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Abstract

Methods are provided for regression parameter and cumulative baseline hazard es-
timation in the Cox model when the cohort is sampled according to a predictable
sampling probability law. It is shown how a marked point process representation of
cohort sampling naturally leads to the derivation of a partial likelihood which may be
used for the estimation of regression parameters. Standard counting process techniques
are used to show that this partial likelihood may be treated as a likelihood in that, at
the true parameter, the expectation of the score is sero and the variance of the score is
the expected information. Generalisations of the Breslow estimator of the cumulative
baseline hazard and estimators of the associated variance processes are provided. The
results are used to derive partial likelihoods for three new sampling designs, stratified
and quota sampling from the risk sets and nested case-control sampling with number
of controls dependent on the failure’s exposure status, as well as for simple nested case-

~ control and case-cohort sampling. Baseline hasard estimators are given for simple and
stratified nested case-control sampling. General asymptotic theory is developed for the
maximum partial likelihood estimator and cumulative baseline hazard estimator and
is used to derive the asymptotic distributions for estimators from simple and stratified
nested case-control sampling. Generalisations to stratified populations or multistate
problems and the Aalen linear regression model are given.

1 Introduction

Epidemiologic cohort studies are considered the most reliable method for assessing the
variation in rates of morbidity and mortality due to factors present in the population under
study. Cohort members are observed over some time period, and either “fail” (develop
or die from the disease of interest) or are “censored” (are alive at the end of the study
period, die of some other cause, or are lost to follow-up). Variation in rates are then
modeled from information on exposures, confounders, and other potential predictors of
risk, which are generically called “covariates,” collected on cohort members. If complete
covariate information is obtained for all cohort members, a wide range of parametric and
semi-parametric analytic techniques are available (e.g. Breslow and Day, 1987). Especially
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useful has been the semi-parametric proportional hazards model (Cox, 1972), where the
hazard rate for the ith subject is specified as

ai(t) = ao(t) exp(B5 Zi(t))- (11)

Here Z;(t) = (Zi1(t),---,Zip(t))7 is a vector of covariates for subject i at time ¢, B, is
a vector of regression parameters, and ag is the baseline hazard about which minimal as-
sumptions are made. The partial likelihood used for estimation of the regression parameters
does not depend ag and is given as

_ exp(87Z;;(t;)) }
“e "{.I{zm, B () )’ @2

where the t; are the ordered failure times, i; is the index of the failure at time ¢; and R;
is the set of all those “at risk” at ¢;, the failure and those on study. An estimator of the
cumulative baseline hazard, Ao(t) = fy ao(t)dt, was given by Breslow (1972) as

(1.3)

-, -~ 1
Ay(t;B) = ~
t,z:st Yier; exp(B' Zi(t;))

with 3 the maximum partial likelihood estimator obtained by maximizing (1.2). Andersen
and Gill (1982) showed that (1.2) has “basic likelihood properties,” i.e., that the expectation
of the score at the true value By of the regression parameters is zero and the variance
of the score at B, is the inverse information, and developed the asymptotic theory for
the estimators ﬁ and A;. These estimators provide a basis for inference about other
quantities or functions of interest such as survival probabilities and median survival times
(e.g. Andersen et al., 1983; Andersen et al., 1992, Section VII.2.3), and slight modifications
of these provide estimators for e.g. relative mortality (Andersen et al., 1985) or general
relative risk parameters (Prentice and Self, 1983). Further, though we have, and will
continue to use terminology which indicates that a subject may only fail once, these methods
apply, without modification, to outcomes which may recur and have been extended to
stratified populations and multistate models (Andersen and Borgan, 1985, Section 7).

Typically, because of the rarity of the disease outcome and/or the complexity of the
relationships to be explored, cohort studies require very large numbers of subjects and/or
long periods of follow up in order to accumulate enough failures to have sufficient statistical
power to give reliable answers to the questions of interest. This leads to something of a
paradox. If a cohort study is large enough to allow for a meaningful analysis, the cost
of collecting high quality covariate information on all subjects is prohibitively expensive,
if not logistically impossible. It would also seem unnecessary. Loosely, if the disease of
interest is rare, the contribution of the non-failures, in terms of the “power” of the study,
will be negligible compared to that of the failures. Thus cohort sampling methods which
include all the failures and a portion of the non-failures are highly desirable.

Perhaps surprisingly, there exist few cohort sampling options. The most popular of
these is the nested case-control design (Thomas, 1977) and this is of particular interest
in the context of this paper because, with the exception of a never used sampling-with-
replacement variant (Robins et al., 1986), it is the only cohort sampling method which is
analyzed using partial likelihood techniques. Thus, at this point, we will focus our atten-
tion on nested case-control sampling and return to other sampling methods suggested in
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the literature in Section 10. In the nested case-control design, sampled risk sets 'féj consist
of the “case” (failure) at t; and m — 1 “controls” randomly selected from those at risk at ¢;
(and, possibly meet some other matching criteria). Considering that time (on some scale)
matched population based case-control studies generally are nested case-control samples
from a large cohort usually loosely defined by geographic region, this design is indeed ubig-
uitous in epidemiologic research. The nested case-control partial likelihood has the same
form as that for the full cohort except that R ; replaces R; in (1.2) (Oakes, 1981) and, under
suitable conditions, may be treated like an ordinary likelihood (Goldstein and Langholz,
1992). The efficiency of this design relative to the full cohort for testing for an association
between a single covariate and disease is (m — 1)/m. Thus, there is little to be gained by
sampling more than 4 or 5 controls if detecting simple associations is the goal of the study.
However, it is becoming increasingly rare that the aims of epidemiologic studies are so
modest. Often of interest are the manner in which rates change with increasing exposure,
assessing the effect of exposure after adjustment for confounders, and the variation of the
effect of exposure as a function of potential “effect modifying” factors. In such situations,
indications are that the efficiency of nested case-control sampling can be much lower than
for the simple test of association (Breslow et al., 1983). As the questions considered grow
in complexity and the costs involved increase, it may prove very advantageous to tailor the
sampling design to take into account the goals of the study and/or “recognize” the costly
aspects of the study. In principle, the design should attain a specified level of (relative)
efficiency for the analysis goal(s) of interest at the lowest “cost.” This principle is purely
academic if statistical methods to analyze data collected using such designs do not exist.
While it is beyond the scope of this paper to go into these issues in detail, we note that
such considerations have resulted in development of new sampling designs for unmatched
case-control studies including stratified sampling (Fears and Brown, 1986; Scott and Wild,
1991), two-stage sampling (Breslow and Cain, 1988), and randomized recruitment (Wein-
berg and Wacholder, 1990).

In this paper, we develop methods for the analysis of a large class of cohort sampling
designs which parallel those available for full cohort data. Estimation of the regression
parameters for a given design is surprisingly simple; it is based on maximizing a partial
likelihood, defined precisely in Section 3, which is proportional to

exp(BT Zy; (t;))ws; (¢5)
Tier, (B Zi(t;))wit;) |’

where R; is the sampled risk set and the wj(t) are (simple) weight functions which de-
pend on the sampling method. (Henceforth, we will not make any distinction between the
partial likelihood and functions which are proportional to it.) Under conditions given in
Section 3, (1.4) is shown to have basic likelihood properties and, in Section 6, additional
conditions are given to ensure the consistency and asymptotic normality of the maximum
partial likelihood estimator B obtained by maximizing (1.4). Thus, analysis of sampled
data is particularly simple, standard conditional logistic regression software, used for the
analysis of matched case-control studies, accommodates (1.4) without modification. The
only additional requirement is that an “offset,” a term in the linear predictor for which no
regression parameter is estimated, of log wi(;) must be added to the model. This feature
is currently available in most packages designed for the analysis of epidemiologic studies.
Thusfar, case-cohort sampling is the only sampling method for which a cumulative
baseline hazard estimator has been provided (Self and Prentice, 1988). In Section 4, we
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give a natural extension of the full cohort baseline hazard estimator (1.3) for sampled
cohort data. In particular, in Section 5.2, we provide the estimator for nested case-control
sampling. This provides a basis for relatively straightforward sampled data estimators of
various quantities and functions which parallel those available for the full cohort.

The key to the development of these methods is to use a marked point process to
model simultaneously events happening in the cohort (like failures and censorings) and the
sampling of controls at each failure time. Heuristically speaking, a marked point process
{(¢;,2;); 3 > 1} is just an ordered sequence of time point #; < 3 < - - - where events occur
together with marks z,,2;,... which describe the events happening at these times. The
marks z; take values in a set E called the mark space. In the general theory of marked
point processes (e.g. Brémaud, 1981; Karr, 1986) the mark space may be very general. We
will, however, only consider marked point processes with a finite mark space. For the class
of sampling designs we shall consider, a mark of the form z; = (;, R;) will indicate that
the individual with index {; is failing at ¢; and that R; is the sampled risk set at that time.
Here ‘R consists of the case z, together with its sampled set of controls.

The outline of the paper is as follows. Section 2 gives the general marked point process
model for sampling of risk sets and the class of sampling schemes covered by this method-
ology. Counting and intensity processes, used in the partial likelihood construction, are
presented along with the associated martingale structure. In Section 3, we derive a par-
tial likelihood for cohort sampling and show that it has basic likelihood properties and, in
Section 4 derive an estimator for the underlying integrated baseline hazard for a restricted
class of sampling schemes. Along with the full cohort data and simple nested case-control
sampling, applications given in Section 5 include three new, and potentially quite useful,
sampling designs: stratified and quota sampling extensions of the simple nested case-control
design and nested case-control sampling with variable matching ratio. Case-cohort sam-
pling also belongs to this class and is given as an example where the maximum partial
likelihood estimator is clearly inefficient. Formal derivations of the large sample properties
of maximum partial likelihood and cumulative hazard estimators are given in Sections 6
and, in Section 7, we apply these results to some of the applications presented in Section 5.
Sections 8 and 9 are devoted to extending our methodology to generalizations of the simple
proportional hazards model (1.1). Specifically, Section 8 develops methods for multistate
models and stratified populations and Section 9 for the Aalen linear regression model. In
the final Section 10, we briefly discuss efficiency issues and the relationship of this paper
to earlier work on cohort sampling methods.

Throughout the paper we will, without further reference, use standard results from the
theory of multivariate counting processes, local square integrable martingales and stochastic
integrals as surveyed e.g. by Fleming and Harrington (1991, Chapters 1-2) and Andersen
et al. (1992, Sections I1.2-4). We will only consider marked point processes with a finite
mark space, so we do not, however, need results on marked point processes beyond those
surveyed by Arjas (1989, Sections 2 and 4) and Andersen et al. (1992, Sections II.4 and
I0.7).

2 A marked point process model for sampled cohort data
We fix throughout the paper a time interval [0, 7] for a given terminal time 7, 0 < 7 < c0.

First we specify a model for events observed in the cohort, without consideration of the
sampling of controls, along the lines of Andersen et al. (1992, Section III.5). Let the cohort




consist of n individuals, and assume that all events observed to happen, that is registered
failures as well as information on individuals entering or leaving the study population and
on observed changes in time dependent covariate values, may be modeled as a marked
point process {(t},z}); j > 1} on a probability space (Q, F, P). The filtration generated by
this marked point process, together with covariate values at t = 0, is denoted (H;)ecjo,r)-
This is an increasing, right-continuous family of sub-o-algebras of F, and 7, specifies the
“cohort history” up to time ¢ in the sense that it contains all events (up to null sets) whose
occurrence or not is fixed by time ¢. There is also a pre-t o-algebra H;_ which contains all
events whose occurrence or not is fixed strictly before time ¢.

