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Abstract

This thesis tries to determine if the Xeon Phi co-processor released in 2013 is
a suitable hardware tool to perform DNA sequence alignments on. Starting
off with an exploratory dive into the hardware itself before tackling some
of available optimization techniques and previously implemented tools.
As there are no tools currently on the market that utilizes the Xeon Phi
hardware, the only comparisons made are to a regular Xeon processor to
determine the outcome. Two programs were made in the course of this
thesis, CRSbuild and DNAlign, that builds an FM index over the human
genome and aligns sequences to the genome respectively. The results
achieved in this thesis are rather disappointing and the thesis shows, to
some degree, that native execution of an alignment tool of this magnitude
is not suited. The shared memory architecture of the Xeon Phi posses a
relatively small combined cache and with the lack of support for smaller
data types this is a limitation that the four hardware thread and a 512 bit
vector unit per core can not overcome.
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Chapter 1

Introduction

1.1 Motivation

Aligning DNA Sequences to a genome is an important and time-consuming
task in bioinformatics as it is the first step taken in order to analyze DNA
samples. By aligning the sequences to a genome, one may gain several
important clues about the health of the donor.
In January 2013, Intel released the Xeon Phi co-processor as a serious
contender in the high performance programming field. It is designed to
tackle highly parallel problems, and is a promising hardware to implement
a sequence alignment tool on. However promising it may be, the challenge
to find a suitable technique to take advantage of the unique hardware is
highly present as there are no other program that has yet to take advantage
of the Xeon Phi when mapping DNA sequences. An examination of the co-
processor itself, as well as some of the tools implemented for other kinds of
hardware is needed in order to attempt this task.

1.2 Goal

The Goal of this thesis is to determine whether the new Intel Xeon Phi
co-processor is suitable to perform DNA sequence alignment, and in the
process attempt to implement one such program.
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Chapter 2

Background

2.1 Xeon Phi

The Intel Xeon Phi co-processor, although relatively new compared
to traditional GPUs, have made a big impact on the TOP500 list of
supercomputers and are gaining traction in HPC-systems rapidly <CITE
top500?>. The co-processor contain roughly 60 cores clocked at 1GhZ each
with a shared memory area and a 512-bit wide vector unit, located on a PCI
board for easy assembly and is the chosen hardware for this thesis. The co-
processors will be described in short in the following subsections as stated
in its Best practice guide[2] and the book Intel Xeon Phi Coprocessor High
Performance Programming[8]

2.1.1 Specifications

Overview

The co-processor, spotting a full service Linux operating system with
support for many of Intels’ own development tools in addition to OpenMP,
C/C++ and MPI, is designed to work, alone or several together, along side
the Intel Xeon processor, connected to the host through the PCI express bus.
The operative system, designed for a Many Integrated Core architecture
(MIC), allows a user to execute code directly on the co-processor in addition
to offloading whole, or parts of, programs from the host CPU. The cores
shares the same fundamentals as the original Pentium core and are thusly
in-order dual issued x86 cores. Consisting of two processing units; the
scalar unit and the expanded vector unit spotting a whole new vector
instruction set and the 512-bit wide vector unit. Each core is able to fetch
and decode instructions from up to four hardware threads and, due to the
double processing unit, execute two of them per cycle. Each core, as shown
in figure 2.1, is connected by a high performance on-die bidirectional ring
interconnect, the Core Ring Interface (CRI), and has equal access to a shared
memory and all I/O devices connected to the host computer. The co-
processor also comes with several auto-vectorization possibilities enabled
by default, and several pragma compiler directives may be used for further
customization of Xeon Phi code.
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Figure 2.1: Architecture of a single Xeon Phi core drawn from the figure in
Intel Xeon Phi Coprocessor High Performance Programming[8].

A simplified version of the architecture is depicted in figure 2.2 with only
4 cores visible on the CRI together with the L2 cache, memory ports
and tag directory (TD) loosly drawn from Intel Xeon Phi Coprocessor High
Performance Programming[8].

VPU

The Vector Processing Units (VPU) new vector instruction set provide a
plethora of new vector intrinsics to the user, making it possible to vectorize
algorithms such as Smith Waterman. As a rule of thumb when utilizing
such instructions, regarding execution time, is that they all have a latency
to throughput ration of 4 to 1 cycles. As the vector unit requires a
64.byte alignment of its content, non of Intel’s previous vector intrinsics
are supported, but it comes bundled with an extended math unit (EMU),
making it possible to execute 16 single-precision or 8 double-precision
operations simultaneously.

Memory

There are eight memory controllers on a Xeon Phi, supporting up to 16
GDDR5 channels. A transfer speed of up to 5.5 GT/s, with each transfer
being 4 bytes of data, and a theoretical aggregated bandwidth ranging from
240 to 352 GB/s is provided for fast memory access. The cores access the

6



Figure 2.2: Simple architecture sketch based on figure in Intel Xeon Phi
Coprocessor High Performance Programming.[8]

memory through the CRI with hook memory controllers located on the die
and by linking the memory to the ring a smoother memory operation is
achieved when all cores are utilized.

Cache

Each core posses a L1 cache consisting of a 32 KB instruction cache and 32
KB data cache with a cache lines of size 64 byte exclusively accessible only
to the core itself. The L1 load-to-use latency is 1 cycle, e.g. an integer value
loaded can be used on the next cycle by an integer instruction. (Vector
instructions operates with a different latency). The cores also contribute
512 KB to the shared global L2 cache storage and if no core shares any
code or data the effective size of the L2 cache storage is up to a total of 31
MB. However, as the L2 cache size is highly dependant on the degree of
shared code and data among the cores, the size could also be, if every core
share the same code and data, closer to 512 KB. Similar to the L1 cache, L2
cache also have a 64 byte cache line but the cycle latency of the L2 cache is
higher with its clock cycle latency of 11 cycles. L2 cache also supports ECC
correction and come with a streaming hardware prefetcher.
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2.1.2 Xeon Phi Software Development

As mentioned in 2.1.1 Overview, the Xeon Phi allows the programmer to
develop code that could be executed natively without the need of host CPU
involvement in addition to more traditional offloading paradigms.
The first, native programming, are developed to run on the Xeon Phi
without involvement from the CPU. These applications need to be highly
parallelized with little to none serial dependency to utilize the thread
possibilities of the co-processor without having parts of the execution
waiting for other threads to be completed. It should also utilize the vector
unit to the fullest as this is one of the co-processors biggest strengths, if
not the biggest. A Native program has the added benefit of removing the
overhead associated with data transferal from host CPU to processing unit.
On the other hand, a native program should refrain from overuse of I/O
calls as this is significantly slower on Xeon Phi compared to the Xeon CPU
in addition to a limited amount of accessible memory.
The second, the offload model, comes in several intensities. An application
that have distinct parts of highly parallelize -and vectorize-able code
could benefit greatly from offloading those parts to the co processor if the
overhead associated with the transferal could be kept as small as possible.
Intel has also provided in addition to communication protocols such as
OpenMP and MPI compiler directives to allow a software developer to pass
information between host CPU and co-processor seamlessly throughout
the code with options to both chose whether the co-processor should
allocate and or free memory when called or to reuse memory already
present in its shared memory.

Optimization

When developing an application that executes, wholly or partially, on
the Xeon Phi co-processor there are a few important aspects to take into
consideration in order to achieve optimal performance. The book "Intel
Xeon Phi Co-processor High Performance Programming"[8], written by Jeffers
and Reinders, state that there are three important considerations to take
into consideration to gain the desired high performance the co-processor is
capable of deliver: Memory usage, Scaling and Vectorization.

"Trying to use Intel Xeon Phi co-processor without having maximized the use of
parallelism on the Intel Xeon processor will almost certainly be a disappointment"

If the memory usage of the applications is less then the maximum available
on a Xeon Processor, you would probably not gain to much by changing to
the co-processor.

High scaling on multiple cores is advisable for any applications that in-
tends to utilize the co-processor to the fullest. This may be easily gaged
for an application by allowing the application to run several times with in-
creasingly more threads allowed. By tracking the thread affinity we’ll be
able to detect any significant changes in performance and by some small
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modifications one may be able to increase performance with more cores.

