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Methods are provided for regression parameter and cumulative baseline hazard es­

timation in the Cox model when the cohort is sampled according to a predictable 
sampling probability law. It is shown how a marked point process representation of 
cohort sampling naturally leads to the derivation of a partial likelihood which may be 
used for the estimation of regression parameters. Standard counting process techniques 
are used to show that this partial likelihood may be treated as a likelihood in that, at 
the true parameter, the expectation of the score is sero and the variance ofthe score is 
the expected information. Generalisations of the Breslow estimator of the cumulative 
baseline hazard and estimators of the associated variance processes are provided. The 
results are used to derive partial likelihoods for three new sampling designs, stratified 
and quota sampling from the risk sets and nested case-control sampling with number 
of controls dependent on the failure's exposure status, as well as for simple nested case­
control and case-cohort sampling. Baseline hazard estimators are given for simple and 
stratified nested case-control sampling. General asymptotic theory is developed for the 
maximum partial likelihood estimator and cumulative baseline hazard estimator and 
is used to derive the asymptotic: distributions for estimators from simple and stratified 
nested case-control sampling. Generalisations to stratified populations or multistate 
problems and the Aalen linear regression model are given. 

1 Introduction 

Epidemiologic cohort studies are considered the most reliable method for assessing the 
variation in rates of morbidity and mortality due to factors present in the population under 
study. Cohort members are observed over some time period, and either "fail" (develop 
or die :&om the disease of interest) or are "censored" (are alive at the end of the study 
period, die of some other cause, or are lost to follow-up). Variation in rates are then 
modeled from information on exposures, confounders, and other potential predictors of 
risk, which are generically called "covariates," collected on cohort members. If complete 
covariate information is obtained for all cohort members, a wide range of parametric and 
semi-parametric analytic techniques are available (e.g. Breslow and Day, 1987). Especially 
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useful has been the semi-parametric proportional hazards model (Cox, 1972), where the 
hazard rate for the ith subject is specified as 

~(t) = ao(t) exp(,B~Z,(t)). (1.1) 

Here z,(t) = (Zst(t), ... , Z,p(t))T is a vector of cowriates for subject i at time t, ,80 is 
a vector of regression parameters, and ao is the baseline hazard about which minimal as­
sumptions are made. The partial likelihood used for estimation of the regression parameters 
does not depend ao and is given as 

£(,8) = II { exp(,8 T z,~ t;)) } ' 
t; E1e1l; exp(,8 z,( t;)) (1.2) 

where the t; are the ordered failure times, i; is the index of the failure at time t; and 'R; 
is the set of all those "at risk" at t;, the failure and those on study. An estimator of the 
cumulative baseline hazard, Ao(t) = J~ ao(t)dt, was given by Breslow (1972) as 

.- - ~ 1 
Ao(t;,8) = L, .-T 

t;9 E1e1l; exp(,8 z,(t;)) 
(1.3) 

with {J the maxirmun partial likelihood estimator obtained by maximizing (1.2). Andersen 
and Gill ( 1982) showed that (1.2) has "basic likelihood properties," i.e., that the expectation 
of the score at the true value ,80 of the regression parameters is zero and the variance 
of the score at ,80 is the inverse iDformation, and developed the asymptotic theory for 
the estimators {J and ,Ao. These estimators provide a basis for iDference about other 
quantities or functions of interest such as survival probabilities and median survival times 
(e.g. Andersen et al., 1983; Andersen et al., 1992, Section VTI.2.3), and slight modifications 
of these provide estimators for e.g. relative mortality (Andersen et al., 1985) or general 
relative risk parameters (Prentice and Self, 1983). Further, though we have, and will 
continue to use terminology which indicates that a subject may only fail once, these methods 
apply, without modification, to outcomes which may recur and have been extended to 
stratified populations and multistate models (Andersen and Borgan., 1985, Section 7). 

Typically, because of the rarity of the disease outcome and/ or the complexity of the 
relationships to be explored, cohort studies require very large numbers of subjects and/or 
long periods of follow up in order to accumulate enough failures to have sufficient statistical 
power to give reliable answers to the questions of interest. This leads to something of a 
paradox. If a cohort study is large enough to allow for a meaningful analysis, the cost 
of collecting high quality covariate iDformation on all subjects is prohibitively expensive, 
if not logistically impossible. It would also seem unnecessary. Loosely, if the disease of 
interest is rare, the contribution of the non-failures, in terms of the "power" of the study, 
will be negligible compared to that of the failures, Thus cohort sampling methods which 
include all the failures and a portion of the non-failures are highly desirable. 

Perhaps surprisingly, there exist few cohort sampling options. The most popular of 
these is the nested case-control design (Thomas, 1977) and this is of particular interest 
in the context or this paper because, with the exception or a never used sampling-with­
replacement variant (Robins et al., 1986), it is the only cohort sampling method which is 
analyzed using partial likelihood techniques. Thus, at this point, we will focus our atten­
tion on nested case-control sampling and return to other sampling methods suggested in 
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the literature in Section 10. In the nested case-control design, sampled risk sets 'ii; consist 
of the "case" (failure) at t; and m -1 "controls" randomly selected from those at risk at t; 
(and, possibly meet some other matching criteria). Considering that time (on some scale) 
matched population based case-control studies generally are nested case-control samples 
from a large cohort usually loosely defined by geographic region, this design is indeed ubiq­
uitous in epidemiologic research. The nested case-control partial likelihood has the same 
form as that for the full cohort except that 'ii; replaces 'R.; in {1.2) (Oakes, 1981) and, under 
suitable conditions, may be treated like an ordinary likelihood (Goldstein and Langholz, 
1992). The efficiency of this design relative to the full cohort for testing for an association 
between a single covariate and disease is ( m - 1) / m. Thus, there is little to be gained by 
sampling more than 4 or 5 controls if detecting simple associations is the goal of the study. 
However, it is becoming increasingly rare that the aims of epidemiologic studies are so 
modest. Often of interest are the manner in which rates change with increasing exposure, 
assessing the effect of exposure after adjustment for confounders, and the variation of the 
effect of exposure as a function of potential "effect modifying" factors. In such situations, 
indications are that the efficiency of nested case-control sampling can be much lower than 
for the simple test of association (Breslow et al., 1983). As the questions considered grow 
in complexity and the costs involved increase, it may prove very advantageous to tailor the 
sampling design to take into account the goals of the study and/ or "recognize" the costly 
aspects of the study. In principle, the design should attain a specified level of (relative) 
efficiency for the analysis goal(s) of interest at the lowest "cost." This principle is purely 
academic if statistical methods to analyze data collected using such designs do not exist. 
While it is beyond the scope of this paper to go into these issues in detail, we note that 
such considerations have resulted in development of new sampling designs for unmatched 
case-control studies including stratified sampling (Fears and Brown, 1986; Scott and Wild, 
1991), two-stage sampling (Breslow and Cain, 1988), and randomized recruitment (Wein­
berg and Wac:holder, 1990). 

In this paper, we develop methods for the analysis of a large class of cohort sampling 
designs which parallel those available for full cohort data. Estimation of the regression 
parameters for a given design is surprisingly simple; it is based on maximizing a partial 
likelihood, defined precisely in Section 3, which is proportional to 

c(~) =II { exp(~Tz,;~t;))w,;(t;) } , 
tj :E,e'ij exp(~ z,(t;))w,(t;) 

(1.4) 

where "R.; is the sampled risk set and the w,(t) are (simple) weight functions which de­
pend on the sampling method. (Henceforth, we will not make any distinction between the 
partial likelihood and functions which are proportional to it.) Under conditions given in 
Section 3, (1.4) is shown to have basic likelihood properties and, in Section 6, additional 
conditions are given to ensure the consistency and asymptotic normality of the maximum 
partial likelihood estimator~ obtained by maximizing (1.4). Thus, analysis of sampled 
data is particularly simple, standard conditional logistic regression software, used for the 
analysis of matched case-control studies, accommodates (1.4) without modification. The 
only additional requirement is that an "offset," a term in the linear predictor for which no 
regression parameter is estimated, of log 101( t;) must be added to the model. This feature 
is currently available in most packages deaigned for the analysis of epidemiologic studies. 

Thusfar, case-cohort sampling is the only sampling method for which a cumulative 
baseline hazard estimator has been provided (Self and Prentice, 1988). In Section 4, we 



give a natural extension of the full cohort baseline hazard estimator (1.3) for sampled 
cohort data. In particular, in Section 5.2, we provide the estimator for nested case-control 
sampling. This provides a basis for relatively straightforward sampled data estimators of 
various quantities and :functioDS which parallel those available for the full cohort. 

The key to the development of these methods is to use a marked point process to 
model simultaneously events happening in the cohort (like failures and ceDSOrings) and the 
sampling of controls at each failure time. Heuristically speaking, a marked point process 
{(t;, z;); j ~ 1} is just an ordered sequence of time point t1 < t2 < ···where events occur 
together with marks z1 , z 2, ••• which describe the events happening at these times. The 
marks z; take values in a set E called the mark space. In the general theory of marked 
point processes (e.g. Bremaud, 1981; Karr, 1986) the mark space may be very general. We 
will, however, <mly coDSider marked point processes with a finite mark space. For the class 
of sampling desigDS we shall coDSider, a mark of the form z; = (i;, R;) will indicate that 
the individual with index i; is failing at t; and that 'R.; is the sampled risk set at that time. 
Here 'R; consists of the case i; together with its sampled set of controls. 

The outline of the paper is as follows. Section 2 gives the general marked point process 
model for sampling of risk sets and the class of sampling schemes covered by this method­
ology. Counting and intensity processes, used in the partial likelihood construction, are 
presented along with the associated martingale structure. In Section 3, we derive a par­
tial likelihood for cohort sampling and show that it has basic likelihood properties and, in 
Section 4 derive an estimator for the underlying integrated baseline hazard for a restricted 
class of sampling schemes. Along with the full cohort data and simple nested case-control 
sampling, applicatioDB given in Section 5 include three new, and potentially quite useful, 
sampling desigDS: stratified and quota sampling extensions of the simple nested case-control 
design and nested case-control sampling with 'Variable matching ratio. Case-cohort sam­
pling also belongs to this class and is given as an example where the maximum partial 
likelihood estimator is clearly inefficient. Formal derivatioDB of the large sample properties 
of maximum partial likelihood and cumulative hazard estimators are given in Sections 6 
and, in Section 7, we apply these results to some of the applications presented in Section 5. 
SectioDB 8 and 9 are devoted to extending our methodology to generalizations of the simple 
proportional hazards model (1.1). Specifically, Section 8 develops methods for multistate 
models and stratified populatioDB and Section 9 for the Aalen linear regression model. In 
the final Section 10, we briefly discuss efficiency issues and the relationship of this paper 
to earlier work on cohort sampling methods. 

Throughout the paper we will, without further reference, use standard results from the 
theory of multivariate counting processes, local square integrable martingales and stochastic 
integrals as surveyed e.g. by Fleming and Harrington (1991, Chapters 1-2) and Andersen 
et al. (1992, SectioDB D.2-4). We will only coDSider marked point processes with a finite 
mark space, so we do not, however, need results on marked point processes beyond those 
surveyed by Arjas (1989, Sections 2 and 4) and Andersen et al. (1992, SectioDB D.4 and 
D.T). 

2 A marked point process model for sampled cohort data 

We fix throughout the paper a time interval [0, T] for a given terminal time T, 0 < T :::; oo. 
First we specify a model for events observed in the cohort, without consideration of the 
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consist of n individuals, and assume that all events observed to happen, that is registered 
failures as well as information on individuals entering or leaving the study population and 
on observed changes in time dependent covariate values, may be modeled as a marked 
point process {(tj, ~j); i ~ 1} on a probability space (0, .r,P). The filtration generated by 
this marked point process, together with covariate values at t = O, is denoted (14)ee(o,T')· 
This is an increasing, right-continuous family of sub-cr-algebras of :F, and 14 specifies the 
"cohort history" up to time t in the sense that it contains all events (up to null sets) whose 
occurrence or not is fixed by time t. There is also a pre-t cr-algebra 14- which contains all 
events whose occurrence or not is fixed strictly before time t. 