From the marked point process {(t},z}); j > 1} we may extract a marked point process
{(¢;,3;); 7 > 1} which only records the innovative marks, i.e. the times ¢; when failures
occur and the individuals i; which fail at these time points. Of course the marked point
process {(t;,;); 7 > 1} is adapted to (H;). Associated with this marked point process we
have the counting processes

Ni(t) =Y I(t; < t,ij =) (2.1)

ix1

counting the number of observed failures for individual ¢ in [0,%], i = 1,2,...,n. We also
introduce Y;(t) for the predictable indicator process taking the value 1 if the ith individual
is at risk at t— and 0 otherwise.

A model for the cohort is now given by relating the intensity process A; for N; to the
vector Z;(t) of (possibly) time dependent covariates for the ith individual; i = 1,2,...,n.
(The model is only partially specified since we do not specify models for the censoring
mechanism and the covariate processes.) A fundamental assumption we make is that
the Z;(t) are left continuous and adapted; consequently they are predictable and locally
bounded. In particular, this means that the values of the covariates at time ¢t should be
known, based on available information on the cohort, just before time t. We will consider
a proportional hazards regression model, where the intensity processes are specified as

A(t) = Yi(t)ao(t) exp(Bg Zi(t)), (2.2)

with ag(t) a non-negative baseline intensity or hazard function and B, a p-dimensional
vector (Cox, 1972; Andersen and Gill, 1982). In fact, at the cost of somewhat more
complicated proofs in Section 6, our results may be extended to relative risk regression
models where exp(-) in (2.2) is replaced by a positive relative risk function r(-) standardized
so that #(0) = 1.

Now that a model for the cohort has been specified, we turn to describe how the
sampling of controls is superimposed onto this model. This is done by sampling at each
failure time ¢; (according to a distribution to be specified below) a set of controls for the
failing individual ;. We denote by 'ﬁ,- the sampled risk set consisting of the set of these
controls together with the individual ¢; failing at ¢;. Then

{(t;, (55, R5)); § > 1} (2-3)

will be a marked point process with a finite mark space E which may be specified as follows:
Let P be the power set of {1,2,...,n}, i.e. the set of all subsets of {1,2,...,n}, and let

Pi={r:reP,ier}.



Then the mark space of (2.3) is given by
E={(ir):i€{1,2,...,n},reP;}={(i,r): reP,i€r}.

The introduction of the sampling into the model will bring in some extra random variation,
so the marked point process (2.3) will not be adapted to the filtration (H;) generated by
the available data from the cohort. Thus we now have to work with the enlarged family of
sub-o-algebras (F;)sc[o,r] of F given by

Fe=Hvo{R;;t; <1},

i.e. (F;) is generated by the observed events in the cohort together with the sampled risk
sets.

Corresponding to the marked point process (2.3) we now have, for each (i,r) € E, the
counting process

Niix(t) = ; I(t; < t,(5,R)) = (i,r)) (2.4)

counting the observed number of failures for the ith individual in [0,¢] with associated
sampled risk set r. Since the mark space E is finite, the marked point process (2.3) is,
in fact, equivalent to the multivariate counting process (N(;); (i,r) € E). We denote
the intensity process of N(;,) by A(;y). From (2.4) we may recover the counting process
(2.1), registering the observed failures for the ith individual, by summing over all possible
sampled risk sets, i.e.

Ni(t) = Y No(t), (2:5)

reP;

and a similar relation holds for the intensity processes A; and A; ;).

The fact that we now have to consider the filtration (F;), also containing information
about the sampled risk sets, may have the consequence that the intensity processes corre-
sponding to the counting processes N; may change, i.e. their (F;)-intensity processes may
differ from their (;)-intensity processes (2.2). For instance, in a prevention trial, this will
be the case if individuals selected as controls change their behavior in such a way that their
risk of failure is different from similar individuals which have not been previously selected
as controls. To rule out such possibilities we need the concept of independent sampling
analogous to the usual assumption that censoring must be independent (Andersen et al.,
1992, Section IT1.2.2).

Formally, we will say that we have independent sampling provided that the (F;)-intensity
processes of the counting processes N; are the same as their (H;)-intensily processes. In
other words: the additional knowledge of sampling which has occurred before any time ¢
should not alter the intensities of failure at t. We note that under independent sampling
the (F;)-intensity processes of the N; are given by (2.2). In the following we will tacitly
assume that the sampling is independent. Further, we will consider intensity processes,
martingales, etc. with respect to the filtration (F;), and not the “cohort history” (H;).

Then, given x(r| ), the conditional probability of selecting the sampled risk set r € P;
at time ¢ given F;_ and the fact that the ith individual fails at ¢, a model for the marked




point process (2.3) may be given by specifying the intensity processes A; ;) for the counting
processes (2.4) by

A () = Ai()me(r] 9). (2-6)
Note that the x;(r|i) may be recovered by

A(i.r)(t) - A(i.r) (t)
A'(t) Ere?.- ‘\(i,r)(t) )

For notational convenience we set x;(r]i) = 0 if Y;(t) = 0.
Thus by (2.2)

Aix)(t) = Yi(t)ao(t) exp(Bg Zi(t))we(x] i), (2.7)

and it follows that a model for cohort sampling is given by specifying, for each ¢ and each i
with Y;(t) = 1, the sampling distributions x;(-| i) over sets r in P;. This specification must
be based on information available just before time t, i.e. the x(r|) must be predictable
considered as processes in t (for fixed ¢ and r). In particular this rules out selection of
controls depending on events in the future, e.g. one may not exclude as potential controls
for a current case individuals that subsequently fail (Lubin and Gail, 1984). We will give
examples of specific sampling distributions in Section 5.
By standard counting process theory it follows that for (i,r) € E,

x(r| i) =

Msa(t) = Ns(®) = [ Asay(w)du (28)
are local square integrable martingales. Their predictable variation processes are given as

(M) (®) = [ Asay(w)d, (29)
while their predictable covariai;ion processes are

(M(i.r), M(j0))(t) = 0 (2.10)
for (i,r) # (J,8).

In the derivation of a partial likelihood in the next section, we will need to consider the
reduced marked point process

{(t;,R;); > 1} (2.11)

derived from (2.3) by disregarding the information about which individuals fail at the
various time points. Corresponding to this marked point process we have the counting
processes

Ne(t) = Nip(t) (2.12)
i€r
counting the number of times the sampled risk set equals r in [0,¢]. By (2.7) these have

intensity processes

Xelt) = 3 Min)(8) = T Vilt)ao(t) exp(B3 Zu(t) el 6. (2.13)

i€r i€r



Moreover,

M, (£) = Nu(t) - /o " Ae(u)du, (2.14)
for r € P, are local square integrable martingales with

(M30) = [ Helu)de, (2.15)
and

(M, M,)(t) = 0 (2.16)
forr #s.

We conclude this section with two remarks concerning our model construction. First,
for ease of presentation, we have assumed that censoring is a part of the cohort history (#;)
only, and that no extra censoring is introduced by the nested case-control sampling. This
may easily be extended, however, along the lines of Andersen et al. (1992; Section III.2)
to include extra (independent) censoring depending on the previous sampling history. For
example, in a nested case-control study, one may censor individuals after they have been
picked as controls.

Second, in order to define our model, we had to augment the cohort history (#,;) with
the sampling history in order to get the filtration (F;) relative to which intensity processes,
martingales, etc. are defined. Thus more “information” is needed to define the model for
nested case-control sampling than is the case for the full cohort. At first this may seem
somewhat paradoxical since the main reason for sampling is that one does not need to
collect covariate information for all individuals in the cohort. But the paradox is resolved
when one remembers that the model must describe the likelihood of all possible outcomes,
not just the outcome actually observed. The fact that more “information” is needed to
define the model than what is actually observed, has the consequence, however, that care
must be exercised in order to make sure that statistical inference procedures are based only
on data which are actually available to the researcher.

3 A partial likelihood and estimation of the regression pa-
rameter

In the previous section we derived a (partially specified) probabilistic model for nested
case-control sampling. We now consider the statistical model obtained by allowing ap and
Bo to be varying parameters. We will assume that the baseline hazard oy may be an
arbitrary non-negative function while the vector of regression parameters 3, takes values
in the p-dimensional Eucledian space.

As described in general terms in Andersen et al. (1992; Section I1.7.3) the full likelihood
may be factorised into the (partial) likelihood for the marked point process (2.3) and a
second factor depending on the (unspecified) model for the censoring mechanism and the
covariate processes. We use a and 3 for the free parameters in likelihoods, etc. and reserve
ag and B, for the true values of these parameters. Then the likelihood for (2.3) takes the
form

I 1 II(A(,-,,)<u;a,m”w))erp(— [z Z'\(i.r)(“;a’ﬁ)d")’ (1)

u€lo,7] reP ier reP ier




where we have written A; .)(t; a, B) for the intensity processes (2.7) in order to emphasize
their dependence on the parameters.

Now inference cannot be based directly on (3.1) for two reasons. First, our model is
semi-parametric in the sense that a may be any non-negative function. So, as for the
classical Cox model, (3.1) may be made arbitrarily large by letting a be zero except very
close to the failure times t;, where we let it peak higher and higher. Second, in order to be
able to evaluate the second term of (3.1) we would need to know the full covariate histories
for all individuals in the cohort. But as discussed at the end of Section 2, we do not actually
collect all this covariate information when the cohort is sampled.

We therefore consider a partial likelihood (Cox, 1975) which may be obtained using the
general ideas of Arjas (1989; Section 4). To this end we factorise the intensity processes
A(i,r), Dot as in (2.6), but as

Aan(t) = Ae(t)xe(i | v Bo),
where, by (2.7) and (2.13),

Min(®) _ _ Yi(t) exp(BIZi(t))mo(r i) (3.2)
M) T TieeYilt) exp(B Zi®)elrl )

is the conditional probability of the ith individual failing at ¢, given F;_ and that there
is a failure among individuals in the set r at t. Note that (3.2) does not depend on the
baseline hazard.

Statistical inference on 8 may therefore be based on the partial likelihood

*(i|r; Bo) =

£-(B)

(i | B B) = Y;;(t;) exp(B7 Zi; (t;))me, (R i5)
l:,I (1 Rif) Ig,-I{E,ei,.Yz(t:')exp(ﬁTzz(tj))*t,-('ﬁjl1)}

Y;(u) exp(B” Zi(u))xu(r| i) }AN(-'.-)(“)
H H H { Yier Yi(u) etl)(ﬂ.rZJ(u))‘r,,(rl )] ’ (3.3)

obtained by only using the information contained in the conditional distributions of the
failing individuals i; given the sampled risk sets 'ﬁ,-, and thereby disregarding the infor-
mation on B contained in the reduced marked point process (2.11). This generalizes the
partial likelihood of Oakes (1981) for nested case-control designs with simple random sam-
pling of the controls (Example 5.2). Note that in the denominator of (3.3) each individual
is weighted with the probability of selecting the sampled risk set had the individual been
the failure. In particular, no distinction is made between the failure and the controls in the
sampled risk set.

Note that by (2.12), (2.13) and (3.2) the likelihood (3.1) for the marked point process
(2.3) may be factorised as

u€[0,r] P€EP i€r

IT 1T IT (Ot a,ﬁ)ru(i|r;ﬂ))”"'*’("))exp(— /o" 3 Ae(y; a,B)du)

u€fo,7] reP ier re?P
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u€lo,r] reP r€P

x TI I IIxu(lr;B)2Nn®),

u€[0,7] rEP ier

i.e. as a product of the likelihood for the reduced marked point process (2.11) and the
partial likelihood (3.3).

The estimator B obtained by maximizing the partial likelihood (3.3) has similar prop-
erties as a maximum likelihood estimator. At this point we will only show that (3.3) has
basic likelihood properties, i.e. that the score vector has expectation zero and that its co-
variance matrix equals the expected information matrix (implicitly assuming the necessary
regularity conditions to hold) and return to a detailed study in Section 6.

