
making judgements concerning the underlying sources of information and to what extent 
these are available to each of the experts. In the former paper the information available · 
to the experts is modeled as a set of observations Yi, · · · , Y m. These observations are then 
reconstructed as far as possible from the information provided by the experts and used as a 
basis for the combined judgement of a decision maker (DM). This is called the retrospective 
approach. In the latter paper, the uncertain quantity is modeled as a future observation, 
Y, from the same distribution as the Yi 's. This is called the predictive approach. 

For the case, n > 1, where each expert is giving opinions about more than one component, 
additional dependencies between the reliabilities of the components come into play. This 
is for instance true if two or more components are of similar type, are sharing a common 
environment or are exposed to common cause failures. In the case of X 1, · · · , X n inde­
pendent given p, and the lifetimes being exponentially distributed with unknown failure 
rates -\1 , • • • , ,\;, this problem is considered by Lindley and Singpurwalla (1986). Then 
obviously: 

Pi = exp( --\it), i = 1, · · · , n. 

In the latter paper the jth expert, j = 1, · · ·, k, expresses his opinion about Ai and hence 
of Pi in terms of a normal distribution for (}; = ln-\i, i = 1, · · ·, n. He provides its mean 
ffiji and standard deviation Sji but also Piir being the personal correlation between 0; and 
Br,j = 1, · · ·, k; i, r = 1, · · ·, n, i -:j:. r. In addition the DM has to provide his personal 
correlations between the ffiji's for fixed expert j and different components, for fixed com­
ponent i and different experts and finally for both different experts and components. The 
great drawback of this approach is the difficulty of assessing these correlations directly 
without having an underlying model as in the papers by Huseby. 
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Lindley and Singpurwalla (1986) use an approximation technique suggested by Laplace, 
which has been pointed out to be quite good by Tierney and Kadane (1986) to arrive at 
the corresponding uncertainty in h(p) for a parallel system of independent components. 
They claim that the results may easily be generalized to cover any coherent system of inde­
pendent components. This is not true since representing a coherent system of independent 
components by a series-parallel structure introduces replicated components which of course 
are dependent. For details see the excellent textbook Barlow and Proschan (1975). 

For the case n = 2 both the retrospective and the predictive approach are treated in Natvig 
(1990). In the present paper the predictive approach is considered for an arbitrary n and 
for an arbitrary overlapping of the data sets from the different experts. Here the uncertain 
quantities (ZIJ Z2, · · ·, Zn) are the lifetimes of the components. These are assumed to have 
a multivariate exponential distribution of the Marshall-Olkin type. As an example of such 
a two component system consider a module of the lubricating system for the main bearings 
of a power station turbine presented in Christensen and Kongso (1991). In this system an 
oil pump driven by an electromotor is delivering oil from a reservoir, the oil being cleaned 
by a filter on its way. The system is a series system of five components. These are the oil 
reservoir which is failing if there is no oil, the filter which is failing if it is blocked and the 
electromotor, the oil pump and a power cable all failing if broken. Our module of interest 
is the series system of the oil pump and the electromotor. In the paper above the lifetimes 
of these components are assumed independent and exponentially distributed, neglecting 
that they are sharing a common environment or may be exposed to common cause failures, 
which are basic assumptions in our research in this area. H in addition the oil pump and 
the electromotor are of a new design, there is no data to rely on in the beginning. Hence 
the best one can do as a start is to let experts help in specifying the joint distribution of 
the lifetimes of these components. 

The paper is organized in the following way. In Section 2 we consider the prediction 
of the joint survival distribution of the components given the background information of 
the experts. This is in terms of m independent sets of survival times beyond specific 
time points for all components. Section 3 is devoted to the extraction of information 
from the experts. This is achieved by asking the experts about the simultaneous survival 
probabilities, beyond a certain time point u, for different sets of components. In Section 
4 we discuss claims to test the consistency of the experts, whereas Section 5 gives the 
predictions after the extraction of information from them. Section 6 is dealing with an 
alternative approach, where the background information is in terms of data on the times 
to shocks instead of survival times of the components. Updated predictions based on real 
data are treated in Section 7. An advantage of the alternative approach in Section 6 is that 
the proper predictions can be arrived at in a fully Bayesian fashion as in Huseby (1988). 
Some final comments are eventually given in Section 8. 