From the marked point process {(tj, ~j); j ~ 1} we may extract a marked point process 
{(t;, i;); i ~ 1} which only records the innovative marks, i.e. the times t; when failures 
occur and the individuals i; which fail at these time points. Of course the marked point 
process {(t;, i;); i ~ 1} is adapted to (14). Associated with this marked point process we 
have the counting processes 

Ni(t) = L I(t; ~ t, i; = i) 
i~l 

(2.1) 

counting the number of observed failures for individual i in [0, t], i = 1, 2, ... , n. We also 
introduce Yi( t) for the predictable indicator process taking the value 1 if the ith individual 
is at risk at t- and 0 otherwise. 

A model for the cohort is now given by relating the intensity process .\s for Ni to the 
vector Zi(t) of (possibly) time dependent covariates for the ith individual; i = 1, 2, ... , n. 
(The model is only partially specified since we do not specify models for the censoring 
mechanism and the covariate processes.) A fundamental assumption we make is that 
the Zi(t) are left continuous and adapted; consequently they are predictable and locally 
bounded. In particular, this means that the values of the covariates at time t should be 
known, based on available information on the cohort, just before time t. We will consider 
a proportional hazards regression model, where the intensity processes are specified as 

.\s(t) = l'i(t)ao(t)exp(J31Zi(t)), (2.2) 

with ao(t) a non-negative baseline intensity or hazard function and J30 a ,p-dimensional 
vector (Cox, 1972; Andersen and Gill, 1982). In fact, at the cost of somewhat more 
complicated proofs in Section 6, our results may be extended to relative risk regression 
models where exp( ·)in (2.2) is replaced by a positive relative risk function r( ·) standardized 
so that r(O) = 1. 

Now that a model for the cohort has been specified, we turn to describe how the 
sampling of controls is superimposed onto this model. This is done by sampling at each 
failure time t; (according to a distribution to be specified below) a set of controls for the 
failing individual i;. We denote by 'R.; the sampled risk set consisting of the set of these 
controls together with the individual i; failing at t;. Then 

{(t;, (i;, 'R.;)); i ~ 1} (2.3) 

will be a marked point process with a finite mark space E which may be specified as follows: 
Let 'P be the power set of {1, 2, ... , n}, i.e. the set of all subsets of {1, 2, ... , n}, and let 



Then the mark space of (2.3) is given by 

E = {(i,r): i E {1,2, ... ,n}, r E 'Pi}= {(i,r): r E 'P, i E r}. 

The introduction of the sampling into the model will bring in some e:rlra random variation, 
so the marked point process (2.3) will not be adapted to the filtration ('Ht) generated by 
the available data :&om the cohort. Thus we now have to work with the enlarged family of 
sub-D'-algebras (Ft)te(o;r] ofF given by 

F, = 'He v D'{'R.;; t; ~ t}, 

i.e. (Fe) is generated by the observed events in the cohort together with the sampled risk 
sets. 

Corresponding to the marked point process (2.3) we now have, for each (i,r) E E, the 
counting process 

N(i,r)(t) = Ll(t; ~ t,(i;, 'R.;) = (i,r)) 
">1 3_ 

(2.4) 

counting the observed number of failures for the ith individual in [0, t] with associated 
sampled risk set r. Since the mark space E is finite, the marked point process (2.3) is, 
in fact, equivalent to the multivariate counting process (N(i,r)i (i,r) E E). We denote 
the intensity process of N(i,r) by ~(i,r)· From (2.4) we may recover the counting process 
(2.1), registering the observed failures for the ith individual, by summing over all possible 
sampled risk sets, i.e. 

Ni(t) = L N(i,r)(t), (2.5) 
rE'Pi 

and a similar relation holds for the intensity processes ~ and ~(i,r)· 
The fact that we now have to consider the filtration (Ft), also containing information 

about the sampled risk sets, may have the consequence that the intensity processes corre­
sponding to the counting processes Ni may change, i.e. their (F,)-intensity processes may 
differ from their ('H,)-intensity processes (2.2). For instance, in a prevention trial, this will 
be the case if individuals selected as controls change their behavior in such a way that their 
risk of failure is different :&om similar individuals which have not been previously selected 
as controls. To rule out such possibilities we need the concept of independent •ampling 
analogous to the usual assumption that censoring must be independent (Andersen et al., 
1992, Section m.2.2). 

Formally, we will say that we have independent •ampling p1'011ided that the (Fe)-inten.ity 
processe• of the counting proce•se• Ni are the same u their ('He)-intemity processes. In 
other words: the additional .knowledge of sampling which has occurred before any timet 
should not alter the intensities of failure at t. We note that under independent sampling 
the (Fe)-intensity processes of the Ni are given by (2.2). In the following we will tacitly 
assume that the sampling is independent. Further, we will consider intensity processes, 
martingales, etc. with respect to the filtration (Fe), and not the "cohort history" ('H,). 

Then, given r,(rl i), the conditional probability of selecting the sampled risk set r E 'Pi 
at timet given F,_ and the fact that the ith individual fails at t, a model for the marked 
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point process (2.3) may be given by specifying the intensity processes ~i,r) for the counting 
processes ( 2.4) by 

~i,r)(t) = ~(t)rt(rl i). (2.6) 

Note that the rt(rli) may be recovered by 

rt(rl i) = ~i,r)(t) = ~(i,r)(t) . 
~(t) LrE1'i ~i,r)(t) 

For notational convenience we set rt(rli) = 0 ifli(t) = 0. 
Thus by (2.2) 

~(i,r)(t) = li(t)ao(t)exp(~~Zi(t))rt(rl i), (2.7) 

and it follows that a model for cohort sampling is given by specifying, for each t and each i 
with li(t) = 1, the sampling distributions rt(·l i) over sets r in 'Pi. This specification must 
be based on information available just before timet, i.e. the rt(rl i) must be predictable 
considered as processes in t (for fixed i and r). In particular this rules out selection of 
controls depending on events in the future, e.g. one may not exclude as potential controls 
for a current case individuals that subsequently fail (Lubin and Gail, 1984) .. We will give 
examples of specific sampling distributions in Section 5. 

By standard counting process theory it follows that for ( i, r) E E, 

(2.8) 

are local square integrable martingales. Their predictable variation processes are given as 

(2.9) 

while their predictable covariation processes are 

(2.10) 

for (i,r) I (j,s). 
In the derivation of a partial likelihood in the next section, we will need to consider the 

reduced marked point process 

{(t;, 'R.;);; ~ 1} (2.11) 

derived from (2.3) by disregarding the information about which individuals fail at the 
various time points. Corresponding to this marked point process we have the counting 
processes 

Nr(t) = L N(i,r)(t) (2.12) 
ier 

counting the number of times the sampled risk set equals r in [O,t]. By (2.7) these have 
intensity processes 

~r(t) = L ~(i,r)(t) = LYi(t)ao(t) exp(~~Zi(t))rt(rl i). (2.13) 
iEr ier 
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Moreover, 

Mr(t) = Nr(t)- lot Ar(u)du, 

for r E P, are local square integrable martingales with 

{Mr)(t) =lot Ar(u)du, 

and 

(Mr, M.}(t) = 0 

for r :/:- s. 

(2.14) 

(2.15) 

(2.16) 

We conclude this section with two remarks concerning our model construction. First, 
for ease of presentation, we have assumed that censoring is a part of the cohort history (1it) 
only, and that no extra censoring is introduced by the nested case-control sampling. This 
may easily be extended, however, along the lines of Andersen et al. (1992; Section m.2) 
to include extra (independent) censoring depending on the previous sampling history. For 
example, in a nested case-control study, one may censor individuals after they have been 
picked as controls. 

Second, in order to define our model, we had to augment the cohort history (1it) with 
the sampling history in order to get the :filtration (.:Ft) relative to which intensity processes, 
martingales, etc. are defined. Thus more "information" is needed to define the model for 
nested case-control sampling than is the case for the full cohort. At first this may seem 
somewhat paradoxical since the main reason for sampling is that one does not need to 
collect covariate information for all individuals in the cohort. But the paradox is resolved 
when one remembers that the model must describe the likelihood of all possible outcomes, 
not just the outcome actually observed. The fact that more "information" is needed to 
define the model than what is actually observed, has the consequence, however, that care 
must be exercised in order to make sure that statistical inference procedures are based only 
on data which are actually available to the researcher. 

3 A partial likelihood and estimation of the regression pa­
rameter 

In the previous section we derived a (partially specified) probabilistic model for nested 
case-control sampling. We now consider the statistical model obtained by allowing ao and 
{30 .to be varying parameters. We will assume that the baseline hazard ao may be an 
arbitrary non-negative function while the vector of regression parameters [30 takes values 
in the p.dimensional Eucledian space. 

As described in gen6al terms in Andersen et al. (1992; Section 11.7.3) the full likelihood 
may be factorised into the (partial) likelihood for the ID&Tked point process (2.3) and a 
second factor depending on the (unspecified) model for the censoring mechanism and the 
covariate processes. We use a and {3 for the free parameters in likelihoods, etc. and reserve 
ao and /30 for the true values of these parameters. Then the likelihood for (2.3) takes the 
form 



where we have written ~(i,r)(t; a, ,B) for the intensity processes (2. 7) in order to emphasize 
their dependence on the parameters. 

Now inference cannot be based directly on (3.1) for two reasons. First, our model is 
semi-parametric in the sense that a may be any non-negative function. So, as for the 
classical Cox model, (3.1) may be made arbitrarily large by letting a be zero except very 
close to the failure times t;, where we let it peak higher and higher. Second, in order to be 
able to evaluate the second term of (3.1) we would need to know the full covariate histories 
for all individuals in the cohort. But as discussed at the end of Section 2, we do not actually 
collect all this covariate information when the cohort is sampled. 

We therefore consider a partial likelihood (Cox, 1975) which may be obtained using the 
general ideas of Arjas (1989; Section 4). To this end we factorise the intensity processes 
~(i,r), not as in (2.6), but as 

~(i,r)(t) = ~r(t)1rt(i I r;,8o), 

where, by (2.7) and (2.13), 

( . 1 . ,8 ) _ ~<'.r>(t) _ Yi(t) exp(,8;fZ,(t))1rt(rl i) 
1rt 1 r, 0 - ~r(t) - Ller Y,(t) exp(,8;fZ,(t))1re(riZ) 

(3.2) 

is the conditional probability of the ith individual failing at t, given :Ft- and that there 
is a failure among individuals in the set rat t. Note that (3.2) does not depend on the 
baseline hazard. 

Statistical inference on ,8 may therefore be based on the partial likelihood 

£.,.(,8) 

obtained by only using the information contained in the conditional distributions of the 
failing individuals i; given the sampled risk sets 'fi;, and thereby disregarding the infor­
mation on ,8 contained in the reduced marked point process (2.11). This generalizes the 
partial likelihood of Oakes (1981) for nested case-control designs with simple random sam­
pling of the controls (Example 5.2). Note that in the denominator of (3.3) each individual 
is weighted with the probability of selecting the sampled risk set had the individual been 
the failure. In particular, no distinction is made between the failure and the controls in the 
sampled risk set. 

Note that by (2.12), (2.13) and (3.2) the likelihood (3.1) for the marked point process 
(2.3) may be factorised as 



X II II Ilrv(ilr;~).l1N(i,r)(u), 
vE[O,T) rE"P iEr 

i.e. as a product of the likelihood for the reduced marked point process (2.11) and the 
partial likelihood (3.3). 

The estimator~ obtained by maximizing the partial likelihood (3.3) has similar prop­
erties as a maxiiD1tm likelihood estimator. At this point we will only show that (3.3) has 
basic likelihood properties, i.e. that the score vector has expectation zero and that its co­
variance matrix equals the expected iDformatian matrix (implicitly assuming the necessary 
regularity conditions to hold) and return to a detailed study in Section 6. 

We introduce the notation 

(3.4) 

for 1 = 0, 1, 2, where for a vector a, a eo = 1, a•1 = a and a82 = aa T. Note that sS1>(~, t) 

is a p-vector and sS2>(~, t) a p X p-matrix. Furthermore, we define the p-vector 

(3.5) 

and the p X p-:matrix 

(2)( ) 
( ) Sr /3, t ( )82 Vr~,t = (O) -Er~,t . 