The last consideration is the ability to vectorize properly. By executing the
application with and without vectorization, the execution without should
have a significant decrease in performance as the co-processor does its best
work when as many cores as possible execute a vector operation every cy-
cle.[8]

As stated above, a co-processor core is clocked at only 1GhZ and are
thusly slower than a Xeon core without the luxury of branch predictions
and out-of-order execution. To fully utilize each clock cycle to its max
capabilities precautions must be made to avoid unnecessary operations.
Due to the fact that all memory read and writes on the co-processor are
performed on 64-bit aligned data, unaligned data would slow down the
execution drastically since the compiler would have to realign the data
each time the code requires it. In some cases where the compiler is unable
to catch unaligned data the application could in worst case terminate
itself prematurely due to memory access errors. Too combat this, it’s
advisable to use Intels’ provided aligned allocation functions _mm_malloc
and _mm_free instead of regualar malloc and free. This would ensure
that the data is 63-bit aligned and handleable by the co-processor. To
further increase performance one could in addition to the aligned allocation
explicitly tell the compiler that arrays used by the program is aligned
with #pragma vector aligned to prevent the compiler to include alignment
checks on already aligned data structures.
Another useful tip is to actively try to arrange data in such a way that data
used in succession of each other lies after one another in memory. This
could significantly reduce cache misses and unnecessary cache reads since
the L2 cache is both slow and relatively small as previously mentioned.
This comes into play when you execute a highly threaded application
running heavy vector operations.
Following is an extracted checklist for Xeon Phi development:

• 64-bit aligned memory

• Memory arrangement (cache)

• Vectorization

• Good usage of compiler directives.

2.2 DNA sequence mapping

The process of mapping or assembling DNA sequences into a genome is a
vital addition to DNA sequence technology as the sequencers themselves
are unable to process the entire genome in one go. Varying on the sequencer
used, genome piece size processed have a size ranging from only 20 bases
up to 30000 bases. However, the sequencing of a genome is not without
problems and pitfalls should one not take proper precautions. "The problem
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of sequence assembly can be compared to taking many copies of a book, passing
each of them through a shredder with a different cutter, and piecing the text
of the book back together just by looking at the shredded pieces." Other than
the high difficulty of the task, staying with the book analogy, there are
some additional problems that complicates this work significantly. The
original book could have several repeated paragraphs and some of the
shredded pieces may have been modified after the fact, essentially giving
the text typos that were not present before shredding. The container of
the shredder are not guaranteed to be emptied between each shredding
resulting in the possibility of pieces from another book being mixed in
with the other shreds or a shredded pieces may have been mangled beyond
recognition.[19]
There are two main branches when one should align sequences: de-
novo assembly and mapping assembly, one trying to match the pieces to
each other while the other relying on a reference to match the pieces to
respectively. De-novo assembly pieces each shred together, matching the
ends to each other in order to find the best fit, until the book is finished. By
doing it this way there is no way of knowing what kind of book we end up
with, it being a scientific book or a cartoon. Mapping assembly on the other
hand searches the entire reference to find the best suitable location for each
shredded piece, tossing away any shred that does not match the reference.

2.2.1 Illumina

The most commonly used sequencing technology today is provided by
Illumina [7]. The technology used is based on the two Cambridge scientists
Shankar Balasubramanian, Ph.D. and David Klenerman, Ph.D.. In the late
90’s they formed the company Solexa and ultimately created the Solexa
sequencer in 2006, able to sequence 1 gigabase in one run. Solexa were
acquired in 2007 by Illumina which have taken the sequencer to new hights.
Their next generation sequencing data output have surpassed more than a
doubling each year and the current Illumina sequencer are able to generate
more than a terrabase of data each run.

2.2.2 File format

Output

When aligning reads during a DNA sequence mapping process, it is
preferable that the final product conforms to some standard in order for
other programs, e.g. tools that analyze the output, to extract the content.
Heng Li created a format called Sequence Alignment/Map (SAM) which is
"a generic format for storing large nucleotide sequence alignments" [6]. Aiming
to be flexible enough to handle all of the alignment information created
by various alignment tools and simple enough to generate by these tools
or converted into from tools using other formats. SAM also provide the
possibility to allow most operations to be performed on the alignment as a
stream of data instead of having to load the whole alignment into memory.
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It also allows the file to be indexed by genomic position to retrieve all reads
aligned to a locus while boasting a compact file size that remains human
readable [5]. There are two main components to SAM formated output.
The header section and the alignment section.
The header section of the output is not required, but must be located at
the beginning of the output file if present. This thesis will not provide
any header output and thusly the header information given in table 2.1 is
only for informational purposes. The alignment section, on the other hand,
is mandatory and contains information about one or more alignments
separated by a newline. Each individual alignment information is tab
separated just like the information in each header line. As the alignment
section contains 11 mandatory fields, as presented in table 2.2. This
thesis does not prioritize to provide all the required information in the
mandatory fields as the scope of the thesis is to gage whether a Xeon
Phi is suitable to perform alignments and there are far more hardware
strenuous activities that will weigh far heavier on the final decision. Thusly,
several of the default values will be utilized where possible without loosing
the alignment score and location itself. For information regarding the
individual fields see table 2.3. In addition to the 11 mandatory fields,
there are several optional additions to the alignment line if one wish to
utilize them. This thesis takes advantage of one of these additions in order
to replace the MAPQ field with its default value and use another score
representation. The additional filed used in this thesis is "AS:i:". Broken
down, AS states that the following value is the aligners own alignment
score and i states that the value is an integer.
There is a trade off due to the human readability of the SAM file, it
being more strenuous to work with compared to BAM files, the binary
equivalent to SAM. SAMtools is an open source tool made to make life
easier for humans and computers alike, also created by Heng Li and freely
downloadable from github[6]. It allows a user to freely convert SAM to
BAM or vice versa.

Sequence Input

FASTQ[17] "has recently become the de facto standard for storing the output
of high throughput sequencing instruments such as the Illumina Genome
Analyzer." The FASTQ format, originally intended for to be a bundle for
the preexisting FASTA format, usually contain four line of information for
each sequence:

• the sequence identifier, preceded by a ’@’ character.

• the raw sequence letters

• the third line is preceded by a ’+’ character and is optionally followed
by the same sequence identifier and any additional description

• the last line contains the quality value for the sequence, in line two,
and must have the same amount of characters as the sequence

11



@HD Begins the header line, if present
VN* - Format version

accepted format: / ˆ [0-9] + . [0-9] + $ /
SO - Sorting order of alignments.

Valid values: unknown(default), unsorted, queryname and coordinate
GO - Grouping of alignments.

Indicating that similar alignments are grouped together
@SQ Reference sequence dictionary

SN* - Reference sequence name
Unique for each present @SQ line.

LN* - Reference sequence length
Range: [1, 231 − 1]

AS - Genome assembly identifier
M5 - MD5 checksum
SP - Species
UR - Sequence url

eg. http: or ftp:. If not, file-system path assumed.
@RG Read group. Unordered multiple RG lines allowed.

ID* - Read group identifier
Unique for each present @RG line.

CN - Name of sequence center producing the read
DS - Description
DT - Date the run was produced
FO - Flow order
KS - Nucleotide array corresponding to key sequence of each read
LB - Library
PG - Program used for processing
PI - Predicted median insert size
PL - Platform/Technology used
PM - Platform model
PU - Platform unit
SM - Sample (Pool name for pool sequencing)

@PG Program
ID* - Program record identifier

Unique for each present @RG line.
PN - Program name
CL - Command line
PP - Previous @PG-ID
DS - Description
VN - Program version

@CO One-line text comment. Unordered multiple CO lines allowed.

Table 2.1: SAM file format: header section

The quality value characters, sorted with increasing quality:

!"#$%&’()*+,-./0123456789:;<=>?@
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Col Field Type Regexp/Range Description
1 QNAME String [!-?A- ],{1,255} Query template name
2 FLAG Int [0, 216 − 1] Bitwise flag
3 RNAME String |[!-()+-<>- ][!- ]* Reference sequence name
4 POS Int [0, 231 − 1] 1-based leftmost mapping position
5 MAPQ Int [0, 28 − 1] Mapping quality
6 CIGAR String |([0-9]+[MIDNSHPX=])+ CIGAR string
7 RNEXT String |=|[!-()+-<>- ][!- ]* Ref. name of next/mate read.
8 PNEXT Int [0, 231 − 1] Position of next/mate read
9 TLEN Int [−231, 231 − 1] Observed template length
10 SEQ String |[A-Za-z=.]+ Segment sequence
11 QUAL String [!- ]+ ASCII of ASCII of Phred-scaled base

quality+33

Table 2.2: SAM file format: alignment section - overview

ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_‘
abcdefghijklmnopqrstuvwxyz{|}~

An example FASTQ file containing one sequence with the Illumina
sequence identifiers is presented in figure 2.3.