2. Prediction based on simultaneous survival times 

The lifetimes of the n components are assumed by the DM to have a multivariate ex­
ponential distribution of the Marshall-Olkin type. For details on the properties of this 
distribution we refer to Barlow and Proschan (1975). It is best described by the following 
shock model. 
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The components may fail in two different ways. First of all the ith component may fail due 
to an individual shock. The time until such a failure occurs is denoted by Vi, i = 1, · · ·, n. 
Furthermore, the ith component may fail due to a common shock that necessarily destroys 
certain other components as well. It is supposed that there are p possible common shocks. 
Introduce (r = 1,···,p): 

Dr =the set of components destroyed 

by the rth common shock. 

Denote by Vn+r the time until the rth common shock occurs, r = 1, · · · ,p. The variables 
Vi are assumed to be independent given the hyperparameters fh, i = 1, · · ·, n + p and 
exponentially distributed. Here Bi is the failure rate corresponding to Vi. Also introduce 
(i=1, .. ·,n): 

Ei ={ r lifDr} = the set of common shocks 

that destroys the ith component. 

Then clearly the lifetime of the ith component satisfies ( i = 1, · · ·, n ): 

We now suppose that the background information of the experts, corresponding to their 
observation sets, is in terms of m independent sets of survival times beyond specific time 
points for all components; i.e. 

n 

nczil>Zil), 1=1,···,m. 
i=l 

(2.1) 

This turns out to be mathematically advantageous and is in opposition to Huseby (1988) 
where observed lifetimes represent the corresponding information. Now define: 

Vil=Zil, i=1,···,n;1=1,···,m 

V(n+r)l = max{zidifDr }, r = 1, · · · ,p; 1 = 1, · · ·, m. 

The information (2.1) is clearly equivalent to: 

n+p n (Vil >Vii), 1 = 1,' '', m, 
i=l 

(2.2) 

(2.3) 

where the Vi1's are independent and exponentially distributed with failure rates Bi, i 
1, · · ·, n + p; 1 = 1, · · ·, m. 

Note that if no shocks overlap the system consists of independent modules, each of which 
is either a single component or consists of a fixed number of components with life distribu­
tions described by the individual failure rates of the components and the common shock 
failure rate. Thus under these circumstances the model becomes much simpler and each 
submodule may be treated separately. 
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The DM assesses that the jth expert has access to information on the Zi1's in (2.1) or 
equivalently on the Vi1's in (2.3) for 1 with indices in the set A;,j = 1, · · ·, k. We have: 

k 

U A;= {1,···,m}. 
j=l 

Thus the number of elements in each set A; reflects the opinion of the DM about the 
quality of the assessments of the jth expert, whereas his judgement of the dependencies 
between the experts is reflected by the degree of overlap between the sets. 

As in Natvig (1990) we assume that the prior distributions of 8i, i = 1, · · ·, n + p both 
for the DM and the jth expert are independent gamma distributions with shape and 
scale parameters respectively equal to (ai, bi) for the DM and (a;i, b;i) for the jth expert, 
j = 1, · · ·, k; i = 1, · · ·, n + p. It should be noted that in principle the jth expert should 
specify the (a;i, b;i)'s prior to giving the background information corresponding to his 
observation sets. In practice these gamma distributions may be chosen as rather vague 
ones with the scale parameters close to zero, but with the shape parameters not too small. 
Introduce: 

t;i = L Vil , j = 1, · · ·, k; i = 1, · · ·, n + p 
lEAj 

m 

ti = LVil , i = 1,···,n+p. 
l=l 

(2.4) 

Here t;i is the total survival of components from the ith shock, corresponding to the 
information from the jth expert. ti is similarly the total survival corresponding to the 
whole set of information. As in N atvig (1990) we now have by standard calculations 
involving Bayes theorem the following prediction of the joint survival distribution of the 
components: 

n m n 

i=l l=l i=l 

n+p m n+p 

= P[ n (Vi > v;)l n n (Vil >Vii)] 
i=l l=l i=l 

n+p 

P[ n (Vi > Vi)IBI, ... 'Bn+p] (2.5) 
i=l 

Here the vi's are defined in analogy with (2.2) by suppressing the index 1. The constant k 
is determined by noting that Vi = 0, i = 1, · · ·, n + p give a joint survival probability of 1. 
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Similarly we get: 
n n 