Sr (~, t) 
(3.6) 

The two quantities Er(~, t) and V r(/3, t) are the expectation and the covariance ma­
trix, respectively, of the covariate vector Zi(t) if an individual is selected with probability 
rt( i I r;~); cf. (3.2). 

Apart from a constant term the log partial likelihood equals 

C.,.(~)= 1.,. L L {~Tzi(u) -log(SS0>(~,u)) }dN(i,r)(u), 
0 rE"P iEr 

(3.7) 

and di1ferentiation with respect to ~ yields the vector of score functions 

U.,.(~) =~C.,.(~)= [ L ~ {Zi(u)- Er(~,u)}dN(i,r)(u) 
0 rE"P ser . 

(3.8) 

and the observed information matrix 

(3.9) 

By the interpretation of Vr(~, t) as a covariance matrix given just below (3.6), it follows 
that I.,.(~) is positive definite, and hence that the log partial likelihood (3.7) is concave. 
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Using (2. 7), (2.8), (3.4) and (3.5) it is seen that the score, evaluated at the true param­
eter value fJ0 , equals the (vector valued) stochastic integral 

(3.10) 

In particular it follows that the expected score is zero. 
We let Ut(,80 ) be defined by (3.10), but with the integral taken over [0, t) instead of 

[0, T], and note that U.(fJ0) is a (vector valued) local square integrable martingale. By 
a standard argument, the matrix of predictable cova.riation processes of this martingale, 
evaluated at T, becomes (use (2.7), (2.8)-(2.10) and (3.4)-(3.6)) 

(U.(fJo)}(T) = LT :E :E {Zi(u)- Er(,80 ,u)}82 ~(i,r)(u)du 
0 r€1' iEr 

= LT E v r(fJo, u )S5°>(fJo, u )ao( u )du. 
0 re1' 

(3.11) 

Moreover, by (2.12), (2.14) and (3.4), the observed information matrix (3.9) evaluated at 
fJ0 may be written as 

Thus the observed information matrix equals the predictable variation of the score plus a 
local square integrable martingale. In particular, by taking expectations, it follows that 
the expected information matrix equals the covariance matrix of the score. 

4 Estimation of the integrated baseline hazard and survival 
probabilities 

For completely general sampling distributions 1rt( ·I r ), as considered in the previous section, 
it seems difficult to derive a sensible estimator for the integrated baseline hazard 

~(t) = fot ao(t)dt. 

We will therefore now restrict ourselves to sampling distributions with a special structure 
which can be described as follows: Conditional on Ft- there exists for each t, at which 
there is at least one individual at risk, a sampling distribution 1rt( ·) over sets r in 'P such 
that 

(4.1) 

for i E r. Here 

Pt(i) = :E 1rt(r) (4.2) 
rE1'i 
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is the probability that the individual i will be included in a sample selected according to 
1re(·), and this probability is assumed to be positive for each individual at risk at t. Thus 
( 4.1) specifies 1rt( rl i) as the conditional probability of selecting the sample r at t given Fe­
and that i is contained in the sample. In Section 5 we will illustrate how some important 
sampling schemes for the controls have this structure. 

For sampling distributions satisfying (4.1), we suggest the estimator 

- - "" 1 Ao(t; f:J) = £- - T 
e;~e :E,e~; Yi(t;) exp(/3 z,(t;))/Pt;(l) 

_ r L: dNr(u) 

- lo re1' :ElerYi(u)exp(}3Tz,(u))/Pu(Z)' 
(4.3) 

for the integrated baseline hazard Ao(t). To motivate this estimator, let 

J(t) = 1 (~Yi(t) > o) (4.4) 

be the predictable indicator process which equals 1 if someone is at risk at t- and equals 0 
otherwise, and remember that 1re(r) is only defined when J(t) = 1. We interpret 1re(r)J(t) 
as 0 when J(t) = 0. Then use (2.13), (2.14) and (4.1) to find that (4.3), with J3 replaced 
by the true value /:10 , may be written as 

- 1'"" J(u)dNr(u) Ao(t;f:Jo) = £- T 
0 re1' :Eler Yi(u) exp(.Bo z,(u))/Pu(l) 

= 1' L J(u)ao(u)1ru(r)du+ W(t) 
0 re1' 

(4.5) 

= fo' J(u)ao(u)du + W(t), 

where 

(4.6) 

is a local square integrable martingale. This shows that Ao(t;,80 ) is almost unbiased for 
Ao(t) (the small bias only being due to the possibility of having no one at risk), thereby 
giving a justification for the proposed estimator (4.3). 

It may also be of interest to estimate the integrated hazard for an individual with 
a specified covariate Zo fixed over time. This is A(t; Z0 ) = exp(f3JZo)Ao(t) and it is 
estimated by 

....... -T ....... ....... 
A(t; Zo) = exp(/:1 Zo)Ao(t;f:J). (4.7) 

In Theorem 5 in Section 6 we will show that, as n--+ oo, 

Jii(A(·; Zo)- A(·; Zo)) (4.8) 

1?. 



converges weakly to a mean zero Gaussian process with a covariance function which may 
be estimated uniformly consistently by n0-2(.s,t) where 

{ .... T }2 
D-2( .s, t) = exp(,8 Zo) (4.9) 

x {w2(.s At;~))+ (ii(.s;,B)- .A(.s;,B)zo) T :r(~)-1 (ii(t;,B)- A(t;j3)zo)}, 

with 

(4.10) 

and 

(4.11) 

The results for the cumulative baseline relative hazard estimator (4.3} are obtained by 
inserting Z0 = 0 above. 

Using product-integral notation (Andersen et al., 1992; Section ll.6), the survival prob­
ability 

S(t; Zo) = 7f (1- dA(u; Zo)) = exp ( -A(t; Zo)) 
u~t 

for an individual with a fixed covariate value Zo can be estimated by 

S(t;Zo) = 7r (1- dA(u;Zo)) 
u~t 

= IT (1- exp(~T ~o) ) . 
tiSt E,eiii Yi(t;) exp(~ z,(t;))/Pti(l) 

(4.12) 

By the argument in Section Vll.2.3 in Andersen et al. (1992) 

vfn(S(·; Zo)- S(·; Zo)) (4.13) 

is asymptotically equivalent to -S( ·; Z0 ) times ( 4.8), and it follows that, as n - oo, ( 4.13) 
converges weakly to a mean zero Gaussian process with a covariance function which may 
be estimated uniformly consistently by nS(.s; Z0)S(t; Z0 )u2(.s, t). 



5 Examples of specific sampling schemes 

The methodology we have presented in the preceding sections provides analytic tools for 
a very large class of sampling schemes. We illustrate its :ftexibility by deriving the partial 
likelihood for a few diverse designs and also derive the estimator ( 4.3) for the integrated 
baseline hazard for a few of them. In each situation considered, the sometimes complex 
rt(rli) in the partial likelihood (3.3) are not needed for the actual analysis of the data. 
Cancellation of common terms or multiplication by quantities which do not depend on /3 
leads to considerable reduction yielding a partial likelihood of the form of (1.4). 

As we will discuss in more detail in Section 10, that while the partial likelihood provides 
a method of valid estimation of the regression parameters, there is no guarantee that the 
estimator {J will be efficient relative to "the best" method of analysis. This is illustrated 
in Examples 5.5 and 5.6. 

Remember in what follows that the sampling distributions 'lrt( ·I i) are defined over sets 
r in Pi so that that r(rli) = 0 of i ft r. We let lrl denote the number of elements in the 
set r. 

Example 5.1 Full cohort. The full cohort partial likelihood is a special case in which the 
entire risk set 'R.(t) = {i: Yi(t) = 1} is sampled with probability one. In our notation then, 
'lrt(rli) = J(r = 'R.(t)) for all i E 'R.(t), and the usual Cox partial likelihood for the full data 
set is recovered. Noting that (4.1) and (4.2) are fulfilled with 'lrt('R(t)) = Pt(i) = 1, Ao(t;,B) 
is as in (1.3), the usual Breslow estimator of the integrated baseline hazard function. 

Example 6.2 Nested case-control sampling. The most common type of cohort sam­
pling technique is nested case-control sampling, in which m - 1 controls are randomly 
sampled, without replacement from those at risk at the failure's failure time. Here we 
assume that m > 1 is fixed. Letting n(t) = :E:=l Yi(t) = I'R(t)l denote the number at risk 
at time t, this sampling scheme is specified by 

'lrt(rli) = (n(t)- 1) -l J(r E Pi, r C 'R.(t), lrl = m), 
m-1 

which is the same for each i E r .and thus drops out of (3.3) leaving the usual partial 
likelihood (Oakes, 1981) for nested case-control sampling. Further, (4.1) and (4.2) are 
satisfied with 

ro(r) = (~>) -1
I(rc R(t),lrl = m) and Pt( i) = ...!!!.. 

n(t) 

and, from (4.3), the estimator of the cumulative hazard function is 

... ... ~ 1 
Ao(t;/3) = LJ ---... """':;T~---

ti5t :E1exi e:xp(/3 Z,(t;))n(t;)/m 

with variance estimator from (4.9). 

Example 6.3 Stratified nested case-control sampling. In this extension of nested 
case-control sampling (Lan.gholz and Borgan, 1992), control sampling is performed within 
sampling strata. In general, let Ci(t) be (Ft)-predictable sampling strata indicators with 



Ci(t) E C, a (small) finite set of indices. Define 'R.,(t) = {i : Yi(t) = 1, Ci(t) = I} to 
be sampling stratum I with n,(t) = I'R.,(t)l. If a subject, say i, fails at time t, then m, 
controls are randomly sampled without replacement from 'R.,(t) except for the failure's 
stratum 'R.c.(e)(t) from which mc.(t) - 1 are sampled from the nc.(t)(t) - 1 non-failures . 
.Az. a technicality, which we do not consider further and which causes no difficulties, the 
number of controls could also depend on time. Specifically, if n,(t) < m, all subjects from 
'R.,(t) would be included in the sample. The probability structure for this sampling scheme 
is given by · 

rt(rli) = [rr (n,(t))]-t nc.(e)(t) I(r E 'Pi, r c 'R.(t), lr n 'R.,(t)l = m,; I e C), 
lee m, mc.(e) 

which yields weights 

(5.1) 

so that in the partial likelihood (1.4), the relative risk for a subject from a given stratum 
is weighted by the inverse of the proportion of the stratum sampled. Note that the case 
contribution is weighted no differently than the controls. 

The sampling probabilities simplify into the form of (4.1) and (4.2) with 

,.,(r) = [!! ( ~)) r I(r c R(t), lr n 'R,(t)l = ...,; I E C) 

and .Pt( i) = 1Ui( t)-1• Thus, the baseline hazard estimator becomes 

with variance estimator given by (4.9). 
Because Fe contains failure, censoring, covariate, and sampling histories up to time t, the 

sampling strata may be defined in some quite diverse ways. We describe some interesting 
designs from this class. 

Stratification based on absolute ezposv.re status. This design is discussed in Langholz 
and Borgan ( 1992 ). For simplicity consider a dichotomous variable Z1 ( t) = 0 or 1 indicating 
unexposed or exposed. Assume that Z1(t) is known for all subjects at risk at t (cf. the 
comment at the end of Section 2), and define the sampling strata as 'R.,(t) = {i : i e 
'R.(t), Zit(t) = I} for I = O, 1. The Ci(t) are simply defined to be Zi1 (t). When a failure 
occurs, mo and mt subjects are "sampled" (with the understanding that the failure is 
included in the sample) from the unexposed, 'Ro(t), and exposed, 'R.1 (t), at risk subjects, 
respectively. Additional covariate information would then be collected on this stratified 
sample. 

Stratification based on relative ezposv.re status. Now consider a multivalued or contin­
uous Zt(t) and assume that this is known for all individuals at risk at timet. Sampling 
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strata may then be defined in terms of the distribution of the Za1 ( t) for the at risk sub­
jects. For example, define the sampling strata at t as some empirical quantile intervals of 
the {Za1(t): i E 7l(t)} and let Ca(t) be the particular interval that Za1(t) falls into. 