We introduce the notation

si(,t) = —E;S(")(ﬁ, t) =) Yi(t)Zi(t)®" e!P(ﬁTza(t))ft(r ) (3-4)
i€r

for 7 = 0,1, 2, where for a vector a, a® = 1, a®! = a and a®2 = aa'. Note that Ssl)(ﬁ, t)
is a p-vector and Ssz)(ﬂ,t) a p X p-matrix. Furthermore, we define the p-vector

Er(ﬁ, t) = Sl('l)(ﬂit)/sg,)(ﬂ) t) (3'5)
and the p X p-matrix

59(8,1)
V:(B,t) = ———= — E.(B,t)%%. 3.6
8= Zm oy ~EBHT (3.6)

The two quantities E.(83,t) and V,(B,t) are the expectation and the covariance ma-
trix, respectively, of the covariate vector Z;(t) if an individual is selected with probability
x(i|r; B8); of. (3.2).

Apart from a constant term the log partial likelihood equals

C.8)= [ T X {87Z:(w) -~ log(SI(B, )} () (3.7)
re?P ier
and differentiation with respect to B yields the vector of score functions

U.(8) = 550-8) = [ 3 T {Zu() - Ex(B, )} AN (v) (3.8)

r€P i€r

and the observed information matrix
Z.(B) = —73C-(B Ve(B,u)dNe(u 3.9
”aﬂ’”f,ez;()” (329)

By the interpretation of V,(3,t) as a covariance matrix given just below (3.6), it follows
that Z,(B) is positive definite, and hence that the log partial likelihood (3.7) is concave.

1n




Using (2.7), (2.8), (3.4) and (3.5) it is seen that the score, evaluated at the true param-
eter value B,, equals the (vector valued) stochastic integral

U.(80) = [ 3 30 {Z:(w) — EelBo, u)} dMn(w) (3.10)

r€P i€r

In particular it follows that the expected score is zero.

We let U(B,) be defined by (3.10), but with the integral taken over [0,t] instead of
[0,7], and note that U.(B,) is a (vector valued) local square integrable martingale. By
a standard argument, the matrix of predictable covariation processes of this martingale,
evaluated at 7, becomes (use (2.7), (2.8)-(2.10) and (3.4)-(3.6))

BN = [ 5 T (7o)~ Bl ) Mo (e)de
rEP i€r
= [ T V(8o w5086, ao(u)du. (3.11)
reP

Moreover, by (2.12), (2.14) and (3.4), the observed information matrix (3.9) evaluated at
Bo may be written as

L.(8o) = [ T;Vr(ﬁo»")5$°)(/3o,ﬂ)ao(u)du+ A T Velow)iih().  (312)

Thus the observed information matrix equals the predictable variation of the score plus a
local square integrable martingale. In particular, by taking expectations, it follows that
the expected information matrix equals the covariance matrix of the score.

4 Estimation of the integrated baseline hazard and survival
probabilities

For completely general sampling distributions x;(- | r), as considered in the previous section,
it seems difficult to derive a sensible estimator for the integrated baseline hazard

hm:fwma

We will therefore now restrict ourselves to sampling distributions with a special structure
which can be described as follows: Conditional on F;_ there exists for each ¢, at which
there is at least one individual at risk, a sampling distribution x;(-) over sets r in P such
that

x(r|t) = I‘(—rl
t( | ) Pt(") (4'1)

for i € r. Here

pe(i) = ) w(r) (4.2)

reP;
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is the probability that the individual ¢ will be included in a sample selected according to
x¢(-), and this probability is assumed to be positive for each individual at risk at ¢. Thus
(4.1) specifies 74(r| i) as the conditional probability of selecting the sample r at ¢ given F;_
and that i is contained in the sample. In Section 5 we will illustrate how some important
sampling schemes for the controls have this structure.

For sampling distributions satisfying (4.1), we suggest the estimator

-, = 1

Ao(t;8) = =
t,-zs:t E-RAL) exp(B" Zu(t;))/ps; (1)

/ dN'(") (4.3)
rer Ster Yi(u) exp(B Zu())/pu(1)’
for the integrated baseline hazard Ao(t). To motivate this estimator, let

Jt)=1 (i Yi(t) > 0) (4.4)

=1

be the predictable indicator process which equals 1 if someone is at risk at t— and equals 0
otherwise, and remember that ,(r) is only defined when J(¢) = 1. We interpret x(r)J(t)
as 0 when J(t) = 0. Then use (2.13), (2.14) and (4.1) to find that (4.3), with 3 replaced
by the true value B,, may be written as

. o J(u)dNe(u)
6oy = [ 3 D

-/; ’ Y J(u)ao(u)xy(r)du + w(t) (4.5)

re?P

/o  J(w)ao(u)du + W(2),
where

J (“)er(“)
wo= [ 2 S Bz (@) o) (+6)

is a local square integrable martingale. This shows that Ay(t;3,) is almost unbiased for
Ao(t) (the small bias only being due to the possibility of having no one at risk), thereby
giving a justification for the proposed estimator (4.3).

It may also be of interest to estimate the integrated hazard for an individual with
a specified covariate Zg fixed over time. This is A(t;Zo) = exp(Bg Zo)Ao(t) and it is
estimated by

A(t; Zo) = exp(B" Zo) Ao(t; B). (4.7)
In Theorem 5 in Section 6 we will show that, as n — oo,
Vn(A(-; Zo) — A(-; Zo)) (4.8)
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converges weakly to a mean zero Gaussian process with a covariance function which may
be estimated uniformly consistently by n5?(s,t) where

(s, t) = {exp(,?:'z.,)}2 (4.9)

X {G’(s At:B)) + (B(s:B) - A(B)2s) Z(B)™ (B(:B) - A(n f‘l)zo)} :

with
o*(t;8) = - : (4.10)
Z, {Sieqe Yilts) exp(B%u(2:) /o, )}
and
gy = 3 Zichy WD) BT () i

-
gt {Tierg,) Yilts) exp(BTZu(t;))/p, (1)}
The results for the cumulative baseline relative hazard estimator (4.3) are obtained by
inserting Zo = 0 above.

Using product-integral notation (Andersen et al., 1992; Section II.6), the survival prob-
ability

S(t; Zo) = Z;‘: (1 — dA(y; Zo)) = exp (—A(2; Zo))

for an individual with a fixed covariate value Zo can be estimated by

3(6:20) = 7T (1-dA(u;Zo))

ult
T
= II[:- exp(B Zo) . (4.12)
tj<t Eleﬁ,- Yi(t;) exp(B Zi(t;))/pe; (1)

By the argument in Section VIL.2.3 in Andersen et al. (1992)
Vv(5(-; Zo) — S(-; Zo)) (4.13)
is asymptotically equivalent to —S(- ; Zo) times (4.8), and it follows that, as n — oo, (4.13)

converges weakly to a mean zero Gaussian process with a covariance function which may
be estimated uniformly consistently by nS(s; Zo)S(t; Zo)52(s,t).
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5 Examples of specific sampling schemes

The methodology we have presented in the preceding sections provides analytic tools for
a very large class of sampling schemes. We illustrate its flexibility by deriving the partial
likelihood for a few diverse designs and also derive the estimator (4.3) for the integrated
baseline hazard for a few of them. In each situation considered, the sometimes complex
x¢(r|é) in the partial likelihood (3.3) are not needed for the actual analysis of the data.
Cancellation of common terms or multiplication by quantities which do not depend on 8
leads to considerable reduction yielding a partial likelihood of the form of (1.4).

As we will discuss in more detail in Section 10, that while the partial likelihood provides
a method of valid estimation of the regression parameters, there is no guarantee that the
estimator B will be efficient relative to “the best” method of analysis. This is illustrated
in Examples 5.5 and 5.6.

Remember in what follows that the sampling distributions (- | i) are defined over sets
r in P; so that that x(r|i) = 0 of i ¢ r. We let |r| denote the number of elements in the
set r.

Example 5.1 Full cohort. The full cohort partial likelihood is a special case in which the
entire risk set R(t) = {i: Y;(¢) = 1} is sampled with probability one. In our notation then,
rt(rlz) I(r = R(t)) for all i € R(t), and the usual Cox partial likelihood for the full data
set is recovered. Noting that (4.1) and (4.2) are fulfilled with x,(R(t)) = p:(i) = 1, Ao(¢; B)
is as in (1.3), the usual Breslow estimator of the integrated baseline hazard functxon

Example 5.2 Nested case-control sampling. The most common type of cohort sam-
pling technique is nested case-control sampling, in which m — 1 controls are randomly
sampled, without replacement from those at risk at the failure’s failure time. Here we
assume that m > 1 is fixed. Letting n(t) = Y1, Y;(t) = |R(t)| denote the number at risk
at time ¢, this sampling scheme is specified by

-1
ru(eli) = ("(‘) 11) I(r € Piyx C R(t), | = m),

which is the same for each i € r and thus drops out of (3.3) leaving the usual partial
likelihood (Oakes, 1981) for nested case-control sampling. Further, (4.1) and (4.2) are
satisfied with

_ [n(®
Tt(r) = ( m ) I(rcC R(t) Ir| = m) and I’t(t (t)

and, from (4.3), the estimator of the cumulative hazard function is

- - 1
Ao(t:B) = =
t,z:st LieR; exp(B Zu(t;))n(t;)/m

with variance estimator from (4.9).

Example 5.3 Stratified nested case-control sampling. In this extension of nested
case-control sampling (Langholz and Borgan, 1992), control sampling is performed within
sampling strata. In general, let C;(t) be (F;)-predictable sampling strata indicators with
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Ci(t) € C, a (small) finite set of indices. Define Ry(t) = {i : Yi(t) = 1,Ci(t) = I} to
be sampling stratum ! with n;(t) = |R;(¢)|. If a subject, say %, fails at time ¢, then m;
controls are randomly sampled without replacement from R;(t) except for the failure’s
stratum Rc;()(t) from which mg,(;) — 1 are sampled from the ng;(;)(t) — 1 non-failures.
As a technicality, which we do not consider further and which causes no difficulties, the
number of controls could also depend on time. Specifically, if n;(t) < m; all subjects from
Ri(t) would be included in the sample. The probability structure for this sampling scheme
is given by

-1
x(rli) = |[] (m(t))] MI(:‘ € Pi,r C R(t), [r N Ry(t)] = my; 1 € C),
leC

m mc,(t)
which yields weights
(ot
wi(t) = 2ex(®) (5.1)
mci(v) )

so that in the partial likelihood (1.4), the relative risk for a subject from a given stratum
is weighted by the inverse of the proportion of the stratum sampled. Note that the case
contribution is weighted no differently than the controls.

The sampling probabilities simplify into the form of (4.1) and (4.2) with

-1
xe(r) = H (m(t))] I(r C R(t),[rnRy(t)] = my; L €C)
tec \ ™

and p¢(i) = w;i(t)~!. Thus, the baseline hazard estimator becomes

- - 1
Ao(t;B) = —
t,-ZSt ieR; exp(B' Zi(t;))wi(t;)

with variance estimator given by (4.9).

Because F; contains failure, censoring, covariate, and sampling histories up to time ¢, the
sampling strata may be defined in some quite diverse ways. We describe some interesting
designs from this class.

Stratification based on absolute ezposure status. This design is discussed in Langholz
and Borgan (1992). For simplicity consider a dichotomous variable Z, (t) = 0 or 1 indicating
unexposed or exposed. Assume that Z;(t) is known for all subjects at risk at ¢ (cf. the
comment at the end of Section 2), and define the sampling strata as R;(t) = {i : ¢ €
R(t), Z:1(t) = 1} for I = 0,1. The C;(t) are simply defined to be Z;;(t). When a failure
occurs, mg and m; subjects are “sampled” (with the understanding that the failure is
included in the sample) from the unexposed, Ro(t), and exposed, R,(t), at risk subjects,
respectively. Additional covariate information would then be collected on this stratified
sample.