P[n(zi > Zi)l n n(zil > Zil)] 

(2.6) 

3. Extraction of information from the experts 

It is seen from (2.6) that the DM must ask the jth expert questions that give him infor­
mation on then+ p quantities tii and then fit the tii's to the information obtained. The 
simplest way of doing this is to get a system of n + p equations involving the tii's and 
solve the system. This can be done in many different ways. However, the questions ought 
to reflect the dependence structure in the model in a natural way and should also be as 
easy as possible for the expert to answer. This can be achieved by asking the expert about 
the simultaneous survival probabilities, beyond a certain time point u, for all components 
that can be destroyed by a certain shock. By doing this both for individual and common 
shocks one ends up with the following n + p probabilities: 

n 

Pis= P[Zs > ul n n(zil > Zii)], s = 1, ... 'n 
l€AJ i=l 

(3.1) 
n 

Pi(n+r) = P[ n (Zi > u)l n n(zil > Zii)], r = 1, ... ,p. 
i€Dr l€AJ i=l 

For our two component module the jth expert can for instance be asked to specify the 
probabilities that the oil pump alone survives 5000 hours, that the electromotor alone 
survives 5000 hours and that finally both survive 5000 hours. The right hand sides in (3.1) 
follow from (2.6). Hence the DM has n + p equations to determine then+ p quantities tii· 

This system of equations may be unsolvable in which case the more general approach to 
follow may be used. Now the DM defines the partitions {Fs, F~}, s = 1, · · ·, n + p of the 
set {1, · · ·, n} and asks the jth expert to specify the following n + p probabilities: 

n 

Pis=P[n(Z,>u)n n(Z,>O)I n n(Zil>zii)],s=1,···,n+p. (3.2) 
l€F, 

This reduces to (3.1) in the special case where Fs is running through the components 
corresponding to the individual and common shocks. Introduce (s = 1, · · ·, n + p): 

Hs = {n + r!Dr nFs-:/: 0} 

= the set of common shocks that 

affects at least some component in Fs. 

From (2.6) we then have the following system of equations (s = 1, · · ·, n + p): 

II ( bii + tii )a·. 
Pis = J' • 

·pH bii+ti;+u 
If ,u • 

(3.3) 
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This corresponds to solving the system: 

(3.4) 

Here M is an ( n + p) x ( n + p) matrix whose ith row has 1 's for elements in the set Fi U Hi 
and O's otherwise, (is a vector having ith coordinate (i = 1, · · ·, n + p): 

and !1. is a vector having ith coordinate ( i = 1, · · · , n + p ): 

(3.5) 

Thus in order to solve (3.4) the DM must construct a set of partitions such that the 
corresponding matrix M is invertible. We then get ( i = 1, · · ·, n + p ): 

(3.6) 

Hence finally (i = 1, · · ·, n + p): 

(3.7) 
s=l s=l 

In the special case above the matrix M will be a symmetric block matrix 

where 1nxn is then X n identity matrix. 

Furthermore, as an example consider the case with only one common shock wiping out all 
components at the same time. By modular decomposition this case also covers the one 
with nonoverlapping shocks as well. Then: 

Hence: 

M ---
-1 1 ((n -1)fnXn -lnxn 

- - n -1 llxn 
lnxl) 
-1 . 

From (3. 7) we then arrive at: 

s=l s=l 
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(3.8) 
s=l s=l 

(3.8) is a generalization of (2.10) in Natvig (1990). 

4. Consistency of the experts 

In order to increase the precision in the assessments of the tii's the procedure in the 
previous section should be repeated for different values of u. Note that for each u there is 
no guarantee that we end up by a solution satisfying the obvious claim (r = 1, · · · ,p): 

( 4.1) 

Furthermore, even if all of the sets of equations give acceptable solutions these will in gen­
eral be different. Ideally we should calculate a posterior distribution for tji, i = 1, · · ·, n+p 
based on these solutions. However, as an approximation we will at the present stage of 
research suggest as Huseby (1988) that one should base the subsequent calculations for 
fixed j = 1, · · ·, k and fixed i = 1, · · ·, n + p on the averages of tji, for the sets of equations 
having acceptable solutions. Han expert provides a small number of acceptable solutions, 
he should perhaps better be dismissed. 