Stratification blued on .ampling h.utory. As a specific example of this situation, we give 
a technique for ensuring that each sampled risk set adds m1 new subjects to the sample. 
Consider sampling mo from the set of those not sampled in any previous risk set (stratum 

0) and m1 from those who have been sampled (stratum 1). Let S(t) = 7l(t) \ ( Uti<tiii), 
the set of those not yet picked in any sampled risk set. Then (5.1) are the appropriate 
weights with no(t) = IS(t)l and n1(t) = n(t)- no > (t). 

Example 5.4 Quota 88Dlpling: negative hypergeometric sampling. Consider pro­
cesses Ca(t) E {0, 1} with a role simi1ar to that in stratified sampling discussed in the 
previous example and let m,, nz(t), and 7lz(t), I= 0,1 be as defined there. In this sampling 
method, if a subject i fails at timet, controls are sampled sequentially until m1 subjects 
are selected from 7l1(t). As before, if i E 7l1(t), the failure i is counted as one of the m1. 
Such a sampling scheme might be considered when a (dichotomous) exposure of interest is 
somewhat rare and is expensive to determine but obtaining the additional covariate infor­
mation needed to perform a complete analysis is inexpensive. Thus, once exposure status 
for a subject is determined there is no reason not to include the subject as a control in the 
sampled risk set. Further, the intuitive idea that the amount of "exposure discordance" 
within the sampled risk sets determines the efficiency of the sample suggests that it may be 
possible to ensure that a given level of (relative) efficiency for estimating the effect of ex­
posure is achieved by specifying that a :fixed number of exposed subjects be in the sampled 
risk set. 

The probability of sampling a particular set depends on the size of the set and whether 
Ca(t) for the failure is 1 or 2. Specifically, the size of the sampled risk set has a negative 
hypergeometric distribution (Schuster and Sype, 1987) with 

( Jrl-2 )( ta(t)-lrl ) 

.. , { 211(c):<;>} ... 1 I(lr n 1l1(t)l = m1) if Ca(t) = 1 
•t(t)-1 

1rt{rli) = 
( JrJ-2 )( ta(t)-lrl ) 
••-1 •t<t>--• I(lr n'" (t)l - m ) if C (t) 0 - (11(t)"l)- - "-1 - 1 i = 

•l(t) 

Cancellation of common factors yields considerable reduction leaving weights wa( t) = ( m1-
1)/n1(t) or mo/no(t) if Ca(t) = 1 or 0, respectively, to be included in the partial likelihood 
(1.4). 

Note that if m1 = 1, it is not possible to estimate the regression parameters since 
all exposed subjects, i.e., those with Ca(t) = 1, are weighted by zero. This is because if 
the failure is exposed, the sampled risk set consists only of that failure making estimation 
impossible. One possible solution is to (simple) randomly sample one control, without 
regard to the exposure status of the failure, before starting the quota sampling. This 
would assure that exposed failures are almost always matched to an unexposed control 
(since exposure is assumed rare) and that there would be one (or rarely two) exposed 
controls if the failure is unexposed. 

In the situations we are suggesting that this design might be useful, the nz(t) will not 
be known. One possible strategy is to replace the nz(t) by method of moments estimators. 
Then n1(t) = n(t)(m1- 1)/(lrl-1) or n(t) m1/(lrl-1) -1 if Ca(t) = 1 or 0, respectively, 
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and fio(t) = n(t)- ih(t). The validity of such an approach and the proper adjustments to 
the variance when the weights are estimated require further study. 

Not surprisingly, the negative binomial distribution with probability parameter n1 ( t) / n( t) 
yields identical weights to those given in the precediDg paragraph. Using the negative multi­
nomial distribution, this leads us to conjecture that the extension to Ci(t) E {0, ..• , L} and 
mL fixed will yield weights tuL(t) = (mL -1)/n£ and wi(t) = mz/nz(t) if Ci(t) =I~ L. 

Example 6.5 Nested case-control sampling with variable matching ratio. Instead 
of fixed m, consider using a variable matching ratio, possibly depending upon characteristics 
of the case. Specifically, in this class of sampling designs first the size of the sampled risk 
set is (randomly) determined and then a simple nested case-control sample of this size is 
selected. For instance, suppose that exposure status (Z1(t) = 0 or 1 indicating unexposed 
or exposed) is to be gathered on a sample of the cohort. One might first ascertain the case's 
exposure status, then, based on that status, decide the number of controls to be sampled. 
We conjecture that when there are many cases and exposure is rare, matching more controls 
to exposed cases is more efficient than fixing the matching ratio for all sampled risk sets. 

Let ii(t) be the size of the sampled risk set if there is a failure at timet. We assume 
that ii(t) is random with a (predictable) probability distribution on {1, ... , n(t)} which 
may depend on who failed at that time. We may then specify the sampling probabilities 
as functions of the size of r with 

Because the binomial coefficient is common to alliEr cancellation yields weights Wi(t) = 
P(ii(t) = lrll i,Fe-) in {1.4). 

Now if we adopt the variable matching scheme as implied above, in which with prob­
ability 1, exactly m1 or m2 controls would be picked if the case is unexposed or exposed, 
respectively, fori E r, P(ii(t) = lrll i,Fe-) is one if subject i has the same exposure status 
as the case and zero if they di1fer. This results in sampled risk sets matched for exposure 
status making it impossible to estimate the effect of exposure. Whether this is a prop­
erty inherent in the design, i.e., there is no method of analysis which yields a consistent 
estimator, or the partial likelihood has zero efficiency, is not known. 

An approach which leads to a more reasonable analysis is to consider two di1ferent 
sample sizes, say m1 and m2, with P(ii(t) = m1li,.1'i-) = 1rz81 (t) and P(ii(t) = m2li,.1'i-) = 
1-1rz01 (t) for some fixed probabilities 1ro and 1r'J. One might also consider ii(t) as binomial 
with probabilities 1r0 and 1r1 for i unexposed and exposed, respectively. 

EX8Dlple 5.8 Cue-cohort sampling. Prentice (19864) presents case-cohort sampling 
in which a subcohort C is randomly sampled from the full cohort at t = 0. He shows 
heuristically that the partial likelihood for this design does not make use of the non­
subcohort failures in the estimation of f3 and proposes a "pseudo-likelihood" approach. 
In our formulation, since C E .1'0 , 

1re(rli) =I (r = (C n 'R(t)) u {i}). 

Thus, if i E C fails at t; then 'R; = C n 'R(t;) and 1rt('R;I1) = 1 for all I E 'R;, but if 

i ¢ c, 'R; = (c n 'R(t;)) u {i} ~en 'R(t;) and 1rt('R;I1) = I(l = i) since this sampled 
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risk set would occur with probability zero if a subcohort member failed. Thus, if i is a 
non-subcohort failure, the partial likelihood weights subcohort members by zero, leaving a 
contribution of one for that sampled risk set, confirming Prentice's conclusion. This is an 
example where the partial likelihood (3.3) is clearly inefficient for the design. 

6 Asymptotic properties of the estimators 

In this section we study the large sample properties of the estimator jj for the regression 
parameters and the estimator Ao(t,~) for the integrated baseline hazard. We therefore 
consider a sequence of models indexed by n of the form defined in Section 2 with processes 
N <"'> y;<"'> z<"'> <"'>( 1 ·) t d .:a;...... '1:'1 f t t· will h (i,r)' i , i , r. r 1 , e c. epen~ on n. &Or ease o no a 1on we , owever, 
drop the superscript ( n) from the notation, but the reader should keep in mind that these 
quantities depend on n whereas the true parameter values /30 and ao are the same for all 
n. 

We remind the readers of the definitions (3.4)- (3.6) and write Ct(/3), Ut(/3) and Zt(l3) 
for (3.7)- (3.9),respectively, when the integral is taken over [0, t] instead of[O, T]. Moreover 
we denote the jth component of the vector Ue(/3) by U/(13) and the (j, 1:)th element of 
the matrix Zt(l3) by z[•(/3). 

For the proofs we will need the following conditions, where the norm of a vector a = (as) 
or a matrix A= {as;} is llall = supi lasl and IIAII = supi.i las;!, respectively. Conditions 1 
and 2 are assumptiona; both are assumed to hold in what follows. In Section 7 we show how 
the remaining conditions are satisfied for some specific model assumptions and sampling 
schemes. 

Condition 1 Ao(T) < oo. 

Condition 2 The cot~ariate processes Zs(t), i = 1, 2, ... , n are left continuous and (Ft)­
adapted. 

Condition 3 For (p,-y) = (0,2) and (p,-y) = (2,0) define 

Q(p,-y)(l3o, t) = .!:. E Er(l3o, t)8 P 5~7>(130 , t), 
n re'P 

and assume that there ezists functions q(p,-,) such that for all t E [0, T], 

Condition 4 The p X p-matriz matN E = {u;~c} given by 

E = J: [q<0 •2>(/30 , t) - q<2•0>(13o, t)]ao(t)dt 

is positive· definite. 

1~ 

(6.1) 

(6.2) 



Condition 5 For any n and each r E 'P theroe e.risu a locally bounded predictable process 
Xr,n not depending on ti nch that for all t E [0, T] 

IIZi(t)ll ~ Xr,n(t) for alliEr. (6.3) 

M Of'eOVer theroe e.risu a bo > 311/io II •v.ch that, 'With 

Dn(t) = ; L exp (boXr,n(t)) L 1rt(r I i), 
. re'P ier 

thef'e msu D(t) •v.ch that 

Dn(t) .!. D(t) and /o"" Dn(t)ao(t)dt .!. [ D(t)ao(t)dt < oo, (6.4) 

as n-+ oo. 

Before we derive the asymptotic properties of the maximum partial likelihood estimator 
{3, we state some useful consequences of these conditions. 

Let Bo be an open neighborhood of fJ0 with sup{lltill : fJ E Bo} ~ bo/3. Then by (3.4) 
and (6.3) we have forti E Bo 

exp ( -(bo/3)Xr,n(t)) L 1rt(r I i) 

~ S~0>(ti, t) ~ 

exp ((bo/3)Xr,n(t)) L 1rt(r I i). 
iEr 

Moreover, for 7 = 1,2, 

IIS~"'>(ji, t)ll ~ Xr,n(t)"' s5°>(ti, t), 

and by (3.5), (3.6) and (6.1) 

IIEr(/i, t)ll ~ Xr,n(t), 

IIVr(/i, t)ll ~ Xr,n(t? 

and 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

To show the convergence in probability for various integrals that arise below, we use a 
version of a dominated convergence of Hjort and Pollard (Hjort and Pollard, 1993): 

Proposition 1 Suppo&e Ao(T) < oo and let 0 ~ Xn(•) ~ Dn(•) be left-continuous mn­

dom processe& on the inten1al [O,T]. Suppose Dn(•) .!. D(•) and Xn(.s) .!. X(s) for al­

most all .s and that .Jo Dn(•)ao(.s)d.s .!. .Jo D(.s)ao(.s)d.s < oo. Then J~ Xn(.s)ao(.s)ds .!. 
J~ X(.s)ao(.s)d.s for all t E [0, T]. 
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By (6.5), the right hand side of (6.9) is bounded by a constant times Dn, and it follows by 
the above dominated convergence theorem and Condition 5 that, for all t E [0, T], 

as n-+ oo. In particular, by (3.6), (3.11) and Condition 4, 

n-1(U.(,80))(T) =!. [ L Vr(/i0,u)S~0>(/i0,u)ao(u)du ~E. 
n 0 re'P 

We now prove that the estimator jj for the regression parameters is consistent. 