Stratification based on relative ezposure status. Now consider a multivalued or contin-
uous Zy(t) and assume that this is known for all individuals at risk at time ¢. Sampling
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strata may then be defined in terms of the distribution of the Z;;(t) for the at risk sub-
jects. For example, define the sampling strata at t as some empirical quantile intervals of
the {Z;(¢) : i € R(t)} and let C;(t) be the particular interval that Z;;(t) falls into.

Stratification based on sampling history. As a specific example of this situation, we give
a technique for ensuring that each sampled risk set adds m; new subjects to the sample.
Consider sampling mg from the set of those not sampled in any previous risk set (stratum
0) and m; from those who have been sampled (stratum 1). Let S(t) = R(t) \ (Ug,.«'ﬁj),
the set of those not yet picked in any sampled risk set. Then (5.1) are the appropriate
weights with no(t) = |S(t)| and n;(t) = n(t) — ne > (2).

Example 5.4 Quota sampling: negative hypergeometric sampling. Consider pro-
cesses C;(t) € {0,1} with a role similar to that in stratified sampling discussed in the
previous example and let my, n;(t), and R;(t), I = 0,1 be as defined there. In this sampling
method, if a subject 1 fails at time ¢, controls are sampled sequentially until m; subjects
are selected from R, (t). As before, if i € Ry(t), the failure i is counted as one of the m;.
Such a sampling scheme might be considered when a (dichotomous) exposure of interest is
somewhat rare and is expensive to determine but obtaining the additional covariate infor-
mation needed to perform a complete analysis is inexpensive. Thus, once exposure status
for a subject is determined there is no reason not to include the subject as a control in the
sampled risk set. Further, the intuitive idea that the amount of “exposure discordance”
within the sampled risk sets determines the efficiency of the sample suggests that it may be
possible to ensure that a given level of (relative) efficiency for estimating the effect of ex-
posure is achieved by specifying that a fixed number of exposed subjects be in the sampled
risk set.

The probability of sampling a particular set depends on the size of the set and whether
C;(t) for the failure is 1 or 2. Specifically, the size of the sampled risk set has a negative
hypergeometric distribution (Schuster and Sype, 1987) with

=(t)—|r|

M) 1e 0 2o 1)) = ) i G0 =1

(ll(t)—l
m(rli) =

(=)0 _ e
Posem) (1 Ry (8)] = my) if Ci(t) = 0
( =1(¢)
Cancellation of common factors yields considerable reduction leaving weights w;(t) = (m,—
1)/ny(t) or mo/ne(t) if Ci(t) = 1 or 0, respectively, to be included in the partial likelihood
(1.4).

Note that if m; = 1, it is not possible to estimate the regression parameters since
all exposed subjects, i.e., those with C;(t) = 1, are weighted by zero. This is because if
the failure is exposed, the sampled risk set consists only of that failure making estimation
impossible. One possible solution is to (simple) randomly sample one control, without
regard to the exposure status of the failure, before starting the quota sampling. This
would assure that exposed failures are almost always matched to an unexposed control
(since exposure is assumed rare) and that there would be one (or rarely two) exposed
controls if the failure is unexposed.

In the situations we are suggesting that this design might be useful, the n;(t) will not
be known. One possible strategy is to replace the n;(t) by method of moments estimators.
Then #,(t) = n(t)(my — 1)/(Jr| — 1) or n(t) my/(Jr] — 1) — 1 if C;(t) = 1 or 0, respectively,
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and 7ig(t) = n(t) — H1(¢). The validity of such an approach and the proper adjustments to
the variance when the weights are estimated require further study.

Not surprisingly, the negative binomial distribution with probability parameter n; (t)/n(t)
yields identical weights to those given in the preceding paragraph. Using the negative multi-
nomial distribution, this leads us to conjecture that the extension to C;(t) € {0,...,L} and
my, fixed will yield weights wr(t) = (mg — 1)/ng and w;(t) = my/ny(t) if C;(t) =1 # L.

Example 5.5 Nested case-control sampling with variable matching ratio. Instead
of fixed m, consider using a variable matching ratio, possibly depending upon characteristics
of the case. Specifically, in this class of sampling designs first the size of the sampled risk
set is (randomly) determined and then a simple nested case-control sample of this size is
selected. For instance, suppose that exposure status (Z;(t) = 0 or 1 indicating unexposed
or exposed) is to be gathered on a sample of the cohort. One might first ascertain the case’s
exposure status, then, based on that status, decide the number of controls to be sampled.
We conjecture that when there are many cases and exposure is rare, matching more controls
to exposed cases is more efficient than fixing the matching ratio for all sampled risk sets.

Let 7(t) be the size of the sampled risk set if there is a failure at time t. We assume
that 7i(t) is random with a (predictable) probability distribution on {1,...,n(¢t)} which
may depend on who failed at that time. We may then specify the sa.mp]mg probabilities
as functions of the size of r with

xe(rli) = (’;(rtl)_‘ 11) " I(r € Piyr € RE)PEE) = [t | 4, Foo).

Because the binomial coefficient is common to all i € r cancellation yields weights w;(t) =
P(7(t) = |r| | %, Fe-) in (1.4).

Now if we adopt the variable matching scheme as implied above, in which with prob-
ability 1, exactly m; or mz controls would be picked if the case is unexposed or exposed,
respectively, for ¢ € r, P(7(t) = |r| | 4, F:-) is one if subject i has the same exposure status
as the case and zero if they differ. This results in sampled risk sets matched for exposure
status making it impossible to estimate the effect of exposure. Whether this is a prop-
erty inherent in the design, i.e., there is no method of analysis which yields a consistent
estimator, or the partial likelihood has zero efficiency, is not known.

An approach which leads to a more reasonable analysis is to consider two different
sample sizes, say m; and m;, with P(7i(t) = my i, /) = %z, () and P(7i(t) = myli, F-) =
1—xz,,(¢) for some fixed probabilities o and x;. One might also consider #(t) as binomial
with probabilities 9 and x; for { unexposed and exposed, respectively.

Example 5.6 Case-cohort sampling. Prentice (1986a) presents case-cohort sampling
in which a subcohort C is randomly sampled from the full cohort at ¢ = 0. He shows
heuristically that the partial likelihood for this design does not make use of the non-
subcohort failures in the estimation of B and proposes a “pseudo-likelihood” approach.
In our formulation, since C € Fo,

x(rli)=1I(r=(CnRE)U{}).

Thus, if i € C fails at t; then R; = € N R(t;) and x(R;|l) = 1 for all | € R, but if
i¢gC,R; = (6‘ n'R(t,-)) U {i} # C nR(t;) and x,(R;|l) = I(I = i) since this sampled
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risk set would occur with probability zero if a subcohort member failed. Thus, if ¢ is a
non-subcohort failure, the partial likelihood weights subcohort members by zero, leaving a
contribution of one for that sampled risk set, confirming Prentice’s conclusion. This is an
example where the partial likelihood (3.3) is clearly inefficient for the design.

6 Asymptotic properties of the estimators

In this section we study the large sample properties of the estimator 3 for the regression
parameters and the estimator Eo(t, E) for the integrated baseline hazard. We therefore
consider a sequence of models indexed by n of the form defined in Section 2 with processes
N((:,?)» Y,-("), z,("), r.(”)(r | ), etc. depending on n. For ease of notation we will, however,
drop the superscript (n) from the notation, but the reader should keep in mind that these
quantities depend on n whereas the true parameter values 3, and ag are the same for all
n.

We remind the readers of the definitions (3.4) - (3.6) and write C;(8), U:(B) and Z;(B8)
for (3.7) - (3.9), respectively, when the integral is taken over [0, ] instead of [0, 7]. Moreover
we denote the jth component of the vector U,(8) by U7(B) and the (j, k) th element of
the matrix Z,(8) by Z3*(8).

For the proofs we will need the following conditions, where the norm of a vector a = (a;)
or a matrix A = {a;;} is ||a|| = sup; |a;| and ||A|| = sup; ; |a;;|, respectively. Conditions 1
and 2 are assumptions; both are assumed to hold in what follows. In Section 7 we show how
the remaining conditions are satisfied for some specific model assumptions and sampling
schemes.

Condition 1  Ap(7) < oo.

Condition 2 The covariate processes Z;(t),i = 1,2,...,n are left continuvous and (F)-
adapted.

Condition 3 For (p,7) = (0,2) and (p,7) = (2,0) define

Q¥M(By,t) = % Y Ec(Bo, )%*5{(Bo, 1), (6.1)

re?P

and assume that there ezists functions q(¢7) such that for all t € [0, 7],
QLM(By,t) 5 ¢#(By,1) s m - co. (62)
Condition 4 The p X p-matriz matriz X = {0z} given by

B= [ [4©(Bo,t) — €PNy, )] ao(t)dt

is positive definite.
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Condition 5 For any n and each r € P there ezists a locally bounded predictable process
Xrn not depending on B such that for all t € [0,7]

[|1Zi(t)]] £ Xen(t) forallier. (6.3)
Moreover there ezists a by > 3 ||B,|| such that, with

Da(t) = = 3 exp (boXen(8) 3 el |4),

re?P i€r

there ezists D(t) such that

Da(t) % D(t) and /o " Da(t)ao(t)dt B /o' D(t)ao(t)dt < oo, (6.4)

asn — 0o.

Before we derive the asymptotic properties of the maximum partial likelihood estimator
ﬁ, we state some useful consequences of these conditions.

Let By be an open neighborhood of B, with sup{||8|| : B € Bo} < bo/3. Then by (3.4)
and (6.3) we have for 8 € By

exp (—(bo/3)Xrn(t)) Y _me(r|4)

i€r

< I8, < (6.5)
exp ((bo/3)Xen(t)) D 7e(r |4).

i€r
Moreover, for vy =1, 2,
ISENB, )| < Xen(t)SONB, 1), (6.6)

and by (3.5), (3.6) and (6.1)

IEe(B, )]l < Xen(2), | (6.7)
IVe(B, Il < Xen(8)? (6.8)
and
1QE(Bo, )| < = 3 Xea(t) 7S (Bo 1) (6:9)
re?P

To show the convergence in probability for various integrals that arise below, we use a
version of a dominated convergence of Hjort and Pollard (Hjort and Pollard, 1993):

Proposition 1 Suppose Ag(T) < 0o and let 0 < X,(s) < Dn(s) be left-continuous ran-
dom processes on the interval [0,7]. Suppose Dy(s) LA D(s) and X,(s) LA X(8) for al-
most all s and that [; Dn(s)ag(s)ds LA J3 D(s)ao(s)ds < 0. Then f; Xn(s)co(s)ds LA
Js X (s)ao(s)ds for allt € [0,7].
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By (6.5), the right hand side of (6.9) is bounded by a constant times D, and it follows by
the above dominated convergence theorem and Condition 5 that, for all ¢ € [0, 7],

[ @08y, u)aa(wriu B [ By, v)ao(u)d (6.10)
(] : (1]
as n — oo. In particular, by (3.6), (3.11) and Condition 4,
OB = 1 [ T ValBor)5Bo, uloolu)du & 2. (6.11)
re?P

We now prove that the estimator B for the regression parameters is consistent.

Theorem 1 Assume Conditions 1-5. Then the estimator B mazimizing (3.3) is consistent
Jor By.