We will now discuss when the solutions ( 3. 7) satisfy the claim ( 4.1) of being a set of 
acceptable solutions, or in other words that the experts are consistent. This parallels the 
discussion in Natvig (1990). 

First of all we have from (3.6) and (2.6) ( i = 1, · · ·, n + p ): 

n+p 1 n p::i~ = [(bji + tji)/(bji + tji + u)]aj; 
s=l 

n (4.2) 

= P[Vi > ul n nczil > Zii)] = 'lrji· 
lEAj i=l 

Hence the left hand side is the survival probability beyond u from the ith shock updated 
after the assessments of the jth expert. From (3. 7) it is seen that a necessary condition for 
tii to be nonnegative is that this probability is less than 1, i.e. 

n+p 1 

fl p::;~ = exp((M-1 • !l.)i) < 1, i = 1, · · ·, n + p. 
s=l 

This is equivalent to: 
(4.3) 

It is, however, easy to show that ( 4.3) is in fact true if and only if the jth expert's probability 
assessments are consistent with the multivariate exponential distribution of the Marshall­
Olkin type. From (3.5) this is equivalent to: 

!1. = -M. fl.(n+p)xl . u, ( 4.4) 
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which ensures ( 4.3) to hold. H on the other hand ( 4.3) is true, choose 

ft(n+p)xl = -M-1 . !)_/U, 

which ensures ( 4.4) to hold. 

From (3.7) a necessary and sufficient condition for the t;i's to be nonnegative is that 
(i = 1,···,n+p): 

(4.5) 
s=l s=l 

By ( 4.2) this is equivalent to ( i = 1, · · ·, n + p ): 

7r · · > [b ··/(b ·· + u)]ai; ]I - ]I Jl l 

which means that the survival probability beyond u from the ith shock is larger when 
updated after the assessments of the jth expert than a priori. This is intuitively obvious 
since nonnegative t;i's mean more experience without failures. (4.5) is always true when 
b;i is small and a;i is not too small. 

From (3.7) and (4.2) the leftmost inequality in (4.1) is equivalent to (r = 1, · · · ,p; ieDr): 

-1 -1 -1 -1 

[ a.( + ) a.( + ) a.. a .. 
7r;(n"-r~ u/(1- 7r;(n"-r~)- 7rA' u/(1- 7r;i' )] + [b;i- b;(n+r)] > 0. (4.6) 

It follows from ( 4.2) and (3.6) that the first of the two summands is nonnegative if and 
only if (r = 1, · · · ,p; ieDr): 

-1 (M-1 ) > -1(M-1 ) aj(n+r) - !1. (n+r) - aji - !1. i· (4.7) 

H the jth expert's probability assessments are consistent with the multivariate exponential 
distribution of the Marshall-Olkin type, it follows from ( 4.4) that ( 4. 7) is equivalent to 
(r = 1, .. · ,p; ieDr ): 

-1 o < -to aj(n+r) (n+r) - aji i· 

Let us furthermore consider the case where the jth expert assesses that: 

(4.8) 

(4.9) 

Then nonnegativity of the second summand in ( 4.6) means that the jth expert assesses that 
the prior mean of B(n+r) is not less than the prior mean of Bi, ieDr- Anyway, this is always 
true for the vague gamma distribution. When ( 4.9) holds, ( 4.8) is true if the jth expert's 
probability assessments are consistent with B(n+r) :::; Oi, ieDr. Hence the conditions for 
nonnegativity are somewhat opposite for the two summands. This makes sense as is seen 
from the following discussion. 

H the jth expert assesses that B(n+r) > Bi, ieDr, the first summand is negative. This 
must be compensated by a nonnegative second summand claiming that the prior mean of 
B(n+r) is not less than the prior mean of Oi, ieDr, which is the same type of assessment. In 
particular b;i may have to be significantly larger than 0, in opposition to a vague gamma 
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distribution. H on the other hand the jth expert assesses that the prior mean of B(n+r) is 
less than the prior mean of Bi, ieDr, the expert is forced to assess that B(n+r) < Bi, ieDr. 
Finally, if the jth expert assesses that the prior mean of B(n+r) is not less than the prior 
mean of Oi, ieDr, the expert may change his opinion without being inconsistent. 