Figure 2.3: FASTQ with Illumina sequence identifier

@HWUSI-EAS100R:6:73:941:1973#0/1
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!’’*((((***+))%%%++)(%%%%).1***-+*’’))**55CCF>>>>>>CCCCCCC65

The Illumina sequence identifier breakdown:

• HWUSI-EAS100R - the unique instrument name

• 6 - flowcell lane

• 73 - tile number within the flowcell lane

• 941 - ’x’-coordinate of the cluster within the tile

• 1973 - ’y’-coordinate of the cluster within the tile

• #0 - index number for a multiplexed sample (0 for no indexing)

• /1 - the member of a pair, /1 or /2 (paired-end or mate-pair reads
only)

13



QNAME Identical names are regarded as originating from the same template

FLAG

0x1 - template have multiple segments in sequencing
0x2 - all segments properly aligned (according to aligner)
0x4 - segment unmapped

0x80 - next segment unmapped
0x10 - SEQ being reverse-complimented
0x20 - next SEQ being reverse-complimented
0x40 - first segment in template
0x80 - last segment in template

0x100 - secondary alignment
0x200 - not passing quality controls
0x400 - PCR or optical duplicate
0x800 - supplementary alignment

FLAG & 0x900 = 0 - primary line of read
only one read per SAM file should satisfy this

RNAME Reference sequence NAME of the alignment. For unmapped segments, set to *
POS The first base in a reference sequence has coordinate 1. Set as 0 for an unmapped read.

If POS is 0, no assumptions can be made about RNAME and CIGAR.
MAPQ Mapping Quality, equals 10log10Pr{mapping position is wrong},

rounded to the nearest integer.
A value 255 indicates that the mapping quality is not available.

CIGAR Mapping string of the same length as the Query.
Op Description
M Alignment match (match or mismatch)
I Insertion to the reference
D Deletion from the reference
N Skipped region from the reference
S Soft clipping (clipped sequences present in SEQ)

May only have H between itself and closest end of CIGAR string
H Hard clipping (clipped sequences not present in SEQ)

May only be at either end of the CIGAR string
P padding (silent deletion from padded reference)
= sequence match
X sequence mismatch

RNEXT RNAME of the next read in template.
Set to * when information is unavailable

PNEXT POS of the next read in template.
Set to 0 when information is unavailable

TLEN signed observed Template length.
Set as 0 for single-segment template or when the information is unavailable.

SEQ Segment sequence, may be * is segment is not stored.
QUAL ASCII representation of MAPQ, set to * if unavailable.

Table 2.3: SAM file format: alignment section - detailed

Genome Input

Even though the FASTQ format would be suited to describe a reference
genome, the extra information provided by the two last lines is unnecessary
as the genome does not require the extra information to be useful. Thusly
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the FASTA format, which FASTQ extends, that retains the two first lines of
an entry without the optional second retail of the sequence identifier or the
that it extends is suitable for describing a reference genome.
In addition, FASTA is not as strictly line bound as its extender and is
divided into two parts; The first line, preceeded with the greater than
character ’>’, describing what the entry contains, such as the Chromosome
name and number, and the rest of the entry containing the sequence itself
over multiple lines if required.

>gi|31563518|ref|NP_852610.1| microtubule-associated proteins 1A/1B light.....
MKMRFFSSPCGKAAVDPADRCKEVQQIRDQHPSKIPVIIERYKGEKQLPVLDKTKFLVPDHVNMSELVKI
IRRRLQLNPTQAFFLLVNQHSMVSVSTPIADIYEQEKDEDGFLYMVYASQETFGFIRENE

2.3 Optimization approaches

2.3.1 Dynamic Programming

Dynamic programing involves splitting a problem into smaller and more
manageable problems, solving those and then using the answers gained to
answer the main problem. Keep in mind that if a problem is to be solved by
dynamic programming, the subproblems needs to be similar to each other
or else the problem would be more suitable to solve with a method called
divide and conquer.
One of the most famous algorithms, utilizing dynamic programming,
in bioinformatics is the Smith-Waterman One of the famous dynamic
programming solutions in bioinformatic is the Smith–Waterman (SW) [15]
algorithm, first proposed by Temple F. Smith and Michael S. Waterman in
1981, that performs local sequence alignment.

2.3.2 Smith-Waterman

Instead of looking at the total sequence, the Smith–Waterman algorithm
compares segments of all possible lengths and optimizes the similar-
ity measure to determine similar regions between two strings. Smith-
Waterman is decended from the Needleman–Wunsch(NW) algorithm[13],
one of the earliest dynamic programming algorithms utilized in bioinfor-
matics. Being a dynamic programming algorithm, it provides the highly
sought after property, a guarantee to find the optimal local alignment based
on a given scoring system. The scoring systems usually consist of a sub-
stitution matrix and a gap-scoring scheme to properly allow SW to find
the optimal alignment. The main difference between SW and NW is that
NW focuses on global alignment, and is thus not highly suited in bioin-
formatics, and operates with zero as the minimum value of any given cell,
not allowing negative cell values in its calculation matrix. This allows the
local alignments to become visible in preference to a global one. Smith-
Waterman have a complexity of O(m2n), which later have been improved
significantly by Gotoh [4] to run at just O(mn) by adding a gap extention
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test, increasing the gap if found to be true, rather than testing for each pos-
sible gap length every time. A more detailed description of the changed
made by Gotoh can be found in section 2.3.2.

Calculating Smith-Waterman is a two part problem; first a scoring
matrix (H) is calculated based on the algorithm seen in figure 2.4, the
scoring system (s), and previously calculated cell values, and secondly a
traversal of the calculated matrix, starting at the highest scoring cell and
backtracking until a 0 is found. The calculation matrix is initialized to zero,
and any negative value is set to 0 as well since SW does not allow negative
values as stated previously.

Figure 2.4: Smith-Waterman algorithm

H(i, 0) = 0, 0 ≤ i ≤ m.

H(0, j) = 0, 0 ≤ j ≤ n.

H(i, j) = max


0

H(i− 1, j− 1) + s(ai, bj) Match/Mismatch
maxk≥1{H(i− k, j) + Wk} Deletion
maxl≥1{H(i, j− l) + Wl} Insertion

 ,

Where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

An example that descries SW from beginning to end, taken from Wikipedia
[20], are depicted in below.

Smith-Waterman example

For this example, the following sequences will be used as reference and
query respectively:

A C A C A C T A
A G C A C A C A

A simple scoring system will be used:
s(a, b) = +2 if a = b (match), −1 if a 6= b (mismatch).

The resulting calculation matrix are then:
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H =



− A C A C A C T A
− 0 0 0 0 0 0 0 0 0
A 0 2 1 2 1 2 1 0 2
G 0 1 1 1 1 1 1 0 1
C 0 0 3 2 3 2 3 2 1
A 0 2 2 5 4 5 4 3 4
C 0 1 4 4 7 6 7 6 5
A 0 2 3 6 6 9 8 7 8
C 0 1 4 5 8 8 11 10 9
A 0 2 3 6 7 10 10 10 12


.

The local alignment is found by going backward from the highest score,
always following the highest cell value above, to the left, or diagonally up
to the left until all 3 are 0.
To better depict this backtracking path, a new matrix is shown below with
the values all changed to arrows to indicate the direction.

T =



− A C A C A C T A
− 0 0 0 0 0 0 0 0 0
A 0 ↖ ← ↖ ← ↖ ← ← ↖
G 0 ↑ ↖ ↑ ↖ ↑ ↖ ↖ ↑
C 0 ↑ ↖ ← ↖ ← ↖ ← ←
A 0 ↖ ↑ ↖ ← ↖ ← ← ↖
C 0 ↑ ↖ ↑ ↖ ← ↖ ← ←
A 0 ↖ ↑ ↖ ↑ ↖ ← ← ↖
C 0 ↑ ↖ ↑ ↖ ↑ ↖ ← ←
A 0 ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↖


.

The backtracking results in the following alignment:

Database sequence: A - C A C A C T A
Query sequence: A G C A C A C - A

Gotohs modification of SW

As stated in section 2.3.2, Gotohs[4] modifications consisted of changing
the way gap penalties were calculated in SW. The new function set is
presented in figure 2.5
By adding E and F matrices of the same size as H, keeping track of the score
for the corresponding cells in H as if a gap in the query or database were
found instead. Q represents a gap opening and a single extension, while
R is the gap extension penalty by itself. s is the same here as in the Smith-
Waterman algorithm, see 2.4 and score always keep track of the value in
the highest scoring cell.
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Figure 2.5: Gotohs improved Smith-Waterman algorithm

Hi,j =



max


Hi−1,j−1 + SM[qi, dj]

Ei,j
Fi,j
0

∣∣∣∣∣∣∣∣
i > 0
∩

j > 0

0

∣∣∣∣∣∣
i = 0
∪

j = 0

Ei,j =

 max
{

Hi,j−1 −Q
Ei,j−1 − R

∣∣∣∣ j > 0

0 |j = 0

Fi,j =

 max
{

Hi−1,j −Q
Fi−1,j − R

∣∣∣∣ i > 0

0 |i = 0

score = max
1≤i≤m∩1≤j≤n

Hi,j

2.3.3 Parallelization

A widely used optimization technique is parallelization, a technique that
is based upon simultaneous execution of non dependant code. There are
several ways to achieve parallel performance; either by utilizing Single In-
struction Multiple Data (SIMD) vector operations, OpenMP and MPI, and
cluster computing, among others. A short summary on some of these tech-
niques are presented in the following subsections.
There are also specialized computer architectures that may be utilized to
gain an even higher level of parallelization, such as the Intel Xeon Phi
where several cores take advantages of a shared memory pool and L2
cache.