(6.10) 

(6.11) 

Theorem 1 Assume Conditions 1-5. Then the estimator {J mazimizing (3.3) is consistent 
for fio· 

Proof: By a Taylor series expansion we have for any fi = (/31, ••• , /3p) T E 8 0 

p 1 p p 
ut(li) = ut(.Bo)- L(/3• - /3~cG)zt11(/io) + 2 L L(/3•- /3~cG)(f3,- f3lo)R~(ti*), 

•=1 k=1l=1 

where ,8* is on the line segment joining ,8 and ',80 , and 

R~w(!i) = asc.,.(~) . 
8f3;8f3~c8f3l 

We need to show that for all j, k, l 

n-1 ut(,80 ) ~ o, 

and 

as n-+ oo, and that there exists a finite constant K such that 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

For from (6.13)- (6.15) it follows e.g. by the argument in Billingsley {1961, pp. 12-13) that 
with probability tending to one there exists a consistent solution to the score equations 
U.,.(fi) = 0. But from this the theorem follows since C.,.(,8) is concave, and hence the score 
equations have at most one solution. 

To prove (6.13) we use Lenglart's inequality (e.g. Andersen et al., 1992, Section U.5.2) 
to get for all 6,"' > 0 

1 . p 
But by (6.11) n- (U'(/i0)}(T)-+ tTii < oo, and (6.13) follows. 

To prove (6.14), we write V/11(,8,t) for the (j, k) th element of (3.6). Then by (2.13), 
(2.15), (3.4) and Lenglart's inequality we have for all6,"' > 0 

?.n 



(6.16) 

But by (6.8) 

n-1 [ L (v:•cl3o,u>)2 sso>cf3o,u>ao<u>du 
0 rE7' 

~ n-1 L.,. :EXr,n(u)4SS0>(/30,u)ao(u)du, 
0 rE7' 

which by (6.5) is bounded by (6.4) times a constant; Thus, by Condition 5 and (6.16), 1/n 
times the second term on the right hand side of (3.12) converges to zero in probability, and 
(6.14) follows by (3.12) and (6.11). 

Finally, to prove (6.15), we first note that (3.7) and (6.12) give, for any nand all j, lc, l 
and /3 E Bo, 

ln-1 R!ld(/3), ~ ; fo.,. Xr,n(u)3dNr(u). 

By another use ofLenglart's inequality and (2.13), (2.14) and (3.4) we have for any C, K > 0 

(6.17) 

By ( 6.5) and Condition 5 it is seen that the second term on the right hand side tends to zero 
as n -t oo if C is chosen large enough. Thus the right hand side can be made arbitrarily 
small for nand K large enough, and (6.15) is proved. D. 

Before we study the asymptotic distribution of jj, we give a consistent estimator of E, 
the inverse of the asymptotic covariance matrix. 

p 
Theorem 2 Assume Conditions 1-5. Then for any /3* - {30 we have 

!.z,.(~*) _!. E 
n ' 

as n -too, where E is defined in Condition 4. 
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Proof: By a Taylor series expansion we have when ~* E Bo 

p 

n-1I!,Ic(li*) = n-1Z!,Ic(~o)- n-1 'L<Pi - /3lo)R!ld(~), 
1=1 

where R?ld(li) is defined by (6.12) and /:J is on the line segment joining /i* and ~0 • By 
(6.14), the first term converges in probability to tTJic as n-+ oo. Moreover, by (6.15), the 
second term is bounded in probability by pKII~* -lioll for some :finite constant K not 
depending on li*, and the theorem is proved. D 

We now demonstrate the asymptotic normality of the maximum partial likelihood esti­
mator. 

Theorem 3 Assume Conditions 1-5 and let~ be the estimator mazimizing (3.3). Then 

as n-+ oo, tohere E is defined in Condition .4. 

Proof: Taylor expanding Uj(~) around lio gives when fJ E 80 

p 

o = n-1t2u~<~> = n-1t2 u~(lio>- 'L vn<P~c- !31c0> n-1I!.Ic<~*), (6.18) 
lc=1 

where /i* is on the line segment between fJ and fi0 • Hence, using Theorems 1 and 2, it 
sufficient to prove that 

(6.19) 

as n-+ oo. 
To this end we apply Rebolledo's martingale central limit theorem as presented e.g. 

in Section TI.5.1 in Andersen et al. (1992). By (6.11) the (vector valued) local square 
integrable martingale n-112U.(fi0) has a predictable variation process which evaluated at 
r converges in probability to E. Thus condition (2.5.1) of Theorem TI.5.1 in Andersen 
et al. (1992) is fulfilled fort = r. To prove the Lindeberg condition (specified by (2.5.3) 
and (2.5.8) in Andersen et al., 1992) we introduce El(~, t) for the j th component of (3.5). 
Then by a Chebycb.ev type inequality we have for all j any E > 0 

; 1"" L ~ { Zi;(u)- Ej(/i0,u) VI { n-1/ 2 1Zi;(u)- E:(~0,u)l > E} ~(i,r)(u)du 
0 reP sEr 

< !,2 ("" L L lzi;(u)- Ej(ti0 ,u)l3 ~i,r)(u)du 
En Jo re'P ier 

< ~12 ("" L Xr,n(u)3S5°>(/i0 ,u)ao(u)du, 
En Jo rE'P . 

where the last inequality follows by (2.13), (3.4), (6.3) and (6.7). But by (6.5) and Con­
dition 5 the right hand side tends to zero in probability as n -+ oo, and the Lindeberg 
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condition is proved. D 

We then turn to a study ofthe large sample properties of the estimator Ao(t;,B) for the 
baseline hazard. We then assume that the sampling distributions fulfill (4.1) and (4.2) and 
impose the following extra conditions. 

Condition 8 For J(t) given by (4.4) toe luJve 

inf J(t) .!. 1. 
te[o,.,.) 

Condition 7 Let Xr,n. and bo be given by Condition 5. Then for 7 = 0, 1, 2 

all converge in probability to finite quantitie• tJ6 n-+ oo. 

Condition 8 There ezist function. e and t/J •uch th.a.t for all t E [0, T] 

J(t) L 1rt(r)Er(,80 , t).!. e(,8o, t), 
re'P 

and 

nJ(t) I: 1rt(r)2 { sS0>(,8o, t)} -l .!. t/JC..Bo, t), 
re'P 

tJ6 n-+ oo. 

We first prove the following lemma. 

(6.20) 

(6.21) 

(6.22) 

Lemma 1 Let B(t;,8) be given by ( 4.11), and tl66Ume tha.t Condition. 1-8 hold. Then for 

any ,8* .!. ,80 toe luJve 

sup II:B(t;,8*)- B(t;,80 )11.!. O, 
te[o,.,.) 

tJ6 n -+ oo, toith 

B(t;,80 ) =lot e(,80 ,u)ao(u)du, 

and e(,80 , u) defined in (6.21). 

(6.23) 
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Proof: First note that by (3.4), (3.5) and (4.1) we may write 

B(t;tJ) = L' E J(u)ru(r)Er(tJ, u) { S~0)(tJ, u)} - 1 dNr(u). 
0 rE" 

Then, by (2.13) - (2.15) and (3.4) 

sup ~B(t;j:J*)- B(t;j:J0)11 
t€(0,'7'] 

< sup IIB(t;tJ*)- B(t;j:J0)11 
t€[0,'7'] 

+sup f'LJ(u)ru(r)Er(l30,u){S~0)(/30,u)}-1 dMr(u) 
te(o,"'] Jo re" 

+ sup IlL' :E J(u)r .. (r)Er(/3o,u)ao(u)du- r e(/3o,u)ao(u)dull· 
te(o,.,.] o re" Jo · 

(6.24) 

(6.25) 

We will show that each of the three terms on the right hand side converge to zero in 
probability, 

For the first term we use a Taylor series expansion to get for the j th component Bi ( t; [3) 
of B( t; /3) when tJ* E Bo · 

Jii(t;tJ*) = B;(t;tJo) + t (f3Z- f31c0) a~ Jii(t;~), 
i=1 ~k 

with jJ on the line segment joining tJ* and {30. By (6.7), (6.8) and (6.24) 

Ia: jji(t;/3)1 ~ 2[ E J(u)r .. (r)Xr,n(u)2 { S~0)({3,u)} - 1 dNr(u). 
~k 0 rE" 

Therefore (6.5), Condition 7 and an application of Lenglart's inequality similar to (6.17) 
give that, for all j, k, l, t E [0, T] and tJ E 8 0, ~~Bi(t;[3)1 is bounded in probability by a 
finite constant K' not depending on tJ. Thus the leading term on the right hand side of 
(6.25) is bounded in probability by pK'II/3* -/3011 and therefore tends to zero in probability 

as {3* .!. f3o· 
The predictable variation process, evaluated at t = T, of the stochastic integral in the 

second termof(6.25) is bounded by 1/n times a constant times (6.20) with")'= 1. That this 
term converges to zero in probability therefore follows by Condition 7 and an application 
ofLengl.art's inequality similar to (6.16). Finally, the third term on the right hand side of 
(6.25) is bounded by 

I L J(u)ru(r)Er(/30,u)- e({30,u) ao(u)du, 
0 re" 

which tends to zero in probability by dominated convergence (Proposition 1) invoking ( 6. 7) 
and Condition 7. 0 

Following Andersen and Gill (1982, Theorem 3.4), see also Andersen et al. (1992, Theo­
rem VTI.2.3), we may then prove the following result about the asymptotic joint distribution 
of the estimator ( 4.3) and~: 
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Theorem 4 Auume Conditions 1-8. Then, 1Dith tP{~0 , t) and B(t;/30 ) defined (6.22) and 
(6.23) , the processes 

W(·) = ..Jn (Ao(· ;~)- Ao(·)) + ..Jn (~- ~o) T B(· i/3o) 

and ,fii (JJ - /30) are asymptotict:Jlly independent, and W converges weakly to a mean zero 
Gauuian martingale fl1ith variance function 

w2(t) = fo' tP{/30 ,u)ao(u)du. (6.26) 

Proof: By ( 4.5) we may write 

..rn(lo(t;fJ)-Ao(t)) = (6.27) 

..Jn {Ao(t,~)- Ao(t;/30 )) + JiiW"(t) + ..Jn fo'(J(u) -1)ao(u)du, 

with W defined by {4.6). Here the last term converges (uniformly in t) in probability to 
zero by Conditions 1 and 6, while the leading term, by a Taylor series expansion, equals 

-..Jn (~- /30) T B(t;,8*) 

with ~· between fJ and /30 • Invoking Lemma 1 it follows that the leading term on the right 
hand side of (6.27) is asymptotically equivalent to ,fii({J- ~0)TB(t;~0). 

Furthermore the predictable covariation process between the local square integrable 
martingales n-112U.(~0) and yfi'W is (use (2.7)-(2.10), (3.4), (3.10), (4.1) and (4.6)) 

(n-1/2U.(f3o), .y'fi'W}(t) = 

lot L L{Z;(u)- Er(/30,u)}J(u)11'u(r){S~0)(/30,u)}-1.\(i,r)(u)du = O, 
0 rE'P iEr 

i.e. they are orthogonal and therefore asymptotically independent. But by (6.18) and 
Theorems 1 and 2 

so that ,ffi({J - {30 ) and ,;nW are asymptotically independent as well. 
By {6.27) it therefore only remains to prove that yfi'W converges weakly to a Gaussian 

martingale with covariance function w2 given by (6.26). But this follows by the martingale 
central limit theorem (e.g. Andersen et al., 1992, Section TI.5.1) since by {2.13) - (2.16), 
(3.4), (4.1) and (4.6) 

(.y'fi'W}(t) = n 1t L J(u)11'u(r)2 { S~0>(~o,u)} -l ao(u)du, 
0 rE'P 

(6.28) 



and this tends in probability to w2(t) for all t E [0, T] by dominated convergence (Proposi­
tion 1) invoking (6.5) and Conditions 7 and 8. For the Lindeberg condition a Chebychev 
type inequality gives for any E > 0 

n [I: J(u)ru(r)2 { S~0>(f:Jo, u)} -1 I {..fiiJ(u)ru(r) ( S~0>(,8o, u)) -1 > E} ao(u)du 
0 re'P 

:$ (n3/ 2 /E) [I: J(u)ru(r)3 { 5~0)(,80, u)} - 2 Qo(u)du, 
0 re'P 

which converges to zero in probability by (6.5) and Condition 7. D 

As a consequence of Theorem 4 we get the following result for the asymptotic distribu­
tion of A(t; Z0 ) defined in (4.7) (d. Andersen et al., 1992, Corollary VTI.2.6) 

Theorem 5 Assume Conditions 1-8. Then the process (4.8) conuerges weakly to a mean 
zero Gaussian process 'With a covariance function 

D"2(s, t) = { exp(,8jZ0 ) r (6.29) 

X {w2(s A t;,80 ) + (B(,;,80)- Ao(s)Zo)T E-1 (B(t;,80)- Ao(t)Zo)} 

which m4Y be estimated unifomdy consistently byna2(s,t), cf. (4.9). 