5. Prediction after extraction of information from the experts 

What remains is for the DM to calculate the predictive joint survival distribution of the 
components given by (2.5) based on the extraction of the information t;i,j = 1, · · ·, k; i = 
1, · · ·, n + p from the experts. As is seen from (2.5) this can be done if the quantities ti 
can be calculated by means of the t;i's. In the case where the experts are independent, 
1.e. where the sets A; are disjoint, this is straightforward since from (2.4): 

k 

ti = L t ji , i = 1, · · ·, n + p. 
j=l 

In general there exists a disjoint partition B 9 , g = 1, · · · , q of the set { 1, · · · , m} and subsets 
C;,j = 1, · · ·, k of the set {1, · · ·, q} such that we have the representation: 

Let us define: 

A; = U B9 ,j = 1, · · ·, k. 
gECj 

Sgi= LVil ,g=1,···,q;i=1,···,n+p. 
leB9 

Then from (2.4) we have: 

t;i = L Sgi ,j = 1, · · ·, k; i = 1, · · ·, n + p 
gECj 

q 

ti = LSgi,i = 1,···,n+p. 
g=l 

(5.1) 

(5.2) 

(5.3) 

Hence the problem is solved if the Sgi's were known. Note in particular that for a fixed 
partition B 9 , g = 1, · · ·, k of the data set it is irrelevant how many experts that share the 
information corresponding to each B9 as long as it is known by at least one expert. This 
is as expected since the DM doesn't assume errors in the observations by the experts. Of 
course, from the point of view of modelling dependencies the DM's predictive probability 
will decrease if the degree of overlapping between the A; 's increases, given a fixed set of 
t ji 's. 

The DM's final assessment of the predictive probability will be a result of his assessments 
of the s9 i's. We start by considering these assessments in the special case considered by 
Huseby (1988) and Natvig (1990) where all experts share some common information, but 
otherwise have separate sources of information. Hence we have: 

A;=B;UBk+l ,j=1,···,k, (5.4) 
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where Bk+I is the set corresponding to the common information. From (5.3) we then get: 

k+I k 

t; = L s9 ; = L(s9 ; + S(k+I)i)- (k- 1)s(k+I)i 

g=l g=l 

k 

= Ltii- (k -1)s(k+I)i, 

i=l 

where the unknown quantities S(k+I)i, i = 1, · · ·, n + p must satisfy: 

0:5 S(k+I)i :5 min{tj;jj = 1, .. ·,k}. 

This corresponds to (3.9) of Huseby (1988) and to (2.13) of Natvig (1990). 

(5.5) 

(5.6) 

There are in principal several different procedures to assess the S(k+I)i's. First of all 
the DM may ask the experts of additional information. In Natvig (1990) this is done 
by simply letting S(k+I)i be the minimum survival time before the ith shock that all 
experts agree on. Secondly, the DM may decide that the information available only justifies 
calculating the two extreme versions of (2.5) corresponding to the two extreme values 
of (5.6). Suggesting the upper point as in Natvig (1990) gives the smaller predictive 
probability whereas S(k+I)i = 0 gives the most optimistic assessment. Finally, the DM 
may use the information available to estimate the S(k+I);'s. Suggesting the upper point 
of (5.6) can be regarded as an estimate assuming maximal dependency within the model 
(5.4). Note, however, that the information about the number of elements in each of the 
sets B 9 has not been used. This can be considered as known according to the general 
model and expresses the DM's judgement of the quality of the experts assessments and 
the dependencies between them. In the rest of this section we will consider estimation of 
the S(k+I)i's based on this information. 

Remember that Vii introduced in (2.2) is the survival time from the ith shock coming from 
the lth observation set, i = 1, · · ·, n + p; 1 = 1, · · ·, m. We stress that the DM must assess 
that it is the same censoring mechanism behind all observation sets implying that the DM 
for fixed i must give equal weights to Vii, l = 1, · · ·, m. 