According to Amdahl’s law[1], see figure 2.6, the possible maximum speed
gain achievable by a program computing in parallel is highly limited by the
time needed to perform the sequential fractions of the program, and have
a ceiling of 1

B as demonstrated by the example below, when n goes towards
infinity.
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Amdahl’s law example

For a given program that is able to parallel compute 90% of its calculations,
1− B = .90, the maximum speed gained, according to Amdahl’s law, will
be:

S(n) = 1
.10+ .90

n

Calculating the runtime improvement of the program with varying
amounts of threads we get the following speed improvement factors:

S(n = 1) = 1
.10+ .90

1
= 1

.10+.90 = 1
1 = 1

S(n = 2) = 1
.10+ .90

2
= 1

.10+.45 = 1
.55 ≈ 1.81

S(n = 5) = 1
.10+ .90

5
= 1

.10+.18 = 1
.28 ≈ 3.57

S(n = 6) = 1
.10+ .90

6
= 1

.10+.15 = 1
.25 = 4

S(n→ ∞) = 1
.10+ .90

n→∞
= 1

.10+0 = 1
.1 = 10

According to the calculations above we can see that a program that executes
90% of its calculations in parallel, regardless of threads, will never achieve
a greater speed increase than 10 times single thread execution. More
importantly however, the speed gain is less and less effective for each
thread added as seen when comparing going from 1 to 2 threads as
opposed to 5 to 6 threads.

Thread achieved parallelization

Thread level parallelization achieved by executing parts, or the entirety, of
the calculations simultaneously in multiple threads as depicted in figure
2.7. Libraries like OpenMP and MPI allows a programmer to chose how
and what parts of the code that should be executed in parallel. OpenMP
spawns new threads, from the initial program process during runtime,
running parts of the calculations before merging back into one thread
again. This may occur as many times as the programmer wants during
the execution as dictated by compiler directives given to the compiler.
The amount of threads used in each parallelized section of the code may
either be hardcoded before compilation, set by environmental flags or a
combination of the two. OpenMP, On other hand, works in a slightly
different way by spawning multiple threads from the beginning running
a single program process each. Providing a shared memory to all of its
process threads. When utilizing threads its important to consider thread
synchronization to avoid race conditions and unpredicted results.

Vectorization

Vectorization, another method of doing several calculations at once, is to
utilize vector operations by bundling multiple, equal, calculations together
and performing them as one. There are mainly two ways for a programmer
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Figure 2.6: Amdahl’s Law
Given

n ∈N the number of threads

B ∈ [0, 1]
the fraction of the algorithm
that is strictly serial

The time T (n) an algorithm takes to finish when executed with n
thread(s) corresponds to:

T(n) = T(1)
(

B +
1
n
(1− B)

)
Therefore, the theoretical speedup S(n) of executing a given algorithm
on a system capable of executing n threads is:

S(n) =
T (1)
T (n)

=
T (1)

T (1)
(

B + 1
n (1− B)

) =
1

B + 1
n (1− B)

Figure 2.7: Single vs multiple threaded execution

to facilitate vector operations; intrinsics and assembly programing. In C,
assembly programing may either be small parts of assembly code snippets
embedded in to the C source code, inline assembly, or writing the assembly
code in a different area and then making said code available as an external
feature. All though, possible to implement as assembly, it is advisable
to utilize provided intrinsics which makes the programmers job much
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simpler. An interactive intrinsic list, provided by Intel, can be found
here: https://software.intel.com/sites/landingpage/IntrinsicsGuide/ Almost all
of the intrinsics take some sort of vector as both input and output. A vector
example is depicted in figure 2.8.

Figure 2.8: Vectorized calculations

Multiple processing units

Without going to much into depth, by using multiple processing units
inside a single computer or several computers clustered together a program
may divide its workload onto different processing units and thusly perform
several operations at the same time. It is noteworthy to mention that an
overhead in runtime needs to be taken into consideration, addressing the
additional time required to transfer the data from one processing unit to
another.

2.4 Tools and Algorithms

There are several methods of aligning DNA sequences on the market today
but, as stated previously, non are utilizing the Xeon Phi co-processor to do
so. This thesis will focus on one particular approach that will be described
as follows together with some of the existing tools and methods already on
the market.

2.4.1 BWT

Burrow-Wheeler Transformation[3] is based on a transformation Wheeler
discovered, but never published, 11 years prior to the publication of
BWT in 1994. It is simple in design and transform a string into a much
more compress-able format. Regular compression techniques work by
calculating multiple occurring patterns and then encoding those patterns
more compactly. What BWT does is that it rearranges a string into patterns
of similar characters. This rearrangement of the string provide a much
better starting point for a compression but most importantly is that it does
not require an additional "codex" to translate the string back into its original
arrangement. First of all it creates a table of all of the possible ways of
writing the string by bit shifting one space and appending the character
the "fell off" on the opposite side of the string. Both the start of and end of
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character should be included. After the table has been created, its sorted
alphabetically. The return string after BWT consist of the last character of
each sorted entry in the table. An example can bee seen in table 2.4 where
the input sequence is |ANATTACGATCAT$ and the resulting BWT string
is T|GNCTACATAAA$T. The example uses | and $ to indicate sequence
begining and end respectively[16].

input rotation table sorted table output
| |ANATTACGATCAT$ ACGATCAT$|ANATT T
A ANATTACGATCAT$| ANATTACGATCAT$| |
N NATTACGATCAT$|A ATCAT$|ANATTACG G
A ATTACGATCAT$|AN ATTACGATCAT$|AN N
T TTACGATCAT$|ANA AT$|ANATTACGATC C
T TACGATCAT$|ANAT CAT$|ANATTACGAT T
A ACGATCAT$|ANATT CGATCAT$|ANATTA A
C CGATCAT$|ANATTA GATCAT$|ANATTAC C
G GATCAT$|ANATTAC NATTACGATCAT$|A A
A ATCAT$|ANATTACG TACGATCAT$|ANAT T
T TCAT$|ANATTACGA TCAT$|ANATTACGA A
C CAT$|ANATTACGAT TTACGATCAT$|ANA A
A AT$|ANATTACGATC T$|ANATTACGATCA A
T T$|ANATTACGATCA |ANATTACGATCAT$ $
$ $|ANATTACGATCAT $|ANATTACGATCAT T

Table 2.4: Burrow-Wheeler Transformation matrix.

2.4.2 FM index

Full-text index in minute space is a variation of BWT and utilizes the fact
that the sorted table from BWT can be thought of as a suffix table for all
the suffixes of the string. The first column of the sorted table is also similar
to suffix arrays and this relation is the main drive force behind the FM
index.[18] This relation is ideal when trying to find out whether a string is
a substring of another. Each first character in a string in the sorted table,
and rotation table for that matter, is preceded by the last char in the same
string if we consider the input string as a ring buffer. In addition, the
characters are strictly unique in the sense that each character retains its
original position in the input string.

The link between characters

Considering the sorted table in table 2.4 and specifically the 4 strings start-
ing with T. From the sorted table we can tell that there are 3 separate sub-
strings in the input string that contains AT and one that contains separate
substrings in the input string that contains AT and one that contains TT.
More precisely the location of these preceding characters in the first row of
the table is given by traversing the last row and counting occurrences of
the character in question. For instance, if we are searching for a substring
containing AT we know there are three of them and they refer to the 3rd.
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4th. and 5th row starting with an A.

When searching for a specific substring one only need to look at on char in
the query sequence at a time starting from the back of the query sequence
and working our way to the front. If one is able to follow this simple search
pattern all the way to the beginning, FM index guarantees that the query
is a substring of the indexed string. An example of this search process is
described below.

Searching for a CAT

By taking the first and last column from the sorted table in table 2.4 the
smaller FM index table is constructed as illustrated below:

A T
A |
A G
A N
A C
C T
C A
G C
N A
T T
T A
T A
T A
| $
$ T

When searching a FM index there are two actions that are done; the initial
location of the last char in the query sequence and the iterative steps fol-
lowing to locate the preceding character in the query sequence.