Proof: As a consequence of Theorems 3 and 4 the process v'fi(Ao(· ;~)- Ao(·)) con­
verge& weakly to a mean zero Gaussian process with a covariance function 

(6.30) 

It also follows that the asymptotic covariance of v'fi(fJ- ,80)T and v'fi(Ao(t ;fJ)- Ao(t)) is 

(6.31) 

Now, by a Taylor series expansion, the processes (4.8) and 

exp {.BJ Zo) { ..fii ( Ao( · ;~) - Ao( ·)) + Ao( · )ZJ ..fii(fJ - ~o)} 

are asymptotically equivalent, and the weak convergence result for (4.8) follows invoking 
(6.30) and (6.31). 

Finally, we will prove that na2( s, t) is a uniformly (in s and t) consistent estimator for 
(6.29). By Theorems 1, 2 and 4 and Lemma 1, we then only need to prove that f~W2 (t;,8) 
(d. (4.10)) is a uniformly consistent estimator for (6.26). Now f~W2 (· ;,80) is the optional 
variation process of the local square integrable martingale vnw (d. ( 4.6)) and therefore, 
by Rebolledo's theorem (d. Andersen et al., 1992, Theorem ll.5.1), tends uniformly in 
probability to the same limit as the predictable variation process of this martingale. Thus, 
by (6.28), . 

sup II71W2(t;f:J0)- w2(t)ll.!. 0 
te(o,-r) 
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as n- oo. Furthermore, by (6.7), 

and it follows by {6.5) and Condition 7, using an argument similar to the one used to handle 
the first term on the right hand side of {6.25), that 

and the uniform consistency of nw2(t;,9) follows. D 

7 Asymptotic results for specific sampling schemes 

In this section, we will assume throughout Conditions 1 and 2, and we will demonstrate 
how Conditions 3 - 8 are satisfied for some specific sampling schemes under the assumption 
that the censoring indicators and covariate processes (l'i(. ), z,( · )), i E {1, 2, ... , n} are 
independent copies ofthe pair (Y, Z). In all cases below we let p(t) = P(Y(t) = 1), and we 
assume infte[o,.,.) p( t) > 0 and ao( t) > 0 for almost all t E [0, T]. We also assume that 

V = fo"' Cov(Zy{t))ao(t)dt is positive definite, (7.1) 

where the distribution of Zy is given by 

P{Zy{t) E B) = P(Z(t) E BIY(t) = 1). 

Our Conditions 3 - 8 are. taylored for cohort sampling methods, and they are more 
restrictive than necesary for the situation of Example 5.1 where the entire risk set is sam­
pled with probability one. Nevertheless it may be illustrative to first consider this simple 
example. 

Example 7.1 Full cohort. In order to have Conditions 5 and 7 fulfilled we here need 
to assume that the covariate process Z is bounded; that is, that there exists M such that 
IIZ(t)ll ::; M for all t E [0, T]. 

Under the above assumptions we will show how Conditions 3, 4 and 5 are satisfied; 
hence Theorems 1,2 and 3 may be invoked. In full cohort sampling the entire risk set is 
used as controls for the case so that 1rt{r I i) = J(r = R(t)) for all i E R(t) = {i : Yi(t) = 1}. 
In this case {3.4) and (3.5) become the cohort quantities 

" 
sh>(J3, t) = Ll'i(t)Z?"{t) exp(J3Tz1(t)) 

i=l 

and 

E(/3, t) = s<1>(J3, t)/ s<0>(~, t), 
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respectively, cf. Andersen and Gill (1982). By (6.1), 

Q(~."Y)(~:~ t) = (n-1 S(1)(,8o, t)) •P .!.sh>(~:~ t) 
~'-~O' n-1 S(O)(,Bo, t) n JJO' • 

The law of large numbers yields 

.!.sh>(,a, t) .!. ,h>(,a, t) as n -+ oo, 
n 

where 

.sh>(,80,t) = E{Y(t)z8"Y(t)exp(,8JZ(t))}. 

Taking limits, 

q(p,-y)(~:~ t) = ("(1)(,8o, t)) 8P _,("Y)(I-l t) 
JJO' _,(0)(,8o, t) 1-10' • 

In particular, 

q(0,2)(~o' t) = ,(2)(,8o, t) and q(2,0)(,8o, t) = ,(1)(,8o, t)82 / _,(o)(l3o, t), 

and 

E = [r,<2>(,80 ,t)f.s<0>(,80,t)- {&<1>(,80 ,t)/i0>(,80,t)}82]&<0>(,80,t)ao(t)dt, 

recovering the covariance given by Andersen and Gill (1982). 

(7.2) 

As the covariate processes are bounded, (6.3) is satisfied with Xr(t) = M. Noting that 
in the full cohort case 'EreP :Uer1rt(rji) = j'R(t)l = n(t), we see that (6.4) is satisfied as 

n(t)/n .!. p(t) and C(n(t)/n)ao(t)dt converges in probability to .r; p(t)ao(t)dt, which is 
:finite by Condition 1. Thus Condition 5 is fulfilled. 

We observe that the covariance E has the following interpretation. Define the distribu­
tion of a random vector Zy(t) by 

Eh(Z (t)) = E (h(Z (t)) exp(~JZr(t)) ) 
y y Eexp(,8JZr(t)) ' 

(7.3) 

for all bounded measurable functions h. Then 

E = [ p(t)Cov(Zy(t))E{exp(~JZr(t))}ao(t)dt, (7.4) 

that is, E is the integral of the product ·of the at risk probability, the covariance of the 
covariate of an observed failure, and the average hazard for an individual in the cohort. 

We now show how condition (7.1) implies Condition 4. HE given by (7.4) is not 
positive definite, then there exists a nonzero vector a such that a TEa = 0, and so by 
the positivity assumptions, a Tcov(Zy(t))a = 0 for almost all t. Hence, for almost all t, 
E([a T(Zy(t)- EZy(t))]2 = 0, which, by (7.3), implies that for almost all t, E([a T(Zr(t)­
EZy(t))]2 exp(,8JZy(t))/ E(exp(~JZy(t))) = 0. But then, for such t, E[a T(Zy(t)-EZy(t))]2 = 
0, and therefore aT Cov(Zy(t))a = 0 and V is not positive definite, contrary to assump­
tion (7.1). 

To satisfy the hypotheses of Theorems 4 and 5, we find it necessary to impose a fur­
ther condition. An example given in Goldstein and Langholz (1992) demonstrates that 
infte(o,T']p(t) > 0 is not sufficient to imply Condition 6. Therefore, we assume 
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Condition 9 There ezisu a finite number of intervals I~c, le = 1, ... , K, such that 

[o, 'T] c u[=1 I~c 

and with Pic = P(Y(t) = 1 Vt E I~c), toe have min~cPic > 0. 

Then Condition 6 is fulfilled, for with J1c = I(Ef=1 Yi(t) > OVt E I~c) we have that J(t);:::: 
11[=1 J~c. But P(J1c = 1) = 1- (1- p~c)"; hence J~a and therefore J(t) converge to 1 in 
probability. 

Moreover Condition 7 is seen to be satisfied by an argument similar to the one used to 
prove Condition 5, while (7.2) yields that the left hand sides of (6.21) and (6.22) converge 
in probability to 

and 

respectively, recovering the results of Andersen and Gill (1982, Theorem 3.4). 

We next consider nested case-control sampling where, at each failure, m - 1 controls 
are randomly sampled from the risk set (Example 5.2). 

Example 7.2 Nested case-control sampling. We here assume that the covariate pro­
cess Z satisfies the following moment condition: 

Condition 10 There ezisu bo > 3ll.8oll such that, 

E{exp(2boiiZ(t)ll)} < oo 

for all t E [0, T], and 

[ {Eexp(2boiiZ(t)ll)}m/2ao(t)dt < oo. 

Using the fact that if Z- N(p,tr2) then E{exp(7IZI)} ~ 2exp(f'y2tr2 + 7lpl), it is not 
difficult to see that Condition 10 is satisfied if, for example, 

with 

sup lp(t)l < oo and sup tr2(t) < oo 
tE(O,'T') tE(O,'T') 

under Condition 1. 
We will show that Condition 10 and the above assumptions imply that Conditions 3 

through 5 are satisfied, and so the conclusions of Theorems 1, 2 and 3. 
Let R(t) and n(t) as above be the risk set and the number at risk at time t, and 

introduce 

'P(t) = {r C R(t): lrl = m}, 'Pi(t) = {r E 'P(t),i E r}, 



and 

1rt(rli) = (n(t) - 1) -
1
I(r E 'Pi(t)). 

m-1 

First we verify Condition 3, which gives us the form of the asymptotic covariance matrix. 
For (p,-y) equal either (0,2) or (2,0), we have by (6.1) 

Let 

In calculating the variance of Q, we have (,:} 2 - (2:_) (!:') nonzero terms corresponding to the 

number of sets r, s where lrl = lsi = m and r n s -:/; 0. Since lil:nn-oo (,:) - 2 (2:) (~) = 1, we 
see that VarQ-+ 0, and therefore Q converges to its expectation (Goldstein and Langholz, 

1992) . Taking ratios componentwise if necessary and using n( t) / n .!. p( t) as n -+ oo, we 
see that Q and Q have the same limit in probability. Hence with u = {1, 2, ... , m}, 

q{P·•l(A,, t) = p(t)-+1 E { E,.{A,, t)"" [! ~ Z;(t)"" -~ Z;(t)) l I(u E P(t))} . 

In particular, 

where 

q(0,2)(f3o, t) - q(2,0)(~o' t) 

= p(t)-m+1 E { ( Z(t)82 ex:p(~JZ(t))- ~ Eu(f30, t)82) I(u E 'P(t))}. 

As shown in Goldstein and Langholz (1992), Condition 4 is satisfied whenever condi­
tion (7.1) is true by an argument similar to that used in the full cohort case. 

To interpret the covariance matrix for this instance, let Zr,u = (Zr,1 , Zr,2, ... , Zr,m)T, 
a vector with independent components each with distribution Zr. Let the distribution of 
Zy be specified by 

P(Zr(t) = Zr.;(t)IZr,u) = q;(t) 

where 
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Then 

E = E {fo"" p{t)Cov(Zr(t)IZr,u).!.. Lexp(~JZr,i(t))ao(t)dt}, 
o ~ieu 

(7.5) 

which has a similar interpretation to that given to (7.4) in the case of the full cohort; the 
matrix E is the expectation of the integral of the product of the at risk probability, an 
estimate of the covariance of the covariate of the failure, and an estimate of the average 
hazard of the cohort, both based on the sampled risk set. 