Introduce: 
n9 = number of elements in B 9 , g = 1, · · ·, k 

kj = number of elements in Aj,j = 1, · · ·, k. 

We then suggest the following estimator for S(k+l)i: 

k k 

S(k+I)i = n(k+I) L tii/ L k;. 
j=l j=l 

(5.7) 

In the general case (5.1) we have for fixed i to estimate s9 ; for q- k values of g. Then the 
remaining s9 ;'s are determined from the first equation in (5.3). In the special case above 

. the choice of estimating S(k+I)i was almost canonical, and there may exist an equally 
natural choice in other cases as well. Generally, it seems natural to estimate those s9 ;'s 
for which the amount of available information is as large as possible. Define: 

(5.8) 
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Now pick the q- k values of g for which the number of elements in G9 is the largest or 
alternatively for which: 

is the largest. For these values of g the following estimator is suggested: 

Sgi = n 9 L t;i/ L k;. . (5.9) 
jEG1 jEG1 

There are some obvious restrictions that must be obeyed in this estimation procedure. First 
of all if B9 =A; for some j, the index g must of course be excluded since then Sgi = t;i is 
already known. Similarly g must be excluded if B9 represents the only unestimated part 
of some A i. Secondly, we must obviously have: 

where Cj is the set of indices in C; that is selected for estimation. 

6. An alternative approach 

In Section 2 the background information of the experts, corresponding to their imaginary 
observation sets, is given in terms of m independent sets of survival times beyond specific 
time points for all components, see (2.1) or equivalently (2.3). As has been seen this 
approach was mathematically tractable. In the case where k;, the number of elements 
in A;,j = 1, · · ·, k are known, an alternative approach is possible. We then replace the 
background information (2.3) by: 

n+p 

n(l/it=Vii), 1=1,···,m. 
i=l 

(6.1) 

Hence we now have data on the times to shocks instead of survival times of the components. 

It is of course generally impossible to observe the times to all shocks when observing a real 
system. However, the imaginary data are just an abstraction used to model the background 
information of the experts and do not have to be easily interpreted as real data. In fact 
we may in the following easily replace ( 6.1) by: 

n+p m; n neVi,= Vit), (6.2) 
i=l l=l 

corresponding to a lack of information on some shocks in some data sets, to increase the 
flexibility of the model. It should be noted that also the imaginary data of (2.1) are 
unrealistic when failures of components in a real system are observed. 
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By defining the Vi's from th Zi's in analogy with (2.2) by suppressing the index l, and the 
t;i's and ti's from the Vii's as in (2.4), we get similarly to (2.5) and (2.6): 

n m n+p 

P[n(zi > Zi)l n n (Vil = Vil)] 
i=I 1=1 i=l (6.3) 

n n+p 

P[n(zi > Zi)l n n (Vil = Vil)] 
i=I l£A; i=l 

n+p 
= II ( bji + iji )a;;+k;. 

. bji + tJ·i +Vi 
t=l 

(6.4) 

ai + m in (6.3) and a;i + k; in (6.4) act as a; and a;; in respectively (2.5) and (2.6). 
Hence the choice of the shape parameters is less crucial in this approach. The procedure 
for extraction of the information from the experts are exactly as in Section 3. So the jth 
expert has to specify the n + p probabilities ( s = 1, · · · , n + p ): 

n+p 

Pis= P[n(z, > u)n n (Zl > 0)1 n n(Vil =Vii)). (6.5) 
l£A; i=I 

This leads to an expression for t;i given by (3.7) where a;i is replaced by a;;+k;. Remember 
that the k;'s now are supposed to be known. 

Regarding the consistency of the experts a necessary condition for t ji to be nonnegative 
is still that the jth expert's probability assessments are consistent with the multivariate 
exponential distribution of the Marshall Olkin type. A necessary and sufficient condition 
for the t;i's to be nonnegative is now that: 

n+p 

'Trjj = P[Vi > ul n n (Vil = Vil)] 
lfA; i=l 

This means that the survival probability beyond u from the ith shock may now be reduced 
by a multiplicative factor [b;;f(b;; + u)]ki after the assessments of the jth expert compared 
to the a priori assessments. This is intuitively obvious since we now can observe failures. 
Note that this factor is decreasing ink;, the number of failures the jth expert has access 
to and is increasing in b;i. The factor is close to zero for the vague gamma distribution 
which can be applied as in Huseby (1988), and does not lead to inconsistencies. 