In this example, the query sequence CAT are to be found and the first
action is thusly to locate all strings beginning with the letter T. Due to the
alphabetical sorting done to create the sorted table this is the easiest task to
perform:
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A T
A |
A G
A N
A C
C T
C A
G C
N A
T T
T A
T A
T A
| $
$ T

The two next steps are to find A and C in the last column sequentially and if
found the coresponding location in the first column. As mentioned above,
a T may be precedded by three different A’s, the 3rd. 4th. and 5th A in the
first column:

A T
A |
A G
A N
A C
C T
C A
G C
N A
T T
T A
T A
T A
| $
$ T

And finally we check whether any of these three A’s are being preceded by
a C, which it is. Out of the three possible AT substrings, only one of which
are preceded by a C and that C is also the first of the two C’s located in the
first column.
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A T
A |
A G
A N
A C
C T
C A
G C
N A
T T
T A
T A
T A
| $
$ T

After completing the query, it is guaranteed that it is in fact a substring, but
the location of this substring is still up for grabs. There is, however, a simple
solution in order to locate the exact location of the substring after it has been
confirmed in the original string used to create the BWT table: Continuing
to move one character forward in the table, by locating the character in the
last column in the first column until character is the end of string character.
As CAT is located at the end of the original input sequence the example
ends here, but the location would have been simple enough to locate.

2.4.3 BWA

Considered MAQ version 2, BWA[11] that was created by Heng Li and
Richard Durbin have traded the hash-based index of MAQ into and index
based on the Burrow-Wheeler Transformation. Hash-based aligning were
previously the only way to align longer reads, >200 bp, but the combined
Smith-Waterman and Burrow Wheeler (BWA-SW) aligner utilized in BWA
out-performs hash-based software such as BLAT and SSAHA2, while
maintaining a small memory footprint, approximately 2.39 GB[9], in
addition to being several times faster then them both. This trade lets BWA
perform searches at a higher speed than its preceding MAQ while keeping
the way of reporting "a meaningful quality score for the mapping that can be
used to discard mappings that are not well supported due to e.g. a high number of
mismatches".

2.4.4 SOAPv2

SOAPv2[12], created by Li et. al., is an alignment algorithm specifically
designed for detecting and genotyping single nucleotide polymorphisms.
Just like BWA, SOAPv2 traded the hash-based index used by SOAPv1
for one created by the BWT and then building a hash table to accelerate
searching those indexes even more. Designed for finding and genotyping
single nucleotide polymorphisms (SNP), SOAPv2 were able to cut down
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its memory usage to almost a third of SOAPv1, 14.7GB to 5.4GB, while
boosting the mapping speed by 20 to 30 times as high. Compatible
with paired and single end reads, SOAPv2 also supports several text and
compressed file formats and there have also been developed a builder
to assemble and detect SNP from mapping of short reads to a reference
genome.

2.4.5 BOWTIE

Bowtie[10], developed by Langmead et. al., claims to be "an ultrafast,
memory-efficient alignment program" if you want to map relatively short
reads to a genome, able to align more than 25 million reads every CPU
hour when mapping to the human genome. It utilized an index cre-
ated by the Burrow-Wheeler Transformation, improving previous methods
with a novel quality aware backtracking algorithm. While permitting mis-
matches, it does not allow gapped alignment of unpaired reads. Bowtie
can also boast a small memory footprint of only 1.3 GB and is highly con-
figurable to combat the default trade-off of compromising the quality of
the read mapping when it can’t find exact matches to improve both mem-
ory usage and speed. Configuration of Bowtie is a double edged sword,
every configuration to improve something may result in a decrease in an-
other aspect, e.g. when configured for maximum speed it is not certain that
it will be able to align valid mappings. When it comes to performance on
multiple cores, claiming to scale well, it is able to use several cores to in-
crease the overall speed of the alignment process. Bowtie is open source
and available for download from http://bowtie.cbcb.umd.edu.

Due to the increasing demands in terms of throughput of sequence
aligners, FM indexing has become increasingly more popular to increase
speed and memory efficiency. However, this is not optimal to map longer
and gapped alignments. Bowtie, re-released as Bowtie2[9], combines "the
strengths of the full-text minute index with the flexibility and speed of hardware-
accelerated dynamic programming algorithms to achieve a combination of high
speed, sensitivity and accuracy." The new version have made a small sacrifice
of the memory footprint to gain the improvements, going from a footprint
of 1.3 GB to almost 2.5 times larger, 3.24. Bowtie is now more than 2.5 times
faster then BWA when both are executed on their default settings, and align
a greater amount of reads than either BWA or SOAP2. Bowtie 2 source code
is downloadable from

2.4.6 SWIPE

SWIPE[14], created by Torbjørn Rognes, is one of the fastest Smith-
Waterman algorithms that utilizes SIMD to parallelize local sequence
alignment. Rognes proved that SWIPE were twice as fast as the previous
ruling algorithm BLAST when using the BLOSUM50 scoring matrix and
since it is based in SW it can guarantee the optimal local alignment,
something BLAST could not. SWIPE widens the potential of SW searches
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and proves that SIMD parallelization could be beneficial when opting for
improved performance in optimal local alignment applications.
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Part II

Implementation

29





Chapter 3

Startup

3.1 Initial setbacks

This thesis aimed to determine whether a Xeon Phi could be utilized
as a contender for the more traditional GPU. Originally, hardware were
supposed to be supplied, set up and ready to go, before the thesis work
began. Due to unforeseen events and inconvenience this were not the case
and making the Xeon Phi work from scratch, short of actually assembling
the pieces, became an major part of the early thesis work.

3.1.1 Hardware cooperation

The Xeon Phi were firstly tried to get working alongside a different
processor than the Xeon CPU, but when the co-processor refused to
even communicate with it, a decision were made to follow Intels’ own
recommendations on everything regarding cabinet, processor and cooling
system.

3.1.2 Software acquisition

The computer containing the Xeon Phi were not utilized by this thesis alone
and during the initial phase of the thesis work required by a non Xeon Phi
project preferring the CentOS operating system.
Initially, attempts to get the communication going between host CPU and
the Xeon Phi were performed. Resulting in some rather ugly hacks and an
unstable environment leading to a decision on changing operating system
to another more cooperative towards the Xeon Phi. For this thesis, and
another running in parallel also utilizing the Xeon Phi, a Linux distribution
were still preferable over Windows and thusly Ubuntu were chosen.
There are two main requirements, besides the code itself, to get a program
to execute on the co-processor; Intels Manycore Platform Software Stack
(MPSS) for the co-processor itself to work, and a compiler that compiles
the code for Many Integrated Core architecture (MIC). After the previous
hardware problems, emails were sent and phone calls made to Intel
in order to acquire software and licenses before the long and tedious
installation process begun.
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3.1.3 Achieving communication

At this time in the process, a choice of parallelisation had yet to be
made and were a stand off between Open Multi-Processing (OpenMP)
and Message Passing Interface (MPI). By trying to execute some of the
included test programs we found out that both the OpenMP and MPI
libraries needed to execute such programs were only provided but not
included in the build/installation process. The task of transferring the
required libraries into the co-processor, however simple as it may sound,
revealed another problem area. Firs of all, root access to the Xeon Phi were
needed, in order to copy the libraries to the correct location, and not easily
obtained. Several attempts were made to remedy this including an attempt
to set the PATH variable. It turns out that during runtime, the co-processor
only searches roots /lib64 folder. The other issue at this point were MPI
support as the initial student license received from Intel only supported
OpenMP.
The final solutions became another phone call to Intel for a new license,
and mirroring the users and passwords from host operating system into
the local Linux kernel on the Xeon Phi.
Finally all problems seemed to have been solved and the test programs
executed perfectly. The thesis could move on to what it were initially
intended for, creating an application that mapped multiple input queries
to a reference genome, starting off with the Prototype.
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Chapter 4

Working with the human
genome

4.1 Implementation

The source code developed in this thesis can be viewed in full from the bit-
bucket repository located at the following address: https://bitbucket.org/reidarbrenna/master/src

As there are two main parts to the alignment suit presented by this thesis,
the genome preparation and the alignment itself, there are two chapters
detailing implementation process as well. When the implementation
process first began, after the decision of utilizing the FM index were
taken, the natural start were to begin with the FM index and then move
on to the alignment afterwards. Therefore, this chapter will explain the
process that starts in several FASTQ formated files, containing individual
chromosomes, going through the FM index before ending up in a thesis
created format called CRS. Chapter 5 will then continue on with the
implementation of the actual search procedure.
Since this thesis aimed to test whether the Xeon Phi were suited to
align sequences, the implementation were made with regards to certain
limitations.

4.1.1 Referencing the genome

Before the actual implementation, the thought process behind some of the
choices will be explained to better the understanding of the code that fol-
lows.

In order to work with something as large as the human genome, over
3GB long, there have to be some way of referencing the sheer quantity of
characters. Thusly, before the actual implementation, this thesi will first
explain the basic though process behind the chosen reference technique
before going into the implementation itself. In order to work and manage
something as large as the human genome, over 3GB long, there had to
be some way of referencing the sheer quantity of characters in a reliable
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and compressed manner. The next sections will start of by explaining
the journey from beginning to a solution before the implementation of the
indexer wrap up this chapter.