Next we verify Condition 5. Equation (6.3) is true using the bounding random variables 

Xr(t) = L IIZi(t)ll. 
ier 

To verify (6.4), begin by noting that 

Dn(t) = n(t) (n(t)) -1 L { eflo.X~:(t)J(u E 'P(t))}. 
n ~ re1' 

The set counting argument used to show Condition 3 may be repeated to show that Dn ( t) ~ 
D(t) where D(t) = p{t)-m+l E{eflo.Xu(t)J(u E 'P(t))}. The verification of (6.4) will therefore 
be complete if we show 

[ n(t) (n(t)) -1 L eflo.Xr(t)J(r E 'P(t))ao(t)dt 
o n ~ re1' 

~ L"" p{t)-m+1 E{eflo.Xu(t)J(u E 'P(t))}ao(t)dt, 

this latter quantity being finite by inftp{t) > 0 and Condition 10. Let £ > 0 be arbitrary 
and defining the events 

there exists a constant C > 0, depending only on£, such that 

P(B:) < Ce-n/C. (7.6) 

Recall that if n(t) <~the probability of sampling a set r is zero; we may therefore adopt 

the convention that (~>f1 = 0 whenever n(t) <~.We now see that 

[ n(t) (n(t)) -t L eflo.Xr(t)J(~)J(r E 'P(t))ao(t)dt ~ 0 
o n ~ re1' 

using I 'fl (~>) - 1 1 $ 1, taking expectation, and applying the Cauchy-Schwarz inequality, 
Condition 10 and (7.6). Since 

N (N) -1 
( ) (N)-m+t -;;- ~ : = -;;- + 0(1/n), 
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we have 

~) ( n~)) - 1 
( :) I(B,) = p(t)-+'J(B,) + 0( < + 1/n), 

and the result will follow &om 

[ p(t)-m+l (n) -l .L: ello.Xr(t) J(r e 'P(t))ao(t)dt 
o m re'P 

.!. L.,. p{t)-m+l E{ello.Xu(t)J(u e 'P(t))}ao(t)dt. 

Computing the second moment ofthe difference and again using inftp(t) > O, it suffices to 
show 

[ ,.,. (n)-2 L Cov{ello.Xr(t)J(re 'P(t)),elle.x.(u)J(s e 'P(u))}ao(t)ao(u)dtdu 
o Jo m Jrl=• 

l•l=m 

tends to zero as n- oo. Again, the only nonzero terms in the double sum above are those 
for which r n s :f:. 0, and the same set counting argument as above shows that it suffices to 
prove 

[ L.,. Cov{ello.Xr(t)J(r e 'P(t)),elle.X.(u)J(s e 'P(u))}ao(t)ao(u)dtdu < oo, 

which follows from Condition 10 after a final application of the Cauchy-Schwarz inequality. 
To satisfy the hypotheses of Theorems 4 and 5, we assume Condition 9 of the previous 

example to hold. Then Condition 6 is fulfilled. To verify Condition 7, we see that in the 
present case equation (6.20) reduces to 

r. J(t) ("~))-, ("!:)) -1 ~ {e:~p(lloXr(t))I(r E 1'(t))}<to(t)dt. 

The calculation that this quantity converges in probability to a finite quantity parallels 
that for showing the convergence in probability of J; Dn(t)ao(t)dt. 

For Condition 8, using J(t) .!. 1 and arguments similar to those used above we have 
equation (6.21) satisfied with 

e(/30 , t) = p(t)-"'E {Eu(/30, t)J(u E 'P(t))} 

Similarly, since the left hand side of (6.22) reduces to 

J~n ("!:)) -1 ~ { (~Y;(t)-wz,(t))) - 1
I(r E 1'(t))}, 

we see equation (6.22) is satisfied with 

.;(fl0,t) = p(t;.+t E { (~Y;(t)e:~p~Z;(t))) - 1
I(o E 1'(t))}. 

From these expressions the asymptotic covariance function (6.29) of the estimated inte­
grated hazard may be obtained using (6.23) and (6.26). 



We finally consider stratified nested case-control sampling as discussed in Example 5.3. 

Example T.S Stratified nested case-control sampling. Assume here that (li(·), Z,(·), C,(·)), 
i = 1, 2, ... , n are independent copies of (Y( ·), Z( ·), C( ·)) with C(t) E C = {1, ... , L} and 
that the covariate process satisfy Condition 10 of the previous example. Note that the 
independent C assumption covers cases where stratification is done based on observed in­
formation on the ith individual only, such as stratification based on absolute exposure 
status as discussed in Example 5.3, yet, it does not cover stratification based on relative 
exposure, as the strata of the ith individual now depends on values observed on other 
cohort members. 

Using the notation of Example 5.3, we let 

and 

pz(t) = P(C(t) = liY(t) = 1) l = 1,2, ... ,L, 

P(t) = {r C 7l(t): VO ~ l ~ L, lr n 7l,(t)l = m,}, 

P,(t) = {r E P(t),i E r}, 

..-t(rli) = [rr ("'<t>) -1] nc,<t>(t) I(r e P,(t)). 
l=1 m, mc,(t) 

We assume that infee[o,-r]Pl(t) > 0,1 = 1,2, ... L. Note that P(t) and P,(t) have different 
meanings than in the previous example. 

We :first consider Condition 3. For (p,7) equal either (2,0) or (0,2), we have by (6.1) 

Let 

and 

q(Prr)(~o, t) = !. L Er(~o, t)8 P L z,(t)..., exp(J3JZ,(t))..-t(rli). 
n ref' ier 

/(t) = p(t)-m+l m Ilpz(t)-ml, ( )
-1 L 

m1, ... ,mL l=1 

"e(rli) = /(t)PC,;(t)(t) (") -
1 
J(r E P,(t)). 

mc,;(t) m 

Since n,(t)/n.!. p(t)pz(t) as n- oo, 

"rt(rli) P 
( I") - 1 as n - oo, 

At't r ' 

and an argument as in Example 7.2 above now yields that the desired limit is the same as 
the limit of 



qPo"f)(J3o, t) 

= f(t) (:) -t ~ { E,(/:1., t)e. [~ Z;(t).., -~ Z;(t))Pc,(tJ(t)m(i:(•Jl I(r E 'P( t))} · 
Let 

s~..,)(tio, t) = Ll'i(t)Zi(t)..., exp(/3JZi(t))pci(t)(t)m(;:(t)' 
iEr 

and 

Q(P,..,)(tio, t) 

= f(t) (n) -t L {Er(f30 ,t)•P [:E Zi(t)8"f exp(f3JZi(t))pci(t)(t)m(;:(t)l J(r E 'P(t))} · 
m re1' iEr 

- p - - p As nz(t)/n(t) converges to pz(t), l = 1, 2, ... , L, we have that Er- Er -+ 0 and Q- Q-+ 0. 
As in Example 7 .2, the variance of the Q tends to zero (see Langholz and Goldstein, 

1992), and Q converges to its expectation. Hence, 

q(p,..,)(f3o, t) 

= I( t)E { i, (J3o, t)8'l~ ZJ( t).., ap(PJ ZJ( t))Pc;(tJ( t )m(i:(t)] I( u E 'P( t))} , 

and we have that E = J;[q<0 •2>(/30 , t) - q<2•0>(ti0 , t)]ao(t)dt. 
As in the previous two examples, the condition (7.1) implies Condition 4. The matrix 

E here can be interpreted as in the previous two examples, but in this instance, with Zy 
defined below, E is the expectation of the integral of the product of the at risk probability, 
an estimate of the covariance of the failure covariate based on the sampled risk set, and an 
estimate of the average hazard of the entire risk set constructed from the stratified sampled 
risk set. 

To give an expression for E, let (with a slight abuse of notation) u = {(l,j) : l = 
1,2, ... ,L,j = 1,2, ... ,mz}, Zy,u(t) = (Zy,z,;(t))(lJ)Eu be mutually independent with 
Zy,z,;(t) distributed as Z(t) conditioned on Y(t) = 1,C(t) = l, for (l,j) E u. Now let 

P(Zy(t) = Zy,z,;(t)IZY,u) = qz,;(t) 

where 



Then 

In particular, formula (7.5) for E in nested ease-control sampling contains the term 
! I:ieu exp(~JZy,&(t))ao(t), which is an estimate of the average hazard in the entire risk 
set based on the sampled set u. The formula for E for stratified nested case-control sampling 
has the corresponding term 

:E exp(tiJ ZY,~c,•(t))Pc,(t)mc:<t>ao(t). 
(k,i)eu 

There are mc,(t) individuals of the same strata as individual i in u, and the factor mc:(t) 
scales the sum of these contributions to the hazard from these individuals to yield a net 
hazard for a single individual of this strata. Multiplication of the factor Pc,;(t)' the propor­
tion of individuals of this strata in the entire risk set, and summing now gives an estimate 
of the average hazard for the entire risk set based on the stratified sampled risk set. The 
remainder of terms in the formula for E in this case can be similarly interpreted. 

To satisfy condition (6.3) again use the bounding random variable 

Xr(t) = L IIZ,(t)ll· 
ier 

The argument that 

. !. L elaoXr(t) L 1rt(rli).!. f(t)E {elaoXu(t) r:E PC,;(t)(t)l I(u E 'P(t))} 
n re'P ier ~eu mc,;(t) 

and 

[! L elaoXr(t) L 1rt(rli)ao(t)dt 
0 n re'P ier 

_!. {'" f(t)E {elaoXu(t) rL PC,;(t)(t)l I(u E 'P(t))} ao(t)dt 
Jo ~eu mc,;(t) 

parallels that given in Example 7.2, and verifies condition (6.4). 
To satisfy the hypotheses of Theorems 4 and 5, we again assume Condition 9 of the 

previous example to hold; this implies Condition 6 as before. To verify Condition 7, we see 
that in the present case equation (6.20) reduces to 

[ J(t) (n(t))-~ rrr (n,(t>)]-l L {exp(boXr(t))I(r E 'P(t))}ao(t)dt. 0 n u=l m, re'P 

which converges in probability to a finite quantity by an argument similar to those used 
above. 



For Condition 8, using J(t) .!. 1 and arguing as before, we have equations (6.21) 
and (6.22) satisfied with 

e(/30 , t) = p(t)-1/(t)E {Eu(/30 , t)J(u E P(t))} 

and 

t/J{/3o, t) = f(t)E { (:E Yi(t) exp(J3JZ&(t)) Pci(t) ) -
1 
J(u E P(t))} 

&eu mci(t) 

respectively. 
Note that Example 7.2 is a special case of Example 7.3 for L = 1. 

8 Extension to k types of events: stratified populations and 
multistate models 

We have above, for the ease of presentation, assumed that we are interested in only one type 
of event (failure), and that there is only a single population stratum under consideration. 
However, in multistate event history analysis, one may want to simultaneously model more 
than one possible sort of event (e.g. relapse, recovery, death), and in survival analysis (and 
event history analysis as well) one may want to perform a stratified analysis using some 
categorical cow.riate (e.g., sex) as stratification w.riable. As developed by Andersen and 
Borgan (1985, Section 7), and further discussed in Andersen et al. (1992, Section Vll.1), the 
inclusion of (possible time dependent) strata in our model and the extension to multistate 
models are both special cases of the same general framework. 

For nested case-control sampling this framework may be described as follows. As in 
Section 2, we first assume that all events observed to happen in the cohort may be modeled 
as one "large" marked point process. From this marked point process we extract a marked 
point process {(t;, (h;, i;)); j ~ 1} only recording the innovative events, i.e. the times t; 
when an event of interest occur, the type h; of the event happening at t;, and the individual 
i; experiencing this event. Here h; may indicate individual i;'s population stratum, or it 
may desCribe what sort of event (e.g. relapse, recovery, death) this individual experiences 
or both. We denote the possible different types by 1, 2, ... , 1:, and assume 1: to be a fixed 
number not depending on n. 

Let 

Nm(t) = :E J(t; :; t, (h;, i;) = (h, i)) 
">1 '-

(8.1) 

be the counting process counting the number of events of type h for individual i in [0, t], 
and let Ym(t) be a predictable indicator process taking the value 1 if the ith individual is 
at risk at for experiencing an event of type h just before time t and 0 otherwise. We may 
then specify a model for the cohort by assuming that the intensity processes of the N lai 

take the form 

lm(t) = Ym( t)a1a0( t) exp(J3J Zm( t)), (8.2) 



where the Zm(t}, for h = 1, 2, ... , k, are vectors ofleft continuous and adapted type specific 
covariate processes for the ith individual. These are typically derived from a vector of z.(t) 
of basic covariates for individual i as illustrated by Andersen et al. {1992, Sections Vll.1-2}. 

Sampling may be superimposed onto this cohort model, just as described in Section 2, 
to get the marked point process 

{(t;, (h;, i;, 7i;)); i ~ 1} 

also recording the sampled risk sets 7i;. This process has mark space 

E = {(h,i,r}: hE {1,2, ... ,i}, i E {1,2, ... ,n}, r E 'Pi}. 