Proof: By a Taylor series expansion we have for any 8 = (81,...,55)" € Bo

Ui(B) = Ui(B,) - E(ﬂk — Bu)T3*(Bo) + 5 2 ):(m — Bio)(B1 — Bro) RE¥(B*),

k=1 k=11=1

where B8* is on the line segment joining 8 and B,, and

R(B) = o0 (6.12)
We need to show that for all 7, &,1

n"103(8,) B 0, (6.13)
and

n1T%(Bo) B o, (6.14)

as n — 00, and that there exists a finite constant K such that

Jim (In‘lR’”(ﬁ)I < K for all j,k,1, and all B € Bo) = 1. (6.15)
For from (6.13) - (6.15) it follows e.g. by the argument in Billingsley (1961, pp. 12-13) that
with probability tending to one there exists a consistent solution to the score equations
U,(B) = 0. But from this the theorem follows since C,(B) is concave, and hence the score
equations have at most one solution.

To prove (6.13) we use Lenglart’s inequality (e.g. Andersen et al., 1992, Section II.5.2)
to get for all §,7 > 0

P (tsup v 203 (8o)| 2 n) < -,f;+ P (n~X(UH(Bo))(7) 2 6) .

€ [olf]

But by (6.11) n~1{U3(8,))(1) > T < 00, and (6.13) follows.
To prove (6.14), we write V7*(8, ) for the (j, k) th element of (3.6). Then by (2.13),
(2.15), (3.4) and Lenglart’s inequality we have for all §,7 > 0
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n~! /o ' 3" Vi*(Bo, u)dMy(u)| > n) (6.16)

reP

P ( sup
te[o,r]

< S+v (n" [T (v (6o w)” 5B, u)ac(u)iu > 6) .

re?P

But by (6.8)

"'1/; > (Vi*(Bosw) 5(Bo, u)ao(u)du

re?P

<ot z Xen(u)*SO)(Bo, w)ao(u)du,

which by (6.5) is bounded by (6.4) times a constant. Thus, by Condition 5 and (6.16), 1/n
times the second term on the right hand side of (3.12) converges to zero in probability, and
(6.14) follows by (3.12) and (6.11).

Finally, to prove (6.15), we first note that (3.7) and (6.12) give, for any n and all j, &k,
and ﬁ € Bo,

In—l Ri”(ﬁ)l < % / X n(u)3dNy(u).
0
By another use of Lenglart’s inequality and (2.13), (2.14) and (3.4) we have for any C, K > 0

P (g /: 3 Xo(u)*dNo(u) > x) (6.17)

reP

< 4P (% [ 3 Xelw)*s(Bo, w)ao(u)dn > c) .

re?P

By (6.5) and Condition 5 it is seen that the second term on the right hand side tends to zero
as n — oo if C is chosen large enough. Thus the right hand side can be made arbitrarily
small for n and K large enough, and (6.15) is proved. O.

Before we study the asymptotic distribution of B, we give a consistent estimator of X,
the inverse of the asymptotic covariance matrix.

Theorem 2 Assume Conditions 1-5. Then for any B* LA Bo we have

1 P
~1.(8") 5 3,

as n — 0o, where X is defined in Condition 4.
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Proof: By a Taylor series expansion we have when 8* € By

- - p - -
n'TH(B) = nT T (Bo) — n7 Y (Bf — Bu)RI(B),
=1
where R#*(f) is defined by (6.12) and B is on the line segment joining B* and B,. By
(6.14), the first term converges in probability to oj; as n — co. Moreover, by (6.15), the
second term is bounded in probability by pK||8* — By|| for some finite constant K not
depending on B*, and the theorem is proved. O

We now demonstrate the asymptotic normality of the maximum partial likelihood esti-
mator.

Theorem 3 Assume Conditions 1-5 and let B be the estimator mazimizing (3.3). Then

V(B - Bo) 2 N (0,27,
as n — 0o, where X is defined in Condition {.
Proof: Taylor expanding U#(B) around B, gives when B € Bo

0 = n~Y2U§(B) = n"V2U}(B,) - i Vi(Bi - Bro) n T T4 (BY), (6.18)

k=1

where B* is on the line segment between 3 and Bo- Hence, using Theorems 1 and 2, it
sufficient to prove that

712U, (B8,) 3 N(0, %) (6.19)

as n — 00.

To this end we apply Rebolledo’s martingale central limit theorem as presented e.g.
in Section IL.5.1 in Andersen et al. (1992). By (6.11) the (vector valued) local square
integrable martingale n=1/2U (8,) has a predictable variation process which evaluated at
T converges in probability to . Thus condition (2.5.1) of Theorem II.5.1 in Andersen
et al. (1992) is fulfilled for ¢ = 7. To prove the Lindeberg condition (specified by (2.5.3)
and (2.5.8) in Andersen et al., 1992) we introduce E}(,t) for the j th component of (3.5).
Then by a Chebychev type inequality we have for all j any € > 0

% /of PP {Z.'j(u) — Ei(By, u)}2 I {n—llz |Z,-,-(u) — Ei(Bo, u)l > e} Ainy(u)du

rEP i€r

< i [ T X1z - B ] A

re?P i€r
8
s ens/2 /: reE‘P Xen(u)’S l('o)(ﬁo’ f‘)ao(“)d“a

where the last inequality follows by (2.13), (3.4), (6.3) and (6.7). But by (6.5) and Con-
dition 5 the right hand side tends to zero in probability as n — oo, and the Lindeberg

22



condition is proved. O

We then turn to a study of the large sample properties of the estimator Ay(t; B) for the
baseline hazard. We then assume that the sampling distributions fulfill (4.1) and (4.2) and
impose the following extra conditions.

Condition 6 For J(t) given by (4.4) we have

inf J(t) 5 1.
tefo,r]

Condition 7 Let X, , and by be given by Condition 5. Then for vy =0,1,2
-
n? /' J(4) 3 7 (£) "+ exp (boXen(u)) {Zx.,(r | i)} ao(u)du (6.20)
0 re?P i€r
all converge in probability to finite quantities as n — oo.

Condition 8 There ezist functions e and ¢ such that for allt € [0, 7]

J(t) Y 7e(r)Ee(Bo, t) > e(Bo, 1), (6.21)
re?P
and
nI(t) 3w {5OB0 1)} B 6(Bos), (6:22)
reP

We first prove the following lemma.

Lemma 1 Let B(t;8) be given by (4.11), and assume that Conditions 1-8 hold. Then for
any B* LA Bo we have

sup "ﬁ(t; B*) - B(t;ﬁo)" Lo,
tefo,7]

as n — oo, with

¢
B(t;8o) = /.- e(By, u)ao(u)du, (6.23)

and e(By, u) defined in (6.21).
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Proof: First note that by (3.4), (3.5) and (4.1) we may write _
B:A)= | IECCLICTIEST W} dWe(w). (6.24)
reE
Then, by (2.13) - (2.15) and (3.4)

||B(t B) ~B(t: o)
[B:87) - Bt: 80)| (6.25)

te[o,f

tE[O T |

[ T 3wra(e)En(Bo,0) {5980 )} ai(a)

re?P

t
+ sup / 3 J()xu(r)Ex(Bo, v)ao(u)du - / e(Bo, u)co(u)dul] .
tefo,7] re?P ‘
We will show that each of the three terms on the right hand side converge to zero in
probability,
For the first term we use a Taylor series expansion to get for the j th component Bi(t;B)
of B(t; 8) when B* € B

+ sup
tefo,7]

- o~ p - -
Bi(t67) = B(t:0) + 3 (B — Puo) 35 B (6B),

k=1
with B on the line segment joining B* and B,. By (6.7), (6.8) and (6.24)

|£;Ba(t; p)| <2 f' ; I(ra() Xl {SOB,0)} 7 W, ().
4
Therefore (6.5), Condition 7 and an application of Lenglart’s inequality similar to (6.17)
give that, for all j,k,1, t € [0,7] and B € B,, Iﬁ:ﬁj(t; B)I is bounded in probability by a
finite constant K’ not depending on 8. Thus the leading term on the right hand side of
(6.25) is bounded in probability by pK"’||3* — B|| and therefore tends to zero in probability
as 3* LA Bo-

The predictable variation process, evaluated at ¢t = 7, of the stochastic integral in the
second term of (6.25) is bounded by 1/n times a constant times (6.20) with 4 = 1. That this
term converges to zero in probability therefore follows by Condition 7 and an application
of Lenglart’s inequality similar to (6.16). Finally, the third term on the right hand side of
(6.25) is bounded by

A

which tends to zero in probability by dominated convergence (Proposition 1) invoking (6.7)
and Condition 7. O

Z J(“)Tﬂ(r)Er(ﬁmu) - e(ﬁo’ u)

re?P

ao(u)du,

Following Andersen and Gill (1982, Theorem 3.4), see also Andersen et al. (1992, Theo-
rem VII.2.3), we may then prove the following result about the asymptotic joint distribution
of the estimator (4.3) and 3:
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Theorem 4 Assume Conditions 1-8. Then, with $(B,,t) and B(t; B,) defined (6.22) and
(6.23) , the processes

W() = v (Ao(-3B) — 4o()) + V& (B - Bo) " B(-:B0)

and \/n (ﬁ Bo) are asymptotically independent, and W converges weakly to a mean zero
Gaussian martingale with variance function

w(t) = '[o " (8o, u)ao(u)du. | (6.26)

Proof: By (4.5) we may write

v (Ao(:B) - 40(2)) = (6:27)
VA (£a(t,B) - Zo(t:80)) + VAW(®) + V5 [ (I(w) - Tao(u)d
with W defined by (4.6). Here the last term converges (uiiférmly in t) in probability to
zero by Conditions 1 and 6, while the leading term, by a Taylor series expansion, equals
—va(B- ﬂa)T B(:8%)

with B8* between B and S,. Invoking Lemma 1 it follows that the leading term on the right
hand side of (6.27) is asymptotically equivalent to v/n(B — B,)TB(t; B,)-

Furthermore the predictable covariation process between the local square integrable
martingales n~1/2U (8,) and /nW is (use (2.7)-(2.10), (3.4), (3.10), (4.1) and (4.6))

(n™/2U.(Bo), VAW )(2) =
[ X Ttu(0) - BB, 0 @)D (Bo, 0} A (w)du = 0

rEP i€r

i.e. they are orthogonal and therefore asymptotically independent. But by (6.18) and
Theorems 1 and 2

V(B - Bo) = 2-‘} U.(Bo) + 35(1),

so that /n(B — B,) and /nW are asymptotically independent as well.

By (6.27) it therefore only rema.ms to prove that fW converges weakly to a Gaussian
martingale with covariance function w? given by (6.26). But this follows by the martingale
central limit theorem (e.g. Andersen et al., 1992, Section I1.5.1) since by (2.13) - (2. 16),
(3.4), (4.1) and (4.6)

Vam)©) =n [ 3 Iuprale) {SO(Bo,u))  ao(u)d, (6.28)

re?P
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and this tends in probability to w?(t) for all ¢ € [0, 7] by dominated convergence (Proposi-
tion 1) invoking (6.5) and Conditions 7 and 8. For the Lindeberg condition a Chebychev

type inequality gives for any € > 0

o [ 3 I@mle) {50800} " 1{VRI@r(E) (59(B0w) " > ¢} aofuldu

re?P

< (9 [* T Hm(e {5080, )} aolw)d,

re?P
which converges to zero in probability by (6.5) and Condition 7. O

As a consequence of Theorem 4 we get the following result for the asymptotic distribu-
tion of A(t; Zo) defined in (4.7) (cf. Andersen et al., 1992, Corollary VIIL.2.6)

Theorem 5 Assume Conditions 1-8. Then the process (4.8) converges weakly to a mean
zero Gaussian process with a covariance function

o*(s,1) = {exp(8] Zo)}’ (6.29)
x {w?(s A t; Bo) + (B(s; Bo) — Ao(8)Z0)" B (B(£; Bo) — Ao(t)Zo) }
which may be estimated uniformly consistently by no3(s,t), cf. (4.9).