Thought behind the process

First of all, the choice on whether to just append the whole genome into one
string, or, as stated above, implement some sort of referencing technique.
The former implies that the program should execute Smith Waterman, a
local alignment algorithm, to align a relatively small query sequence of 200
chars to a more than 3 ∗ 10243 char long reference string in one go. On
the other hand, the later proposes to do some sort of pre calculation on
the genome to make it more manageable when trying to locate the query
sequence. The choice were simple, and it were decided that before running
any form of alignment on the genome, that it should be easier to reference
first. Full-text index in minute space (FM index) were chosen as the desired
method of referral. The choice of indexing the genome came with an added
benefit of one being needed to execute once for any given genome, as the
human genome does not change on a frequent basis. The name of the
indexing program became CRSbuild, named after its output file, described
further down in this chapter.

CRS - Modifications to the FM index

In order to create, and take advantage of, the FM index when searching
while still being able to search efficiently, some changes had to be made.
Achieving two things with the same change, the first step were to allow the
c++ compiler to sort the end of string character with a lower value than A,
thusly always placing that character in the top left position of the sorted
BWT table while removing the beginning of string character. This results
in one less line in our FM-Index table, a 2xM matrix created by the first and
last column in the sorted BWT table where M is the size of the genome + 2,
as well as reducing M by 1.
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F L
A T
A |
A G
A N
A C
C T
C A
G C
N A
T T
T A
T A
T A
| $
$ T

⇒

F L
$ T
A T
A $
A C
A G
A N
C T
C A
G C
N A
T A
T T
T A
T A

The next steps involved the relation between the two columns itself, the
characters in the last column refer to it’s counterpart in the first according
to how many of that given character precede the one in question in the last
column, i.e. the A in the last column on row 8 refer to the first A in the first
column as no A is above it in the last column while the A on the last row
refer to the fifth A in the first column as it has 4 above it. By replacing the
whole first row with an index table that tells the index range of the charac-
ters in the first row instead, the size were significantly reduced while still
retaining the search precision. i.e. by adding the count of similar characters
above the character in the last column to the corresponding index in the in-
dex table the resulting index is the row number where the character in the
last column resides in the first column.

$ T
A T
A $
A C
A G
A N
C T
C A
G C
N A
T A
T T
T A
T A

⇒

T
T
$
C
G
N
T
A
C
A
A
T
A
A

A C G N T
start idx 1 6 8 9 10
end idx 5 7 8 9 13

The third step in the FM index modifications were to create a table to hold
the cumulative occurrence count for each of the characters occurrence in
the remaining L column. The rank array, as it became called, is an 5 ∗ N
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matrix where N is the length of the original input sequence. The matrix
holds the character count from the beginning of L up to and including the
character in the corresponding row, e.g. for any given row in the matrix,
the content would be the total count of each character in L up to this point.

L
T
T
$
C
G
N
T
A
C
A
A
T
A
A

A C G N T
0 0 0 0 1
0 0 0 0 2
0 0 0 0 2
0 1 0 0 2
0 1 1 0 2
0 1 1 1 2
0 1 1 1 3
1 1 1 1 3
1 2 1 1 3
2 2 1 1 3
3 2 1 1 3
3 2 1 1 4
4 2 1 1 4
5 2 1 1 4

A C G N T
start idx 1 6 8 9 10
end idx 5 7 8 9 13

After implementing the search procedure, mentioned later in this chapter,
it became clear that in order to rule out possible matches that were illegal
due to cross chromosome match, the individual chromosome locations
needed to be stored. The resulting array contained the following; at index
0 the number of individual chromosomes appended together to create the
genome, and the rest of the entries giving the start index in the appended
genome where each chromosome begins. In addition, to ease the creation of
reference strings to send the Smith-Waterman implementation, the original
reference sequence needed to be kept as well as an additional row in the
rank array containing the original location of the character in the genome.
These two changes in addition to the rank array added several times the
genome length in bytes, and some changes had to be made. The solution
became to compress both the remaining L column as well as the genome.
As there is impossible to compress 5 letters down to only 2 bits, and 3 bits
does not allow for easy byte distribution, a choice to separate the N out into
its own bitmap and the remaining 4 letters down into 2 bits compression.

A = 0b00
C = 0b01
G = 0b10
T = 0b11

The rank array were also compressed to reduce the size of the data-
structure that the modified FM index turned into. This were done by only
keeping every 64th row of the rank array, a reduction that only affected
size and runtime, while keeping the search potential intact. Before the
rank array were created, all the previous characters in L would have to
be traversed in order to find the corresponding letter in F. After the size
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reduction, a maximum of 63 iterations upwards is required instead.
After all of these modifications, the resulting data-structure were named
Compressed Reference Sequence due to it’s content. Figure 4.1 shows the
content as a whole in addition to the equation for calculating the size.

Figure 4.1: Compressed Reference Sequence

The CRS struct
char * ref # Compressed A,C,G,T of genome
char * ref_bm # Bitmap of N locations in genome
char * L # Compressed A,C,G,T of FM index
char * L_bm # Bitmap of N locations in genome

unsigned int * location # Chromosome location array
unsigned int ** rank # Rank array
unsigned int ** idx # Index table

Size of struct:

N = Length of genome
M = Number of chromosomes

R = ceil((N + 1)/4) size of ref
Rb = ceil((N + 1)/8) size of ref_bm

L = ceil((N + 1)/4) size of L
Lb = ceil((N + 1)/8) size of L_bm

l = M ∗ sizeo f (unsigned int) size of location
r = (6 ∗ (N + 1))/64 size of rank array
i = 10 ∗ sizeo f (unsigned int) size of Index table

Hardware limitation

The Xeon Phi used throughout most of this thesis were the Intel Xeon Phi
3120, and as such only supported 6 GB of memory. This were one of the
most limiting factors that came into play during the implementation phase
of this thesis. The choice to only keep every 64th line of the rank table
as well as the one to compress the reference and L column down to 3
bits per character were made due to this memory limitation in order to
have enough memory left for calculations. The relatively small cache size
that also accompany the 3120 series were a poor match to the FM index
search method as this method require a lot of jumping through the CRS,
and thusly resulting in more page misses than strictly necessary.
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Handling the alphabet

The alphabet of a DNA consist of the aforementioned A, C, G and T. After
bit compression they got the binary value of 0, 1, 2 and 3 respectively
and in order to ease the search process the rank array and index table
got reshuffled, N were moved to the back so the value of the compressed
letter would function as an index in those arrays. As the sequencers are
not perfect and does not always know which character to place at all times
they use other characters, such as N, to indicate this uncertainty. To keep
the memory footprint of the CRS down, all such characters are handled
like they were N and thusly unknown. As the N got its own bitmap to
keep track of its location throughout the CRS, they would also be encoded
as A in the regular compressed string, as A is equal to 0b00. This allows the
search for N to only happen when an A is encountered instead of every time
a character are to be determined. Assuming an equal equilibrium among
the 4 primary characters and an insignificant amount of N, the extra search
would only be required every 4th lookup.

4.1.2 From FASTQ to CRS

The prototype created to transform all of the chromosome inputs into a
whole genome and then compressing consist of a series of linear computa-
tions and read operations.
Firstly all of the different FASTQ files are read into one single string, ap-
pended one after another and the index of each of starting points are
recorded in the location array. To speed things up, the FASTQ input files
are assumed to come the order; chromosome 1-22, MT, X, Y and then uncer-
tain sequences. This order is hard-coded into the program and the program
treats the input as if it were given in this order.
After creation the genome string a sorting algorithm that consist of an par-
allelized for loop, that executes the c function qsort to sort the genome by
comparing all suffix strings with every other suffix string and then merg-
ing the thread results into a single array before creating the L column. This
method can be seen in figure 4.2 After the CRS structure have been filled it
is written to a file along with the size of the struct so that the search pro-
gram may easily read the whole CRS structure into memory in one go and
thusly removing the need for indexing to be executed every time before
aligning.

Modification options

The character compression is hard-coded into the software and would
require some major changes to the source code in order to change, although
not impossible it is not advisable at this stage. However, the rank array
compression, is easily changed by changing the defined value rov in
common.h. This value dictates the interval for which lines that should be
included, and setting the value to 1 would result in keeping the full array.
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Figure 4.2: Creating the L column

create L column:
#pragma omp parallel for

for (i = 0; i < len; i++)
Create index table to not destroy original sequence

#pragma omp parallel for
for (i = 0; i < threads; i++) {

each thread sorts sections of the original sequence
until all individual sequences are sorted.

}

merge_multiple() to sort the sorted lists together.