Also here we let (.1',) be the :filtration generated by the events in the cohort as well as by 
the sampling. Furthermore define, for each (h,i,r) E E, the counting process 

N(h,i,r)(t) = Ll(t; :S t,(h;,i;,'R.;} = (h,i,r)), 
">1 '-

{8.3} 

counting the observed number of events of type h for individual i in [0, t] with associated 
sampled risk set equal tor, and denote its intensity process by l(h,i,r)· 

Assuming the sampling to be independent, we may then write 

l(h,i,r)(t) = lm(t)r,(rl h, i}, {8.4} 

with lm(t) given by {8.2) and r,(rl h,i} being the conditional probability of selecting the 
sampled risk set r at t given .r,_ and the fact that the individual i experiences an event 
of type hat t. A model for nested case-control sampling is therefore given, via (8.2} and 
{8.4), by specifying, for each h, i and each t with Ym(t) = 1, the sampling distributions 
rt( ·I h, i) over sets r in 'P&. 

Typically, if h indicates population strata, sampling will be done within these strata, 
i.e., with r,(rl h, i) a distribution over sets of subjects in population stratum h at timet. 
But the sampling may be across strata with r,(rl h, i) = r,(rl i) for all h. Such a strategy 
may be necessary if information on population strata is collected only on the sample or 
when the single stratum model is of primary interest and the multiple population strata are 
used for model checking. As examples one may adopt simple or stratified random sampling 
of controls within population strata or for all population strata combined. 

To derive a partial likelihood, we introduce the counting processes 

N(h,r){t) = L N(h,i,r)(t}, 
ier 

counting the number of times an event of type h occurs in [0, t] together with a sampled 
risk set equal to r, and their intensity processes 

lch,r)(t) = :EYm(t)ahO(t)exp(,BTzhi(t))rt(rl h,i;~). 
iEr 

The intensity processes l(k,i,r) may be factorized as 



with 

( •1 h . a_)_ Ym(t) exp(,8~Zm(t))1re(rl h, i) 
1rt • ,r,l-'0 - T 

Eier Yhi(t) exp(I=Jo ZhJ(t))1rt(rl h,j) 

being the conditional probability that the ith individual experiences an event of type h at 
t given Ft- and that a.n event of type h occurs among individuals in the set r at t. 

Multiplying together these conditional probabilities over all observed events, we arrive 
at the partial likelihood 

As before the estimator~' obtained by maximizing this partial likelihood, will be asymptot­
ically multivariate normally distributed around the true value ,80 with a covariance matrix 
that may be estimated by the inverse of the observed information matrix (evaluated at ~). 
Formal proofs may be written out along the lines of Section 6 provided that the regularity 
conditions stated there hold for each type. 

Note that if h represent population strata a.nd the sampling is done across these strata, 
if the ith subject fails, then Yhi(~) = 0 for subjects not in the same population stratum as 
i a.nd such subjects will not contribute to the partial likelihood. Thus, as one might expect, 
there may be a severe efficiency penalty for not sampling within population stratum. 

To be able to estimate the type specific baseline intensities 

A1a0(t) = kt a1a0(u)du 

we must assume that the sampling distributions 1re(·l h,i) are of the form (4.1) for each 
type h. Thus, assume that for each h and t, at which at least one individual is at risk for 
an event of type h, there exists, conditional on F,_, a sampling distribution 1re(·l h) over 
sets r in 1' such that 

( I h ") _ 1re(rli, h) 
1rt r ,• - Pt(ilh) 

fori E r, where 

Pt(ilh) = L 1re(rl h). 
1'€1'; 

is assumed to be positive for each i with Ym(t) = 1. 
Then by the same argument as in Section 4, we obtain the estimators 

(8.6) 

(8.7) 

(8.8) 

for the integrated baseline intensities. For fixed Z1a0 one may estimate Ah(t, Z1a0) = 
exp(tJ~Z1a0)A1a0(t) by 

- -T - -Ah(t; Z1a0) = exp(,8 ZlaO)AJaO(t,tJ), 



and the asymptotic properties may be derived as in Section 6. 
The integrated intensity estimators may form the basis for model checking procedures 

as for the full cohort model, see e.g. the review by Andersen et al. (1992, Section Vll.3). 
Furthermore, for Markov process models, they may product-integrated to give estimators 
for transition probabilities as described Andersen et al. (1991) and Andersen et al. (1992, 
Section Vll.2.3). 

9 Aalens linear regression model 

We have in this paper considered the proportional hazards regression model (2.2). An 
alternative to this model is Aalen 's linear regression model, see the review in Andersen 
et al. (1992, Section vn.4.1) and the references therein. For this model it is assumed that 
the intensity process for the Ni are given by 

~(t) = Yi(t){Po(t) + Pt(t)Zit(t) + · · · + P,(t)Zi,(t)}, (9.1) 

where the P; ue ubitrary regression functions only restricted by the requirement that the 
~should be non-negative. 

In this section we will indicate how estimation of the integrated regression functions 

j = 1, ... p; 

may be performed based on sampled cohort data. To this end we assume that the sampling 
distribution satisfies (4.1), and note that by (2.6) the N(i,r) then have intensity processes 

~(i,r)(t) = re(r)Yi(t)tJ(t) (9.2) 

with 

(9.3) 

and 

~t) = (Pt(t), ... ,P,(t))T. 

We furthermore introduce the lrl-dimensional column vector Nr(t) with elements N(l,r)(t), 
l E r, and define ~(t) and Mr(t) similat'ly. We also introduce the lrl X (p+ 1) dimensional 
matrix Yr(t) with rows Yz(t), l E r, cf. (9.3). 

As an estimator for B(t) = (B0(t), B1(t), ... , B,(t))T we then propose 

~ r 
B(t) = Jo L Jr(u)Y;(u)dNr(u). 

0 re'J' 
(9.4) 

Here Y;(t) is a generalized inverse ofYr(t), i.e. a (p+ 1) X lrl matrix satisfying 

Y;(t)Yr(t) =I, 

the (p + 1) X (p + 1) identity matrix, and 

Jr(t) = I(rankYr(t) = p+ 1) 



is the predictable indicator of Yr(t) having full rank. Note that this implies that each 
sampled risk set must include at least p+ 1 subjects. 

The motivation for the estimator (9.4) is the following. By (9.2) we may write (c.f. 
(4.5)) 

.... r 
B(t) = B*(t) + Jo L Jr(u)Y;(u)dMr(u). 

0 re'P 

(9.5) 

with 

B*(t) = 1t {:E 1r(u)ru(r)}f3(u)du. 
0 re'P 

IfYr(t) has full rank with high probability then B*(t) is almost the same as B(t) and (9.5) 
then gives that the estimator (9.4) is almost unbiased. 

The variance of B(t) may be estimated by the optional variation process of B- B*, i.e. 
by 

(9.6) 

where diag(a) fQr a vector a is the diagonal matrix with the elements of a in the diagonal. 
To actually calculate B(t) and E(t) a choice of generalized inverse must be made. A 

simple possibility is 

- ( T )-l T Yr (t) = Yr(t) Yr(t) Yr(t) 

corresponding to an unweighted least squares principle. A weighted least squares approach 
suggests the use of 

for a suitably chosen lrl X lrl diagonal weight matrix Wr(t). 
It should be possible to derive large sample properties of the estimator B(t) using 

the martingale representation (9.5) along the lines of the proofs for the full cohort; c.f. 
McKeague (1988), Huft"er and McKeague (1991) as well as the summary in Andersen et al. 
(1992; Section Vll.4.2). We will not go into this here, however. The practical applicability 
of the estimator (9.4) also needs to be investigated, and one may expect that B(t) based on 
the nonparametric model (9.1) will need much larger sampled risk sets to behave reasonably 
than what is the case for the estimators for the semiparametric model (2.2). 

10 Discussion 

The general framework we have presented makes it possible to analyze a large class of 
sampling designs. The three completely novel (classes of) designs given in Examples 5.3 
- 5.5 illustrate the potential usefulness of the methods. Many techniques available for the 
analysis of full cohort data are accommodated with little change for sampled data. In 
this paper alone, we have given estimation methods for relative risks (using the partial 
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likelihood), baseline hazards, survival probabilities, and extensions to multistrata and mul­
tistate problems, and to the Aalen linear regression model. Estimation of relative mortality 
is developed in Borgan and Langholz (1993). Further, the marked point process framework 
can be generalized to accommodate other design problems. For instance, in Langholz and 
Borgan (1992), a simple generalization of the mark space described in Section 2 is used to 
derive a partial likelihood when failures are also to be sampled from the cohort. 

In Section 5, we were careful to point out that the new designs and associated partial 
likelihood might, but not necesS&Tily would, be more efficient than "standard" methods (by 
which we were thinking of simple nested case-control sampling). There are actually two 
aspects to the issue of efficiency. The first is the efficiency of the design (compared to the 
full cohort) when the most efficient analytic method is used. The second is the efficiency of 
the partial likelihood for the given design compared to the optimal method (for this design). 
It is important stress that the partial likelihood approach presented here provides a method 
for estimation of the regression parameters for a large class of sampling designs but, since 
optimal analytic methods for a given sampling design have not been characterized, it is an 
open question as to when the partial likelihood for a given design is efficient relative to the 
optimal. Greenwood and Wefelmeyer (1990) show the asymptotic efficiency of the partial 
likelihood for estimation in the full cohort case. Their approach should be readily adaptable 
to the sampled cohort situation and, in fact, has been used to show the efficiency of the 
partial likelihood for simple nested case-control sampling (Scheepker, 1992). In Section 6, 
we provide the basis for (large sample) comparisons of partial likelihood analyses of designs 
within this class. In particular, efficiency relative to the full cohort or to the simple nested 
case-control sampling is possible. For instance, using asymptotic variance formulas (7.5) 
and (7.7), the stratified sampling method of Section 5.3 was found to have much smaller 
asymptotic variance than simple nested case-control sampling in situations of practical 
importance (Langholz and Borgan, 1992). 

Interestingly, up until now, simple nested case-control sampling has been the only sam­
pling design for which analysis is based on a partial likelihood. Case-cohort sampling, 
perhaps the only other cohort sampling method which has been used for actual epidemio­
logic studies, relies on a "pseudo-likelihood" approach because, as shown in Example 5.6, 
the partial likelihood does not make use of non-subcohort failures. A similar phenomenon 
occurs with variants of nested case-control sampling in which subjects may serve as a 
control only once (Prentice, 19866, Robins et al., 1989). Designs IT and m of Langholz 
and Thomas (1991) are examples of sampling designs which do not belong to the class we 
have considered. The path sets, used in the stratified sampling by Langholz and Thomas, 
are based on all failure times which occur over the study period and, thus, the sampling 
distributions are not predictable. 

In earlier, work Goldstein and Langholz (1992) developed the asymptotic theory for 
(simple) nested case-control sampling based on a different model from that given here. In 
their model, just after a change in Yi or Ni for some subject i in the cohort, a set of controls 
is randomly (and independently) sampled for each at risk subject. Then, when a failure 
occur, the sampled risk set would be already established. The counting processes then just 
count failure occurrences, as in the full cohort framework of Andersen and Gill (1982), and 
the fictitious sampling is predictable under an obvious enlarged filtration. In the marked 
point process approach of the present paper, the counting processes count joint failure 
and sampled risk set occurrences. The probability laws for the sampling are predictable 
but the sampling itself is adapted (but not predictable) with respect to the filtration (Ft)· 
The observed scores from both models are identical but the score process (3.8) is exactly a 
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martingale while Goldstein and Langholz's is a martingale plus an additional term. This 
second term is due to the additional "V&riation generated by the multiplicity of (fictitiously) 
sampled risk sets and is asymptotically negligible. The approach given here not only vastly 
simplifies proofs, allows for a partial likelihood interpretation, and leads, quite naturally, 
to the estimator of the cumulative baseline hazard but also reflects how nested case-control 
sampling is actually done. We note, for completeness, that the earlier approach of Goldstein 
and Langholz does generalize to accommodate some of the sampling schemes in the class 
considered here; Langholz and Goldstein (1992) developed the stratified sampling method 
in Example 5.3 in this way. 
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