Proof: As a consequence of Theorems 3 and 4 the process \/E(Zo( :B) — Ao(+)) con-
verges weakly to a mean zero Gaussian process with a covariance function

 w¥(sA58) + B(s;80)" Z7'B(t; Bo)- (6.30)
It also follows that the asymptotic covariance of \/n(B — B,)7 and /n(Ao(t ;B) — Ao(t)) is
~E7'B(t; Bo)- (6.31)

Now, by a Taylor series expansion, the processes (4.8) and
exp (B3 Zo) {v/n (4o(-:B) - Ao(*)) + 4o()ZIv/n(B - Bo)}

are asymptotically equivalent, and the weak convergence result for (4.8) follows invoking
(6.30) and (6.31).

Finally, we will prove that ng?(s,t) is a uniformly (in s and t) consistent estimator for
(6.29). By Theorems 1, 2 and 4 and Lemma 1, we then only need to prove that n@?(t; ﬁ)
(cf. (4.10)) is a uniformly consistent estimator for (6.26). Now n&?(-;f3,) is the optional
variation process of the local square integrable martingale /nW (cf. (4.6)) and therefore,
by Rebolledo’s theorem (cf. Andersen et al., 1992, Theorem II.5.1), tends uniformly in
probability to the same limit as the predictable variation process of this martingale. Thus,
by (6.28),

sup [[no?(t; B) — w(t)]| 5 0
tefo,7]
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as n — oo. Furthermore, by (6.7),

550" 68)| <2 [ 3 Hu)ma(e Xen(u) {580, 0)}  aBe(u),

re?P

and it follows by (6.5) and Condition 7, using an argument similar to the one used to handle
the first term on the right hand side of (6.25), that

sup |lnw?(£;B) - nw?(£8o)l| > 0,
tefo,r]

and the uniform consistency of nw?(t; B) follows. O

7 Asymptotic results for specific sampling schemes

In this section, we will assume throughout Conditions 1 and 2, and we will demonstrate
how Conditions 3 - 8 are satisfied for some specific sampling schemes under the assumption
that the censoring indicators and covariate processes (Y;(-),Zi(-)),i € {1,2,...,n} are
independent copies of the pair (Y, Z). In all cases below we let p(t) = P(Y(t) = 1), and we
assume infyejo ;) P(t) > 0 and ao(t) > 0 for almost all ¢ € [0, 7]. We also assume that

-
V= / Cov(Zy(t))ao(t)dt is positive definite, (7.1)
(]
where the distribution of Zy is given by

P(Zy(t) € B) = P(Z(t) € B|Y () = 1).

Our Conditions 3 - 8 are taylored for cohort sampling methods, and they are more
restrictive than necesary for the situation of Example 5.1 where the entire risk set is sam-
pled with probability one. Nevertheless it may be illustrative to first consider this simple

example.

Example 7.1 Full cohort. In order to have Conditions 5 and 7 fulfilled we here need
to assume that the covariate process Z is bounded; that is, that there exists M such that
|1Z(2)|| < M for all £ € [0, 7].

Under the above assumptions we will show how Conditions 3, 4 and 5 are satisfied;
hence Theorems 1,2 and 3 may be invoked. In full cohort sampling the entire risk set is
used as controls for the case so that x;(r | §) = I(r = R(t)) for all i € R(t) = {i : Y;(t) = 1}.
In this case (3.4) and (3.5) become the cohort quantities

SONB,1) = 3" Vi()Z8"(t) exp(B7Zi(t))

=1

and

E(B,t) = s")(8,1)/5(8, 1),
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respectively, cf. Andersen and Gill (1982). By (6.1),

. _ [n1sM(By, 1)\ ** 1

QM (By,t) = (mﬁ) ;5(’)(ﬂo,t)-
The law of large numbers yields

%3(1)(3,0 RA $9)(B,t) asn— o, (7.2)
where

(8o, t) = E{Y (£)2°"(t) exp(BJ Z(t))}-
Taking limits,

(1) ®p

a®(Bo, 1) = (ﬁg—:fg) §(Bo,t).

In particular,

¢®D(Bo,t) = sD(Bo, 1) and ¢ (Bo, 1) = 5(Bo, )%/ (8o, 1),

and
2= [ 180, 1)/8(Bo, 1) ~ {5D(Bort)/ s (Bo, 1}*71eO(Bo, haa(t)at,

recovering the covariance given by Andersen and Gill (1982).

As the covariate processes are bounded, (6.3) is satisfied with X,(z) = M. Noting that
in the full cohort case Y ;ep Yier 7:(r|i) = |R(t)] = n(t), we see that (6.4) is satisfied as
n(t)/n B p(t) and [ (n(t)/n)ao(t)dt converges in probability to [y p(t)ao(t)dt, which is
finite by Condition 1. Thus Condition 5 is fulfilled.

We observe that the covariance X has the following interpretation. Define the distribu-
tion of a random vector Zy (t) by

T
ER(Zy(t) = E (h(zy(t)) E":’;ff;f;f(’t’))) , (7.3)
for all bounded measurable functions h. Then
2 = [ §t)Cov(Zy (1)) B{exp(B Zr (1) Jault)et (74)

that is, X is the integral of the product of the at risk probability, the covariance of the
covariate of an observed failure, and the average hazard for an individual in the cohort.

We now show how condition (7.1) implies Condition 4. If X given by (7.4) is not
positive definite, then there exists a nonzero vector a such that a'Za = 0, and so by
the positivity assumptions, a' Cov(Zy(t))a = 0 for almost all ¢. Hence, for almost all ¢,
E([aT(Zy(t) — EZy(t))]? = 0, which, by (7.3), implies that for almost all ¢, E([aT(Zy(t) —
EZy(t))]* exp(B5 Zy (t))/ E(exp(B5 Zy (t))) = 0. But then, for such t, E[a” (Zy (t)-EZy (1))]* =
0, and therefore a"Cov(Zy(t))a = 0 and V is not positive definite, contrary to assump-
tion (7.1).

To satisfy the hypotheses of Theorems 4 and 5, we find it necessary to impose a fur-
ther condition. An example given in Goldstein and Langholz (1992) demonstrates that
infye(o,+) P(t) > O is not sufficient to imply Condition 6. Therefore, we assume

2R




Condition 9 There ezists a finite number of intervals I,k =1,..., K, such that
and with p, = P(Y(t) = 1Vt € 1), we have min; p; > 0.

Then Condition 6 is fulfilled, for with J; = I (L%, Y;(t) > 0Vt € I;) we have that J(t) >
[IX, k. But P(Jp = 1) = 1— (1 — p)"; hence J; and therefore J(t) converge to 1 in-
probability. _

Moreover Condition 7 is seen to be satisfied by an argument similar to the one used to
prove Condition 5, while (7. 2) yields that the left hand sides of (6.21) and (6.22) converge
in probability to

e(Bo,t) = 8By, 1)/5)(Bo, 1)
and
#(Bo,t) = 1/5C)(By,1),
respectively, recovering the results of Andersen and Gill (1982, Theorem 3.4).

We next consider nested case-control sampling where, at each failure, m — 1 controls
are randomly sampled from the risk set (Example 5.2).

Example 7.2 Nested case-control sampling. We here assume that the covariate pro-
cess Z satisfies the following moment condition:

Condition 10 There ezists by > 3||Bo|| such that,

E {exp(2bo||Z(2)|])} < o0
for allt € [0,7], and

[ {E exp(2bo||Z()]|)}™ 2 a0(t)dt < oo.

Using the fact that if Z ~ N(u,0?) then E{exp(7]Z|)} < 2exp(37%20? + 7|pl), it is not
difficult to see that Condition 10 is satisfied if, for example,

Z(t) ~ N(u(t), o*(2))
with
31[;;;] |u(t)] < o and ‘s?g]az(t) < o

under Condition 1.

We will show that Condition 10 and the above assumptions imply that Conditions 3
through 5 are satisfied, and so the conclusions of Theorems 1,2 and 3.

Let R(t) and n(t) as above be the risk set and the number at risk at time ¢, and
introduce

Pt)={rCR(t):|r|=m}, Pi(t)={reP(t),icr},
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and

-1
x(r|i) = (n'(:)_—ll) I(r € Pi(t)).

First we verify Condition 3, which gives us the form of the asymptotic covariance matrix.
For (p,7) equal either (0,2) or (2,0), we have by (6.1)

Qe (By,t) = _("(‘) 1) > {Er(ﬁo,t)@' Ezs(t)""exp(ﬂoTzi(t))] I(re?(t))}-

m-1 reP sE€Er

Let

-1 |
6(#:‘7)(30,0 - p(t)—m+1% (:,) Z {Er(ﬁo’ t)@ﬁ Z z‘.(t)@"' exp(ﬁ;rz,(t))] I(re p(t))} .

re?P i€r

In calculating the variance of @, we have (") —(,2 ) (3™) nonzero terms corresponding to the

number of sets r, s where |r| = |s| = m and rNs # 0. Since lim, .o () () ™) = 1, we
see that VarQ — 0, and therefore Q converges to its expectation (Goldstem and Langholz,

1992) . Taking ratios componentwise if necessary and using n(t)/n = p(t) as n — o0, we
see that Q and Q have the same limit in probability. Hence with u = {1,2,...,m},

a®M(Bo,t) = p(t) ™' E {E..(ﬁo, t)e [% Y Z:()® exp(Bg zs(t))] I(ue P(t))} :

i€u
In particular,
1
= [ [1®(B0,1) - ¢ (B0, N]an(t)dt,
where |

(8o, t) - ¢*V(Bo,1)
= 20" E{(Z(0)% exp(B]Z(1) - -Ba(B0,t)®) I(u € P(1)}.

As shown in Goldstein and Langholz (1992), Condition 4 is satisfied whenever condi-
tion (7.1) is true by an argument similar to that used in the full cohort case.

To interpret the covariance matrix for this instance, let Zyq = (Zy;1, Zyy2,. .., Zy,,,.)T,
a vector with independent components each with distribution Zy. Let the distribution of
Zy be specified by

P(Zy(t) = Zv,;(t)| Zv.a) = gi(t)
where

exp(B3 Zv,i(t))
Ticu exp(8g Zyi(t))

g;(t) =

2N




Then

2=FE { / p(t)Cov(Zy(t)]ZYn) Eexp(ﬁ}zy,(t))ao(t)dt} (7.5)

:en

which has a similar interpretation to that given to (7.4) in the case of the full cohort; the
matrix X is the expectation of the integral of the product of the at risk probability, an
estimate of the covariance of the covariate of the failure, and an estimate of the average
hazard of the cohort, both based on the sampled risk set.

Next we verify Condition 5. Equation (6.3) is true using the bounding random variables

Xx(t) = 3 l|Zi(2)]l-

i€r

To verify (6.4), begin by noting that

-1
D.()= 22 ("(‘)) > {o%O1(u e P)}.
{3

m

The set counting argument used to show Condition 3 may be repeated to show that D,(t) 5
D(t) where D(t) = p(t)~™+1 E{ebXu(!)I(u € P(t))}. The verification of (6.4) will therefore
be complete if we show

-1
[ ’—“ni)("“’) 3 ST (x € P(e))aolt)it

m reP

[ o0 BT 01 € P aolt)it

this latter quantity being finite by inf; p(t) > 0 and Condition 10. Let € > 0 be arbitrary
and defining the events
< e}

n= {7

there exists a constant C > 0, depending only on ¢, such that

P(BS) < Ce™™C, (7.6)

n(t) — p()

Recall that if n(t) < m the probability of sampling a set r is zero; we may therefore adopt
the convention that ("{*)) ™! = 0 whenever n(t) < m. We now see that

-1
[ 2%) (n(t)) 3 P XrO1(BE)I(r € P(2))ao(t)dt 5 0

m reP

? y]ng

{.(ﬁ) B (;) _ (%)"““ +0(1/n),

k3]



we have

-1

n

and the result will follow from

/: we (;) Y O (r € Ple))aolt)it

reP
P /': p(t)"”*'lE{eb“x“(t)I(“ € P(t))}ao(t)dt.