#pragma omp parallel for
for (i = 0; i < len; i++) {

fill L column by following the sorted index table.
}

}

merge multiple:
while(threads used > 1)

#pragma omp parallel for
for(i = 0; i < N; i += 2) {

merge()
}
half number of threads

}
}

merge:
while (i & j < size) {

if (first input <= second input)
take from first;

else
take from second;

}
if (i != j)

take the rest of the non empty input.

Due to the scope of this thesis, and the fact that this should only be executed
once in order to build the CRS file, this program remained in its prototype
stage as explained above.
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Chapter 5

Searching for a needle

This chapter explains the other half of the program duo mention in the be-
gining of the previous chapter, the alignment process.

5.1 Aligning the query

The process of aligning a DNA sequence to a genome is somewhat tedious,
as most of the steps required are strictly linear, all depending on previously
made computations. Thusly, both vectorization and parallelization were
kept in mind together with cache limitations when the prototype were
created.

5.1.1 Searching for the best location

The first thing that were established were the general flow of the program,
in order to analyze the potential for parallelization. As seen from figure ??,
there are 3 main parts to the program, finding potential matches, aligning
them with the Smith-Waterman algorithm, and then providing output in
the form of a SAM file.
The alignment program created in this thesis had to utilize the Xeon Phi

to the fullest and in order to do so, a new program flow were thought
to provide the most balanced outcome while still also easily amended if
the balance are found to be skewed. An initial threading, splitting the
program in two, allows both reading and process two queries at the same
time. After the first search procedure is complete, one thread will read and
process the next query, if any, and the other will calculate Smith-Waterman
to determine the best location before writing the results to an output file.
Additionally, if the initial search to find possible matches results in a perfect
match, there will be no need to calculate SW and thusly skipping ahead
directly to the output section.
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Figure 5.1: General program flow

Finding possible match locations

The first step when processing the query is to compress the query in the
same manner as the L column as well as creating a compressed version
of the reverse-complimented query as well. The reverse-compliment is
created to combat the fact that a DNA string itself is originally paired
with its reverse complimented. An example; the reverse-compliment of
CANTGAT by following the conversion table, see table 5.1, is ATCANTG.
The process involves starting at the back of the query and taking the
complimented and placing it first, and so on until the whole original
query have been changed. After creating the two compressed query

A C G T N
T G C A N

Table 5.1: Reverse-Compliment table
Conversion from top to bottom.

strings, both are processed in turn by beginning at the end of the string
and matching sequential characters forward in the CRS by following the
formula, presented in figure 5.2, until no match is possible or the end of
the query have been reached. The resulting (sub)string is stored in a list
sorted by match length and if there are any characters left in the query, the
process starts anew from the location where it left of. If an N or the end of
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line character is encountered, an automatic mismatch occur.

Figure 5.2: FM index - search equation
search range given by:

(tmp_)St = start index
(tmp_)Ed = end index

length = how many characters matched

for (each char in query, reversed order)
if (char == N || end_of_string)

if (length > 0)
store_found(St, Ed, length)

if (first)
St = index_table[char][0]
Ed = index_table[char][1]

else
tmp_St = index_table[char][0] + rank_table[char][St-1]
tmp_Ed = index_table[char][0] + rank_table[char][Ed] - 1

if (tmp_St > tmp_Ed)
\\missmatch found
if (length > 0)

store_found(St, Ed, length)
make sure for loop starts again at current char.
length = 0

else
St = tmp_St
Ed = tmp_Ed
length++

After for loop compleation
if (length > 0)

store_found(St, Ed, length)

When storing only the 1600 best matches are kept for further processing,
and if a match is found to be crossing over from one chromosome to another
the match is dropped altogether.

Speed vs. Accuracy

When calculating the possible matches for the two queries, a choice had
to be made on how through the matching process should be. One could
start a new match sequence for each character in the query, resulting in a
small possible increase in accuracy while suffering speed loss and several
almost equal matches. Another option were to thread the search procedure,
starting going through the FM-index on an individual basis. After the
initial step of setting St and Ed when length is 0 from figure 5.2, spawning a
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thread that would utilize the search procedure explained in section 2.4.2 for
each possible start location, and then spawn a new thread for each possible
forked road encountered. This were quickly discarded as, if assumed
equal distribution of A, C, G and T, a potential of 750000 threads could
be spawned from the initial thread spawn alone.

5.1.2 Calculating Smith-Waterman

Even though Smith-Waterman is a strictly serial calculation equation, by
utilizing the vector unit on the Xeon Phi, 16 simultaneously calculations
were achieved, where the calculations occur on a column basis of the
Smith-Waterman matrix. This were inspired from the Rognes’ SWIPE[14]
implementation and it also portrayed a way of only keeping two columns
in memory at the same time. As the 1600 best matches were kept, the
whole Smith-Waterman calculation could also be calculated in parallel,
spawning 100 threads to calculate the match score of 16 possible locations
each, all at the same time. The slightly modified SWIPE Smith-Waterman
implementation can be seen in figure 5.3. The function requires several
input to function properly;

• A pointer to the memory area (HE) for storing two columns worth of
data to keep track of the calculated values and the cumulative row
gap penalties of the SW calculation matrix.

• A pointer to the memory area (sp) that holds information on whether
the reference match is from the regular or the reverse-complimented
query. This memory area should also holds the results after
calculation.

• A char array (q) holding the query bundle, as explained by figure ??.

• The length of the query itself (q_len).

• An indication as to how many different reference positions it should
match the query to (multiple), ranging from 1 to 16 depending on
native vs host execution and or uneven results from the previous step
to find possible locations.

• An index (si) to let the function know where in sp the current
execution should located and then store information to/from.

• A pointer to the memory area that holds the uncompressed reference
sequences it should match the query against.

The last input parameter were not required in the first version of the func-
tion as it then read the references from the compressed reference in the CRS
from locations found in sp. The choice to change the algorithm were made
to combat the poor cache capabilities of the Xeon Phi and will be explained
later in section 5.1.3.

There are also several local variables created for each instance of the
function;
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• int i and j to loop through the columns and rows of the SW calculation
matrix, respectively.

• int t to iterate through the different reference sequences when
acquiring the cell score.

• and unsigned int r_len to hold the length of the reference sequences to
match against. This length is the same as the length of the query with
an extra few characters added before and after the match to allow for
some adjustment to the initial partial match found.

• vector variables S and SM to hold the highest score found for
each reference as well as the score for the currently calculated cell,
respectively.

• the H vector variable, initially holds the diagonally cell value before
moving on to become the current cell after added with the scores
(SM).

• lastly, the vector variables E, F and N each hold the values of
the cell to the left, cells above and the cells diagonally up to the
left, respectively. The E and F variable holds the same purpose as
described in Gotohs improved SW algorithm, section 2.3.2, seen in
figure 2.5. The N variable help H to fulfill its role according to the
Gotohs improved SW algorithm by holding the value of the cell to
the left.

First thing that the function does is to make sure that both the HE array
and the max score found is set to 0 as this is the initial values of all SW
calculations. It then proceeds to the double for loop to do the actual
calculations. Before staring to calculate a new column, both H and F are set
to zero to fulfill initial values as if the calculations had been done utilizing
the whole matrix. Then before each cell calculation, N and E are updated
according to the HE array before storing the cell scores for each reference
match into the SM vector. The latter had to be done in a for loop as there
were no intrinsic support on the Xeon Phi to load a 512 vector with 16
individual integers, before casting the results into the vector. The first set
of intrinsic calls are taken straight from the algorithm itself, first adding the
score to the diagonal cell value and then finding the highest value among
the result, E, F or 0 to store in H. If the new H values exceeds any of the
values in S, they replace those values in S to always have the highest cell
score stored in S. The final step performed when calculating a cell is to
prepare for the next cell by updating the E and F values before updating
the HE array. After all cells have been updated a simple for loop withdraws
the maximum scores for each reference sequence and stores them in their
respective slots in the storage area.

5.1.3 Repacking the reference genome

In order to decrease the amount of cache lines needed to be read in
the Smith-Waterman implementation, the possible locations used in one
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QNAME A maximum of 20 of the first character in the query ID given as input.
FLAG Only the reverse-complimented bit will be used.
RNAME Will contain the chromosome name of the alignment; 1-22, X, Y, MT or Non.
POS 1-based index of the leftmost mapped character.
MAPQ The default value of 255 will be used for this field.
CIGAR The CIGAR string contain the following characters: M, D, I and S.

They will be written in a compressed manner, such as MMM will be 3M.
RNEXT Default value * will be used.
PNEXT Default value of 0 will be used.
TLEN Default value of 0 will be used.
SEQ The sequence mapped to.
QUAL Default value of * will be used.
AS:i: The actual score returned by SW.