Note that we have no ordering of the Vii's in the background information ( 6.1) as opposed 
to the one in (2.3), see (2.2). Hence the claim of the leftmost inequality in (4.1) now 
vanishes. 

13 



The predictive probability (6.3) may now be established from the t;i's exactly as in Section 
5. In the case where the background information is given by (6.2) instead of (6.1), the 
sets A;, B9 , C;, C;' and G9 , and the integers q, n 9 and k; must be indexed for each i = 
1, · · ·, n + p. 

However, an advantage of the present approach is that the proper predictive probability 
can be arrived at in a fully Bayesian fashion as in Huseby (1988). This will come out 
as a special case of the deductions in the next section where the predictive probability is 
updated due to getting real data. 

7. Updated predictions based on real data 

In the present paper we have not yet considered how the predictive probability can be 
updated when getting real data. When these data represent survivals of components, or 
more generally are given both for individual and common shocks, this is straightforward. 
Introduce (i = 1, · · · ,n + p): 

Ti =total time on test relative to the ith shock 

di = number of shocks of type i 
(7.1) 

By the same argument leading to (2.5) the updated predictive probability due to the data 
(7.1) equals: 

(7.2) 

The corresponding generalization of (6.3) has the exponent ai + di + m instead of ai + di. 

The proper Bayesian predictive probability based on (6.1) is deducted in the following: 

n 

P[n(zi > zi)lt;i,i = 1, .. ·,k;i = 1, .. ·,n+pn(Ti,di),i = 1,· .. ,n+p] 
i=1 

n+p 
P[ n (l'; > vi)ilh, .. ·, Bn+p] 

i=1 

x p[t .. J. - 1 .. · k· i - 1 .. · n + piB1 .. · B + ] 
)I' - ' ' - ' ' ' ' n p 

n+p b~;B~;-1 . 
xp[(Ti,di),i = 1 .. ·,n+piBt, .. ·,Bn+p] ij 'r(~i) exp(-biBi)dB1···dBn+p, 

•=1 

having applied the conditional independence of { t ji, j = 1, · · · , k; i = 1, · · · , n + p} and 
{(Ti, di), i = 1, · · ·, n + p} given 81 , · • ·, Bn+p· The expression above can be written as 

CX) CX) 

= c2 j ... j p[t;i,j = 1, .. ·,k;i = 1,···,n+piB1, ... ,Bn+p] 

Bt=O Bn+p=O (7.3) 
n+p 

X IT [Bi;+d;-1 exp( -(bi +Vi+ Ti)Bi)]dB1 · · · dBn+P' 
i=1 
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To arrive at p[t;i,j = 1, · · ·, k; i = 1, · · ·, n+pjB~, · · ·, Bn+p] we introduce the transformation 
of (s1i, · · ·, Sqi) into (s1i, · · ·, S(q-k-1)i, t1i, · · ·, tki, ti)· H this transformation is singular, we 
can choose another one instead. From ( 5.3) we establish ( i = 1, · · · , n + p, g = q- k, · · · , q ): 

Sgi = fgi(S!i, ·" ·, S(q-k-1)i, t1i, · · ·, tki, ti), (7.4) 

where the /gi's are linear functions. Since the Sgi's, g = 1, · · ·, q; i = 1, · · ·, n + p are 
independent given 81, · · · , Bn+p and gamma distributed with shape and scale parameters 
respectively equal to n9 and Bi, we get from (7.4): 

p[t;i,j = 1,··· ,k;i = 1,···,n +pj81,· ·· ,Bn+p] 

n+p b(i) q-k-1 

= ca Jl j j · · · j IT (s;[- 1 ) 

•=1 g=1 4 (i) s(q-lc-l)i 

q 

x rr [Jgi(S1i, ... , S(q-k-1)i, t1i, ... , tki, tir~- 1 

g=q-k 

X Bi exp( -Biti)ds1i · · · ds(q-k-1)idk 

(7.5) 