Computing the second moment of the difference and again using inf; p(t) > 0, it suffices to
show

, -2
/: /o (:;) Z Cov{eber(t)I (r € P(2)), b0 Xa(u) I(s € P(u))}ao(t)ao(u)dtdu

Ir|=m
|s|=m

tends to zero as n — o0o. Again, the only nonzero terms in the double sum above are those
for which rn s # @, and the same set counting argument as above shows that it suffices to
prove

[ /o . Cov{e®Xr®)I(r € P(t)), b XM (s € P(u))}ao(t)ao(u)dtdu < oo,

which follows from Condition 10 after a final application of the Cauchy-Schwarz inequality.

To satisfy the hypotheses of Theorems 4 and 5, we assume Condition 9 of the previous
example to hold. Then Condition 6 is fulfilled. To verify Condition 7, we see that in the
present case equation (6.20) reduces to

[70(2)7 ("9) S tentoxconrts € P catie.

m reP

The calculation that this quantity converges in probability to a finite quantity parallels
that for showing the convergence in probability of f; Dn(t)ao(t)dz.

For Condition 8, using J(t) 5 1and arguments similar to those used above we have
equation (6.21) satisfied with

e(Bo,t) = P(t) "™ E {Eu(Bo, t)I(u € P(t))}
Similarly, since the left hand side of (6.22) reduces to

J(:():; - (n,(,f)) ) ) { (E Yi(t) erp(ﬁoTz.-(t))) i Ire ’P(t))} :

reP i€r

we see equation (6.22) is satisfied with
$(Bo,t) = p—(t)imﬁE { (.%:1 Yi(t) exp(ﬂoTZe(t))) I(ue 'P(t))} :

From these expressions the asymptotic covariance function (6.29) of the estimated inte-
grated hazard may be obtained using (6.23) and (6.26).
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We finally consider stratified nested case-control sampling as discussed in Example 5.3.

Example 7.3 Stratified nested case-control sampling. Assume here that (Y;(-), Z;(-), Ci(-)),
i =1,2,...,n are independent copies of (Y(-),Z(-),C(-)) with C(t) e C = {1,...,L} and

that the covariate process satisfy Condition 10 of the previous example. Note that the
independent C assumption covers cases where stratification is done based on observed in-
formation on the ith individual only, such as stratification based on absolute exposure
status as discussed in Example 5.3, yet, it does not cover stratification based on relative
exposure, as the strata of the ith individual now depends on values observed on other
cohort members.

Using the notation of Example 5.3, we let

n(t)=P(C@E)=1lY(t)=1) 1=1,2,...,L,
P(t) = {r CR(t): VO<I< L, |rnRyt)| = mi},
Pi(t) = {r € P(t),i € 1},

and

-1
xe(rli) = [ﬁ ("'(t)) ] M#:(E:)I(r € Pi(t).

=1 m
We assume that inf,¢jo,-pi(t) > 0,1 = 1,2,...L. Note that P(t) and P;(t) have different

meanings than in the previous example.
‘'We first consider Condition 3. For (p,7) equal either (2,0) or (0,2), we have by (6.1)

QEM(Byt) = = 3 Exl(Bor 1) Y Zi(1)®" exp(BYZi(e))mu(eli)

reP i€r
Let
m =1L
fo=pea( ™ ) Tae
and

-1
re(r|t) = f(t)g-c—'(ﬁ(t—) (;:) I(r € Pi(t))-

me,(t)
Since ny(t)/n 5 P(t)m(t) as n — oo,

___rg(r|i) 3 1 asn— o0
m‘t("li) ’

and an argument as in Example 7.2 above now yields that the desired limit is the same as
the limit of '

K&



3“8y, t)

-1
- f(t)(") > {Er(ﬁo,t)°’ EZe(t)“"'erp(ﬁoTze(t))pc.-(:)(t)mz-,.‘(,)] Ire P(t»}-

M) rep i€r
Let
517(B0rt) = L Yil0)2:(1)®" exp(BL Z:(1))pcu(o)(ImG s

i€r
Er(Bo,t) = 5(Bo, 1)/ 5(Bos )

and

Q(Pﬁ) (ﬂo, t)

-1
- f(t)(“) > {i:,(ﬁo,t)“’ ZZ.-(t)°”exp(ﬁoTZ.-(t))pc.-(t)(t)ma,.‘(,)] I(rev(t))}.

™/ rep ier

As ny(t)/n(t) converges to pi(t),! = 1,2,..., L, we have that E: - E, F 0and Q-0 Fo.
As in E{ample 7.2, the variance of the Q tends to zero (see Langholz and Goldstein,
1992), and Q converges to its expectation. Hence,

q(p,‘y) (ﬂo: t)

= f()E {i‘m(ﬁo, )% |3 2;()® exp(ﬂ;rz:'(t))Pc,-(z)(t)mE;(t)] I(ue "P(t))} )

jeu

and we have that 3 = [J[¢(®2)(B,,t) — ¢(3°)(B,, t)]ao(t)dt.

As in the previous two examples, the condition (7.1) implies Condition 4. The matrix
3 here can be interpreted as in the previous two examples, but in this instance, with Zy
defined below, X is the expectation of the integral of the product of the at risk probability,
an estimate of the covariance of the failure covariate based on the sampled risk set, and an
estimate of the average hazard of the entire risk set constructed from the stratified sampled
risk set.

To give an expression for X, let (with a slight abuse of notation) u = {({,5) : | =
1,2,...,L,j = 1,2,...,m}, Zya(t) = (Zys;(t))@j)cu be mutually independent with
Zy, ;(t) distributed as Z(t) conditioned on Y (t) = 1,C(t) = I, for (,7) € u. Now let

P(Zy(t) = Zy;,;(t)|Zyn) = @;(t)
where

exp(Bs Zv.4(t))pc; e
T (ki)eu exP(Bo Zy,i(1))Pcy(ymzyyy

@,;(t) =

U




Then

E=E { /: p(t)Cov(Zy(1)|Zya) Y. exp(ﬁoTzr.h,i(t))Pc;(t)méf(g)ao(t)dt}- (7.7)

In particular, formula (7.5) for X in nested case-control sampling contains the term
1 5. cuexp(Bs Zy,i(t))ao(t), which is an estimate of the average hazard in the entire risk
set based on the sampled set u. The formula for X for stratified nested case-control sampling
has the corresponding term

Y exp(Bg Ty i(t))po.ymi(syeo(t)-
(ks)en :

There are mg,(;) individuals of the same strata as individual i in u, and the factor mz.:(t)
scales the sum of these contributions to the hazard from these individuals to yield a net
hazard for a single individual of this strata. Multiplication of the factor pc,(;), the propor-
tion of individuals of this strata in the entire risk set, and summing now gives an estimate
of the average hazard for the entire risk set based on the stratified sampled risk set. The
remainder of terms in the formula for ¥ in this case can be similarly interpreted.

To satisfy condition (6.3) again use the bounding random variable

X:(t) = Y 11Z:(1))-

i€r

The argument that

AT SO n i) B f(1)E {e'*"““’ [Z: ’—"-"ﬂ(j—)] I(ue ?(t))}

mrer ier ien ™Ci(

and

/‘: % E eboXr(t) E xo(ri)ao(t)dt

reP i€r
F [o " fOE {J»Nf) [2 %%] I(ue P(t))} ao(t)dt

parallels that given in Example 7.2, and verifies condition (6.4).

To satisfy the hypotheses of Theorems 4 and 5, we again assume Condition 9 of the
previous example to hold; this implies Condition 6 as before. To verify Condition 7, we see
that in the present case equation (6.20) reduces to

= [L (n -1
JECIEY ['II( "’)) 3 {exp(boXe($))I(r € P(1))} ao(t)dt.

=1 m repP .

which converges in probability to a finite quantity by an argument similar to those used
above.
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For Condition 8, using J(t) %, 1 and arguing as before, we have equations (6.21)
and (6.22) satisfied with

e(Bo, ) = p(t) " f(H)E {Eu(Bo, )I(u € P(1))}

and
-1
#(Bo,t) = F()E { (E Y;(t) exp( Izi(t))m) I(ue 'P(t))}
ien Mc,(t)
respectively.

Note that Example 7.2 is a special case of Example 7.3 for L = 1.

8 Extension to k types of events: stratified populations and
multistate models

We have above, for the ease of presentation, assumed that we are interested in only one type
of event (failure), and that there is only a single population stratum under consideration.
However, in multistate event history analysis, one may want to simultaneously model more
than one possible sort of event (e.g. relapse, recovery, death), and in survival analysis (and
event history analysis as well) one may want to perform a stratified analysis using some
categorical covariate (e.g., sex) as stratification variable. As developed by Andersen and
Borgan (1985, Section 7), and further discussed in Andersen et al. (1992, Section VII.1), the
inclusion of (possible time dependent) strata in our model and the extension to multistate
models are both special cases of the same general framework.

For nested case-control sampling this framework may be described as follows. As in
Section 2, we first assume that all events observed to happen in the cohort may be modeled
as one “large” marked point process. From this marked point process we extract a marked
point process {(¢;,(kj,%;)); 7 > 1} only recording the innovative events, i.e. the times ¢;
when an event of interest occur, the type h; of the event happening at ¢;, and the individual
i; experiencing this event. Here h; may indicate individual i;’s population stratum, or it
may describe what sort of event (e.g. relapse, recovery, death) this individual experiences
or both. We denote the possible different types by 1,2,...,k, and assume k to be a fixed
number not depending on n.

Let

Nhi'.(t) = ZI(tJ' <t (h.‘i’ij) = (h,?)) (8'1)

be the counting process counting the number of events of type h for individual ¢ in [0, ],
and let Y3;(t) be a predictable indicator process taking the value 1 if the ith individual is
at risk at for experiencing an event of type h just before time ¢ and 0 otherwise. We may
then specify a model for the cohort by assuming that the intensity processes of the Np;
take the form

Mni(t) = Yi()ano(t) exp(B] Zns(2)), - (82)
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where the Zy;(t), for h = 1,2,..., k, are vectors of left continuous and adapted type specific
covariate processes for the ith individual. These are typically derived from a vector of Z;(t)
of basic covariates for individual i as illustrated by Andersen et al. (1992, Sections VII.1-2).

Sampling may be superimposed onto this cohort model, just as described in Section 2,
to get the marked point process

{(ti’ (h51 iitﬁj)); i2 1}
also recording the sampled risk sets ﬁj. This process has mark space
E = {(h,i,r): h e {1,2,...,k},i € {1,2,...,n},r € P;}.

Also here we let (F;) be the filtration generated by the events in the cohort as well as by
the sampling. Furthermore define, for each (h,,r) € E, the counting process

N(h.i,r)(t) = Z I(t; < t,(hj, %5, R;5) = (kyi,r1)), (8.3)
i21

counting the observed number of events of type h for individual ¢ in [0,¢] with associated
sampled risk set equal to r, and denote its intensity process by A¢ s r)-
Assuming the sampling to be independent, we may then write

A(h,i,r)(t) = i(t)me(r] b, i), (8.4)

with Ax;(t) given by (8.2) and x¢(r| h,%) being the conditional probability of selecting the
sampled risk set r at t given F;_ and the fact that the individual i experiences an event
of type h at t. A model for nested case-control sampling is therefore given, via (8.2) and
(8.4), by specifying, for each h,i and each t with Yj;(t) = 1, the sampling distributions
x¢(+| h,3) over sets r in P;.