Table 5.2: Expected values in SAM output

run of the algorithm were repacked into a single string. The initial
implementation relied on the whole reference string and indexes to retrieve
the information stored within. This resulted in a new cache line being
read almost every time, up to 16 times per round in the inner loop of
the implementation, as the sections in the reference string being mapped
are most likely positioned in different locations. The new implementation
were to withdraw the information before the calculation and then merging
those into a single char array that the algorithm could use instead. The
merging happens one section at a time to prevent all of the cache line reads
to move outside instead of being removed. Each character in the section
to be merged, are placed at an equal interval in the new string where the
starting location increases once for each section added. An example of
this merge can be seen in figure 5.4, and resulted in far less cache lines
being read as all the data for the reference sequences were now aligned in
memory with the correct order.

5.1.4 Providing output

For each query provided, only the best match found will be written to the
SAM file. The SAM file output for each query, provided by this program,
will only contain the mandatory 11 fields as well as a 12th field to provide
the aligners own alignment score. The filed data presented in table 5.2, are
meant to illustrate what data to expect from the aligner.
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Figure 5.3: Modified Smith-Waterman implementation
void sw_simd(...) {

int score_results[16];
unsigned int i, j, t;
unsigned int r_len = q_len + (2*SW_REF_PADDING);

__mxxxi H, E, F, N, SM, S;

S = *(__mxxxi *)ZERO;

for (i = 0; i < r_len; i++) {
H = *(__mxxxi*)ZERO;
F = *(__mxxxi*)ZERO;

for (j = 0; j < q_len; j++) {
N = HE[j*2 + 0];
E = HE[j*2 + 1];

for (t = 0; t < multiple; t++)
fill score_results with matching scores.

SM = *(__mxxxi*)score_results;

H = _simd_add_epi32(H,SM);
H = _simd_max_epi32(H,F);
H = _simd_max_epi32(H,E);
H = _simd_max_epi32(H,*(__mxxxi*)ZERO);
S = _simd_max_epi32(H,S);

HE[j*2 + 0] = H;

E = _simd_sub_epi32(E,*(__mxxxi*)GE);
F = _simd_sub_epi32(F,*(__mxxxi*)GE);
H = _simd_sub_epi32(H,*(__mxxxi*)GOE);
E = _simd_max_epi32(H,E);
F = _simd_max_epi32(H,F);

HE[j*2 + 1] = E;
H = N;

}
}

for (i = 0; i < multiple; i++) {
sp[si+i].score = ((int *)&S)[i];

}
}
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Figure 5.4: Reference merge repacking

An example showcasing the merging of four sequences
into a single string:

s1(GNAT) - G1,1 N1,2 A1,3 T1,4
s2(ACAT) - A2,1 C2,2 A2,3 T2,4
s3(CANT) - C3,1 A3,2 N3,3 T3,4
s4(AGAT) - A4,1 G4,2 A4,3 T4,4

⇓
G1,1 A2,1 C3,1 A4,1 N1,2 C2,2 A3,2 G4,2 A1,3 A2,3 N3,3 A4,3 T1,4 T2,4 T3,4 T4,4

Where the lower case numbers symbolizes originating string and
index within that string, respectively.
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Chapter 6

Tuning the application

There are a few options available to tune the alignment program, and will
be explained in this chapter.

6.1 Runtime tuning

There are several command line parameters available when executing
DNAlign, the alignment program as seen in table 6.1 In addition, there are

<ref> the compressed reference file (.crs) created by CRSBuild
one reference file only

[query] [0− N] query files
All parameters given after <ref> are assumed to be
query files that follows the FASTQ format

flags: (provided before <ref> if any)
-h Prints the help menu and terminates the execution
-p Prints the content of the .crs file to debug.out

- not recommended
-n <int> Number of threads to use

- Default value: 1
-m <int> Number of matches to write to SAM file

- Default value: 1
-l <int> Minimum length of partial match to keep

- Default value: 20
- Higher value results in longer matches
- Lower value results in shorter matches

Table 6.1: DNAlign command line overview

also possible to change the accepted query length which is set to 200 that
requires recompilation to function. There are also provided a Makefile that
have two main features; make all and make phi, which builds the program
to execute on a Xeon Processor or the Xeon Phi processor respectively.
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6.2 Memory usage

As the available memory is quite limited on a Xeon Phi, a higher query
length than 200 is not advisable on the low end Xeon Phi co-processor, and
the program have not been tested on such. The program aim to utilize all
available memory when executed with 200+ threads.

6.3 Threading

The thread option available to the user as a command line argument is the
total thread count used by the program. Thusly, if more than one thread
is given, one of these will be taken by the main program to run two query
processing processes simultaneously.

6.4 Vectorization

Vectorization is automatically changed to match the vector capabilities of
a Xeon processor or the Xeon Phi co-processors when built. As these two
hardware units does not share any vector intrinsics, the Xeon processor is
thusly only capable of performing 4 Smith-Waterman calculations at the
same time while the co-processor handles 16 simultaneously.
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Part III

Conclusion
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Chapter 7

Results

7.1 Test conditions

As there are no other program that aligns DNA sequences to a reference
genome developed for a Xeon Phi, the testing and comparison were done
on a Xeon processor and the co-processor to gage the effectiveness of the
Xeon Phi implementation. Due to the fact that a lot of time went into get-
ting the Xeon Phi to function properly in the first half of this thesis, and the
results yielded, accuracy have not been compared to other programs that
does not utilizes the Xeon Phi. The tests were performed 10 times each to
properly calculate a mean time for comparison.

Note: Due to unforeseen events and hardware malfunction in the testing
phase, the tests were only performed with a single thread and two queries
against 5 relatively small chromosomes instead of the whole genome to
save time.

7.2 Testing

Native

These are the following test times achieved on the Xeon phi when aligning 5

almost perfect matches to chromosome 15.
5.951 0.842 0.769 0.746 0.772
0.778 0.734 0.731 0.742 0.727

Host

These are the following test times achieved on the Xeon phi when aligning 5

almost perfect matches to chromosome 15.
0.155 0.141 0.121 0.168 0.200
0.170 0.121 0.207 0.124 0.141

7.2.1 Comparison

Even though with relative small test samples it is quite clear that the host
execution were significantly faster than the native execution.
Even though the Xeon Phi executes the Smith-Waterman calculation 4 times
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less than the Xeon processor it is about 5 times slower than the Xeon in
runtime. As the thesis discovered that every time a series of calculations
were performed on the Xeon Phi, the first time were always much higher
than the rest, the following stats have been calculated when disregarding
the highest and lowest runtime of both hardwares.
The mean execution time for the Xeon Phi co-processor were 0.7655 seconds
while the mean time for execution on a Xeon processor were only 0.1525
seconds. Thusly, it becomes clear that without any threads the Xeon Phi is
the tortoise to the Xeon Hare.
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Chapter 8

Future work

There are several things that this thesis did not get a chance to test properly
and this chapter is dedicated to things that could be done in the future.

8.1 Hardware

Intel have stated that they are releasing a newer version of the Xeon Phi
with more internal memory and cache as well as support for smaller unit
sizes in the vector unit. However, the first iterations of the new Xeon
Phi will not have the opportunity to communicate with the host CPU and
thusly and offloading implementation on the new hardware will have to
wait on the next release after the that. The hardware does however propose
the opportunity to test this program again with more memory and less
compression to remove several steps in the process when searching CRS
structure.

8.2 Application improvements

This thesis did not get the opportunity to test an Offloading approach
on the implementation, and that could be a viable solution to take the
advantage of the host processor for the tedious linear work and only
offload the Smith-Waterman calculations to the co-processor. This could
provide beneficial as long as the overhead associated with the offload does
not take to much time.
The general idea behind the offload approach is to allocate the memory
space needed on the co-processor in the very beginning of the execution
and keeping the memory allocated until program termination. The general
Flow of the program would then be that one or more threads on the
host CPU read input, found possible matches and created the repacked
reference sequence before shipping it and the query to the co-processor to
calculate the Smith-Waterman scores. After the scores had been calculated,
they would be returned to the host processor that writes the findings to the
SAM output file.
Regarding thread synchronization, the initial thought would be to only
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allow one of the host CPU threads to write to the file at the time by
wrapping that part in a critical section. This would also have to be done
when reading the query, to prevent multiple threads to ruin queries for
each other. Based on the total thread, cache and memory availability on the
co-processor, only two offloads to the co-processor at the same time would
be optimal. This could of course be proven wrong by an implementation
and proper testing.
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Chapter 9

Final verdict

As the co-processor is today, the low end at least, this thesis have found
it to be less than preferable when aligning DNA sequences to a reference
genome in Native mode. With more testing and perhaps some fine tuning
and an offload approach to the implementation it could have proven better
than the native execution and perhaps also better than some of the other
tools on the market today. Although the latter is less likely.
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