Here S(q-k-1)i is an area of integration and a(i) and b(i) integration bounds determined 
by (5.3). Inserting (7.5) into (7.3) we finally get: 

n 

P[nczi > Zi)lt;i,i = 1,···,k;i = 1,···,n+pn(Ti,di),i = 1,···,n+pJ 
i=1 

q 

X II [/9 i(S1i, · · ·, S(q-k-1)i, t1i, · · ·, tki, ti)]n9 - 1ds1i · · · ds(q-k-1)idti. 
g=q-k 

(7.6) 

Here cis a normalizing constant ensuring that Vi = 0, i = 1, · · ·, n + p give a joint survival 
probability of 1. 

By specializing (Ti, di) = (0, 0), i = 1, · · ·, n + p, we end up with the predictive probability 
promised at the end of the previous section. By furthermore considering the special case 
(5.4) we end up with the following generalized version of (3.15) in Huseby (1988): 

n 

P(n(zi > Zi)lt;i,j = 1, ... ' k; i = 1, ... 'n + p] 
i=1 

(7.7) 

k 

X rr((t;i- ti) + ti/(k- 1))ni - 1dti, 
j=1 
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where 
k 

tt = :z::>ji/(k- 1) 
j=I 

and applying (5.5) and (5.6) 

k 

a(i) = I> j i - ( k - 1) min { t j d.i = 1, · · · , k} 
j=I 

k 

b(i) = L:: tji· 
j=I 

When the data include failures of components, without knowing which shocks that oc­
cured, updating is far more difficult due to the intractability of the density function of the 
multivariate exponential distribution of the Marshall-Olkin type. This is not discussed in 
the present paper. 

8. Some final comments 

It should finally be noted that the use of expert opinions is actually implemented in the 
regulatory work for nuclear power plants in the US. In addition there is no reason that 
this approach should not be used for instance in the offshore oil industry when new or 
redesigned systems are analysed. A general problem when using expert opinions is the 
selection of the experts. This problem is not addressed directly in the present paper 
except for suggesting in Section 4 when a selected expert should be dismissed. However, 
asking experts technical questions on the component level as in the present paper, where 
the consequences for the overall reliability assessment on the system level are less clear, 
seems very advantageous. Hence one can avoid the problem that to any risk assessment 
on system level there is an expert that will strongly support it. 
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Dans cet article, nous considerons le probleme de combiner !'opinion de k experts sur les 
durees de vie des n composants d'un systeme binaire. Ce probleme a ete etudie dans le 
cas d'un seul composant par Huseby (1986, 1988). Comme les experts utilisent souvent 
certaines sources d'information communes, il explique que leurs estimations seront typ­
iquement dependantes, et que cette difficulte ne peut etre surmontee sans emettre des 
jugements sur les sources d'information presentes et sur leurs accessabilites a chaque ex­
pert. Dans le premier article, !'information accessible aux experts est modelee comme un 
ensemble d'observations Yi, · · ·, Ym. Ces observations sont alors reconstruites autant que 
possible d'apres !'information fournie par les experts, et utilisees comme base du jugement 
combine. Cette methode est appelee !'approche retrospective. Dans le deuxieme article, 
la quantite inconnue est modelee comme une observation future Y, de meme distribution 
que les }i. Cette methode est appelee !'approche predictive. Dans le cas n > 1, ou chaque 
expert emet des opinions sur plus qu'un des composants, des dependances additionelles 
entrent en jeu entre les fiabilites des composants. Ceci est par exemple vrai si ·au moins 
deux des composants sont soit de type similaire, soit partagent un environment commun 
ou sont exposes a des defectuosites de source commune. Dans le cas n = 2, les methodes 
retrospective et predictive sont toutes deux considerees par Natvig (1990). Dans !'article 
present, nous etudions !'approche predictive dans le cas d'un nombre arbitraire net d'une 
superposition arbitraire des ensembles d'observation des differents experts. Les durees de 
vie des composants sont supposees avoir une distribution exponentielle multivariee du type 
de Marshall-Olkin. Ala fin de !'article, nous montrons comment la distribution simultanee 
des durees de vie des n composants peut facilement etre remise a jour si l'on recoit des 
donnees veridiques. 
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