Typically, if A indicates population strata, sampling will be done within these strata,
i.e., with x¢(r| h,$) a distribution over sets of subjects in population stratum h at time ¢.
But the sampling may be across strata with x(r| h, i) = x¢(x| i) for all h. Such a strategy
may be necessary if information on population strata is collected only on the sample or
when the single stratum model is of primary interest and the multiple population strata are
used for model checking. As examples one may adopt simple or stratified random sampling
of controls within population strata or for all population strata combined.

To derive a partial likelihood, we introduce the counting processes

N(h'r)(t) = Z N, (h,i,r)(t)a

i€r

counting the number of times an event of type h occurs in [0,¢] together with a sampled
risk set equal to r, and their intensity processes

Mie)(®) = 3 Via(t)ana(t) exp(BT Zas(t)we(x] By s B).

i€r

The intensity processes A(; ;) may be factorized as

Ahix)(t) = Anx)(E)xe(i] By x5 By),
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with

Yii(t) exp(B3 Zni(t))xe (x| b, i)
Y jer Yai(t) exp(Bg Znj(t))xe(r]| b, 5)

being the conditional probability that the ith individual experiences an event of type h at
t given F;_ and that an event of type h occurs among individuals in the set r at &.

Multiplying together these conditional probabilities over all observed events, we arrive
at the partial likelihood

Tt(i | h’l‘;ﬁo) =

k i(u T Zni(u))xu (x| By i
£X(B) = H H II H{ Yhi(u) exp(B ziu( ))xu(r]| b, 9) . (8.5)

AN x)(vw)
wclor] b= rep icr | Sier Yai(u) exp(BT Zn;(w))xu(r| b, 5) }
As before the estimator B, obtained by maximizing this partial likelihood, will be asymptot-
ically multivariate normally distributed around the true value B, with a covariance matrix
that may be estimated by the inverse of the observed information matrix (evaluated at J3).
Formal proofs may be written out along the lines of Section 6 provided that the regularity
conditions stated there hold for each type.

Note that if h represent population strata and the sampling is done across these strata,
if the ith subject fails, then Y} ;(¢;) = 0 for subjects not in the same population stratum as
i and such subjects will not contribute to the partial likelihood. Thus, as one might expect,
there may be a severe efficiency penalty for not sampling within population stratum.

To be able to estimate the type specific baseline intensities

Apo(t) = /o ‘ apo(u)du

we must assume that the sampling distributions x,(-| h,) are of the form (4.1) for each
type h. Thus, assume that for each h and t, at which at least one individual is at risk for
an event of type h, there exists, conditional on F;_, a sampling distribution x¢(-| k) over
sets r in P such that

. ft(rli7 h)

x(r| h,t) = ——= 8.6
for i € r, where

pe(ilh) = Y m(x| b). (8.7

r€P; :
is assumed to be positive for each i with Yj;(¢) = 1.
Then by the same argument as in Section 4, we obtain the estimators
- = t AN, ) (u
Anolt,B) = / ) tn)(¥) (8.8)

0 {1 Tjer Yii(u) exp(B' Zni(w))/pu(ilh)

for the integrated baseline intensities. For fixed Zjp one may estimate Ap(t,Zpo) =
exp(B5 Zno) Ano(t) by

Eh(t; Zho) = exP(BTzhO)zhO(t’ B)’
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and the asymptotic properties may be derived as in Section 6.

The integrated intensity estimators may form the basis for model checking procedures
as for the full cohort model, see e.g. the review by Andersen et al. (1992, Section VII.3).
Furthermore, for Markov process models, they may product-integrated to give estimators
for transition probabilities as described Andersen et al. (1991) and Andersen et al. (1992,
Section VIL.2.3).

9 Aalens linear regression model

We have in this paper considered the proportional hazards regression model (2.2). An
alternative to this model is Aalen’s linear regression model, see the review in Andersen
et al. (1992, Section VII.4.1) and the references therein. For this model it is assumed that
the intensity process for the N; are given by

Ai(t) = Ya(£){Bo(t) + Br(t) Zaa(t) + - - - + Bp(t) Z5p(2)}, (91)

where the B; are arbitrary regression functions only restricted by the requirement that the
A; should be non-negative.
In this section we will indicate how estimation of the integrated regression functions

t
B;(t) = -/o Bj(u)du; i=1,...p;

may be performed based on sampled cohort data. To this end we assume that the sampling
distribution satisfies (4.1), and note that by (2.6) the N(; ;) then have intensity processes

AGn)(t) = m(r) Yi(£)B(2) (92)
with

Yt'(t) = (11 Zl'l(t)’ ceey Zt'p(t)) : K(t)/pl(i) (9'3)
and

ﬁ(t) = (ﬁl(t)’ X vﬁ?(t))T'

We furthermore introduce the |r|-dimensional column vector N(t) with elements N (%),
l € r, and define A,(t) and M,(t) similarly. We also introduce the |r| X (p+ 1) dimensional
matrix Y,(t) with rows Y;(t), l € r, cf. (9.3).

As an estimator for B(t) = (Bo(t), Bi(t),- - -, Bp(t))T we then propose

BH)= [ 3 Je(u) ¥ (w)dNe(w). (9.4
0

reP
Here Y (t) is a generalized inverse of Y,(t), i.e. a (p + 1) X |r| matrix satisfying
Y (t)Ye(t) =1,
the (p+ 1) x (p + 1) identity matrix, and

Je(t) = I(rank Yy(t) = p+ 1)
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is the predictable indicator of Y,(t) having full rank. Note that this implies that each
sampled risk set must include at least p + 1 subjects.
The motivation for the estimator (9.4) is the following. By (9.2) we may write (c.f.

(4.5))

B(t) = B*(t) + / 3 Je(u) Y (8)dM; (u). (9.5)
re?P
with
B*(t) = / {E J,(u)r,,(r)} B(u)du.
re?P

If Y, (t) has full rank with high probability then B*(t) is almost the same as B(t) and (9.5)
then gives that the estimator (9.4) is almost unbiased.

The variance of B(t) may be estimated by the optional variation process of B — B*, i.e.
by

$(0) = [ 3 Je(w) V5 (u)diog (dN,(w)) Ye(w)T, (96)

re?P

where diag(a) for a vector a is the diagonal matrix with the elements of a in the diagonal.
To actually calculate B(t) and X(t) a choice of generalized inverse must be made. A
simple possibility is

Y5 () = (Ye®)T¥e() ™ ¥alt)T

corresponding to an unweighted least squares principle. A weighted least squares approach
suggests the use of

Y7 () = (Yel) " Wa(®)Ya()) ™ Yalt) " Wilt)

for a suitably chosen |r| X |r| diagonal weight matrix W(t).

It should be possible to derive large sample properties of the estimator B(t) using
the martingale representation (9.5) along the lines of the proofs for the full cohort; c.f.
McKeague (1988), Huffer and McKeague (1991) as well as the summary in Andersen et al.
(1992; Section VII.4.2). We will not go into this here, however. The practlcal applicability
of the estimator (9.4) also needs to be investigated, and one may expect that B(t) based on
the nonparametric model (9.1) will need much larger sampled risk sets to behave reasonably
than what is the case for the estimators for the semiparametric model (2.2).

10 Discussion

The general framework we have presented makes it possible to analyze a large class of
sampling designs. The three completely novel (classes of) designs given in Examples 5.3
- 5.5 illustrate the potential usefulness of the methods. Many techniques available for the
analysis of full cohort data are accommodated with little change for sampled data. In
this paper alone, we have given estimation methods for relative risks (using the partial
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likelihood), baseline hazards, survival probabilities, and extensions to multistrata and mul-
tistate problems, and to the Aalen linear regression model. Estimation of relative mortality
is developed in Borgan and Langholz (1993). Further, the marked point process framework
can be generalized to accommodate other design problems. For instance, in Langholz and
Borgan (1992), a simple generalization of the mark space described in Section 2 is used to
derive a partial likelihood when failures are also to be sampled from the cohort.

In Section 5, we were careful to point out that the new designs and associated partial
likelihood might, but not necessarily would, be more efficient than “standard” methods (by
which we were thinking of simple nested case-control sampling). There are actually two
aspects to the issue of efficiency. The first is the efficiency of the design (compared to the
full cohort) when the most efficient analytic method is used. The second is the efficiency of
the partial likelihood for the given design compared to the optimal method (for this design).
It is important stress that the partial likelihood approach presented here provides a method
for estimation of the regression parameters for a large class of sampling designs but, since
optimal analytic methods for a given sampling design have not been characterized, it is an
open question as to when the partial likelihood for a given design is efficient relative to the
optimal. Greenwood and Wefelmeyer (1990) show the asymptotic efficiency of the partial
likelihood for estimation in the full cohort case. Their approach should be readily adaptable
to the sampled cohort situation and, in fact, has been used to show the efficiency of the
partial likelihood for simple nested case-control sampling (Scheepker, 1992). In Section 6,
we provide the basis for (large sample) comparisons of partial likelihood analyses of designs
within this class. In particular, efficiency relative to the full cohort or to the simple nested
case-control sampling is possible. For instance, using asymptotic variance formulas (7.5)
and (7.7), the stratified sampling method of Section 5.3 was found to have much smaller
asymptotic variance than simple nested case-control sampling in situations of practical
importance (Langholz and Borgan, 1992).

Interestingly, up until now, simple nested case-control sampling has been the only sam-
pling design for which analysis is based on a partial likelihood. Case-cohort sampling,
perhaps the only other cohort sampling method which has been used for actual epidemio-
logic studies, relies on a “pseudo-likelihood” approach because, as shown in Example 5.6,
the partial likelihood does not make use of non-subcohort failures. A similar phenomenon
occurs with variants of nested case-control sampling in which subjects may serve as a
control only once (Prentice, 19865, Robins et al., 1989). Designs II and III of Langholz
and Thomas (1991) are examples of sampling designs which do not belong to the class we
have considered. The path sets, used in the stratified sampling by Langholz and Thomas,
are based on all failure times which occur over the study period and, thus, the sampling
distributions are not predictable.

In earlier, work Goldstein and Langholz (1992) developed the asymptotic theory for
(simple) nested case-control sampling based on a different model from that given here. In
their model, just after a change in Y; or N; for some subject ¢ in the cohort, a set of controls
is randomly (and independently) sampled for each at risk subject. Then, when a failure
occur, the sampled risk set would be already established. The counting processes then just
count failure occurrences, as in the full cohort framework of Andersen and Gill (1982), and
the fictitious sampling is predictable under an obvious enlarged filtration. In the marked
point process approach of the present paper, the counting processes count joint failure
and sampled risk set occurrences. The probability laws for the sampling are predictable
but the sampling itself is adapted (but not predictable) with respect to the filtration (F¢).
The observed scores from both models are identical but the score process (3.8) is exactly a
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martingale while Goldstein and Langholz’s is a martingale plus an additional term. This
second term is due to the additional variation generated by the multiplicity of (fictitiously)
sampled risk sets and is asymptotically negligible. The approach given here not only vastly
simplifies proofs, allows for a partial likelihood interpretation, and leads, quite naturally,
to the estimator of the cumulative baseline hazard but also reflects how nested case-control
sampling is actually done. We note, for completeness, that the earlier approach of Goldstein
and Langholz does generalize to accommodate some of the sampling schemes in the class
considered here; Langholz and Goldstein (1992) developed the stratified sampling method
in Example 5.3 in this way.
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